Mercurial > emacs
annotate lispref/numbers.texi @ 7923:457dc75d1d60
(ange-ftp-canonize-filename): Fix wrong var name.
author | Richard M. Stallman <rms@gnu.org> |
---|---|
date | Thu, 16 Jun 1994 14:15:11 +0000 |
parents | 9a9e88e65617 |
children | ae1a594ebb1d |
rev | line source |
---|---|
6510 | 1 @c -*-texinfo-*- |
2 @c This is part of the GNU Emacs Lisp Reference Manual. | |
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. | |
4 @c See the file elisp.texi for copying conditions. | |
5 @setfilename ../info/numbers | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
6 @node Numbers, Strings and Characters, Lisp Data Types, Top |
6510 | 7 @chapter Numbers |
8 @cindex integers | |
9 @cindex numbers | |
10 | |
11 GNU Emacs supports two numeric data types: @dfn{integers} and | |
12 @dfn{floating point numbers}. Integers are whole numbers such as | |
13 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point | |
14 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
15 2.71828. They can also be expressed in exponential notation: |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
16 1.5e2 equals 150; in this example, @samp{e2} stands for ten to the |
6510 | 17 second power, and is multiplied by 1.5. Floating point values are not |
18 exact; they have a fixed, limited amount of precision. | |
19 | |
20 Support for floating point numbers is a new feature in Emacs 19, and it | |
21 is controlled by a separate compilation option, so you may encounter a site | |
22 where Emacs does not support them. | |
23 | |
24 @menu | |
25 * Integer Basics:: Representation and range of integers. | |
26 * Float Basics:: Representation and range of floating point. | |
27 * Predicates on Numbers:: Testing for numbers. | |
28 * Comparison of Numbers:: Equality and inequality predicates. | |
29 * Numeric Conversions:: Converting float to integer and vice versa. | |
30 * Arithmetic Operations:: How to add, subtract, multiply and divide. | |
31 * Rounding Operations:: Explicitly rounding floating point numbers. | |
32 * Bitwise Operations:: Logical and, or, not, shifting. | |
33 * Transcendental Functions:: Trig, exponential and logarithmic functions. | |
34 * Random Numbers:: Obtaining random integers, predictable or not. | |
35 @end menu | |
36 | |
37 @node Integer Basics | |
38 @comment node-name, next, previous, up | |
39 @section Integer Basics | |
40 | |
41 The range of values for an integer depends on the machine. The | |
42 range is @minus{}8388608 to 8388607 (24 bits; i.e., | |
43 @ifinfo | |
44 -2**23 | |
45 @end ifinfo | |
46 @tex | |
47 $-2^{23}$ | |
48 @end tex | |
49 to | |
50 @ifinfo | |
51 2**23 - 1) | |
52 @end ifinfo | |
53 @tex | |
54 $2^{23}-1$) | |
55 @end tex | |
56 on most machines, but on others it is @minus{}16777216 to 16777215 (25 | |
57 bits), or @minus{}33554432 to 33554431 (26 bits). Many examples in this | |
58 chapter assume an integer has 24 bits. | |
59 @cindex overflow | |
60 | |
61 The Lisp reader reads an integer as a sequence of digits with optional | |
62 initial sign and optional final period. | |
63 | |
64 @example | |
65 1 ; @r{The integer 1.} | |
66 1. ; @r{The integer 1.} | |
67 +1 ; @r{Also the integer 1.} | |
68 -1 ; @r{The integer @minus{}1.} | |
69 16777217 ; @r{Also the integer 1, due to overflow.} | |
70 0 ; @r{The integer 0.} | |
71 -0 ; @r{The integer 0.} | |
72 @end example | |
73 | |
74 To understand how various functions work on integers, especially the | |
75 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to | |
76 view the numbers in their binary form. | |
77 | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
78 In 24-bit binary, the decimal integer 5 looks like this: |
6510 | 79 |
80 @example | |
81 0000 0000 0000 0000 0000 0101 | |
82 @end example | |
83 | |
84 @noindent | |
85 (We have inserted spaces between groups of 4 bits, and two spaces | |
86 between groups of 8 bits, to make the binary integer easier to read.) | |
87 | |
88 The integer @minus{}1 looks like this: | |
89 | |
90 @example | |
91 1111 1111 1111 1111 1111 1111 | |
92 @end example | |
93 | |
94 @noindent | |
95 @cindex two's complement | |
96 @minus{}1 is represented as 24 ones. (This is called @dfn{two's | |
97 complement} notation.) | |
98 | |
99 The negative integer, @minus{}5, is creating by subtracting 4 from | |
100 @minus{}1. In binary, the decimal integer 4 is 100. Consequently, | |
101 @minus{}5 looks like this: | |
102 | |
103 @example | |
104 1111 1111 1111 1111 1111 1011 | |
105 @end example | |
106 | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
107 In this implementation, the largest 24-bit binary integer is the |
6510 | 108 decimal integer 8,388,607. In binary, it looks like this: |
109 | |
110 @example | |
111 0111 1111 1111 1111 1111 1111 | |
112 @end example | |
113 | |
114 Since the arithmetic functions do not check whether integers go | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
115 outside their range, when you add 1 to 8,388,607, the value is the |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
116 negative integer @minus{}8,388,608: |
6510 | 117 |
118 @example | |
119 (+ 1 8388607) | |
120 @result{} -8388608 | |
121 @result{} 1000 0000 0000 0000 0000 0000 | |
122 @end example | |
123 | |
124 Many of the following functions accept markers for arguments as well | |
