view audacious/fft.c @ 1096:9b4e9be457f0 trunk

[svn] - remove improper sampling rate change condition. Valid MP3s will not do this. Infact, I've never seen an MP3 that does this. Additionally, it doesn't even work with Shoutcast.
author nenolod
date Mon, 22 May 2006 16:37:39 -0700
parents cb178e5ad177
children f12d7e208b43
line wrap: on
line source

/* fft.c: Iterative implementation of a FFT
 * Copyright (C) 1999 Richard Boulton <richard@tartarus.org>
 * Convolution stuff by Ralph Loader <suckfish@ihug.co.nz>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
 * TODO
 * Remove compiling in of FFT_BUFFER_SIZE?  (Might slow things down, but would
 * be nice to be able to change size at runtime.)
 * Finish making / checking thread-safety.
 * More optimisations.
 */

#ifdef HAVE_CONFIG_H
#  include "config.h"
#endif

#include "fft.h"

#include <glib.h>
#include <stdlib.h>
#include <math.h>
#ifndef PI
#ifdef M_PI
#define PI M_PI
#else
#define PI            3.14159265358979323846    /* pi */
#endif
#endif

/* ########### */
/* # Structs # */
/* ########### */

struct _struct_fft_state {
    /* Temporary data stores to perform FFT in. */
    float real[FFT_BUFFER_SIZE];
    float imag[FFT_BUFFER_SIZE];
};

/* ############################# */
/* # Local function prototypes # */
/* ############################# */

static void fft_prepare(const sound_sample * input, float *re, float *im);
static void fft_calculate(float *re, float *im);
static void fft_output(const float *re, const float *im, float *output);
static int reverseBits(unsigned int initial);

/* #################### */
/* # Global variables # */
/* #################### */

/* Table to speed up bit reverse copy */
static unsigned int bitReverse[FFT_BUFFER_SIZE];

/* The next two tables could be made to use less space in memory, since they
 * overlap hugely, but hey. */
static float sintable[FFT_BUFFER_SIZE / 2];
static float costable[FFT_BUFFER_SIZE / 2];

/* ############################## */
/* # Externally called routines # */
/* ############################## */

/* --------- */
/* FFT stuff */
/* --------- */

/*
 * Initialisation routine - sets up tables and space to work in.
 * Returns a pointer to internal state, to be used when performing calls.
 * On error, returns NULL.
 * The pointer should be freed when it is finished with, by fft_close().
 */
fft_state *
fft_init(void)
{
    fft_state *state;
    unsigned int i;

    state = (fft_state *) g_malloc(sizeof(fft_state));
    if (!state)
        return NULL;

    for (i = 0; i < FFT_BUFFER_SIZE; i++) {
        bitReverse[i] = reverseBits(i);
    }
    for (i = 0; i < FFT_BUFFER_SIZE / 2; i++) {
        float j = 2 * PI * i / FFT_BUFFER_SIZE;
        costable[i] = cos(j);
        sintable[i] = sin(j);
    }

    return state;
}

/*
 * Do all the steps of the FFT, taking as input sound data (as described in
 * sound.h) and returning the intensities of each frequency as floats in the
 * range 0 to ((FFT_BUFFER_SIZE / 2) * 32768) ^ 2
 *
 * FIXME - the above range assumes no frequencies present have an amplitude
 * larger than that of the sample variation.  But this is false: we could have
 * a wave such that its maximums are always between samples, and it's just
 * inside the representable range at the places samples get taken.
 * Question: what _is_ the maximum value possible.  Twice that value?  Root
 * two times that value?  Hmmm.  Think it depends on the frequency, too.
 *
 * The input array is assumed to have FFT_BUFFER_SIZE elements,
 * and the output array is assumed to have (FFT_BUFFER_SIZE / 2 + 1) elements.
 * state is a (non-NULL) pointer returned by fft_init.
 */
void
fft_perform(const sound_sample * input, float *output, fft_state * state)
{
    /* Convert data from sound format to be ready for FFT */
    fft_prepare(input, state->real, state->imag);

    /* Do the actual FFT */
    fft_calculate(state->real, state->imag);

    /* Convert the FFT output into intensities */
    fft_output(state->real, state->imag, output);
}

/*
 * Free the state.
 */
void
fft_close(fft_state * state)
{
    if (state)
        free(state);
}

/* ########################### */
/* # Locally called routines # */
/* ########################### */

/*
 * Prepare data to perform an FFT on
 */
static void
fft_prepare(const sound_sample * input, float *re, float *im)
{
    unsigned int i;
    float *realptr = re;
    float *imagptr = im;

