40785
|
1 ;; Calculator for GNU Emacs, part II [calc-poly.el]
|
|
2 ;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
|
|
3 ;; Written by Dave Gillespie, daveg@synaptics.com.
|
|
4
|
|
5 ;; This file is part of GNU Emacs.
|
|
6
|
|
7 ;; GNU Emacs is distributed in the hope that it will be useful,
|
|
8 ;; but WITHOUT ANY WARRANTY. No author or distributor
|
|
9 ;; accepts responsibility to anyone for the consequences of using it
|
|
10 ;; or for whether it serves any particular purpose or works at all,
|
|
11 ;; unless he says so in writing. Refer to the GNU Emacs General Public
|
|
12 ;; License for full details.
|
|
13
|
|
14 ;; Everyone is granted permission to copy, modify and redistribute
|
|
15 ;; GNU Emacs, but only under the conditions described in the
|
|
16 ;; GNU Emacs General Public License. A copy of this license is
|
|
17 ;; supposed to have been given to you along with GNU Emacs so you
|
|
18 ;; can know your rights and responsibilities. It should be in a
|
|
19 ;; file named COPYING. Among other things, the copyright notice
|
|
20 ;; and this notice must be preserved on all copies.
|
|
21
|
|
22
|
|
23
|
|
24 ;; This file is autoloaded from calc-ext.el.
|
|
25 (require 'calc-ext)
|
|
26
|
|
27 (require 'calc-macs)
|
|
28
|
|
29 (defun calc-Need-calc-poly () nil)
|
|
30
|
|
31
|
|
32 (defun calcFunc-pcont (expr &optional var)
|
|
33 (cond ((Math-primp expr)
|
|
34 (cond ((Math-zerop expr) 1)
|
|
35 ((Math-messy-integerp expr) (math-trunc expr))
|
|
36 ((Math-objectp expr) expr)
|
|
37 ((or (equal expr var) (not var)) 1)
|
|
38 (t expr)))
|
|
39 ((eq (car expr) '*)
|
|
40 (math-mul (calcFunc-pcont (nth 1 expr) var)
|
|
41 (calcFunc-pcont (nth 2 expr) var)))
|
|
42 ((eq (car expr) '/)
|
|
43 (math-div (calcFunc-pcont (nth 1 expr) var)
|
|
44 (calcFunc-pcont (nth 2 expr) var)))
|
|
45 ((and (eq (car expr) '^) (Math-natnump (nth 2 expr)))
|
|
46 (math-pow (calcFunc-pcont (nth 1 expr) var) (nth 2 expr)))
|
|
47 ((memq (car expr) '(neg polar))
|
|
48 (calcFunc-pcont (nth 1 expr) var))
|
|
49 ((consp var)
|
|
50 (let ((p (math-is-polynomial expr var)))
|
|
51 (if p
|
|
52 (let ((lead (nth (1- (length p)) p))
|
|
53 (cont (math-poly-gcd-list p)))
|
|
54 (if (math-guess-if-neg lead)
|
|
55 (math-neg cont)
|
|
56 cont))
|
|
57 1)))
|
|
58 ((memq (car expr) '(+ - cplx sdev))
|
|
59 (let ((cont (calcFunc-pcont (nth 1 expr) var)))
|
|
60 (if (eq cont 1)
|
|
61 1
|
|
62 (let ((c2 (calcFunc-pcont (nth 2 expr) var)))
|
|
63 (if (and (math-negp cont)
|
|
64 (if (eq (car expr) '-) (math-posp c2) (math-negp c2)))
|
|
65 (math-neg (math-poly-gcd cont c2))
|
|
66 (math-poly-gcd cont c2))))))
|
|
67 (var expr)
|
|
68 (t 1))
|
|
69 )
|
|
70
|
|
71 (defun calcFunc-pprim (expr &optional var)
|
|
72 (let ((cont (calcFunc-pcont expr var)))
|
|
73 (if (math-equal-int cont 1)
|
|
74 expr
|
|
75 (math-poly-div-exact expr cont var)))
|
|
76 )
|
|
77
|
|
78 (defun math-div-poly-const (expr c)
|
|
79 (cond ((memq (car-safe expr) '(+ -))
|
|
80 (list (car expr)
|
|
81 (math-div-poly-const (nth 1 expr) c)
|
|
82 (math-div-poly-const (nth 2 expr) c)))
|
|
83 (t (math-div expr c)))
|
|
84 )
|
|
85
|
|
86 (defun calcFunc-pdeg (expr &optional var)
|
|
87 (if (Math-zerop expr)
|
|
88 '(neg (var inf var-inf))
|
|
89 (if var
|
|
90 (or (math-polynomial-p expr var)
|
|
91 (math-reject-arg expr "Expected a polynomial"))
|
|
92 (math-poly-degree expr)))
|
|
93 )
|
|
94
|
|
95 (defun math-poly-degree (expr)
|
|
96 (cond ((Math-primp expr)
|
|
97 (if (eq (car-safe expr) 'var) 1 0))
|
|
98 ((eq (car expr) 'neg)
|
|
99 (math-poly-degree (nth 1 expr)))
|
|
100 ((eq (car expr) '*)
|
|
101 (+ (math-poly-degree (nth 1 expr))
|
|
102 (math-poly-degree (nth 2 expr))))
|
|
103 ((eq (car expr) '/)
|
|
104 (- (math-poly-degree (nth 1 expr))
|
|
105 (math-poly-degree (nth 2 expr))))
|
|
106 ((and (eq (car expr) '^) (natnump (nth 2 expr)))
|
|
107 (* (math-poly-degree (nth 1 expr)) (nth 2 expr)))
|
|
108 ((memq (car expr) '(+ -))
|
|
109 (max (math-poly-degree (nth 1 expr))
|
|
110 (math-poly-degree (nth 2 expr))))
|
|
111 (t 1))
|
|
112 )
|
|
113
|
|
114 (defun calcFunc-plead (expr var)
|
|
115 (cond ((eq (car-safe expr) '*)
|
|
116 (math-mul (calcFunc-plead (nth 1 expr) var)
|
|
117 (calcFunc-plead (nth 2 expr) var)))
|
|
118 ((eq (car-safe expr) '/)
|
|
119 (math-div (calcFunc-plead (nth 1 expr) var)
|
|
120 (calcFunc-plead (nth 2 expr) var)))
|
|
121 ((and (eq (car-safe expr) '^) (math-natnump (nth 2 expr)))
|
|
122 (math-pow (calcFunc-plead (nth 1 expr) var) (nth 2 expr)))
|
|
123 ((Math-primp expr)
|
|
124 (if (equal expr var)
|
|
125 1
|
|
126 expr))
|
|
127 (t
|
|
128 (let ((p (math-is-polynomial expr var)))
|
|
129 (if (cdr p)
|
|
130 (nth (1- (length p)) p)
|
|
131 1))))
|
|
132 )
|
|
133
|
|
134
|
|
135
|
|
136
|
|
137
|
|
138 ;;; Polynomial quotient, remainder, and GCD.
|
|
139 ;;; Originally by Ove Ewerlid (ewerlid@mizar.DoCS.UU.SE).
|
|
140 ;;; Modifications and simplifications by daveg.