125 as integers. (@xref{Markers}.) More precisely, the actual arguments to | |
126 such functions may be either integers or markers, which is why we often | |
127 give these arguments the name @var{int-or-marker}. When the argument | |
128 value is a marker, its position value is used and its buffer is ignored. | |
129 | |
130 @ignore | |
131 In version 19, except where @emph{integer} is specified as an | |
132 argument, all of the functions for markers and integers also work for | |
133 floating point numbers. | |
134 @end ignore | |
135 | |
136 @node Float Basics | |
137 @section Floating Point Basics | |
138 | |
139 @cindex @code{LISP_FLOAT_TYPE} configuration macro | |
140 Emacs version 19 supports floating point numbers, if compiled with the | |
141 macro @code{LISP_FLOAT_TYPE} defined. The precise range of floating | |
142 point numbers is machine-specific; it is the same as the range of the C | |
143 data type @code{double} on the machine in question. | |
144 | |
145 The printed representation for floating point numbers requires either | |
146 a decimal point (with at least one digit following), an exponent, or | |
147 both. For example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, | |
148 @samp{1.5e3}, and @samp{.15e4} are five ways of writing a floating point | |
149 number whose value is 1500. They are all equivalent. You can also use | |
150 a minus sign to write negative floating point numbers, as in | |
151 @samp{-1.0}. | |
152 | |
153 @cindex IEEE floating point | |
154 @cindex positive infinity | |
155 @cindex negative infinity | |
156 @cindex infinity | |
157 @cindex NaN | |
158 Most modern computers support the IEEE floating point standard, which | |
159 provides for positive infinity and negative infinity as floating point | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
160 values. It also provides for a class of values called NaN or |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
161 ``not-a-number''; numerical functions return such values in cases where |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
162 there is no correct answer. For example, @code{(sqrt -1.0)} returns a |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
163 NaN. For practical purposes, there's no significant difference between |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
164 different NaN values in Emacs Lisp, and there's no rule for precisely |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
165 which NaN value should be used in a particular case, so this manual |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
166 doesn't try to distinguish them. Emacs Lisp has no read syntax for NaNs |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
167 or infinities; perhaps we should create a syntax in the future. |
6510 | 168 |
169 You can use @code{logb} to extract the binary exponent of a floating | |
170 point number (or estimate the logarithm of an integer): | |
171 | |
172 @defun logb number | |
173 This function returns the binary exponent of @var{number}. More | |
174 precisely, the value is the logarithm of @var{number} base 2, rounded | |
175 down to an integer. | |
176 @end defun | |
177 | |
178 @node Predicates on Numbers | |
179 @section Type Predicates for Numbers | |
180 | |
181 The functions in this section test whether the argument is a number or | |
182 whether it is a certain sort of number. The functions @code{integerp} | |
183 and @code{floatp} can take any type of Lisp object as argument (the | |
184 predicates would not be of much use otherwise); but the @code{zerop} | |
185 predicate requires a number as its argument. See also | |
186 @code{integer-or-marker-p} and @code{number-or-marker-p}, in | |
187 @ref{Predicates on Markers}. | |
188 | |
189 @defun floatp object | |
190 This predicate tests whether its argument is a floating point | |
191 number and returns @code{t} if so, @code{nil} otherwise. | |
192 | |
193 @code{floatp} does not exist in Emacs versions 18 and earlier. | |
194 @end defun | |
195 | |
196 @defun integerp object | |
197 This predicate tests whether its argument is an integer, and returns | |
198 @code{t} if so, @code{nil} otherwise. | |
199 @end defun | |
200 | |
201 @defun numberp object | |
202 This predicate tests whether its argument is a number (either integer or | |
203 floating point), and returns @code{t} if so, @code{nil} otherwise. | |
204 @end defun | |
205 | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
206 @defun wholenump object |
6510 | 207 @cindex natural numbers |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
208 The @code{wholenump} predicate (whose name comes from the phrase |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
209 ``whole-number-p'') tests to see whether its argument is a nonnegative |
6510 | 210 integer, and returns @code{t} if so, @code{nil} otherwise. 0 is |
211 considered non-negative. | |
212 | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
213 @findex natnump |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
214 @code{natnump} is an obsolete synonym for @code{wholenump}. |
6510 | 215 @end defun |
216 | |
217 @defun zerop number | |
218 This predicate tests whether its argument is zero, and returns @code{t} | |
219 if so, @code{nil} otherwise. The argument must be a number. | |
220 | |
