Mercurial > audlegacy-plugins
view src/madplug/dither.c @ 642:2605c5515bab trunk
[svn] - remove a debug output.
author | yaz |
---|---|
date | Mon, 12 Feb 2007 21:58:47 -0800 |
parents | 862190d39e00 |
children | 7e14701aef54 |
line wrap: on
line source
/* A C-program for MT19937: Integer version */ /* genrand() generates one pseudorandom unsigned integer (32bit) */ /* which is uniformly distributed among 0 to 2^32-1 for each */ /* call. sgenrand(seed) set initial values to the working area */ /* of 624 words. Before genrand(), sgenrand(seed) must be */ /* called once. (seed is any 32-bit integer except for 0). */ /* Coded by Takuji Nishimura, considering the suggestions by */ /* Topher Cooper and Marc Rieffel in July-Aug. 1997. */ /* This library is free software; you can redistribute it and/or */ /* modify it under the terms of the GNU Library General Public */ /* License as published by the Free Software Foundation; either */ /* version 2 of the License, or (at your option) any later */ /* version. */ /* This library is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */ /* See the GNU Library General Public License for more details. */ /* You should have received a copy of the GNU Library General */ /* Public License along with this library; if not, write to the */ /* Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA */ /* 02111-1307 USA */ /* Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. */ /* Any feedback is very welcome. For any question, comments, */ /* see http://www.math.keio.ac.jp/matumoto/emt.html or email */ /* matumoto@math.keio.ac.jp */ #include <stdio.h> #include <assert.h> /* Period parameters */ #define N 624 #define M 397 #define MATRIX_A 0x9908b0df /* constant vector a */ #define UPPER_MASK 0x80000000 /* most significant w-r bits */ #define LOWER_MASK 0x7fffffff /* least significant r bits */ /* Tempering parameters */ #define TEMPERING_MASK_B 0x9d2c5680 #define TEMPERING_MASK_C 0xefc60000 #define TEMPERING_SHIFT_U(y) (y >> 11) #define TEMPERING_SHIFT_S(y) (y << 7) #define TEMPERING_SHIFT_T(y) (y << 15) #define TEMPERING_SHIFT_L(y) (y >> 18) static unsigned long mt[N]; /* the array for the state vector */ static int mti = N + 1; /* mti==N+1 means mt[N] is not initialized */ /* initializing the array with a NONZERO seed */ void sgenrand(seed) unsigned long seed; { /* setting initial seeds to mt[N] using */ /* the generator Line 25 of Table 1 in */ /* [KNUTH 1981, The Art of Computer Programming */ /* Vol. 2 (2nd Ed.), pp102] */ mt[0] = seed & 0xffffffff; for (mti = 1; mti < N; mti++) mt[mti] = (69069 * mt[mti - 1]) & 0xffffffff; } unsigned long genrand() { unsigned long y; static unsigned long mag01[2] = { 0x0, MATRIX_A }; /* mag01[x] = x * MATRIX_A for x=0,1 */ if (mti >= N) { /* generate N words at one time */ int kk; if (mti == N + 1) /* if sgenrand() has not been called, */ sgenrand(4357); /* a default initial seed is used */ for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >> 1) ^ mag01[y & 0x1]; mti = 0; } y = mt[mti++]; y ^= TEMPERING_SHIFT_U(y); y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B; y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C; y ^= TEMPERING_SHIFT_L(y); return y; } long triangular_dither_noise(int nbits) { // parameter nbits : the peak-to-peak amplitude desired (in bits) // use with nbits set to 2 + nber of bits to be trimmed. // (because triangular is made from two uniformly distributed processes, // it starts at 2 bits peak-to-peak amplitude) // see The Theory of Dithered Quantization by Robert Alexander Wannamaker // for complete proof of why that's optimal long v = (genrand() / 2 - genrand() / 2); // in ]-2^31, 2^31[ //int signe = (v>0) ? 1 : -1; long P = 1 << (32 - nbits); // the power of 2 v /= P; // now v in ]-2^(nbits-1), 2^(nbits-1) [ return v; }