Mercurial > emacs
annotate doc/lispref/numbers.texi @ 101624:6033e5211761
* PROBLEMS (Windows): Add entry about TCC/4NT and App Paths keys.
author | Juanma Barranquero <lekktu@gmail.com> |
---|---|
date | Wed, 28 Jan 2009 23:44:12 +0000 |
parents | cb5d2387102c |
children | 1d1d5d9bd884 |
rev | line source |
---|---|
84091 | 1 @c -*-texinfo-*- |
2 @c This is part of the GNU Emacs Lisp Reference Manual. | |
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001, | |
100974 | 4 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
84091 | 5 @c See the file elisp.texi for copying conditions. |
84116
0ba80d073e27
(setfilename): Go up one more level to ../../info.
Glenn Morris <rgm@gnu.org>
parents:
84091
diff
changeset
|
6 @setfilename ../../info/numbers |
84091 | 7 @node Numbers, Strings and Characters, Lisp Data Types, Top |
8 @chapter Numbers | |
9 @cindex integers | |
10 @cindex numbers | |
11 | |
12 GNU Emacs supports two numeric data types: @dfn{integers} and | |
13 @dfn{floating point numbers}. Integers are whole numbers such as | |
14 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point | |
15 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or | |
16 2.71828. They can also be expressed in exponential notation: 1.5e2 | |
17 equals 150; in this example, @samp{e2} stands for ten to the second | |
18 power, and that is multiplied by 1.5. Floating point values are not | |
19 exact; they have a fixed, limited amount of precision. | |
20 | |
21 @menu | |
22 * Integer Basics:: Representation and range of integers. | |
23 * Float Basics:: Representation and range of floating point. | |
24 * Predicates on Numbers:: Testing for numbers. | |
25 * Comparison of Numbers:: Equality and inequality predicates. | |
26 * Numeric Conversions:: Converting float to integer and vice versa. | |
27 * Arithmetic Operations:: How to add, subtract, multiply and divide. | |
28 * Rounding Operations:: Explicitly rounding floating point numbers. | |
29 * Bitwise Operations:: Logical and, or, not, shifting. | |
30 * Math Functions:: Trig, exponential and logarithmic functions. | |
31 * Random Numbers:: Obtaining random integers, predictable or not. | |
32 @end menu | |
33 | |
34 @node Integer Basics | |
35 @comment node-name, next, previous, up | |
36 @section Integer Basics | |
37 | |
38 The range of values for an integer depends on the machine. The | |
39 minimum range is @minus{}268435456 to 268435455 (29 bits; i.e., | |
40 @ifnottex | |
41 -2**28 | |
42 @end ifnottex | |
43 @tex | |
44 @math{-2^{28}} | |
45 @end tex | |
46 to | |
47 @ifnottex | |
48 2**28 - 1), | |
49 @end ifnottex | |
50 @tex | |
51 @math{2^{28}-1}), | |
52 @end tex | |
53 but some machines may provide a wider range. Many examples in this | |
54 chapter assume an integer has 29 bits. | |
55 @cindex overflow | |
56 | |
57 The Lisp reader reads an integer as a sequence of digits with optional | |
58 initial sign and optional final period. | |
59 | |
60 @example | |
61 1 ; @r{The integer 1.} | |
62 1. ; @r{The integer 1.} | |
63 +1 ; @r{Also the integer 1.} | |
64 -1 ; @r{The integer @minus{}1.} | |
65 536870913 ; @r{Also the integer 1, due to overflow.} | |
66 0 ; @r{The integer 0.} | |
67 -0 ; @r{The integer 0.} | |
68 @end example | |
69 | |
70 @cindex integers in specific radix | |
71 @cindex radix for reading an integer | |
72 @cindex base for reading an integer | |
73 @cindex hex numbers | |
74 @cindex octal numbers | |
75 @cindex reading numbers in hex, octal, and binary | |