    /* Get input, in reverse bit order */
    for (i = 0; i < FFT_BUFFER_SIZE; i++) {
        *realptr++ = input[bitReverse[i]];
        *imagptr++ = 0;
    }
}

/*
 * Take result of an FFT and calculate the intensities of each frequency
 * Note: only produces half as many data points as the input had.
 * This is roughly a consequence of the Nyquist sampling theorm thingy.
 * (FIXME - make this comment better, and helpful.)
 * 
 * The two divisions by 4 are also a consequence of this: the contributions
 * returned for each frequency are split into two parts, one at i in the
 * table, and the other at FFT_BUFFER_SIZE - i, except for i = 0 and
 * FFT_BUFFER_SIZE which would otherwise get float (and then 4* when squared)
 * the contributions.
 */
static void
fft_output(const float *re, const float *im, float *output)
{
    float *outputptr = output;
    const float *realptr = re;
    const float *imagptr = im;
    float *endptr = output + FFT_BUFFER_SIZE / 2;

#ifdef DEBUG
    unsigned int i, j;
#endif

    while (outputptr <= endptr) {
        *outputptr = (*realptr * *realptr) + (*imagptr * *imagptr);
        outputptr++;
        realptr++;
        imagptr++;
    }
    /* Do divisions to keep the constant and highest frequency terms in scale
     * with the other terms. */
    *output /= 4;
    *endptr /= 4;

#ifdef DEBUG
    printf("Recalculated input:\n");
    for (i = 0; i < FFT_BUFFER_SIZE; i++) {
        float val_real = 0;
        float val_imag = 0;
        for (j = 0; j < FFT_BUFFER_SIZE; j++) {
            float fact_real = cos(-2 * j * i * PI / FFT_BUFFER_SIZE);
            float fact_imag = sin(-2 * j * i * PI / FFT_BUFFER_SIZE);
            val_real += fact_real * re[j] - fact_imag * im[j];
            val_imag += fact_real * im[j] + fact_imag * re[j];
        }
        printf("%5d = %8f + i * %8f\n", i,
               val_real / FFT_BUFFER_SIZE, val_imag / FFT_BUFFER_SIZE);
    }
    printf("\n");
#endif
}

/*
 * Actually perform the FFT
 */
static void
fft_calculate(float *re, float *im)
{
    unsigned int i, j, k;
    unsigned int exchanges;
    float fact_real, fact_imag;
    float tmp_real, tmp_imag;
    unsigned int factfact;

    /* Set up some variables to reduce calculation in the loops */
    exchanges = 1;
    factfact = FFT_BUFFER_SIZE / 2;

    /* Loop through the divide and conquer steps */
    for (i = FFT_BUFFER_SIZE_LOG; i != 0; i--) {
        /* In this step, we have 2 ^ (i - 1) exchange groups, each with
         * 2 ^ (FFT_BUFFER_SIZE_LOG - i) exchanges
         */
        /* Loop through the exchanges in a group */
        for (j = 0; j != exchanges; j++) {
            /* Work out factor for this exchange
             * factor ^ (exchanges) = -1
             * So, real = cos(j * PI / exchanges),
             *     imag = sin(j * PI / exchanges)
             */
            fact_real = costable[j * factfact];
            fact_imag = sintable[j * factfact];

            /* Loop through all the exchange groups */
            for (k = j; k < FFT_BUFFER_SIZE; k += exchanges << 1) {
                int k1 = k + exchanges;
                /* newval[k]  := val[k] + factor * val[k1]
                 * newval[k1] := val[k] - factor * val[k1]
                 **/
#ifdef DEBUG
                printf("%d %d %d\n", i, j, k);
                printf("Exchange %d with %d\n", k, k1);
                printf("Factor %9f + i * %8f\n", fact_real, fact_imag);
#endif
                /* FIXME - potential scope for more optimization here? */
                tmp_real = fact_real * re[k1] - fact_imag * im[k1];
                tmp_imag = fact_real * im[k1] + fact_imag * re[k1];
                re[k1] = re[k] - tmp_real;
                im[k1] = im[k] - tmp_imag;
                re[k] += tmp_real;
                im[k] += tmp_imag;
#ifdef DEBUG
                for (k1 = 0; k1 < FFT_BUFFER_SIZE; k1++) {
                    printf("%5d = %8f + i * %8f\n", k1, real[k1], imag[k1]);
                }
#endif
            }
        }
        exchanges <<= 1;
        factfact >>= 1;
    }
}

static int
reverseBits(unsigned int initial)
{
    unsigned int reversed = 0, loop;
    for (loop = 0; loop < FFT_BUFFER_SIZE_LOG; loop++) {
        reversed <<= 1;
        reversed += (initial & 1);
        initial >>= 1;
    }
    return reversed;
}