|
|
141
|
|
142 (setq math-poly-modulus 1)
|
|
143
|
|
144 ;;; Return gcd of two polynomials
|
|
145 (defun calcFunc-pgcd (pn pd)
|
|
146 (if (math-any-floats pn)
|
|
147 (math-reject-arg pn "Coefficients must be rational"))
|
|
148 (if (math-any-floats pd)
|
|
149 (math-reject-arg pd "Coefficients must be rational"))
|
|
150 (let ((calc-prefer-frac t)
|
|
151 (math-poly-modulus (math-poly-modulus pn pd)))
|
|
152 (math-poly-gcd pn pd))
|
|
153 )
|
|
154
|
|
155 ;;; Return only quotient to top of stack (nil if zero)
|
|
156 (defun calcFunc-pdiv (pn pd &optional base)
|
|
157 (let* ((calc-prefer-frac t)
|
|
158 (math-poly-modulus (math-poly-modulus pn pd))
|
|
159 (res (math-poly-div pn pd base)))
|
|
160 (setq calc-poly-div-remainder (cdr res))
|
|
161 (car res))
|
|
162 )
|
|
163
|
|
164 ;;; Return only remainder to top of stack
|
|
165 (defun calcFunc-prem (pn pd &optional base)
|
|
166 (let ((calc-prefer-frac t)
|
|
167 (math-poly-modulus (math-poly-modulus pn pd)))
|
|
168 (cdr (math-poly-div pn pd base)))
|
|
169 )
|
|
170
|
|
171 (defun calcFunc-pdivrem (pn pd &optional base)
|
|
172 (let* ((calc-prefer-frac t)
|
|
173 (math-poly-modulus (math-poly-modulus pn pd))
|
|
174 (res (math-poly-div pn pd base)))
|
|
175 (list 'vec (car res) (cdr res)))
|
|
176 )
|
|
177
|
|
178 (defun calcFunc-pdivide (pn pd &optional base)
|
|
179 (let* ((calc-prefer-frac t)
|
|
180 (math-poly-modulus (math-poly-modulus pn pd))
|
|
181 (res (math-poly-div pn pd base)))
|
|
182 (math-add (car res) (math-div (cdr res) pd)))
|
|
183 )
|
|
184
|
|
185
|
|
186 ;;; Multiply two terms, expanding out products of sums.
|
|
187 (defun math-mul-thru (lhs rhs)
|
|
188 (if (memq (car-safe lhs) '(+ -))
|
|
189 (list (car lhs)
|
|
190 (math-mul-thru (nth 1 lhs) rhs)
|
|
191 (math-mul-thru (nth 2 lhs) rhs))
|
|
192 (if (memq (car-safe rhs) '(+ -))
|
|
193 (list (car rhs)
|
|
194 (math-mul-thru lhs (nth 1 rhs))
|
|
195 (math-mul-thru lhs (nth 2 rhs)))
|
|
196 (math-mul lhs rhs)))
|
|
197 )
|
|
198
|
|
199 (defun math-div-thru (num den)
|
|
200 (if (memq (car-safe num) '(+ -))
|
|
201 (list (car num)
|
|
202 (math-div-thru (nth 1 num) den)
|
|
203 (math-div-thru (nth 2 num) den))
|
|
204 (math-div num den))
|
|
205 )
|
|
206
|
|
207
|
|
208 ;;; Sort the terms of a sum into canonical order.
|
|
209 (defun math-sort-terms (expr)
|
|
210 (if (memq (car-safe expr) '(+ -))
|
|
211 (math-list-to-sum
|
|
212 (sort (math-sum-to-list expr)
|
|
213 (function (lambda (a b) (math-beforep (car a) (car b))))))
|
|
214 expr)
|
|
215 )
|
|
216
|
|
217 (defun math-list-to-sum (lst)
|
|
218 (if (cdr lst)
|
|
219 (list (if (cdr (car lst)) '- '+)
|
|
220 (math-list-to-sum (cdr lst))
|
|
221 (car (car lst)))
|
|
222 (if (cdr (car lst))
|
|
223 (math-neg (car (car lst)))
|
|
224 (car (car lst))))
|
|
225 )
|
|
226
|
|
227 (defun math-sum-to-list (tree &optional neg)
|
|
228 (cond ((eq (car-safe tree) '+)
|
|
229 (nconc (math-sum-to-list (nth 1 tree) neg)
|
|
230 (math-sum-to-list (nth 2 tree) neg)))
|
|
231 ((eq (car-safe tree) '-)
|
|
232 (nconc (math-sum-to-list (nth 1 tree) neg)
|
|
233 (math-sum-to-list (nth 2 tree) (not neg))))
|
|
234 (t (list (cons tree neg))))
|
|
235 )
|
|
236
|
|
237 ;;; Check if the polynomial coefficients are modulo forms.
|
|
238 (defun math-poly-modulus (expr &optional expr2)
|
|
239 (or (math-poly-modulus-rec expr)
|
|
240 (and expr2 (math-poly-modulus-rec expr2))
|
|
241 1)
|
|
242 )
|
|
243
|
|
244 (defun math-poly-modulus-rec (expr)
|
|
245 (if (and (eq (car-safe expr) 'mod) (Math-natnump (nth 2 expr)))
|
|
246 (list 'mod 1 (nth 2 expr))
|
|
247 (and (memq (car-safe expr) '(+ - * /))
|
|
248 (or (math-poly-modulus-rec (nth 1 expr))
|
|
249 (math-poly-modulus-rec (nth 2 expr)))))
|
|
250 )
|
|
251
|
|
252
|
|
253 ;;; Divide two polynomials. Return (quotient . remainder).
|
|
254 (defun math-poly-div (u v &optional math-poly-div-base)
|
|
255 (if math-poly-div-base
|
|
256 (math-do-poly-div u v)
|
|
257 (math-do-poly-div (calcFunc-expand u) (calcFunc-expand v)))
|
|
258 )
|
|
259 (setq math-poly-div-base nil)
|
|
260
|
|
261 (defun math-poly-div-exact (u v &optional base)
|
|
262 (let ((res (math-poly-div u v base)))
|
|
263 (if (eq (cdr res) 0)
|
|
264 (car res)
|
|
265 (math-reject-arg (list 'vec u v) "Argument is not a polynomial")))
|
|
266 )
|
|
267
|
|
268 (defun math-do-poly-div (u v)
|
|
269 (cond ((math-constp u)
|
|
270 (if (math-constp v)
|
|
271 (cons (math-div u v) 0)
|
|
272 (cons 0 u)))
|
|
273 ((math-constp v)
|
|
274 (cons (if (eq v 1)
|
|
275 u
|
|
276 (if (memq (car-safe u) '(+ -))
|
|
277 (math-add-or-sub (math-poly-div-exact (nth 1 u) v)
|
|
278 (math-poly-div-exact (nth 2 u) v)
|
|
279 nil (eq (car u) '-))
|
|
280 (math-div u v)))
|
|
281 0))
|
|
282 ((Math-equal u v)
|
|
283 (cons math-poly-modulus 0))
|
|
284 ((and (math-atomic-factorp u) (math-atomic-factorp v))
|
|
285 (cons (math-simplify (math-div u v)) 0))
|
|
286 (t
|
|
287 (let ((base (or math-poly-div-base
|
|
288 (math-poly-div-base u v)))
|
|
289 vp up res)
|
|
290 (if (or (null base)
|
|
291 (null (setq vp (math-is-polynomial v base nil 'gen))))
|
|
292 (cons 0 u)
|
|
293 (setq up (math-is-polynomial u base nil 'gen)
|
|
294 res (math-poly-div-coefs up vp))
|
|
295 (cons (math-build-polynomial-expr (car res) base)
|
|
296 (math-build-polynomial-expr (cdr res) base))))))
|
|
297 )
|
|
298
|
|
299 (defun math-poly-div-rec (u v)
|
|
300 (cond ((math-constp u)
|
|
301 (math-div u v))
|
|
302 ((math-constp v)
|
|
303 (if (eq v 1)
|
|
304 u
|
|
305 (if (memq (car-safe u) '(+ -))
|
|
306 (math-add-or-sub (math-poly-div-rec (nth 1 u) v)
|
|
307 (math-poly-div-rec (nth 2 u) v)
|
|
308 nil (eq (car u) '-))
|
|
309 (math-div u v))))
|
|
310 ((Math-equal u v) math-poly-modulus)
|
|
311 ((and (math-atomic-factorp u) (math-atomic-factorp v))
|
|
312 (math-simplify (math-div u v)))
|
|
313 (math-poly-div-base
|
|
314 (math-div u v))
|
|
315 (t
|
|
316 (let ((base (math-poly-div-base u v))
|
|
317 vp up res)
|
|
318 (if (or (null base)
|
|
319 (null (setq vp (math-is-polynomial v base nil 'gen))))
|
|
320 (math-div u v)
|
|
321 (setq up (math-is-polynomial u base nil 'gen)
|
|
322 res (math-poly-div-coefs up vp))
|
|
323 (math-add (math-build-polynomial-expr (car res) base)
|
|
324 (math-div (math-build-polynomial-expr (cdr res) base)
|
|
325 v))))))
|
|
326 )
|
|
327
|
|
328 ;;; Divide two polynomials in coefficient-list form. Return (quot . rem).