76 The syntax for integers in bases other than 10 uses @samp{#} | |
77 followed by a letter that specifies the radix: @samp{b} for binary, | |
78 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to | |
79 specify radix @var{radix}. Case is not significant for the letter | |
80 that specifies the radix. Thus, @samp{#b@var{integer}} reads | |
81 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads | |
82 @var{integer} in radix @var{radix}. Allowed values of @var{radix} run | |
83 from 2 to 36. For example: | |
84 | |
85 @example | |
86 #b101100 @result{} 44 | |
87 #o54 @result{} 44 | |
88 #x2c @result{} 44 | |
89 #24r1k @result{} 44 | |
90 @end example | |
91 | |
92 To understand how various functions work on integers, especially the | |
93 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to | |
94 view the numbers in their binary form. | |
95 | |
96 In 29-bit binary, the decimal integer 5 looks like this: | |
97 | |
98 @example | |
99 0 0000 0000 0000 0000 0000 0000 0101 | |
100 @end example | |
101 | |
102 @noindent | |
103 (We have inserted spaces between groups of 4 bits, and two spaces | |
104 between groups of 8 bits, to make the binary integer easier to read.) | |
105 | |
106 The integer @minus{}1 looks like this: | |
107 | |
108 @example | |
109 1 1111 1111 1111 1111 1111 1111 1111 | |
110 @end example | |
111 | |
112 @noindent | |
113 @cindex two's complement | |
114 @minus{}1 is represented as 29 ones. (This is called @dfn{two's | |
115 complement} notation.) | |
116 | |
117 The negative integer, @minus{}5, is creating by subtracting 4 from | |
118 @minus{}1. In binary, the decimal integer 4 is 100. Consequently, | |
119 @minus{}5 looks like this: | |
120 | |
121 @example | |
122 1 1111 1111 1111 1111 1111 1111 1011 | |
123 @end example | |
124 | |
125 In this implementation, the largest 29-bit binary integer value is | |
126 268,435,455 in decimal. In binary, it looks like this: | |
127 | |
128 @example | |
129 0 1111 1111 1111 1111 1111 1111 1111 | |
130 @end example | |
131 | |
132 Since the arithmetic functions do not check whether integers go | |
133 outside their range, when you add 1 to 268,435,455, the value is the | |
134 negative integer @minus{}268,435,456: | |
135 | |
136 @example | |
137 (+ 1 268435455) | |
138 @result{} -268435456 | |
139 @result{} 1 0000 0000 0000 0000 0000 0000 0000 | |
140 @end example | |
141 | |
142 Many of the functions described in this chapter accept markers for | |
143 arguments in place of numbers. (@xref{Markers}.) Since the actual | |
144 arguments to such functions may be either numbers or markers, we often | |
145 give these arguments the name @var{number-or-marker}. When the argument | |
146 value is a marker, its position value is used and its buffer is ignored. | |
147 | |
148 @defvar most-positive-fixnum | |
149 The value of this variable is the largest integer that Emacs Lisp | |
150 can handle. | |
151 @end defvar | |
152 | |
153 @defvar most-negative-fixnum | |
154 The value of this variable is the smallest integer that Emacs Lisp can | |
155 handle. It is negative. | |
156 @end defvar | |
157 | |
100026
ce90a3ecf576
(Integer Basics): Add an @xref to `max-char'.
Eli Zaretskii <eliz@gnu.org>
parents:
87649
diff
changeset
|
158 @xref{Character Codes, max-char}, for the maximum value of a valid |
ce90a3ecf576
(Integer Basics): Add an @xref to `max-char'.
Eli Zaretskii <eliz@gnu.org>
parents:
87649
diff
changeset
|
159 character codepoint. |
ce90a3ecf576
(Integer Basics): Add an @xref to `max-char'.
