Mercurial > audlegacy
diff Input/aac/libfaad2/mdct.c @ 2:6efb9e514224 trunk
[svn] Import AAC stuff.
author | nenolod |
---|---|
date | Mon, 24 Oct 2005 10:44:27 -0700 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Input/aac/libfaad2/mdct.c Mon Oct 24 10:44:27 2005 -0700 @@ -0,0 +1,332 @@ +/* +** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding +** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com +** +** This program is free software; you can redistribute it and/or modify +** it under the terms of the GNU General Public License as published by +** the Free Software Foundation; either version 2 of the License, or +** (at your option) any later version. +** +** This program is distributed in the hope that it will be useful, +** but WITHOUT ANY WARRANTY; without even the implied warranty of +** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +** GNU General Public License for more details. +** +** You should have received a copy of the GNU General Public License +** along with this program; if not, write to the Free Software +** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. +** +** Any non-GPL usage of this software or parts of this software is strictly +** forbidden. +** +** Commercial non-GPL licensing of this software is possible. +** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. +** +** $Id: mdct.c,v 1.34 2003/11/12 20:47:58 menno Exp $ +**/ + +/* + * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform) + * and consists of three steps: pre-(I)FFT complex multiplication, complex + * (I)FFT, post-(I)FFT complex multiplication, + * + * As described in: + * P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the + * Implementation of Filter Banks Based on 'Time Domain Aliasing + * Cancellation’," IEEE Proc. on ICASSP‘91, 1991, pp. 2209-2212. + * + * + * As of April 6th 2002 completely rewritten. + * This (I)MDCT can now be used for any data size n, where n is divisible by 8. + * + */ + +#include "common.h" +#include "structs.h" + +#include <stdlib.h> +#ifdef _WIN32_WCE +#define assert(x) +#else +#include <assert.h> +#endif + +#include "cfft.h" +#include "mdct.h" + +/* const_tab[]: + 0: sqrt(2 / N) + 1: cos(2 * PI / N) + 2: sin(2 * PI / N) + 3: cos(2 * PI * (1/8) / N) + 4: sin(2 * PI * (1/8) / N) + */ +#ifdef FIXED_POINT +real_t const_tab[][5] = +{ + { /* 2048 */ + COEF_CONST(1), + FRAC_CONST(0.99999529380957619), + FRAC_CONST(0.0030679567629659761), + FRAC_CONST(0.99999992646571789), + FRAC_CONST(0.00038349518757139556) + }, { /* 1920 */ + COEF_CONST(/* sqrt(1024/960) */ 1.0327955589886444), + FRAC_CONST(0.99999464540169647), + FRAC_CONST(0.0032724865065266251), + FRAC_CONST(0.99999991633432805), + FRAC_CONST(0.00040906153202803459) + }, { /* 1024 */ + COEF_CONST(1), + FRAC_CONST(0.99998117528260111), + FRAC_CONST(0.0061358846491544753), + FRAC_CONST(0.99999970586288223), + FRAC_CONST(0.00076699031874270449) + }, { /* 960 */ + COEF_CONST(/* sqrt(512/480) */ 1.0327955589886444), + FRAC_CONST(0.99997858166412923), + FRAC_CONST(0.0065449379673518581), + FRAC_CONST(0.99999966533732598), + FRAC_CONST(0.00081812299560725323) + }, { /* 256 */ + COEF_CONST(1), + FRAC_CONST(0.99969881869620425), + FRAC_CONST(0.024541228522912288), + FRAC_CONST(0.99999529380957619), + FRAC_CONST(0.0030679567629659761) + }, { /* 240 */ + COEF_CONST(/* sqrt(256/240) */ 1.0327955589886444), + FRAC_CONST(0.99965732497555726), + FRAC_CONST(0.026176948307873149), + FRAC_CONST(0.99999464540169647), + FRAC_CONST(0.0032724865065266251) + } +#ifdef SSR_DEC + ,{ /* 512 */ + COEF_CONST(1), + FRAC_CONST(0.9999247018391445), + FRAC_CONST(0.012271538285719925), + FRAC_CONST(0.99999882345170188), + FRAC_CONST(0.0015339801862847655) + }, { /* 64 */ + COEF_CONST(1), + FRAC_CONST(0.99518472667219693), + FRAC_CONST(0.098017140329560604), + FRAC_CONST(0.9999247018391445), + FRAC_CONST(0.012271538285719925) + } +#endif +}; +#endif + +uint8_t map_N_to_idx(uint16_t N) +{ + /* gives an index into const_tab above */ + /* for normal AAC deocding (eg. no scalable profile) only */ + /* index 0 and 4 will be used */ + switch(N) + { + case 2048: return 0; + case 1920: return 1; + case 1024: return 2; + case 960: return 3; + case 256: return 4; + case 240: return 5; +#ifdef SSR_DEC + case 512: return 6; + case 64: return 7; +#endif + } + return 0; +} + +mdct_info *faad_mdct_init(uint16_t N) +{ + uint16_t k; +#ifdef FIXED_POINT + uint16_t N_idx; + real_t cangle, sangle, c, s, cold; +#endif + real_t scale; + + mdct_info *mdct = (mdct_info*)malloc(sizeof(mdct_info)); + + assert(N % 8 == 0); + + mdct->N = N; + mdct->sincos = (complex_t*)malloc(N/4*sizeof(complex_t)); + +#ifdef FIXED_POINT + N_idx = map_N_to_idx(N); + + scale = const_tab[N_idx][0]; + cangle = const_tab[N_idx][1]; + sangle = const_tab[N_idx][2]; + c = const_tab[N_idx][3]; + s = const_tab[N_idx][4]; +#else + scale = (real_t)sqrt(2.0 / (real_t)N); +#endif + + /* (co)sine table build using recurrence relations */ + /* this can also be done using static table lookup or */ + /* some form of interpolation */ + for (k = 0; k < N/4; k++) + { +#ifdef FIXED_POINT + RE(mdct->sincos[k]) = c; //MUL_C_C(c,scale); + IM(mdct->sincos[k]) = s; //MUL_C_C(s,scale); + + cold = c; + c = MUL_F(c,cangle) - MUL_F(s,sangle); + s = MUL_F(s,cangle) + MUL_F(cold,sangle); +#else + /* no recurrence, just sines */ + RE(mdct->sincos[k]) = scale*(real_t)(cos(2.0*M_PI*(k+1./8.) / (real_t)N)); + IM(mdct->sincos[k]) = scale*(real_t)(sin(2.0*M_PI*(k+1./8.) / (real_t)N)); +#endif + } + + /* initialise fft */ + mdct->cfft = cffti(N/4); + + return mdct; +} + +void faad_mdct_end(mdct_info *mdct) +{ + if (mdct != NULL) + { + cfftu(mdct->cfft); + + if (mdct->sincos) free(mdct->sincos); + + free(mdct); + } +} + +void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out) +{ + uint16_t k; + + complex_t x; + complex_t Z1[512]; + complex_t *sincos = mdct->sincos; + + uint16_t N = mdct->N; + uint16_t N2 = N >> 1; + uint16_t N4 = N >> 2; + uint16_t N8 = N >> 3; + + /* pre-IFFT complex multiplication */ + for (k = 0; k < N4; k++) + { + ComplexMult(&IM(Z1[k]), &RE(Z1[k]), + X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k])); + } + + /* complex IFFT, any non-scaling FFT can be used here */ + cfftb(mdct->cfft, Z1); + + /* post-IFFT complex multiplication */ + for (k = 0; k < N4; k++) + { + RE(x) = RE(Z1[k]); + IM(x) = IM(Z1[k]); + ComplexMult(&IM(Z1[k]), &RE(Z1[k]), + IM(x), RE(x), RE(sincos[k]), IM(sincos[k])); + +#ifdef FIXED_POINT +#if (REAL_BITS == 16) + if (abs(RE(Z1[k])) > REAL_CONST(16383.5)) + { + if (RE(Z1[k]) > 0) RE(Z1[k]) = REAL_CONST(32767.0); + else RE(Z1[k]) = REAL_CONST(-32767.0); + } else { + RE(Z1[k]) *= 2; + } + if (abs(IM(Z1[k])) > REAL_CONST(16383.5)) + { + if (IM(Z1[k]) > 0) IM(Z1[k]) = REAL_CONST(32767.0); + else IM(Z1[k]) = REAL_CONST(-32767.0); + } else { + IM(Z1[k]) *= 2; + } +#endif +#endif + } + + /* reordering */ + for (k = 0; k < N8; k++) + { + X_out[ 2*k] = IM(Z1[N8 + k]); + X_out[ 1 + 2*k] = -RE(Z1[N8 - 1 - k]); + X_out[N4 + 2*k] = RE(Z1[ k]); + X_out[N4 + 1 + 2*k] = -IM(Z1[N4 - 1 - k]); + X_out[N2 + 2*k] = RE(Z1[N8 + k]); + X_out[N2 + 1 + 2*k] = -IM(Z1[N8 - 1 - k]); + X_out[N2 + N4 + 2*k] = -IM(Z1[ k]); + X_out[N2 + N4 + 1 + 2*k] = RE(Z1[N4 - 1 - k]); + } +} + +#ifdef LTP_DEC +void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out) +{ + uint16_t k; + + complex_t x; + complex_t Z1[512]; + complex_t *sincos = mdct->sincos; + + uint16_t N = mdct->N; + uint16_t N2 = N >> 1; + uint16_t N4 = N >> 2; + uint16_t N8 = N >> 3; + +#ifndef FIXED_POINT + real_t scale = REAL_CONST(N); +#else + real_t scale = REAL_CONST(4.0/N); +#endif + + /* pre-FFT complex multiplication */ + for (k = 0; k < N8; k++) + { + uint16_t n = k << 1; + RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n]; + IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n]; + + ComplexMult(&RE(Z1[k]), &IM(Z1[k]), + RE(x), IM(x), RE(sincos[k]), IM(sincos[k])); + + RE(Z1[k]) = MUL_R(RE(Z1[k]), scale); + IM(Z1[k]) = MUL_R(IM(Z1[k]), scale); + + RE(x) = X_in[N2 - 1 - n] - X_in[ n]; + IM(x) = X_in[N2 + n] + X_in[N - 1 - n]; + + ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]), + RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8])); + + RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale); + IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale); + } + + /* complex FFT, any non-scaling FFT can be used here */ + cfftf(mdct->cfft, Z1); + + /* post-FFT complex multiplication */ + for (k = 0; k < N4; k++) + { + uint16_t n = k << 1; + ComplexMult(&RE(x), &IM(x), + RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k])); + + X_out[ n] = -RE(x); + X_out[N2 - 1 - n] = IM(x); + X_out[N2 + n] = -IM(x); + X_out[N - 1 - n] = RE(x); + } +} +#endif