|
|
329 (defun math-poly-div-coefs (u v)
|
|
330 (cond ((null v) (math-reject-arg nil "Division by zero"))
|
|
331 ((< (length u) (length v)) (cons nil u))
|
|
332 ((cdr u)
|
|
333 (let ((q nil)
|
|
334 (urev (reverse u))
|
|
335 (vrev (reverse v)))
|
|
336 (while
|
|
337 (let ((qk (math-poly-div-rec (math-simplify (car urev))
|
|
338 (car vrev)))
|
|
339 (up urev)
|
|
340 (vp vrev))
|
|
341 (if (or q (not (math-zerop qk)))
|
|
342 (setq q (cons qk q)))
|
|
343 (while (setq up (cdr up) vp (cdr vp))
|
|
344 (setcar up (math-sub (car up) (math-mul-thru qk (car vp)))))
|
|
345 (setq urev (cdr urev))
|
|
346 up))
|
|
347 (while (and urev (Math-zerop (car urev)))
|
|
348 (setq urev (cdr urev)))
|
|
349 (cons q (nreverse (mapcar 'math-simplify urev)))))
|
|
350 (t
|
|
351 (cons (list (math-poly-div-rec (car u) (car v)))
|
|
352 nil)))
|
|
353 )
|
|
354
|
|
355 ;;; Perform a pseudo-division of polynomials. (See Knuth section 4.6.1.)
|
|
356 ;;; This returns only the remainder from the pseudo-division.
|
|
357 (defun math-poly-pseudo-div (u v)
|
|
358 (cond ((null v) nil)
|
|
359 ((< (length u) (length v)) u)
|
|
360 ((or (cdr u) (cdr v))
|
|
361 (let ((urev (reverse u))
|
|
362 (vrev (reverse v))
|
|
363 up)
|
|
364 (while
|
|
365 (let ((vp vrev))
|
|
366 (setq up urev)
|
|
367 (while (setq up (cdr up) vp (cdr vp))
|
|
368 (setcar up (math-sub (math-mul-thru (car vrev) (car up))
|
|
369 (math-mul-thru (car urev) (car vp)))))
|
|
370 (setq urev (cdr urev))
|
|
371 up)
|
|
372 (while up
|
|
373 (setcar up (math-mul-thru (car vrev) (car up)))
|
|
374 (setq up (cdr up))))
|
|
375 (while (and urev (Math-zerop (car urev)))
|
|
376 (setq urev (cdr urev)))
|
|
377 (nreverse (mapcar 'math-simplify urev))))
|
|
378 (t nil))
|
|
379 )
|
|
380
|
|
381 ;;; Compute the GCD of two multivariate polynomials.
|
|
382 (defun math-poly-gcd (u v)
|
|
383 (cond ((Math-equal u v) u)
|
|
384 ((math-constp u)
|
|
385 (if (Math-zerop u)
|
|
386 v
|
|
387 (calcFunc-gcd u (calcFunc-pcont v))))
|
|
388 ((math-constp v)
|
|
389 (if (Math-zerop v)
|
|
390 v
|
|
391 (calcFunc-gcd v (calcFunc-pcont u))))
|
|
392 (t
|
|
393 (let ((base (math-poly-gcd-base u v)))
|
|
394 (if base
|
|
395 (math-simplify
|
|
396 (calcFunc-expand
|
|
397 (math-build-polynomial-expr
|
|
398 (math-poly-gcd-coefs (math-is-polynomial u base nil 'gen)
|
|
399 (math-is-polynomial v base nil 'gen))
|
|
400 base)))
|
|
401 (calcFunc-gcd (calcFunc-pcont u) (calcFunc-pcont u))))))
|
|
402 )
|
|
403
|
|
404 (defun math-poly-div-list (lst a)
|
|
405 (if (eq a 1)
|
|
406 lst
|
|
407 (if (eq a -1)
|
|
408 (math-mul-list lst a)
|
|
409 (mapcar (function (lambda (x) (math-poly-div-exact x a))) lst)))
|
|
410 )
|
|
411
|
|
412 (defun math-mul-list (lst a)
|
|
413 (if (eq a 1)
|
|
414 lst
|
|
415 (if (eq a -1)
|
|
416 (mapcar 'math-neg lst)
|
|
417 (and (not (eq a 0))
|
|
418 (mapcar (function (lambda (x) (math-mul x a))) lst))))
|
|
419 )
|
|
420
|
|
421 ;;; Run GCD on all elements in a list.
|
|
422 (defun math-poly-gcd-list (lst)
|
|
423 (if (or (memq 1 lst) (memq -1 lst))
|
|
424 (math-poly-gcd-frac-list lst)
|
|
425 (let ((gcd (car lst)))
|
|
426 (while (and (setq lst (cdr lst)) (not (eq gcd 1)))
|
|
427 (or (eq (car lst) 0)
|
|
428 (setq gcd (math-poly-gcd gcd (car lst)))))
|
|
429 (if lst (setq lst (math-poly-gcd-frac-list lst)))
|
|
430 gcd))
|
|
431 )
|
|
432
|
|
433 (defun math-poly-gcd-frac-list (lst)
|
|
434 (while (and lst (not (eq (car-safe (car lst)) 'frac)))
|
|
435 (setq lst (cdr lst)))
|
|
436 (if lst
|
|
437 (let ((denom (nth 2 (car lst))))
|
|
438 (while (setq lst (cdr lst))
|
|
439 (if (eq (car-safe (car lst)) 'frac)
|
|
440 (setq denom (calcFunc-lcm denom (nth 2 (car lst))))))
|
|
441 (list 'frac 1 denom))
|
|
442 1)
|
|
443 )
|
|
444
|
|
445 ;;; Compute the GCD of two monovariate polynomial lists.
|
|
446 ;;; Knuth section 4.6.1, algorithm C.