221 These two forms are equivalent: @code{(zerop x)} @equiv{} @code{(= x 0)}. | |
222 @end defun | |
223 | |
224 @node Comparison of Numbers | |
225 @section Comparison of Numbers | |
226 @cindex number equality | |
227 | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
228 To test numbers for numerical equality, you should normally use |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
229 @code{=}, not @code{eq}. There can be many distinct floating point |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
230 number objects with the same numeric value. If you use @code{eq} to |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
231 compare them, then you test whether two values are the same |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
232 @emph{object}. By contrast, @code{=} compares only the numeric values |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
233 of the objects. |
6510 | 234 |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
235 At present, each integer value has a unique Lisp object in Emacs Lisp. |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
236 Therefore, @code{eq} is equivalent @code{=} where integers are |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
237 concerned. It is sometimes convenient to use @code{eq} for comparing an |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
238 unknown value with an integer, because @code{eq} does not report an |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
239 error if the unknown value is not a number---it accepts arguments of any |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
240 type. By contrast, @code{=} signals an error if the arguments are not |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
241 numbers or markers. However, it is a good idea to use @code{=} if you |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
242 can, even for comparing integers, just in case we change the |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
243 representation of integers in a future Emacs version. |
6510 | 244 |
245 There is another wrinkle: because floating point arithmetic is not | |
246 exact, it is often a bad idea to check for equality of two floating | |
247 point values. Usually it is better to test for approximate equality. | |
248 Here's a function to do this: | |
249 | |
250 @example | |
251 (defvar fuzz-factor 1.0e-6) | |
252 (defun approx-equal (x y) | |
253 (< (/ (abs (- x y)) | |
254 (max (abs x) (abs y))) | |
255 fuzz-factor)) | |
256 @end example | |
257 | |
258 @cindex CL note---integers vrs @code{eq} | |
259 @quotation | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
260 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires |
6510 | 261 @code{=} because Common Lisp implements multi-word integers, and two |
262 distinct integer objects can have the same numeric value. Emacs Lisp | |
263 can have just one integer object for any given value because it has a | |
264 limited range of integer values. | |
265 @end quotation | |
266 | |
267 @defun = number-or-marker1 number-or-marker2 | |
268 This function tests whether its arguments are numerically equal, and | |
269 returns @code{t} if so, @code{nil} otherwise. | |
270 @end defun | |
271 | |
272 @defun /= number-or-marker1 number-or-marker2 | |
273 This function tests whether its arguments are numerically equal, and | |
274 returns @code{t} if they are not, and @code{nil} if they are. | |
275 @end defun | |
276 | |
277 @defun < number-or-marker1 number-or-marker2 | |
278 This function tests whether its first argument is strictly less than | |
279 its second argument. It returns @code{t} if so, @code{nil} otherwise. | |
280 @end defun | |
281 | |
282 @defun <= number-or-marker1 number-or-marker2 | |
283 This function tests whether its first argument is less than or equal | |
284 to its second argument. It returns @code{t} if so, @code{nil} | |
285 otherwise. | |
286 @end defun | |
287 | |
288 @defun > number-or-marker1 number-or-marker2 | |
289 This function tests whether its first argument is strictly greater | |
290 than its second argument. It returns @code{t} if so, @code{nil} | |
291 otherwise. | |
292 @end defun | |
293 | |
294 @defun >= number-or-marker1 number-or-marker2 | |
295 This function tests whether its first argument is greater than or | |
296 equal to its second argument. It returns @code{t} if so, @code{nil} | |
297 otherwise. | |
298 @end defun | |
299 | |
300 @defun max number-or-marker &rest numbers-or-markers | |
301 This function returns the largest of its arguments. | |
302 | |
303 @example | |
304 (max 20) | |
305 @result{} 20 | |
306 (max 1 2.5) | |
307 @result{} 2.5 | |
308 (max 1 3 2.5) | |
309 @result{} 3 | |
310 @end example | |
311 @end defun | |
312 | |
313 @defun min number-or-marker &rest numbers-or-markers | |
314 This function returns the smallest of its arguments. | |
315 | |
316 @example | |
317 (min -4 1) | |
318 @result{} -4 | |
319 @end example | |
320 @end defun | |
321 | |
322 @node Numeric Conversions | |
323 @section Numeric Conversions | |
324 @cindex rounding in conversions | |
325 | |
326 To convert an integer to floating point, use the function @code{float}. | |
327 | |
328 @defun float number | |
329 This returns @var{number} converted to floating point. | |