Eli Zaretskii <eliz@gnu.org>
parents:
87649
diff
changeset
|
160 |
84091 | 161 @node Float Basics |
162 @section Floating Point Basics | |
163 | |
164 Floating point numbers are useful for representing numbers that are | |
165 not integral. The precise range of floating point numbers is | |
166 machine-specific; it is the same as the range of the C data type | |
167 @code{double} on the machine you are using. | |
168 | |
169 The read-syntax for floating point numbers requires either a decimal | |
170 point (with at least one digit following), an exponent, or both. For | |
171 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and | |
172 @samp{.15e4} are five ways of writing a floating point number whose | |
173 value is 1500. They are all equivalent. You can also use a minus sign | |
174 to write negative floating point numbers, as in @samp{-1.0}. | |
175 | |
176 @cindex @acronym{IEEE} floating point | |
177 @cindex positive infinity | |
178 @cindex negative infinity | |
179 @cindex infinity | |
180 @cindex NaN | |
181 Most modern computers support the @acronym{IEEE} floating point standard, | |
182 which provides for positive infinity and negative infinity as floating point | |
183 values. It also provides for a class of values called NaN or | |
184 ``not-a-number''; numerical functions return such values in cases where | |
185 there is no correct answer. For example, @code{(/ 0.0 0.0)} returns a | |
186 NaN. For practical purposes, there's no significant difference between | |
187 different NaN values in Emacs Lisp, and there's no rule for precisely | |
188 which NaN value should be used in a particular case, so Emacs Lisp | |
189 doesn't try to distinguish them (but it does report the sign, if you | |
190 print it). Here are the read syntaxes for these special floating | |
191 point values: | |
192 | |
193 @table @asis | |
194 @item positive infinity | |
195 @samp{1.0e+INF} | |
196 @item negative infinity | |
197 @samp{-1.0e+INF} | |
198 @item Not-a-number | |
199 @samp{0.0e+NaN} or @samp{-0.0e+NaN}. | |
200 @end table | |
201 | |
202 To test whether a floating point value is a NaN, compare it with | |
203 itself using @code{=}. That returns @code{nil} for a NaN, and | |
204 @code{t} for any other floating point value. | |
205 | |
206 The value @code{-0.0} is distinguishable from ordinary zero in | |
207 @acronym{IEEE} floating point, but Emacs Lisp @code{equal} and | |
208 @code{=} consider them equal values. | |
209 | |
210 You can use @code{logb} to extract the binary exponent of a floating | |
211 point number (or estimate the logarithm of an integer): | |
212 | |
213 @defun logb number | |
214 This function returns the binary exponent of @var{number}. More | |
215 precisely, the value is the logarithm of @var{number} base 2, rounded | |
216 down to an integer. | |
217 | |
218 @example | |
219 (logb 10) | |
220 @result{} 3 | |
221 (logb 10.0e20) | |
222 @result{} 69 | |
223 @end example | |
224 @end defun | |
225 | |
226 @node Predicates on Numbers | |
227 @section Type Predicates for Numbers | |
228 @cindex predicates for numbers | |
229 | |
230 The functions in this section test for numbers, or for a specific | |
231 type of number. The functions @code{integerp} and @code{floatp} can | |
232 take any type of Lisp object as argument (they would not be of much | |
233 use otherwise), but the @code{zerop} predicate requires a number as | |
234 its argument. See also @code{integer-or-marker-p} and | |
235 @code{number-or-marker-p}, in @ref{Predicates on Markers}. | |
236 | |
237 @defun floatp object | |
238 This predicate tests whether its argument is a floating point | |
239 number and returns @code{t} if so, @code{nil} otherwise. | |
240 | |
241 @code{floatp} does not exist in Emacs versions 18 and earlier. | |
242 @end defun | |
243 | |
244 @defun integerp object | |
245 This predicate tests whether its argument is an integer, and returns | |
246 @code{t} if so, @code{nil} otherwise. | |
247 @end defun | |
248 | |
249 @defun numberp object | |
250 This predicate tests whether its argument is a number (either integer or | |
251 floating point), and returns @code{t} if so, @code{nil} otherwise. | |
252 @end defun | |
253 | |