|
|
447 (defun math-poly-gcd-coefs (u v)
|
|
448 (let ((d (math-poly-gcd (math-poly-gcd-list u)
|
|
449 (math-poly-gcd-list v)))
|
|
450 (g 1) (h 1) (z 0) hh r delta ghd)
|
|
451 (while (and u v (Math-zerop (car u)) (Math-zerop (car v)))
|
|
452 (setq u (cdr u) v (cdr v) z (1+ z)))
|
|
453 (or (eq d 1)
|
|
454 (setq u (math-poly-div-list u d)
|
|
455 v (math-poly-div-list v d)))
|
|
456 (while (progn
|
|
457 (setq delta (- (length u) (length v)))
|
|
458 (if (< delta 0)
|
|
459 (setq r u u v v r delta (- delta)))
|
|
460 (setq r (math-poly-pseudo-div u v))
|
|
461 (cdr r))
|
|
462 (setq u v
|
|
463 v (math-poly-div-list r (math-mul g (math-pow h delta)))
|
|
464 g (nth (1- (length u)) u)
|
|
465 h (if (<= delta 1)
|
|
466 (math-mul (math-pow g delta) (math-pow h (- 1 delta)))
|
|
467 (math-poly-div-exact (math-pow g delta)
|
|
468 (math-pow h (1- delta))))))
|
|
469 (setq v (if r
|
|
470 (list d)
|
|
471 (math-mul-list (math-poly-div-list v (math-poly-gcd-list v)) d)))
|
|
472 (if (math-guess-if-neg (nth (1- (length v)) v))
|
|
473 (setq v (math-mul-list v -1)))
|
|
474 (while (>= (setq z (1- z)) 0)
|
|
475 (setq v (cons 0 v)))
|
|
476 v)
|
|
477 )
|
|
478
|
|
479
|
|
480 ;;; Return true if is a factor containing no sums or quotients.
|
|
481 (defun math-atomic-factorp (expr)
|
|
482 (cond ((eq (car-safe expr) '*)
|
|
483 (and (math-atomic-factorp (nth 1 expr))
|
|
484 (math-atomic-factorp (nth 2 expr))))
|
|
485 ((memq (car-safe expr) '(+ - /))
|
|
486 nil)
|
|
487 ((memq (car-safe expr) '(^ neg))
|
|
488 (math-atomic-factorp (nth 1 expr)))
|
|
489 (t t))
|
|
490 )
|
|
491
|
|
492 ;;; Find a suitable base for dividing a by b.
|
|
493 ;;; The base must exist in both expressions.
|
|
494 ;;; The degree in the numerator must be higher or equal than the
|
|
495 ;;; degree in the denominator.
|
|
496 ;;; If the above conditions are not met the quotient is just a remainder.
|
|
497 ;;; Return nil if this is the case.
|
|
498
|
|
499 (defun math-poly-div-base (a b)
|
|
500 (let (a-base b-base)
|
|
501 (and (setq a-base (math-total-polynomial-base a))
|
|
502 (setq b-base (math-total-polynomial-base b))
|
|
503 (catch 'return
|
|
504 (while a-base
|
|
505 (let ((maybe (assoc (car (car a-base)) b-base)))
|
|
506 (if maybe
|
|
507 (if (>= (nth 1 (car a-base)) (nth 1 maybe))
|
|
508 (throw 'return (car (car a-base))))))
|
|
509 (setq a-base (cdr a-base))))))
|
|
510 )
|
|
511
|
|
512 ;;; Same as above but for gcd algorithm.
|
|
513 ;;; Here there is no requirement that degree(a) > degree(b).
|
|
514 ;;; Take the base that has the highest degree considering both a and b.
|
|
515 ;;; ("a^20+b^21+x^3+a+b", "a+b^2+x^5+a^22+b^10") --> (a 22)
|
|
516
|
|
517 (defun math-poly-gcd-base (a b)
|
|
518 (let (a-base b-base)
|
|
519 (and (setq a-base (math-total-polynomial-base a))
|
|
520 (setq b-base (math-total-polynomial-base b))
|
|
521 (catch 'return
|
|
522 (while (and a-base b-base)
|
|
523 (if (> (nth 1 (car a-base)) (nth 1 (car b-base)))
|
|
524 (if (assoc (car (car a-base)) b-base)
|
|
525 (throw 'return (car (car a-base)))
|
|
526 (setq a-base (cdr a-base)))
|
|
527 (if (assoc (car (car b-base)) a-base)
|
|
528 (throw 'return (car (car b-base)))
|
|
529 (setq b-base (cdr b-base))))))))
|
|
530 )
|
|
531
|
|
532 ;;; Sort a list of polynomial bases.
|
|
533 (defun math-sort-poly-base-list (lst)
|
|
534 (sort lst (function (lambda (a b)
|
|
535 (or (> (nth 1 a) (nth 1 b))
|
|
536 (and (= (nth 1 a) (nth 1 b))
|
|
537 (math-beforep (car a) (car b)))))))
|
|
538 )
|
|
539
|
|
540 ;;; Given an expression find all variables that are polynomial bases.
|
|
541 ;;; Return list in the form '( (var1 degree1) (var2 degree2) ... ).
|
|
542 ;;; Note dynamic scope of mpb-total-base.
|
|
543 (defun math-total-polynomial-base (expr)
|
|
544 (let ((mpb-total-base nil))
|
|
545 (math-polynomial-base expr 'math-polynomial-p1)
|
|
546 (math-sort-poly-base-list mpb-total-base))
|
|
547 )
|
|
548
|
|
549 (defun math-polynomial-p1 (subexpr)
|
|
550 (or (assoc subexpr mpb-total-base)
|
|
551 (memq (car subexpr) '(+ - * / neg))
|
|
552 (and (eq (car subexpr) '^) (natnump (nth 2 subexpr)))
|
|
553 (let* ((math-poly-base-variable subexpr)
|
|
554 (exponent (math-polynomial-p mpb-top-expr subexpr)))
|
|
555 (if exponent
|
|
556 (setq mpb-total-base (cons (list subexpr exponent)
|
|
557 mpb-total-base)))))
|
|
558 nil
|
|
559 )
|
|
560
|
|
561
|
|
562
|
|
563
|
|
564 (defun calcFunc-factors (expr &optional var)
|
|
565 (let ((math-factored-vars (if var t nil))
|
|
566 (math-to-list t)
|
|
567 (calc-prefer-frac t))
|
|
568 (or var
|
|
569 (setq var (math-polynomial-base expr)))
|
|
570 (let ((res (math-factor-finish
|
|
571 (or (catch 'factor (math-factor-expr-try var))
|
|
572 expr))))
|
|
573 (math-simplify (if (math-vectorp res)
|
|
574 res
|
|
575 (list 'vec (list 'vec res 1))))))
|
|
576 )
|
|
577
|
|
578 (defun calcFunc-factor (expr &optional var)
|
|
579 (let ((math-factored-vars nil)
|
|
580 (math-to-list nil)
|
|
581 (calc-prefer-frac t))
|
|
582 (math-simplify (math-factor-finish
|
|
583 (if var
|
|
584 (let ((math-factored-vars t))
|
|
585 (or (catch 'factor (math-factor-expr-try var)) expr))
|
|
586 (math-factor-expr expr)))))
|
|
587 )
|
|
588
|
|
589 (defun math-factor-finish (x)
|
|
590 (if (Math-primp x)
|
|
591 x
|
|
592 (if (eq (car x) 'calcFunc-Fac-Prot)