330 If @var{number} is already a floating point number, @code{float} returns | |
331 it unchanged. | |
332 @end defun | |
333 | |
334 There are four functions to convert floating point numbers to integers; | |
335 they differ in how they round. These functions accept integer arguments | |
336 also, and return such arguments unchanged. | |
337 | |
338 @defun truncate number | |
339 This returns @var{number}, converted to an integer by rounding towards | |
340 zero. | |
341 @end defun | |
342 | |
343 @defun floor number &optional divisor | |
344 This returns @var{number}, converted to an integer by rounding downward | |
345 (towards negative infinity). | |
346 | |
347 If @var{divisor} is specified, @var{number} is divided by @var{divisor} | |
348 before the floor is taken; this is the division operation that | |
349 corresponds to @code{mod}. An @code{arith-error} results if | |
350 @var{divisor} is 0. | |
351 @end defun | |
352 | |
353 @defun ceiling number | |
354 This returns @var{number}, converted to an integer by rounding upward | |
355 (towards positive infinity). | |
356 @end defun | |
357 | |
358 @defun round number | |
359 This returns @var{number}, converted to an integer by rounding towards the | |
360 nearest integer. | |
361 @end defun | |
362 | |
363 @node Arithmetic Operations | |
364 @section Arithmetic Operations | |
365 | |
366 Emacs Lisp provides the traditional four arithmetic operations: | |
367 addition, subtraction, multiplication, and division. Remainder and modulus | |
368 functions supplement the division functions. The functions to | |
369 add or subtract 1 are provided because they are traditional in Lisp and | |
370 commonly used. | |
371 | |
372 All of these functions except @code{%} return a floating point value | |
373 if any argument is floating. | |
374 | |
375 It is important to note that in GNU Emacs Lisp, arithmetic functions | |
376 do not check for overflow. Thus @code{(1+ 8388607)} may evaluate to | |
377 @minus{}8388608, depending on your hardware. | |
378 | |
379 @defun 1+ number-or-marker | |
380 This function returns @var{number-or-marker} plus 1. | |
381 For example, | |
382 | |
383 @example | |
384 (setq foo 4) | |
385 @result{} 4 | |
386 (1+ foo) | |
387 @result{} 5 | |
388 @end example | |
389 | |
390 This function is not analogous to the C operator @code{++}---it does | |
391 not increment a variable. It just computes a sum. Thus, | |
392 | |
393 @example | |
394 foo | |
395 @result{} 4 | |
396 @end example | |
397 | |
398 If you want to increment the variable, you must use @code{setq}, | |
399 like this: | |
400 | |
401 @example | |
402 (setq foo (1+ foo)) | |
403 @result{} 5 | |
404 @end example | |
405 @end defun | |
406 | |
407 @defun 1- number-or-marker | |
408 This function returns @var{number-or-marker} minus 1. | |
409 @end defun | |
410 | |
411 @defun abs number | |
412 This returns the absolute value of @var{number}. | |
413 @end defun | |
414 | |
415 @defun + &rest numbers-or-markers | |
416 This function adds its arguments together. When given no arguments, | |
417 @code{+} returns 0. It does not check for overflow. | |
418 | |
419 @example | |
420 (+) | |
421 @result{} 0 | |
422 (+ 1) | |
423 @result{} 1 | |
424 (+ 1 2 3 4) | |
425 @result{} 10 | |
426 @end example | |
427 @end defun | |
428 | |
429 @defun - &optional number-or-marker &rest other-numbers-or-markers | |
430 The @code{-} function serves two purposes: negation and subtraction. | |
431 When @code{-} has a single argument, the value is the negative of the | |
432 argument. When there are multiple arguments, @code{-} subtracts each of | |
433 the @var{other-numbers-or-markers} from @var{number-or-marker}, | |
434 cumulatively. If there are no arguments, the result is 0. This | |
435 function does not check for overflow. | |
436 | |
437 @example | |
438 (- 10 1 2 3 4) | |
439 @result{} 0 | |
440 (- 10) | |
441 @result{} -10 | |
442 (-) | |
443 @result{} 0 | |
444 @end example | |
445 @end defun | |
446 | |
447 @defun * &rest numbers-or-markers | |
448 This function multiplies its arguments together, and returns the | |
449 product. When given no arguments, @code{*} returns 1. It does | |
450 not check for overflow. | |
451 | |
452 @example | |
453 (*) | |
454 @result{} 1 | |
455 (* 1) | |
456 @result{} 1 | |
457 (* 1 2 3 4) | |
458 @result{} 24 | |
459 @end example | |
460 @end defun | |
461 | |
462 @defun / dividend divisor &rest divisors | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
463 This function divides @var{dividend} by @var{divisor} and returns the |
6510 | 464 quotient. If there are additional arguments @var{divisors}, then it |
465 divides @var{dividend} by each divisor in turn. Each argument may be a | |
466 number or a marker. | |
467 | |
468 If all the arguments are integers, then the result is an integer too. | |
469 This means the result has to be rounded. On most machines, the result | |
470 is rounded towards zero after each division, but some machines may round | |
471 differently with negative arguments. This is because the Lisp function | |
472 @code{/} is implemented using the C division operator, which also | |
473 permits machine-dependent rounding. As a practical matter, all known | |
474 machines round in the standard fashion. | |
475 | |
476 @cindex @code{arith-error} in division | |
