2313
|
1 /* Audacious - Cross-platform multimedia player
|
|
2 * Copyright (C) 2005-2007 Audacious development team
|
|
3 *
|
|
4 * Copyright (C) 1999 Richard Boulton <richard@tartarus.org>
|
|
5 * Convolution stuff by Ralph Loader <suckfish@ihug.co.nz>
|
|
6 *
|
|
7 * This program is free software; you can redistribute it and/or modify
|
|
8 * it under the terms of the GNU General Public License as published by
|
|
9 * the Free Software Foundation; under version 2 of the License.
|
|
10 *
|
|
11 * This program is distributed in the hope that it will be useful,
|
|
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
14 * GNU General Public License for more details.
|
|
15 *
|
|
16 * You should have received a copy of the GNU General Public License
|
|
17 * along with this program; if not, write to the Free Software
|
|
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
19 */
|
|
20
|
|
21 /* fft.c: iterative implementation of a FFT */
|
|
22
|
|
23 /*
|
|
24 * TODO
|
|
25 * Remove compiling in of FFT_BUFFER_SIZE? (Might slow things down, but would
|
|
26 * be nice to be able to change size at runtime.)
|
|
27 * Finish making / checking thread-safety.
|
|
28 * More optimisations.
|
|
29 */
|
|
30
|
|
31 #ifdef HAVE_CONFIG_H
|
|
32 # include "config.h"
|
|
33 #endif
|
|
34
|
|
35 #include "fft.h"
|
|
36
|
|
37 #include <glib.h>
|
|
38 #include <stdlib.h>
|
|
39 #include <math.h>
|
|
40 #ifndef PI
|
|
41 #ifdef M_PI
|
|
42 #define PI M_PI
|
|
43 #else
|
|
44 #define PI 3.14159265358979323846 /* pi */
|
|
45 #endif
|
|
46 #endif
|
|
47
|
|
48 /* ########### */
|
|
49 /* # Structs # */
|
|
50 /* ########### */
|
|
51
|
|
52 struct _struct_fft_state {
|
|
53 /* Temporary data stores to perform FFT in. */
|
|
54 float real[FFT_BUFFER_SIZE];
|
|
55 float imag[FFT_BUFFER_SIZE];
|
|
56 };
|
|
57
|
|
58 /* ############################# */
|
|
59 /* # Local function prototypes # */
|
|
60 /* ############################# */
|
|
61
|
|
62 static void fft_prepare(const sound_sample * input, float *re, float *im);
|
|
63 static void fft_calculate(float *re, float *im);
|
|
64 static void fft_output(const float *re, const float *im, float *output);
|
|
65 static int reverseBits(unsigned int initial);
|
|
66
|
|
67 /* #################### */
|
|
68 /* # Global variables # */
|
|
69 /* #################### */
|
|
70
|
|
71 /* Table to speed up bit reverse copy */
|
|
72 static unsigned int bitReverse[FFT_BUFFER_SIZE];
|
|
73
|
|
74 /* The next two tables could be made to use less space in memory, since they
|
|
75 * overlap hugely, but hey. */
|
|
76 static float sintable[FFT_BUFFER_SIZE / 2];
|
|
77 static float costable[FFT_BUFFER_SIZE / 2];
|
|
78
|
|
79 /* ############################## */
|
|
80 /* # Externally called routines # */
|
|
81 /* ############################## */
|
|
82
|
|
83 /* --------- */
|
|
84 /* FFT stuff */
|
|
85 /* --------- */
|
|
86
|
|
87 /*
|
|
88 * Initialisation routine - sets up tables and space to work in.
|
|
89 * Returns a pointer to internal state, to be used when performing calls.
|
|
90 * On error, returns NULL.
|
|
91 * The pointer should be freed when it is finished with, by fft_close().