254 @defun wholenump object | |
255 @cindex natural numbers | |
256 The @code{wholenump} predicate (whose name comes from the phrase | |
257 ``whole-number-p'') tests to see whether its argument is a nonnegative | |
258 integer, and returns @code{t} if so, @code{nil} otherwise. 0 is | |
259 considered non-negative. | |
260 | |
261 @findex natnump | |
262 @code{natnump} is an obsolete synonym for @code{wholenump}. | |
263 @end defun | |
264 | |
265 @defun zerop number | |
266 This predicate tests whether its argument is zero, and returns @code{t} | |
267 if so, @code{nil} otherwise. The argument must be a number. | |
268 | |
269 @code{(zerop x)} is equivalent to @code{(= x 0)}. | |
270 @end defun | |
271 | |
272 @node Comparison of Numbers | |
273 @section Comparison of Numbers | |
274 @cindex number comparison | |
275 @cindex comparing numbers | |
276 | |
277 To test numbers for numerical equality, you should normally use | |
278 @code{=}, not @code{eq}. There can be many distinct floating point | |
279 number objects with the same numeric value. If you use @code{eq} to | |
280 compare them, then you test whether two values are the same | |
281 @emph{object}. By contrast, @code{=} compares only the numeric values | |
282 of the objects. | |
283 | |
284 At present, each integer value has a unique Lisp object in Emacs Lisp. | |
285 Therefore, @code{eq} is equivalent to @code{=} where integers are | |
286 concerned. It is sometimes convenient to use @code{eq} for comparing an | |
287 unknown value with an integer, because @code{eq} does not report an | |
288 error if the unknown value is not a number---it accepts arguments of any | |
289 type. By contrast, @code{=} signals an error if the arguments are not | |
290 numbers or markers. However, it is a good idea to use @code{=} if you | |
291 can, even for comparing integers, just in case we change the | |
292 representation of integers in a future Emacs version. | |
293 | |
294 Sometimes it is useful to compare numbers with @code{equal}; it | |
295 treats two numbers as equal if they have the same data type (both | |
296 integers, or both floating point) and the same value. By contrast, | |
297 @code{=} can treat an integer and a floating point number as equal. | |
298 @xref{Equality Predicates}. | |
299 | |
300 There is another wrinkle: because floating point arithmetic is not | |
301 exact, it is often a bad idea to check for equality of two floating | |
302 point values. Usually it is better to test for approximate equality. | |
303 Here's a function to do this: | |
304 | |
305 @example | |
306 (defvar fuzz-factor 1.0e-6) | |
307 (defun approx-equal (x y) | |
308 (or (and (= x 0) (= y 0)) | |
309 (< (/ (abs (- x y)) | |
310 (max (abs x) (abs y))) | |
311 fuzz-factor))) | |
312 @end example | |
313 | |
314 @cindex CL note---integers vrs @code{eq} | |
315 @quotation | |
316 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires | |
317 @code{=} because Common Lisp implements multi-word integers, and two | |
318 distinct integer objects can have the same numeric value. Emacs Lisp | |
319 can have just one integer object for any given value because it has a | |
320 limited range of integer values. | |
321 @end quotation | |
322 | |
323 @defun = number-or-marker1 number-or-marker2 | |
324 This function tests whether its arguments are numerically equal, and | |
325 returns @code{t} if so, @code{nil} otherwise. | |
326 @end defun | |
327 | |
328 @defun eql value1 value2 | |
329 This function acts like @code{eq} except when both arguments are | |
330 numbers. It compares numbers by type and numeric value, so that | |
331 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and | |
332 @code{(eql 1 1)} both return @code{t}. | |
333 @end defun | |
334 | |
335 @defun /= number-or-marker1 number-or-marker2 | |
336 This function tests whether its arguments are numerically equal, and | |
337 returns @code{t} if they are not, and @code{nil} if they are. | |
338 @end defun | |
339 | |
340 @defun < number-or-marker1 number-or-marker2 | |
341 This function tests whether its first argument is strictly less than | |
342 its second argument. It returns @code{t} if so, @code{nil} otherwise. | |
343 @end defun | |
344 | |