477 If you divide by 0, an @code{arith-error} error is signaled. | |
478 (@xref{Errors}.) | |
479 | |
480 @example | |
481 (/ 6 2) | |
482 @result{} 3 | |
483 (/ 5 2) | |
484 @result{} 2 | |
485 (/ 25 3 2) | |
486 @result{} 4 | |
487 (/ -17 6) | |
488 @result{} -2 | |
489 @end example | |
490 | |
491 The result of @code{(/ -17 6)} could in principle be -3 on some | |
492 machines. | |
493 @end defun | |
494 | |
495 @defun % dividend divisor | |
496 @cindex remainder | |
497 This function returns the integer remainder after division of @var{dividend} | |
498 by @var{divisor}. The arguments must be integers or markers. | |
499 | |
500 For negative arguments, the remainder is in principle machine-dependent | |
501 since the quotient is; but in practice, all known machines behave alike. | |
502 | |
503 An @code{arith-error} results if @var{divisor} is 0. | |
504 | |
505 @example | |
506 (% 9 4) | |
507 @result{} 1 | |
508 (% -9 4) | |
509 @result{} -1 | |
510 (% 9 -4) | |
511 @result{} 1 | |
512 (% -9 -4) | |
513 @result{} -1 | |
514 @end example | |
515 | |
516 For any two integers @var{dividend} and @var{divisor}, | |
517 | |
518 @example | |
519 @group | |
520 (+ (% @var{dividend} @var{divisor}) | |
521 (* (/ @var{dividend} @var{divisor}) @var{divisor})) | |
522 @end group | |
523 @end example | |
524 | |
525 @noindent | |
526 always equals @var{dividend}. | |
527 @end defun | |
528 | |
529 @defun mod dividend divisor | |
530 @cindex modulus | |
531 This function returns the value of @var{dividend} modulo @var{divisor}; | |
532 in other words, the remainder after division of @var{dividend} | |
533 by @var{divisor}, but with the same sign as @var{divisor}. | |
534 The arguments must be numbers or markers. | |
535 | |
536 Unlike @code{%}, @code{mod} returns a well-defined result for negative | |
537 arguments. It also permits floating point arguments; it rounds the | |
538 quotient downward (towards minus infinity) to an integer, and uses that | |
539 quotient to compute the remainder. | |
540 | |
541 An @code{arith-error} results if @var{divisor} is 0. | |
542 | |
543 @example | |
544 (mod 9 4) | |
545 @result{} 1 | |
546 (mod -9 4) | |
547 @result{} 3 | |
548 (mod 9 -4) | |
549 @result{} -3 | |
550 (mod -9 -4) | |
551 @result{} -1 | |
552 (mod 5.5 2.5) | |
553 @result{} .5 | |
554 @end example | |
555 | |
556 For any two numbers @var{dividend} and @var{divisor}, | |
557 | |
558 @example | |
559 @group | |
560 (+ (mod @var{dividend} @var{divisor}) | |
561 (* (floor @var{dividend} @var{divisor}) @var{divisor})) | |
562 @end group | |
563 @end example | |
564 | |
565 @noindent | |
566 always equals @var{dividend}, subject to rounding error if | |
567 either argument is floating point. | |
568 @end defun | |
569 | |
570 @node Rounding Operations | |
571 @section Rounding Operations | |
572 @cindex rounding without conversion | |
573 | |
574 The functions @code{ffloor}, @code{fceil}, @code{fround} and | |
575 @code{ftruncate} take a floating point argument and return a floating | |
576 point result whose value is a nearby integer. @code{ffloor} returns the | |
577 nearest integer below; @code{fceil}, the nearest integer above; | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
578 @code{ftruncate}, the nearest integer in the direction towards zero; |
6510 | 579 @code{fround}, the nearest integer. |
580 | |
581 @defun ffloor float | |
582 This function rounds @var{float} to the next lower integral value, and | |
583 returns that value as a floating point number. | |
584 @end defun | |
585 | |
586 @defun fceil float | |
587 This function rounds @var{float} to the next higher integral value, and | |
588 returns that value as a floating point number. | |
589 @end defun | |
590 | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
591 @defun ftruncate float |
6510 | 592 This function rounds @var{float} towards zero to an integral value, and |
593 returns that value as a floating point number. | |
594 @end defun | |
595 | |
596 @defun fround float | |
597 This function rounds @var{float} to the nearest integral value, | |
598 and returns that value as a floating point number. | |
599 @end defun | |
600 | |
601 @node Bitwise Operations | |
602 @section Bitwise Operations on Integers | |
603 | |
604 In a computer, an integer is represented as a binary number, a | |
605 sequence of @dfn{bits} (digits which are either zero or one). A bitwise | |
606 operation acts on the individual bits of such a sequence. For example, | |
607 @dfn{shifting} moves the whole sequence left or right one or more places, | |
608 reproducing the same pattern ``moved over''. | |
609 | |
610 The bitwise operations in Emacs Lisp apply only to integers. | |
611 | |
612 @defun lsh integer1 count | |
613 @cindex logical shift | |
614 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
615 bits in @var{integer1} to the left @var{count} places, or to the right |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
616 if @var{count} is negative, bringing zeros into the vacated bits. If |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
617 @var{count} is negative, @code{lsh} shifts zeros into the leftmost |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
618 (most-significant) bit, producing a positive result even if |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