|
|
593 (math-factor-finish (nth 1 x))
|
|
594 (cons (car x) (mapcar 'math-factor-finish (cdr x)))))
|
|
595 )
|
|
596
|
|
597 (defun math-factor-protect (x)
|
|
598 (if (memq (car-safe x) '(+ -))
|
|
599 (list 'calcFunc-Fac-Prot x)
|
|
600 x)
|
|
601 )
|
|
602
|
|
603 (defun math-factor-expr (expr)
|
|
604 (cond ((eq math-factored-vars t) expr)
|
|
605 ((or (memq (car-safe expr) '(* / ^ neg))
|
|
606 (assq (car-safe expr) calc-tweak-eqn-table))
|
|
607 (cons (car expr) (mapcar 'math-factor-expr (cdr expr))))
|
|
608 ((memq (car-safe expr) '(+ -))
|
|
609 (let* ((math-factored-vars math-factored-vars)
|
|
610 (y (catch 'factor (math-factor-expr-part expr))))
|
|
611 (if y
|
|
612 (math-factor-expr y)
|
|
613 expr)))
|
|
614 (t expr))
|
|
615 )
|
|
616
|
|
617 (defun math-factor-expr-part (x) ; uses "expr"
|
|
618 (if (memq (car-safe x) '(+ - * / ^ neg))
|
|
619 (while (setq x (cdr x))
|
|
620 (math-factor-expr-part (car x)))
|
|
621 (and (not (Math-objvecp x))
|
|
622 (not (assoc x math-factored-vars))
|
|
623 (> (math-factor-contains expr x) 1)
|
|
624 (setq math-factored-vars (cons (list x) math-factored-vars))
|
|
625 (math-factor-expr-try x)))
|
|
626 )
|
|
627
|
|
628 (defun math-factor-expr-try (x)
|
|
629 (if (eq (car-safe expr) '*)
|
|
630 (let ((res1 (catch 'factor (let ((expr (nth 1 expr)))
|
|
631 (math-factor-expr-try x))))
|
|
632 (res2 (catch 'factor (let ((expr (nth 2 expr)))
|
|
633 (math-factor-expr-try x)))))
|
|
634 (and (or res1 res2)
|
|
635 (throw 'factor (math-accum-factors (or res1 (nth 1 expr)) 1
|
|
636 (or res2 (nth 2 expr))))))
|
|
637 (let* ((p (math-is-polynomial expr x 30 'gen))
|
|
638 (math-poly-modulus (math-poly-modulus expr))
|
|
639 res)
|
|
640 (and (cdr p)
|
|
641 (setq res (math-factor-poly-coefs p))
|
|
642 (throw 'factor res))))
|
|
643 )
|
|
644
|
|
645 (defun math-accum-factors (fac pow facs)
|
|
646 (if math-to-list
|
|
647 (if (math-vectorp fac)
|
|
648 (progn
|
|
649 (while (setq fac (cdr fac))
|
|
650 (setq facs (math-accum-factors (nth 1 (car fac))
|
|
651 (* pow (nth 2 (car fac)))
|
|
652 facs)))
|
|
653 facs)
|
|
654 (if (and (eq (car-safe fac) '^) (natnump (nth 2 fac)))
|
|
655 (setq pow (* pow (nth 2 fac))
|
|
656 fac (nth 1 fac)))
|
|
657 (if (eq fac 1)
|
|
658 facs
|
|
659 (or (math-vectorp facs)
|
|
660 (setq facs (if (eq facs 1) '(vec)
|
|
661 (list 'vec (list 'vec facs 1)))))
|
|
662 (let ((found facs))
|
|
663 (while (and (setq found (cdr found))
|
|
664 (not (equal fac (nth 1 (car found))))))
|
|
665 (if found
|
|
666 (progn
|
|
667 (setcar (cdr (cdr (car found))) (+ pow (nth 2 (car found))))
|
|
668 facs)
|
|
669 ;; Put constant term first.
|
|
670 (if (and (cdr facs) (Math-ratp (nth 1 (nth 1 facs))))
|
|
671 (cons 'vec (cons (nth 1 facs) (cons (list 'vec fac pow)
|
|
672 (cdr (cdr facs)))))
|
|
673 (cons 'vec (cons (list 'vec fac pow) (cdr facs))))))))
|
|
674 (math-mul (math-pow fac pow) facs))
|
|
675 )
|
|
676
|
|
677 (defun math-factor-poly-coefs (p &optional square-free) ; uses "x"
|
|
678 (let (t1 t2)
|
|
679 (cond ((not (cdr p))
|
|
680 (or (car p) 0))
|
|
681
|
|
682 ;; Strip off multiples of x.
|
|
683 ((Math-zerop (car p))
|
|
684 (let ((z 0))
|
|
685 (while (and p (Math-zerop (car p)))
|
|
686 (setq z (1+ z) p (cdr p)))
|
|
687 (if (cdr p)
|
|
688 (setq p (math-factor-poly-coefs p square-free))
|
|
689 (setq p (math-sort-terms (math-factor-expr (car p)))))
|
|
690 (math-accum-factors x z (math-factor-protect p))))
|
|
691
|
|
692 ;; Factor out content.
|
|
693 ((and (not square-free)
|
|
694 (not (eq 1 (setq t1 (math-mul (math-poly-gcd-list p)
|
|
695 (if (math-guess-if-neg
|
|
696 (nth (1- (length p)) p))
|
|
697 -1 1))))))
|
|
698 (math-accum-factors t1 1 (math-factor-poly-coefs
|
|
699 (math-poly-div-list p t1) 'cont)))
|
|
700
|
|
701 ;; Check if linear in x.
|
|
702 ((not (cdr (cdr p)))
|
|
703 (math-add (math-factor-protect
|
|
704 (math-sort-terms
|
|
705 (math-factor-expr (car p))))
|
|
706 (math-mul x (math-factor-protect
|
|
707 (math-sort-terms
|
|
708 (math-factor-expr (nth 1 p)))))))
|
|
709
|
|
710 ;; If symbolic coefficients, use FactorRules.
|
|
711 ((let ((pp p))
|
|
712 (while (and pp (or (Math-ratp (car pp))
|
|
713 (and (eq (car (car pp)) 'mod)
|
|
714 (Math-integerp (nth 1 (car pp)))
|
|
715 (Math-integerp (nth 2 (car pp))))))
|
|
716 (setq pp (cdr pp)))
|
|
717 pp)
|
|
718 (let ((res (math-rewrite
|
|
719 (list 'calcFunc-thecoefs x (cons 'vec p))
|
|
720 '(var FactorRules var-FactorRules))))
|
|
721 (or (and (eq (car-safe res) 'calcFunc-thefactors)
|
|
722 (= (length res) 3)
|
|
723 (math-vectorp (nth 2 res))
|
|
724 (let ((facs 1)
|
|
725 (vec (nth 2 res)))
|
|
726 (while (setq vec (cdr vec))
|
|
727 (setq facs (math-accum-factors (car vec) 1 facs)))
|
|
728 facs))
|
|
729 (math-build-polynomial-expr p x))))
|
|
730
|
|
731 ;; Check if rational coefficients (i.e., not modulo a prime).
|
|
732 ((eq math-poly-modulus 1)
|
|
733
|
|
734 ;; Check if there are any squared terms, or a content not = 1.
|
|
735 (if (or (eq square-free t)
|
|
736 (equal (setq t1 (math-poly-gcd-coefs
|
|
737 p (setq t2 (math-poly-deriv-coefs p))))
|
|
738 '(1)))
|
|
739
|
|
740 ;; We now have a square-free polynomial with integer coefs.
|
|
741 ;; For now, we use a kludgey method that finds linear and
|
|
742 ;; quadratic terms using floating-point root-finding.