|
|
92 */
|
|
93 fft_state *
|
|
94 fft_init(void)
|
|
95 {
|
|
96 fft_state *state;
|
|
97 unsigned int i;
|
|
98
|
|
99 state = (fft_state *) g_malloc(sizeof(fft_state));
|
|
100 if (!state)
|
|
101 return NULL;
|
|
102
|
|
103 for (i = 0; i < FFT_BUFFER_SIZE; i++) {
|
|
104 bitReverse[i] = reverseBits(i);
|
|
105 }
|
|
106 for (i = 0; i < FFT_BUFFER_SIZE / 2; i++) {
|
|
107 float j = 2 * PI * i / FFT_BUFFER_SIZE;
|
|
108 costable[i] = cos(j);
|
|
109 sintable[i] = sin(j);
|
|
110 }
|
|
111
|
|
112 return state;
|
|
113 }
|
|
114
|
|
115 /*
|
|
116 * Do all the steps of the FFT, taking as input sound data (as described in
|
|
117 * sound.h) and returning the intensities of each frequency as floats in the
|
|
118 * range 0 to ((FFT_BUFFER_SIZE / 2) * 32768) ^ 2
|
|
119 *
|
|
120 * FIXME - the above range assumes no frequencies present have an amplitude
|
|
121 * larger than that of the sample variation. But this is false: we could have
|
|
122 * a wave such that its maximums are always between samples, and it's just
|
|
123 * inside the representable range at the places samples get taken.
|
|
124 * Question: what _is_ the maximum value possible. Twice that value? Root
|
|
125 * two times that value? Hmmm. Think it depends on the frequency, too.
|
|
126 *
|
|
127 * The input array is assumed to have FFT_BUFFER_SIZE elements,
|
|
128 * and the output array is assumed to have (FFT_BUFFER_SIZE / 2 + 1) elements.
|
|
129 * state is a (non-NULL) pointer returned by fft_init.
|
|
130 */
|
|
131 void
|
|
132 fft_perform(const sound_sample * input, float *output, fft_state * state)
|
|
133 {
|
|
134 /* Convert data from sound format to be ready for FFT */
|
|
135 fft_prepare(input, state->real, state->imag);
|
|
136
|
|
137 /* Do the actual FFT */
|
|
138 fft_calculate(state->real, state->imag);
|
|
139
|
|
140 /* Convert the FFT output into intensities */
|
|
141 fft_output(state->real, state->imag, output);
|
|
142 }
|
|
143
|
|
144 /*
|
|
145 * Free the state.
|
|
146 */
|
|
147 void
|
|
148 fft_close(fft_state * state)
|
|
149 {
|
|
150 if (state)
|
|
151 free(state);
|
|
152 }
|
|
153
|
|
154 /* ########################### */
|
|
155 /* # Locally called routines # */
|
|
156 /* ########################### */
|
|
157
|
|
158 /*
|
|
159 * Prepare data to perform an FFT on
|
|
160 */
|
|
161 static void
|
|
162 fft_prepare(const sound_sample * input, float *re, float *im)
|
|
163 {
|
|
164 unsigned int i;
|
|
165 float *realptr = re;
|
|
166 float *imagptr = im;
|
|
167
|
|
168 /* Get input, in reverse bit order */
|
|
169 for (i = 0; i < FFT_BUFFER_SIZE; i++) {
|
|
170 *realptr++ = input[bitReverse[i]];
|
|
171 *imagptr++ = 0;
|
|
172 }
|
|
173 }
|
|
174
|
|
175 /*
|
|
176 * Take result of an FFT and calculate the intensities of each frequency
|
|
177 * Note: only produces half as many data points as the input had.
|
|
178 * This is roughly a consequence of the Nyquist sampling theorm thingy.
|
|
179 * (FIXME - make this comment better, and helpful.)
|
|
180 *
|
|
181 * The two divisions by 4 are also a consequence of this: the contributions
|
|
182 * returned for each frequency are split into two parts, one at i in the
|
|
183 * table, and the other at FFT_BUFFER_SIZE - i, except for i = 0 and
|
|
184 * FFT_BUFFER_SIZE which would otherwise get float (and then 4* when squared)
|
|
185 * the contributions.