619 @var{integer1} is negative. Contrast this with @code{ash}, below. |
6510 | 620 |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
621 Here are two examples of @code{lsh}, shifting a pattern of bits one |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
622 place to the left. We show only the low-order eight bits of the binary |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
623 pattern; the rest are all zero. |
6510 | 624 |
625 @example | |
626 @group | |
627 (lsh 5 1) | |
628 @result{} 10 | |
629 ;; @r{Decimal 5 becomes decimal 10.} | |
630 00000101 @result{} 00001010 | |
631 | |
632 (lsh 7 1) | |
633 @result{} 14 | |
634 ;; @r{Decimal 7 becomes decimal 14.} | |
635 00000111 @result{} 00001110 | |
636 @end group | |
637 @end example | |
638 | |
639 @noindent | |
640 As the examples illustrate, shifting the pattern of bits one place to | |
641 the left produces a number that is twice the value of the previous | |
642 number. | |
643 | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
644 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
645 not check for overflow, so shifting left can discard significant bits |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
646 and change the sign of the number. For example, left shifting 8,388,607 |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
647 produces @minus{}2 on a 24-bit machine: |
6510 | 648 |
649 @example | |
650 (lsh 8388607 1) ; @r{left shift} | |
651 @result{} -2 | |
652 @end example | |
653 | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
654 In binary, in the 24-bit implementation, the argument looks like this: |
6510 | 655 |
656 @example | |
657 @group | |
658 ;; @r{Decimal 8,388,607} | |
659 0111 1111 1111 1111 1111 1111 | |
660 @end group | |
661 @end example | |
662 | |
663 @noindent | |
664 which becomes the following when left shifted: | |
665 | |
666 @example | |
667 @group | |
668 ;; @r{Decimal @minus{}2} | |
669 1111 1111 1111 1111 1111 1110 | |
670 @end group | |
671 @end example | |
672 | |
673 Shifting the pattern of bits two places to the left produces results | |
674 like this (with 8-bit binary numbers): | |
675 | |
676 @example | |
677 @group | |
678 (lsh 3 2) | |
679 @result{} 12 | |
680 ;; @r{Decimal 3 becomes decimal 12.} | |
681 00000011 @result{} 00001100 | |
682 @end group | |
683 @end example | |
684 | |
685 On the other hand, shifting the pattern of bits one place to the right | |
686 looks like this: | |
687 | |
688 @example | |
689 @group | |
690 (lsh 6 -1) | |
691 @result{} 3 | |
692 ;; @r{Decimal 6 becomes decimal 3.} | |
693 00000110 @result{} 00000011 | |
694 @end group | |
695 | |
696 @group | |
697 (lsh 5 -1) | |
698 @result{} 2 | |
699 ;; @r{Decimal 5 becomes decimal 2.} | |
700 00000101 @result{} 00000010 | |
701 @end group | |
702 @end example | |
703 | |
704 @noindent | |
705 As the example illustrates, shifting the pattern of bits one place to | |
706 the right divides the value of the binary number by two, rounding downward. | |
707 @end defun | |
708 | |
709 @defun ash integer1 count | |
710 @cindex arithmetic shift | |
711 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1} | |
712 to the left @var{count} places, or to the right if @var{count} | |
713 is negative. | |
714 | |
715 @code{ash} gives the same results as @code{lsh} except when | |
716 @var{integer1} and @var{count} are both negative. In that case, | |
717 @code{ash} puts a one in the leftmost position, while @code{lsh} puts | |
718 a zero in the leftmost position. | |
719 | |
720 Thus, with @code{ash}, shifting the pattern of bits one place to the right | |
721 looks like this: | |
722 | |
723 @example | |
724 @group | |
725 (ash -6 -1) @result{} -3 | |
726 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.} | |
727 1111 1111 1111 1111 1111 1010 | |
728 @result{} | |
729 1111 1111 1111 1111 1111 1101 | |
730 @end group | |
731 @end example | |
732 | |
733 In contrast, shifting the pattern of bits one place to the right with | |
734 @code{lsh} looks like this: | |
735 | |
736 @example | |
737 @group | |
738 (lsh -6 -1) @result{} 8388605 | |
739 ;; @r{Decimal @minus{}6 becomes decimal 8,388,605.} | |
740 1111 1111 1111 1111 1111 1010 | |
741 @result{} | |
742 0111 1111 1111 1111 1111 1101 | |
743 @end group | |
744 @end example | |
745 | |
746 Here are other examples: | |
747 | |
748 @c !!! Check if lined up in smallbook format! XDVI shows problem | |
749 @c with smallbook but not with regular book! --rjc 16mar92 | |
750 @smallexample | |
751 @group | |
752 ; @r{ 24-bit binary values} | |
753 | |
754 (lsh 5 2) ; 5 = @r{0000 0000 0000 0000 0000 0101} | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
755 @result{} 20 ; = @r{0000 0000 0000 0000 0001 0100} |
6510 | 756 @end group |
757 @group | |
758 (ash 5 2) | |
759 @result{} 20 | |
760 (lsh -5 2) ; -5 = @r{1111 1111 1111 1111 1111 1011} | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
761 @result{} -20 ; = @r{1111 1111 1111 1111 1110 1100} |
6510 | 762 (ash -5 2) |
763 @result{} -20 | |
764 @end group | |
765 @group | |
766 (lsh 5 -2) ; 5 = @r{0000 0000 0000 0000 0000 0101} | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
767 @result{} 1 ; = @r{0000 0000 0000 0000 0000 0001} |
6510 | 768 @end group |
769 @group | |
770 (ash 5 -2) | |
771 @result{} 1 | |
772 @end group | |
773 @group | |