|
|
743 (if (setq t1 (let ((calc-symbolic-mode nil))
|
|
744 (math-poly-all-roots nil p t)))
|
|
745 (let ((roots (car t1))
|
|
746 (csign (if (math-negp (nth (1- (length p)) p)) -1 1))
|
|
747 (expr 1)
|
|
748 (unfac (nth 1 t1))
|
|
749 (scale (nth 2 t1)))
|
|
750 (while roots
|
|
751 (let ((coef0 (car (car roots)))
|
|
752 (coef1 (cdr (car roots))))
|
|
753 (setq expr (math-accum-factors
|
|
754 (if coef1
|
|
755 (let ((den (math-lcm-denoms
|
|
756 coef0 coef1)))
|
|
757 (setq scale (math-div scale den))
|
|
758 (math-add
|
|
759 (math-add
|
|
760 (math-mul den (math-pow x 2))
|
|
761 (math-mul (math-mul coef1 den) x))
|
|
762 (math-mul coef0 den)))
|
|
763 (let ((den (math-lcm-denoms coef0)))
|
|
764 (setq scale (math-div scale den))
|
|
765 (math-add (math-mul den x)
|
|
766 (math-mul coef0 den))))
|
|
767 1 expr)
|
|
768 roots (cdr roots))))
|
|
769 (setq expr (math-accum-factors
|
|
770 expr 1
|
|
771 (math-mul csign
|
|
772 (math-build-polynomial-expr
|
|
773 (math-mul-list (nth 1 t1) scale)
|
|
774 x)))))
|
|
775 (math-build-polynomial-expr p x)) ; can't factor it.
|
|
776
|
|
777 ;; Separate out the squared terms (Knuth exercise 4.6.2-34).
|
|
778 ;; This step also divides out the content of the polynomial.
|
|
779 (let* ((cabs (math-poly-gcd-list p))
|
|
780 (csign (if (math-negp (nth (1- (length p)) p)) -1 1))
|
|
781 (t1s (math-mul-list t1 csign))
|
|
782 (uu nil)
|
|
783 (v (car (math-poly-div-coefs p t1s)))
|
|
784 (w (car (math-poly-div-coefs t2 t1s))))
|
|
785 (while
|
|
786 (not (math-poly-zerop
|
|
787 (setq t2 (math-poly-simplify
|
|
788 (math-poly-mix
|
|
789 w 1 (math-poly-deriv-coefs v) -1)))))
|
|
790 (setq t1 (math-poly-gcd-coefs v t2)
|
|
791 uu (cons t1 uu)
|
|
792 v (car (math-poly-div-coefs v t1))
|
|
793 w (car (math-poly-div-coefs t2 t1))))
|
|
794 (setq t1 (length uu)
|
|
795 t2 (math-accum-factors (math-factor-poly-coefs v t)
|
|
796 (1+ t1) 1))
|
|
797 (while uu
|
|
798 (setq t2 (math-accum-factors (math-factor-poly-coefs
|
|
799 (car uu) t)
|
|
800 t1 t2)
|
|
801 t1 (1- t1)
|
|
802 uu (cdr uu)))
|
|
803 (math-accum-factors (math-mul cabs csign) 1 t2))))
|
|
804
|
|
805 ;; Factoring modulo a prime.
|
|
806 ((and (= (length (setq temp (math-poly-gcd-coefs
|
|
807 p (math-poly-deriv-coefs p))))
|
|
808 (length p)))
|
|
809 (setq p (car temp))
|
|
810 (while (cdr temp)
|
|
811 (setq temp (nthcdr (nth 2 math-poly-modulus) temp)
|
|
812 p (cons (car temp) p)))
|
|
813 (and (setq temp (math-factor-poly-coefs p))
|
|
814 (math-pow temp (nth 2 math-poly-modulus))))
|
|
815 (t
|
|
816 (math-reject-arg nil "*Modulo factorization not yet implemented"))))
|
|
817 )
|
|
818
|
|
819 (defun math-poly-deriv-coefs (p)
|
|
820 (let ((n 1)
|
|
821 (dp nil))
|
|
822 (while (setq p (cdr p))
|
|
823 (setq dp (cons (math-mul (car p) n) dp)
|
|
824 n (1+ n)))
|
|
825 (nreverse dp))
|
|
826 )
|
|
827
|
|
828 (defun math-factor-contains (x a)
|
|
829 (if (equal x a)
|
|
830 1
|
|
831 (if (memq (car-safe x) '(+ - * / neg))
|
|
832 (let ((sum 0))
|
|
833 (while (setq x (cdr x))
|
|
834 (setq sum (+ sum (math-factor-contains (car x) a))))
|
|
835 sum)
|
|
836 (if (and (eq (car-safe x) '^)
|
|
837 (natnump (nth 2 x)))
|
|
838 (* (math-factor-contains (nth 1 x) a) (nth 2 x))
|
|
839 0)))
|
|
840 )
|
|
841
|
|
842
|
|
843
|
|
844
|
|
845
|
|
846 ;;; Merge all quotients and expand/simplify the numerator
|
|
847 (defun calcFunc-nrat (expr)
|
|
848 (if (math-any-floats expr)
|
|
849 (setq expr (calcFunc-pfrac expr)))
|
|
850 (if (or (math-vectorp expr)
|
|
851 (assq (car-safe expr) calc-tweak-eqn-table))
|
|
852 (cons (car expr) (mapcar 'calcFunc-nrat (cdr expr)))
|
|
853 (let* ((calc-prefer-frac t)
|
|
854 (res (math-to-ratpoly expr))
|
|
855 (num (math-simplify (math-sort-terms (calcFunc-expand (car res)))))
|
|
856 (den (math-simplify (math-sort-terms (calcFunc-expand (cdr res)))))
|
|
857 (g (math-poly-gcd num den)))
|
|
858 (or (eq g 1)
|
|
859 (let ((num2 (math-poly-div num g))
|
|
860 (den2 (math-poly-div den g)))
|
|
861 (and (eq (cdr num2) 0) (eq (cdr den2) 0)
|
|
862 (setq num (car num2) den (car den2)))))
|
|
863 (math-simplify (math-div num den))))
|
|
864 )
|
|
865
|
|
866 ;;; Returns expressions (num . denom).