345 @defun <= number-or-marker1 number-or-marker2 | |
346 This function tests whether its first argument is less than or equal | |
347 to its second argument. It returns @code{t} if so, @code{nil} | |
348 otherwise. | |
349 @end defun | |
350 | |
351 @defun > number-or-marker1 number-or-marker2 | |
352 This function tests whether its first argument is strictly greater | |
353 than its second argument. It returns @code{t} if so, @code{nil} | |
354 otherwise. | |
355 @end defun | |
356 | |
357 @defun >= number-or-marker1 number-or-marker2 | |
358 This function tests whether its first argument is greater than or | |
359 equal to its second argument. It returns @code{t} if so, @code{nil} | |
360 otherwise. | |
361 @end defun | |
362 | |
363 @defun max number-or-marker &rest numbers-or-markers | |
364 This function returns the largest of its arguments. | |
365 If any of the arguments is floating-point, the value is returned | |
366 as floating point, even if it was given as an integer. | |
367 | |
368 @example | |
369 (max 20) | |
370 @result{} 20 | |
371 (max 1 2.5) | |
372 @result{} 2.5 | |
373 (max 1 3 2.5) | |
374 @result{} 3.0 | |
375 @end example | |
376 @end defun | |
377 | |
378 @defun min number-or-marker &rest numbers-or-markers | |
379 This function returns the smallest of its arguments. | |
380 If any of the arguments is floating-point, the value is returned | |
381 as floating point, even if it was given as an integer. | |
382 | |
383 @example | |
384 (min -4 1) | |
385 @result{} -4 | |
386 @end example | |
387 @end defun | |
388 | |
389 @defun abs number | |
390 This function returns the absolute value of @var{number}. | |
391 @end defun | |
392 | |
393 @node Numeric Conversions | |
394 @section Numeric Conversions | |
395 @cindex rounding in conversions | |
396 @cindex number conversions | |
397 @cindex converting numbers | |
398 | |
399 To convert an integer to floating point, use the function @code{float}. | |
400 | |
401 @defun float number | |
402 This returns @var{number} converted to floating point. | |
403 If @var{number} is already a floating point number, @code{float} returns | |
404 it unchanged. | |
405 @end defun | |
406 | |
407 There are four functions to convert floating point numbers to integers; | |
408 they differ in how they round. All accept an argument @var{number} | |
409 and an optional argument @var{divisor}. Both arguments may be | |
410 integers or floating point numbers. @var{divisor} may also be | |
411 @code{nil}. If @var{divisor} is @code{nil} or omitted, these | |
412 functions convert @var{number} to an integer, or return it unchanged | |
413 if it already is an integer. If @var{divisor} is non-@code{nil}, they | |
414 divide @var{number} by @var{divisor} and convert the result to an | |
415 integer. An @code{arith-error} results if @var{divisor} is 0. | |
416 | |
417 @defun truncate number &optional divisor | |
418 This returns @var{number}, converted to an integer by rounding towards | |
419 zero. | |
420 | |
421 @example | |
422 (truncate 1.2) | |
423 @result{} 1 | |
424 (truncate 1.7) | |
425 @result{} 1 | |
426 (truncate -1.2) | |
427 @result{} -1 | |
428 (truncate -1.7) | |
429 @result{} -1 | |
430 @end example | |
431 @end defun | |
432 | |
433 @defun floor number &optional divisor | |
434 This returns @var{number}, converted to an integer by rounding downward | |
435 (towards negative infinity). | |
436 | |
437 If @var{divisor} is specified, this uses the kind of division | |
438 operation that corresponds to @code{mod}, rounding downward. | |
439 | |
440 @example | |
441 (floor 1.2) | |
442 @result{} 1 | |
443 (floor 1.7) | |
444 @result{} 1 | |
445 (floor -1.2) | |
446 @result{} -2 | |
447 (floor -1.7) | |
448 @result{} -2 | |
449 (floor 5.99 3) | |
450 @result{} 1 | |
451 @end example | |
452 @end defun | |
453 | |
454 @defun ceiling number &optional divisor | |
455 This returns @var{number}, converted to an integer by rounding upward | |
456 (towards positive infinity). | |
457 | |
458 @example | |
459 (ceiling 1.2) | |
460 @result{} 2 | |
461 (ceiling 1.7) | |
462 @result{} 2 | |
463 (ceiling -1.2) | |
464 @result{} -1 | |
465 (ceiling -1.7) | |
466 @result{} -1 | |
467 @end example | |