774 (lsh -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1011} | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
775 @result{} 4194302 ; = @r{0011 1111 1111 1111 1111 1110} |
6510 | 776 @end group |
777 @group | |
778 (ash -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1011} | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
779 @result{} -2 ; = @r{1111 1111 1111 1111 1111 1110} |
6510 | 780 @end group |
781 @end smallexample | |
782 @end defun | |
783 | |
784 @defun logand &rest ints-or-markers | |
785 @cindex logical and | |
786 @cindex bitwise and | |
787 This function returns the ``logical and'' of the arguments: the | |
788 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is | |
789 set in all the arguments. (``Set'' means that the value of the bit is 1 | |
790 rather than 0.) | |
791 | |
792 For example, using 4-bit binary numbers, the ``logical and'' of 13 and | |
793 12 is 12: 1101 combined with 1100 produces 1100. | |
794 In both the binary numbers, the leftmost two bits are set (i.e., they | |
795 are 1's), so the leftmost two bits of the returned value are set. | |
796 However, for the rightmost two bits, each is zero in at least one of | |
797 the arguments, so the rightmost two bits of the returned value are 0's. | |
798 | |
799 @noindent | |
800 Therefore, | |
801 | |
802 @example | |
803 @group | |
804 (logand 13 12) | |
805 @result{} 12 | |
806 @end group | |
807 @end example | |
808 | |
809 If @code{logand} is not passed any argument, it returns a value of | |
810 @minus{}1. This number is an identity element for @code{logand} | |
811 because its binary representation consists entirely of ones. If | |
812 @code{logand} is passed just one argument, it returns that argument. | |
813 | |
814 @smallexample | |
815 @group | |
816 ; @r{ 24-bit binary values} | |
817 | |
818 (logand 14 13) ; 14 = @r{0000 0000 0000 0000 0000 1110} | |
819 ; 13 = @r{0000 0000 0000 0000 0000 1101} | |
820 @result{} 12 ; 12 = @r{0000 0000 0000 0000 0000 1100} | |
821 @end group | |
822 | |
823 @group | |
824 (logand 14 13 4) ; 14 = @r{0000 0000 0000 0000 0000 1110} | |
825 ; 13 = @r{0000 0000 0000 0000 0000 1101} | |
826 ; 4 = @r{0000 0000 0000 0000 0000 0100} | |
827 @result{} 4 ; 4 = @r{0000 0000 0000 0000 0000 0100} | |
828 @end group | |
829 | |
830 @group | |
831 (logand) | |
832 @result{} -1 ; -1 = @r{1111 1111 1111 1111 1111 1111} | |
833 @end group | |
834 @end smallexample | |
835 @end defun | |
836 | |
837 @defun logior &rest ints-or-markers | |
838 @cindex logical inclusive or | |
839 @cindex bitwise or | |
840 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit | |
841 is set in the result if, and only if, the @var{n}th bit is set in at least | |
842 one of the arguments. If there are no arguments, the result is zero, | |
843 which is an identity element for this operation. If @code{logior} is | |
844 passed just one argument, it returns that argument. | |
845 | |
846 @smallexample | |
847 @group | |
848 ; @r{ 24-bit binary values} | |
849 | |
850 (logior 12 5) ; 12 = @r{0000 0000 0000 0000 0000 1100} | |
851 ; 5 = @r{0000 0000 0000 0000 0000 0101} | |
852 @result{} 13 ; 13 = @r{0000 0000 0000 0000 0000 1101} | |
853 @end group | |
854 | |
855 @group | |
856 (logior 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 1100} | |
857 ; 5 = @r{0000 0000 0000 0000 0000 0101} | |
858 ; 7 = @r{0000 0000 0000 0000 0000 0111} | |
859 @result{} 15 ; 15 = @r{0000 0000 0000 0000 0000 1111} | |
860 @end group | |
861 @end smallexample | |
862 @end defun | |
863 | |
864 @defun logxor &rest ints-or-markers | |
865 @cindex bitwise exclusive or | |
866 @cindex logical exclusive or | |
867 This function returns the ``exclusive or'' of its arguments: the | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
868 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
869 set in an odd number of the arguments. If there are no arguments, the |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
870 result is 0, which is an identity element for this operation. If |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
871 @code{logxor} is passed just one argument, it returns that argument. |
6510 | 872 |
873 @smallexample | |
874 @group | |
875 ; @r{ 24-bit binary values} | |
876 | |
877 (logxor 12 5) ; 12 = @r{0000 0000 0000 0000 0000 1100} | |
878 ; 5 = @r{0000 0000 0000 0000 0000 0101} | |
879 @result{} 9 ; 9 = @r{0000 0000 0000 0000 0000 1001} | |
880 @end group | |
881 | |
882 @group | |
883 (logxor 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 1100} | |
884 ; 5 = @r{0000 0000 0000 0000 0000 0101} | |
885 ; 7 = @r{0000 0000 0000 0000 0000 0111} | |
886 @result{} 14 ; 14 = @r{0000 0000 0000 0000 0000 1110} | |
887 @end group | |
888 @end smallexample | |
889 @end defun | |
890 | |
891 @defun lognot integer | |
892 @cindex logical not | |
893 @cindex bitwise not | |
894 This function returns the logical complement of its argument: the @var{n}th | |
895 bit is one in the result if, and only if, the @var{n}th bit is zero in | |
896 @var{integer}, and vice-versa. | |
897 | |
898 @example | |
899 (lognot 5) | |
900 @result{} -6 | |
901 ;; 5 = @r{0000 0000 0000 0000 0000 0101} | |
902 ;; @r{becomes} | |
903 ;; -6 = @r{1111 1111 1111 1111 1111 1010} | |
904 @end example | |
905 @end defun | |
906 | |