|
|
867 (defun math-to-ratpoly (expr)
|
|
868 (let ((res (math-to-ratpoly-rec expr)))
|
|
869 (cons (math-simplify (car res)) (math-simplify (cdr res))))
|
|
870 )
|
|
871
|
|
872 (defun math-to-ratpoly-rec (expr)
|
|
873 (cond ((Math-primp expr)
|
|
874 (cons expr 1))
|
|
875 ((memq (car expr) '(+ -))
|
|
876 (let ((r1 (math-to-ratpoly-rec (nth 1 expr)))
|
|
877 (r2 (math-to-ratpoly-rec (nth 2 expr))))
|
|
878 (if (equal (cdr r1) (cdr r2))
|
|
879 (cons (list (car expr) (car r1) (car r2)) (cdr r1))
|
|
880 (if (eq (cdr r1) 1)
|
|
881 (cons (list (car expr)
|
|
882 (math-mul (car r1) (cdr r2))
|
|
883 (car r2))
|
|
884 (cdr r2))
|
|
885 (if (eq (cdr r2) 1)
|
|
886 (cons (list (car expr)
|
|
887 (car r1)
|
|
888 (math-mul (car r2) (cdr r1)))
|
|
889 (cdr r1))
|
|
890 (let ((g (math-poly-gcd (cdr r1) (cdr r2))))
|
|
891 (let ((d1 (and (not (eq g 1)) (math-poly-div (cdr r1) g)))
|
|
892 (d2 (and (not (eq g 1)) (math-poly-div
|
|
893 (math-mul (car r1) (cdr r2))
|
|
894 g))))
|
|
895 (if (and (eq (cdr d1) 0) (eq (cdr d2) 0))
|
|
896 (cons (list (car expr) (car d2)
|
|
897 (math-mul (car r2) (car d1)))
|
|
898 (math-mul (car d1) (cdr r2)))
|
|
899 (cons (list (car expr)
|
|
900 (math-mul (car r1) (cdr r2))
|
|
901 (math-mul (car r2) (cdr r1)))
|
|
902 (math-mul (cdr r1) (cdr r2)))))))))))
|
|
903 ((eq (car expr) '*)
|
|
904 (let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
|
|
905 (r2 (math-to-ratpoly-rec (nth 2 expr)))
|
|
906 (g (math-mul (math-poly-gcd (car r1) (cdr r2))
|
|
907 (math-poly-gcd (cdr r1) (car r2)))))
|
|
908 (if (eq g 1)
|
|
909 (cons (math-mul (car r1) (car r2))
|
|
910 (math-mul (cdr r1) (cdr r2)))
|
|
911 (cons (math-poly-div-exact (math-mul (car r1) (car r2)) g)
|
|
912 (math-poly-div-exact (math-mul (cdr r1) (cdr r2)) g)))))
|
|
913 ((eq (car expr) '/)
|
|
914 (let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
|
|
915 (r2 (math-to-ratpoly-rec (nth 2 expr))))
|
|
916 (if (and (eq (cdr r1) 1) (eq (cdr r2) 1))
|
|
917 (cons (car r1) (car r2))
|
|
918 (let ((g (math-mul (math-poly-gcd (car r1) (car r2))
|
|
919 (math-poly-gcd (cdr r1) (cdr r2)))))
|
|
920 (if (eq g 1)
|
|
921 (cons (math-mul (car r1) (cdr r2))
|
|
922 (math-mul (cdr r1) (car r2)))
|
|
923 (cons (math-poly-div-exact (math-mul (car r1) (cdr r2)) g)
|
|
924 (math-poly-div-exact (math-mul (cdr r1) (car r2))
|
|
925 g)))))))
|
|
926 ((and (eq (car expr) '^) (integerp (nth 2 expr)))
|
|
927 (let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
|
|
928 (if (> (nth 2 expr) 0)
|
|
929 (cons (math-pow (car r1) (nth 2 expr))
|
|
930 (math-pow (cdr r1) (nth 2 expr)))
|
|
931 (cons (math-pow (cdr r1) (- (nth 2 expr)))
|
|
932 (math-pow (car r1) (- (nth 2 expr)))))))
|
|
933 ((eq (car expr) 'neg)
|
|
934 (let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
|
|
935 (cons (math-neg (car r1)) (cdr r1))))
|
|
936 (t (cons expr 1)))
|
|
937 )
|
|
938
|
|
939
|
|
940 (defun math-ratpoly-p (expr &optional var)
|
|
941 (cond ((equal expr var) 1)
|
|
942 ((Math-primp expr) 0)
|
|
943 ((memq (car expr) '(+ -))
|
|
944 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
|
|
945 p2)
|
|
946 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
|
|
947 (max p1 p2))))
|
|
948 ((eq (car expr) '*)
|
|
949 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
|
|
950 p2)
|
|
951 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
|
|
952 (+ p1 p2))))
|
|
953 ((eq (car expr) 'neg)
|
|
954 (math-ratpoly-p (nth 1 expr) var))
|
|
955 ((eq (car expr) '/)
|
|
956 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
|
|
957 p2)
|
|
958 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
|
|
959 (- p1 p2))))
|
|
960 ((and (eq (car expr) '^)
|
|
961 (integerp (nth 2 expr)))
|
|
962 (let ((p1 (math-ratpoly-p (nth 1 expr) var)))
|
|
963 (and p1 (* p1 (nth 2 expr)))))
|
|
964 ((not var) 1)
|
|
965 ((math-poly-depends expr var) nil)
|
|
966 (t 0))
|
|
967 )
|
|
968
|
|
969
|
|
970 (defun calcFunc-apart (expr &optional var)
|
|
971 (cond ((Math-primp expr) expr)
|
|
972 ((eq (car expr) '+)
|
|
973 (math-add (calcFunc-apart (nth 1 expr) var)
|
|
974 (calcFunc-apart (nth 2 expr) var)))
|
|
975 ((eq (car expr) '-)
|
|
976 (math-sub (calcFunc-apart (nth 1 expr) var)
|
|
977 (calcFunc-apart (nth 2 expr) var)))
|
|
978 ((not (math-ratpoly-p expr var))
|
|
979 (math-reject-arg expr "Expected a rational function"))
|
|
980 (t
|
|
981 (let* ((calc-prefer-frac t)
|
|
982 (rat (math-to-ratpoly expr))
|
|
983 (num (car rat))
|
|
984 (den (cdr rat))
|
|
985 (qr (math-poly-div num den))
|
|
986 (q (car qr))
|
|
987 (r (cdr qr)))
|
|
988 (or var
|
|
989 (setq var (math-polynomial-base den)))
|
|
990 (math-add q (or (and var
|
|
991 (math-expr-contains den var)
|
|
992 (math-partial-fractions r den var))
|
|
993 (math-div r den))))))
|
|
994 )
|
|
995
|
|
996
|
|
997 (defun math-padded-polynomial (expr var deg)
|
|
998 (let ((p (math-is-polynomial expr var deg)))
|
|
999 (append p (make-list (- deg (length p)) 0)))
|
|
1000 )
|
|
1001
|
|
1002 (defun math-partial-fractions (r den var)
|
|
1003 (let* ((fden (calcFunc-factors den var))
|
|
1004 (tdeg (math-polynomial-p den var))
|
|
1005 (fp fden)
|
|
1006 (dlist nil)
|
|
1007 (eqns 0)
|
|
1008 (lz nil)
|
|
1009 (tz (make-list (1- tdeg) 0))
|
|
1010 (calc-matrix-mode 'scalar))
|
|
1011 (and (not (and (= (length fden) 2) (eq (nth 2 (nth 1 fden)) 1)))
|
|
1012 (progn
|
|
1013 (while (setq fp (cdr fp))
|
|
1014 (let ((rpt (nth 2 (car fp)))