468 @end defun | |
469 | |
470 @defun round number &optional divisor | |
471 This returns @var{number}, converted to an integer by rounding towards the | |
472 nearest integer. Rounding a value equidistant between two integers | |
473 may choose the integer closer to zero, or it may prefer an even integer, | |
474 depending on your machine. | |
475 | |
476 @example | |
477 (round 1.2) | |
478 @result{} 1 | |
479 (round 1.7) | |
480 @result{} 2 | |
481 (round -1.2) | |
482 @result{} -1 | |
483 (round -1.7) | |
484 @result{} -2 | |
485 @end example | |
486 @end defun | |
487 | |
488 @node Arithmetic Operations | |
489 @section Arithmetic Operations | |
490 @cindex arithmetic operations | |
491 | |
492 Emacs Lisp provides the traditional four arithmetic operations: | |
493 addition, subtraction, multiplication, and division. Remainder and modulus | |
494 functions supplement the division functions. The functions to | |
495 add or subtract 1 are provided because they are traditional in Lisp and | |
496 commonly used. | |
497 | |
498 All of these functions except @code{%} return a floating point value | |
499 if any argument is floating. | |
500 | |
501 It is important to note that in Emacs Lisp, arithmetic functions | |
502 do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to | |
503 @minus{}268435456, depending on your hardware. | |
504 | |
505 @defun 1+ number-or-marker | |
506 This function returns @var{number-or-marker} plus 1. | |
507 For example, | |
508 | |
509 @example | |
510 (setq foo 4) | |
511 @result{} 4 | |
512 (1+ foo) | |
513 @result{} 5 | |
514 @end example | |
515 | |
516 This function is not analogous to the C operator @code{++}---it does not | |
517 increment a variable. It just computes a sum. Thus, if we continue, | |
518 | |
519 @example | |
520 foo | |
521 @result{} 4 | |
522 @end example | |
523 | |
524 If you want to increment the variable, you must use @code{setq}, | |
525 like this: | |
526 | |
527 @example | |
528 (setq foo (1+ foo)) | |
529 @result{} 5 | |
530 @end example | |
531 @end defun | |
532 | |
533 @defun 1- number-or-marker | |
534 This function returns @var{number-or-marker} minus 1. | |
535 @end defun | |
536 | |
537 @defun + &rest numbers-or-markers | |
538 This function adds its arguments together. When given no arguments, | |
539 @code{+} returns 0. | |
540 | |
541 @example | |
542 (+) | |
543 @result{} 0 | |
544 (+ 1) | |
545 @result{} 1 | |
546 (+ 1 2 3 4) | |
547 @result{} 10 | |
548 @end example | |
549 @end defun | |
550 | |
551 @defun - &optional number-or-marker &rest more-numbers-or-markers | |
552 The @code{-} function serves two purposes: negation and subtraction. | |
553 When @code{-} has a single argument, the value is the negative of the | |
554 argument. When there are multiple arguments, @code{-} subtracts each of | |
555 the @var{more-numbers-or-markers} from @var{number-or-marker}, | |
556 cumulatively. If there are no arguments, the result is 0. | |
557 | |
558 @example | |
559 (- 10 1 2 3 4) | |
560 @result{} 0 | |
561 (- 10) | |
562 @result{} -10 | |
563 (-) | |
564 @result{} 0 | |
565 @end example | |
566 @end defun | |
567 | |
568 @defun * &rest numbers-or-markers | |
569 This function multiplies its arguments together, and returns the | |
570 product. When given no arguments, @code{*} returns 1. | |
571 | |
572 @example | |
573 (*) | |
574 @result{} 1 | |
575 (* 1) | |
576 @result{} 1 | |
577 (* 1 2 3 4) | |
578 @result{} 24 | |
579 @end example | |
580 @end defun | |
581 | |
582 @defun / dividend divisor &rest divisors | |
583 This function divides @var{dividend} by @var{divisor} and returns the | |
584 quotient. If there are additional arguments @var{divisors}, then it | |
585 divides @var{dividend} by each divisor in turn. Each argument may be a | |
586 number or a marker. | |
587 | |
588 If all the arguments are integers, then the result is an integer too. | |
589 This means the result has to be rounded. On most machines, the result | |
590 is rounded towards zero after each division, but some machines may round | |
591 differently with negative arguments. This is because the Lisp function | |
592 @code{/} is implemented using the C division operator, which also | |