|
|
186 */
|
|
187 static void
|
|
188 fft_output(const float *re, const float *im, float *output)
|
|
189 {
|
|
190 float *outputptr = output;
|
|
191 const float *realptr = re;
|
|
192 const float *imagptr = im;
|
|
193 float *endptr = output + FFT_BUFFER_SIZE / 2;
|
|
194
|
|
195 #ifdef DEBUG
|
|
196 unsigned int i, j;
|
|
197 #endif
|
|
198
|
|
199 while (outputptr <= endptr) {
|
|
200 *outputptr = (*realptr * *realptr) + (*imagptr * *imagptr);
|
|
201 outputptr++;
|
|
202 realptr++;
|
|
203 imagptr++;
|
|
204 }
|
|
205 /* Do divisions to keep the constant and highest frequency terms in scale
|
|
206 * with the other terms. */
|
|
207 *output /= 4;
|
|
208 *endptr /= 4;
|
|
209
|
|
210 #ifdef DEBUG
|
|
211 printf("Recalculated input:\n");
|
|
212 for (i = 0; i < FFT_BUFFER_SIZE; i++) {
|
|
213 float val_real = 0;
|
|
214 float val_imag = 0;
|
|
215 for (j = 0; j < FFT_BUFFER_SIZE; j++) {
|
|
216 float fact_real = cos(-2 * j * i * PI / FFT_BUFFER_SIZE);
|
|
217 float fact_imag = sin(-2 * j * i * PI / FFT_BUFFER_SIZE);
|
|
218 val_real += fact_real * re[j] - fact_imag * im[j];
|
|
219 val_imag += fact_real * im[j] + fact_imag * re[j];
|
|
220 }
|
|
221 printf("%5d = %8f + i * %8f\n", i,
|
|
222 val_real / FFT_BUFFER_SIZE, val_imag / FFT_BUFFER_SIZE);
|
|
223 }
|
|
224 printf("\n");
|
|
225 #endif
|
|
226 }
|
|
227
|
|
228 /*
|
|
229 * Actually perform the FFT
|
|
230 */
|
|
231 static void
|
|
232 fft_calculate(float *re, float *im)
|
|
233 {
|
|
234 unsigned int i, j, k;
|
|
235 unsigned int exchanges;
|
|
236 float fact_real, fact_imag;
|
|
237 float tmp_real, tmp_imag;
|
|
238 unsigned int factfact;
|
|
239
|
|
240 /* Set up some variables to reduce calculation in the loops */
|
|
241 exchanges = 1;
|
|
242 factfact = FFT_BUFFER_SIZE / 2;
|
|
243
|
|
244 /* Loop through the divide and conquer steps */
|
|
245 for (i = FFT_BUFFER_SIZE_LOG; i != 0; i--) {
|
|
246 /* In this step, we have 2 ^ (i - 1) exchange groups, each with
|
|
247 * 2 ^ (FFT_BUFFER_SIZE_LOG - i) exchanges
|
|
248 */
|
|
249 /* Loop through the exchanges in a group */
|
|
250 for (j = 0; j != exchanges; j++) {
|
|
251 /* Work out factor for this exchange
|
|
252 * factor ^ (exchanges) = -1
|
|
253 * So, real = cos(j * PI / exchanges),
|
|
254 * imag = sin(j * PI / exchanges)
|
|
255 */
|
|
256 fact_real = costable[j * factfact];
|
|
257 fact_imag = sintable[j * factfact];
|
|
258
|
|
259 /* Loop through all the exchange groups */
|
|
260 for (k = j; k < FFT_BUFFER_SIZE; k += exchanges << 1) {
|
|
261 int k1 = k + exchanges;
|
|
262 /* newval[k] := val[k] + factor * val[k1]
|
|
263 * newval[k1] := val[k] - factor * val[k1]
|
|
264 **/
|
|
265 #ifdef DEBUG
|
|
266 printf("%d %d %d\n", i, j, k);
|
|
267 printf("Exchange %d with %d\n", k, k1);
|
|
268 printf("Factor %9f + i * %8f\n", fact_real, fact_imag);
|
|
269 #endif
|
|
270 /* FIXME - potential scope for more optimization here? */
|
|
271 tmp_real = fact_real * re[k1] - fact_imag * im[k1];
|
|
272 tmp_imag = fact_real * im[k1] + fact_imag * re[k1];
|
|
273 re[k1] = re[k] - tmp_real;
|
|
274 im[k1] = im[k] - tmp_imag;
|
|
275 re[k] += tmp_real;
|
|
276 im[k] += tmp_imag;
|
|
277 #ifdef DEBUG
|
|
278 for (k1 = 0; k1 < FFT_BUFFER_SIZE; k1++) {
|
|
279 printf("%5d = %8f + i * %8f\n", k1, real[k1], imag[k1]);
|
|
280 }
|
|
281 #endif
|
|
282 }
|
|
283 }
|
|
284 exchanges <<= 1;
|
|
285 factfact >>= 1;
|
|
286 }
|
|
287 }
|
|
288
|
|
289 static int
|
|
290 reverseBits(unsigned int initial)
|
|
291 {
|
|
292 unsigned int reversed = 0, loop;
|
|
293 for (loop = 0; loop < FFT_BUFFER_SIZE_LOG; loop++) {
|
|
294 reversed <<= 1;
|
|
295 reversed += (initial & 1);
|
|
296 initial >>= 1;
|
|
297 }
|
|
298 return reversed;
|
|
299 }
|