|
|
1015 (deg (math-polynomial-p (nth 1 (car fp)) var))
|
|
1016 dnum dvar deg2)
|
|
1017 (while (> rpt 0)
|
|
1018 (setq deg2 deg
|
|
1019 dnum 0)
|
|
1020 (while (> deg2 0)
|
|
1021 (setq dvar (append '(vec) lz '(1) tz)
|
|
1022 lz (cons 0 lz)
|
|
1023 tz (cdr tz)
|
|
1024 deg2 (1- deg2)
|
|
1025 dnum (math-add dnum (math-mul dvar
|
|
1026 (math-pow var deg2)))
|
|
1027 dlist (cons (and (= deg2 (1- deg))
|
|
1028 (math-pow (nth 1 (car fp)) rpt))
|
|
1029 dlist)))
|
|
1030 (let ((fpp fden)
|
|
1031 (mult 1))
|
|
1032 (while (setq fpp (cdr fpp))
|
|
1033 (or (eq fpp fp)
|
|
1034 (setq mult (math-mul mult
|
|
1035 (math-pow (nth 1 (car fpp))
|
|
1036 (nth 2 (car fpp)))))))
|
|
1037 (setq dnum (math-mul dnum mult)))
|
|
1038 (setq eqns (math-add eqns (math-mul dnum
|
|
1039 (math-pow
|
|
1040 (nth 1 (car fp))
|
|
1041 (- (nth 2 (car fp))
|
|
1042 rpt))))
|
|
1043 rpt (1- rpt)))))
|
|
1044 (setq eqns (math-div (cons 'vec (math-padded-polynomial r var tdeg))
|
|
1045 (math-transpose
|
|
1046 (cons 'vec
|
|
1047 (mapcar
|
|
1048 (function
|
|
1049 (lambda (x)
|
|
1050 (cons 'vec (math-padded-polynomial
|
|
1051 x var tdeg))))
|
|
1052 (cdr eqns))))))
|
|
1053 (and (math-vectorp eqns)
|
|
1054 (let ((res 0)
|
|
1055 (num nil))
|
|
1056 (setq eqns (nreverse eqns))
|
|
1057 (while eqns
|
|
1058 (setq num (cons (car eqns) num)
|
|
1059 eqns (cdr eqns))
|
|
1060 (if (car dlist)
|
|
1061 (setq num (math-build-polynomial-expr
|
|
1062 (nreverse num) var)
|
|
1063 res (math-add res (math-div num (car dlist)))
|
|
1064 num nil))
|
|
1065 (setq dlist (cdr dlist)))
|
|
1066 (math-normalize res))))))
|
|
1067 )
|
|
1068
|
|
1069
|
|
1070
|
|
1071 (defun math-expand-term (expr)
|
|
1072 (cond ((and (eq (car-safe expr) '*)
|
|
1073 (memq (car-safe (nth 1 expr)) '(+ -)))
|
|
1074 (math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 2 expr))
|
|
1075 (list '* (nth 2 (nth 1 expr)) (nth 2 expr))
|
|
1076 nil (eq (car (nth 1 expr)) '-)))
|
|
1077 ((and (eq (car-safe expr) '*)
|
|
1078 (memq (car-safe (nth 2 expr)) '(+ -)))
|
|
1079 (math-add-or-sub (list '* (nth 1 expr) (nth 1 (nth 2 expr)))
|
|
1080 (list '* (nth 1 expr) (nth 2 (nth 2 expr)))
|
|
1081 nil (eq (car (nth 2 expr)) '-)))
|
|
1082 ((and (eq (car-safe expr) '/)
|
|
1083 (memq (car-safe (nth 1 expr)) '(+ -)))
|
|
1084 (math-add-or-sub (list '/ (nth 1 (nth 1 expr)) (nth 2 expr))
|
|
1085 (list '/ (nth 2 (nth 1 expr)) (nth 2 expr))
|
|
1086 nil (eq (car (nth 1 expr)) '-)))
|
|
1087 ((and (eq (car-safe expr) '^)
|
|
1088 (memq (car-safe (nth 1 expr)) '(+ -))
|
|
1089 (integerp (nth 2 expr))
|
|
1090 (if (> (nth 2 expr) 0)
|
|
1091 (or (and (or (> mmt-many 500000) (< mmt-many -500000))
|
|
1092 (math-expand-power (nth 1 expr) (nth 2 expr)
|
|
1093 nil t))
|
|
1094 (list '*
|
|
1095 (nth 1 expr)
|
|
1096 (list '^ (nth 1 expr) (1- (nth 2 expr)))))
|
|
1097 (if (< (nth 2 expr) 0)
|
|
1098 (list '/ 1 (list '^ (nth 1 expr) (- (nth 2 expr))))))))
|
|
1099 (t expr))
|
|
1100 )
|
|
1101
|
|
1102 (defun calcFunc-expand (expr &optional many)
|
|
1103 (math-normalize (math-map-tree 'math-expand-term expr many))
|
|
1104 )
|
|
1105
|
|
1106 (defun math-expand-power (x n &optional var else-nil)
|
|
1107 (or (and (natnump n)
|
|
1108 (memq (car-safe x) '(+ -))
|
|
1109 (let ((terms nil)
|
|
1110 (cterms nil))
|
|
1111 (while (memq (car-safe x) '(+ -))
|
|
1112 (setq terms (cons (if (eq (car x) '-)
|
|
1113 (math-neg (nth 2 x))
|
|
1114 (nth 2 x))
|
|
1115 terms)
|
|
1116 x (nth 1 x)))
|
|
1117 (setq terms (cons x terms))
|
|
1118 (if var
|
|
1119 (let ((p terms))
|
|
1120 (while p
|
|
1121 (or (math-expr-contains (car p) var)
|
|
1122 (setq terms (delq (car p) terms)
|
|
1123 cterms (cons (car p) cterms)))
|
|
1124 (setq p (cdr p)))
|
|
1125 (if cterms
|
|
1126 (setq terms (cons (apply 'calcFunc-add cterms)
|
|
1127 terms)))))
|
|
1128 (if (= (length terms) 2)
|
|
1129 (let ((i 0)
|
|
1130 (accum 0))
|
|
1131 (while (<= i n)
|
|
1132 (setq accum (list '+ accum
|
|
1133 (list '* (calcFunc-choose n i)
|
|
1134 (list '*
|
|
1135 (list '^ (nth 1 terms) i)
|
|
1136 (list '^ (car terms)
|
|
1137 (- n i)))))
|
|
1138 i (1+ i)))
|
|
1139 accum)
|
|
1140 (if (= n 2)
|
|
1141 (let ((accum 0)
|
|
1142 (p1 terms)
|
|
1143 p2)
|
|
1144 (while p1
|
|
1145 (setq accum (list '+ accum
|
|
1146 (list '^ (car p1) 2))
|
|
1147 p2 p1)
|
|
1148 (while (setq p2 (cdr p2))
|
|
1149 (setq accum (list '+ accum
|
|
1150 (list '* 2 (list '*
|
|
1151 (car p1)
|
|
1152 (car p2))))))
|
|
1153 (setq p1 (cdr p1)))
|
|
1154 accum)
|
|
1155 (if (= n 3)
|
|
1156 (let ((accum 0)
|
|
1157 (p1 terms)
|
|
1158 p2 p3)
|
|
1159 (while p1
|
|
1160 (setq accum (list '+ accum (list '^ (car p1) 3))
|
|
1161 p2 p1)
|
|
1162 (while (setq p2 (cdr p2))
|
|
1163 (setq accum (list '+
|
|
1164 (list '+
|
|
1165 accum
|
|
1166 (list '* 3
|
|
1167 (list
|
|
1168 '*
|
|
1169 (list '^ (car p1) 2)
|
|
1170 (car p2))))
|
|
1171 (list '* 3
|
|
1172 (list
|
|
1173 '* (car p1)
|
|
1174 (list '^ (car p2) 2))))
|
|
1175 p3 p2)
|
|
1176 (while (setq p3 (cdr p3))
|
|
1177 (setq accum (list '+ accum
|
|
1178 (list '* 6
|
|
1179 (list '*
|
|
1180 (car p1)
|
|
1181 (list
|
|
1182 '* (car p2)
|
|
1183 (car p3))))))))
|
|
1184 (setq p1 (cdr p1)))
|
|
1185 accum))))))
|
|
1186 (and (not else-nil)
|
|
1187 (list '^ x n)))
|
|
1188 )
|
|
1189
|
|
1190 (defun calcFunc-expandpow (x n)
|
|
1191 (math-normalize (math-expand-power x n))
|
|
1192 )
|
|
1193
|
|
1194
|
|
1195
|