593 permits machine-dependent rounding. As a practical matter, all known | |
594 machines round in the standard fashion. | |
595 | |
596 @cindex @code{arith-error} in division | |
597 If you divide an integer by 0, an @code{arith-error} error is signaled. | |
598 (@xref{Errors}.) Floating point division by zero returns either | |
599 infinity or a NaN if your machine supports @acronym{IEEE} floating point; | |
600 otherwise, it signals an @code{arith-error} error. | |
601 | |
602 @example | |
603 @group | |
604 (/ 6 2) | |
605 @result{} 3 | |
606 @end group | |
607 (/ 5 2) | |
608 @result{} 2 | |
609 (/ 5.0 2) | |
610 @result{} 2.5 | |
611 (/ 5 2.0) | |
612 @result{} 2.5 | |
613 (/ 5.0 2.0) | |
614 @result{} 2.5 | |
615 (/ 25 3 2) | |
616 @result{} 4 | |
617 @group | |
618 (/ -17 6) | |
619 @result{} -2 @r{(could in theory be @minus{}3 on some machines)} | |
620 @end group | |
621 @end example | |
622 @end defun | |
623 | |
624 @defun % dividend divisor | |
625 @cindex remainder | |
626 This function returns the integer remainder after division of @var{dividend} | |
627 by @var{divisor}. The arguments must be integers or markers. | |
628 | |
629 For negative arguments, the remainder is in principle machine-dependent | |
630 since the quotient is; but in practice, all known machines behave alike. | |
631 | |
632 An @code{arith-error} results if @var{divisor} is 0. | |
633 | |
634 @example | |
635 (% 9 4) | |
636 @result{} 1 | |
637 (% -9 4) | |
638 @result{} -1 | |
639 (% 9 -4) | |
640 @result{} 1 | |
641 (% -9 -4) | |
642 @result{} -1 | |
643 @end example | |
644 | |
645 For any two integers @var{dividend} and @var{divisor}, | |
646 | |
647 @example | |
648 @group | |
649 (+ (% @var{dividend} @var{divisor}) | |
650 (* (/ @var{dividend} @var{divisor}) @var{divisor})) | |
651 @end group | |
652 @end example | |
653 | |
654 @noindent | |
655 always equals @var{dividend}. | |
656 @end defun | |
657 | |
658 @defun mod dividend divisor | |
659 @cindex modulus | |
660 This function returns the value of @var{dividend} modulo @var{divisor}; | |
661 in other words, the remainder after division of @var{dividend} | |
662 by @var{divisor}, but with the same sign as @var{divisor}. | |
663 The arguments must be numbers or markers. | |
664 | |
665 Unlike @code{%}, @code{mod} returns a well-defined result for negative | |
666 arguments. It also permits floating point arguments; it rounds the | |
667 quotient downward (towards minus infinity) to an integer, and uses that | |
668 quotient to compute the remainder. | |
669 | |
670 An @code{arith-error} results if @var{divisor} is 0. | |
671 | |
672 @example | |
673 @group | |
674 (mod 9 4) | |
675 @result{} 1 | |
676 @end group | |
677 @group | |
678 (mod -9 4) | |
679 @result{} 3 | |
680 @end group | |
681 @group | |
682 (mod 9 -4) | |
683 @result{} -3 | |
684 @end group | |
685 @group | |
686 (mod -9 -4) | |
687 @result{} -1 | |
688 @end group | |
689 @group | |
690 (mod 5.5 2.5) | |
691 @result{} .5 | |
692 @end group | |
693 @end example | |
694 | |
695 For any two numbers @var{dividend} and @var{divisor}, | |
696 | |
697 @example | |
698 @group | |
699 (+ (mod @var{dividend} @var{divisor}) | |
700 (* (floor @var{dividend} @var{divisor}) @var{divisor})) | |
701 @end group | |
702 @end example | |
703 | |
704 @noindent | |
705 always equals @var{dividend}, subject to rounding error if either | |
706 argument is floating point. For @code{floor}, see @ref{Numeric | |
707 Conversions}. | |
708 @end defun | |
709 | |
710 @node Rounding Operations | |
711 @section Rounding Operations | |
712 @cindex rounding without conversion | |
713 | |
714 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and | |
715 @code{ftruncate} take a floating point argument and return a floating | |
716 point result whose value is a nearby integer. @code{ffloor} returns the | |
717 nearest integer below; @code{fceiling}, the nearest integer above; | |
718 @code{ftruncate}, the nearest integer in the direction towards zero; | |
719 @code{fround}, the nearest integer. | |
720 | |
721 @defun ffloor float | |
722 This function rounds @var{float} to the next lower integral value, and | |
723 returns that value as a floating point number. | |
724 @end defun | |