907 @node Transcendental Functions | |
908 @section Transcendental Functions | |
909 @cindex transcendental functions | |
910 @cindex mathematical functions | |
911 | |
912 These mathematical functions are available if floating point is | |
913 supported. They allow integers as well as floating point numbers | |
914 as arguments. | |
915 | |
916 @defun sin arg | |
917 @defunx cos arg | |
918 @defunx tan arg | |
919 These are the ordinary trigonometric functions, with argument measured | |
920 in radians. | |
921 @end defun | |
922 | |
923 @defun asin arg | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
924 The value of @code{(asin @var{arg})} is a number between @minus{}pi/2 |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
925 and pi/2 (inclusive) whose sine is @var{arg}; if, however, @var{arg} |
6510 | 926 is out of range (outside [-1, 1]), then the result is a NaN. |
927 @end defun | |
928 | |
929 @defun acos arg | |
930 The value of @code{(acos @var{arg})} is a number between 0 and pi | |
931 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} | |
932 is out of range (outside [-1, 1]), then the result is a NaN. | |
933 @end defun | |
934 | |
935 @defun atan arg | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
936 The value of @code{(atan @var{arg})} is a number between @minus{}pi/2 |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
937 and pi/2 (exclusive) whose tangent is @var{arg}. |
6510 | 938 @end defun |
939 | |
940 @defun exp arg | |
941 This is the exponential function; it returns @i{e} to the power | |
942 @var{arg}. @i{e} is a fundamental mathematical constant also called the | |
943 base of natural logarithms. | |
944 @end defun | |
945 | |
946 @defun log arg &optional base | |
947 This function returns the logarithm of @var{arg}, with base @var{base}. | |
948 If you don't specify @var{base}, the base @var{e} is used. If @var{arg} | |
949 is negative, the result is a NaN. | |
950 @end defun | |
951 | |
952 @ignore | |
953 @defun expm1 arg | |
954 This function returns @code{(1- (exp @var{arg}))}, but it is more | |
955 accurate than that when @var{arg} is negative and @code{(exp @var{arg})} | |
956 is close to 1. | |
957 @end defun | |
958 | |
959 @defun log1p arg | |
960 This function returns @code{(log (1+ @var{arg}))}, but it is more | |
961 accurate than that when @var{arg} is so small that adding 1 to it would | |
962 lose accuracy. | |
963 @end defun | |
964 @end ignore | |
965 | |
966 @defun log10 arg | |
967 This function returns the logarithm of @var{arg}, with base 10. If | |
7115
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
968 @var{arg} is negative, the result is a NaN. @code{(log10 @var{x})} |
9a9e88e65617
*** empty log message ***
Richard M. Stallman <rms@gnu.org>
parents:
6510
diff
changeset
|
969 @equiv{} @code{(log @var{x} 10)}, at least approximately. |
6510 | 970 @end defun |
971 | |
972 @defun expt x y | |
973 This function returns @var{x} raised to power @var{y}. | |
974 @end defun | |
975 | |
976 @defun sqrt arg | |
977 This returns the square root of @var{arg}. If @var{arg} is negative, | |
978 the value is a NaN. | |
979 @end defun | |
980 | |
981 @node Random Numbers | |
982 @section Random Numbers | |
983 @cindex random numbers | |
984 | |
985 A deterministic computer program cannot generate true random numbers. | |
986 For most purposes, @dfn{pseudo-random numbers} suffice. A series of | |
987 pseudo-random numbers is generated in a deterministic fashion. The | |
988 numbers are not truly random, but they have certain properties that | |
989 mimic a random series. For example, all possible values occur equally | |
990 often in a pseudo-random series. | |
991 | |
992 In Emacs, pseudo-random numbers are generated from a ``seed'' number. | |
993 Starting from any given seed, the @code{random} function always | |
994 generates the same sequence of numbers. Emacs always starts with the | |
995 same seed value, so the sequence of values of @code{random} is actually | |
996 the same in each Emacs run! For example, in one operating system, the | |
997 first call to @code{(random)} after you start Emacs always returns | |
998 -1457731, and the second one always returns -7692030. This | |
999 repeatability is helpful for debugging. | |
1000 | |
1001 If you want truly unpredictable random numbers, execute @code{(random | |
1002 t)}. This chooses a new seed based on the current time of day and on | |
1003 Emacs's process @sc{id} number. | |
1004 | |
1005 @defun random &optional limit | |
1006 This function returns a pseudo-random integer. Repeated calls return a | |
1007 series of pseudo-random integers. | |
1008 | |
1009 If @var{limit} is @code{nil}, then the value may in principle be any | |
1010 integer. If @var{limit} is a positive integer, the value is chosen to | |
1011 be nonnegative and less than @var{limit} (only in Emacs 19). | |
1012 | |
1013 If @var{limit} is @code{t}, it means to choose a new seed based on the | |
1014 current time of day and on Emacs's process @sc{id} number. | |
1015 @c "Emacs'" is incorrect usage! | |
1016 | |
1017 On some machines, any integer representable in Lisp may be the result | |
1018 of @code{random}. On other machines, the result can never be larger | |
1019 than a certain maximum or less than a certain (negative) minimum. | |
1020 @end defun |