725 | |
726 @defun fceiling float | |
727 This function rounds @var{float} to the next higher integral value, and | |
728 returns that value as a floating point number. | |
729 @end defun | |
730 | |
731 @defun ftruncate float | |
732 This function rounds @var{float} towards zero to an integral value, and | |
733 returns that value as a floating point number. | |
734 @end defun | |
735 | |
736 @defun fround float | |
737 This function rounds @var{float} to the nearest integral value, | |
738 and returns that value as a floating point number. | |
739 @end defun | |
740 | |
741 @node Bitwise Operations | |
742 @section Bitwise Operations on Integers | |
743 @cindex bitwise arithmetic | |
744 @cindex logical arithmetic | |
745 | |
746 In a computer, an integer is represented as a binary number, a | |
747 sequence of @dfn{bits} (digits which are either zero or one). A bitwise | |
748 operation acts on the individual bits of such a sequence. For example, | |
749 @dfn{shifting} moves the whole sequence left or right one or more places, | |
750 reproducing the same pattern ``moved over.'' | |
751 | |
752 The bitwise operations in Emacs Lisp apply only to integers. | |
753 | |
754 @defun lsh integer1 count | |
755 @cindex logical shift | |
756 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the | |
757 bits in @var{integer1} to the left @var{count} places, or to the right | |
758 if @var{count} is negative, bringing zeros into the vacated bits. If | |
759 @var{count} is negative, @code{lsh} shifts zeros into the leftmost | |
760 (most-significant) bit, producing a positive result even if | |
761 @var{integer1} is negative. Contrast this with @code{ash}, below. | |
762 | |
763 Here are two examples of @code{lsh}, shifting a pattern of bits one | |
764 place to the left. We show only the low-order eight bits of the binary | |
765 pattern; the rest are all zero. | |
766 | |
767 @example | |
768 @group | |
769 (lsh 5 1) | |
770 @result{} 10 | |
771 ;; @r{Decimal 5 becomes decimal 10.} | |
772 00000101 @result{} 00001010 | |
773 | |
774 (lsh 7 1) | |
775 @result{} 14 | |
776 ;; @r{Decimal 7 becomes decimal 14.} | |
777 00000111 @result{} 00001110 | |
778 @end group | |
779 @end example | |
780 | |
781 @noindent | |
782 As the examples illustrate, shifting the pattern of bits one place to | |
783 the left produces a number that is twice the value of the previous | |
784 number. | |
785 | |
786 Shifting a pattern of bits two places to the left produces results | |
787 like this (with 8-bit binary numbers): | |
788 | |
789 @example | |
790 @group | |
791 (lsh 3 2) | |
792 @result{} 12 | |
793 ;; @r{Decimal 3 becomes decimal 12.} | |
794 00000011 @result{} 00001100 | |
795 @end group | |
796 @end example | |
797 | |
798 On the other hand, shifting one place to the right looks like this: | |
799 | |
800 @example | |
801 @group | |
802 (lsh 6 -1) | |
803 @result{} 3 | |
804 ;; @r{Decimal 6 becomes decimal 3.} | |
805 00000110 @result{} 00000011 | |
806 @end group | |
807 | |
808 @group | |
809 (lsh 5 -1) | |
810 @result{} 2 | |
811 ;; @r{Decimal 5 becomes decimal 2.} | |
812 00000101 @result{} 00000010 | |
813 @end group | |
814 @end example | |
815 | |
816 @noindent | |
817 As the example illustrates, shifting one place to the right divides the | |
818 value of a positive integer by two, rounding downward. | |
819 | |
820 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does | |
821 not check for overflow, so shifting left can discard significant bits | |
822 and change the sign of the number. For example, left shifting | |
823 268,435,455 produces @minus{}2 on a 29-bit machine: | |
824 | |
825 @example | |
826 (lsh 268435455 1) ; @r{left shift} | |
827 @result{} -2 | |
828 @end example | |
829 | |
830 In binary, in the 29-bit implementation, the argument looks like this: | |
831 | |
832 @example | |
833 @group | |
834 ;; @r{Decimal 268,435,455} | |
835 0 1111 1111 1111 1111 1111 1111 1111 | |
836 @end group | |
837 @end example | |
838 | |
839 @noindent | |
840 which becomes the following when left shifted: | |
841 | |
842 @example | |
843 @group | |
844 ;; @r{Decimal @minus{}2} | |
845 1 1111 1111 1111 1111 1111 1111 1110 | |
846 @end group | |
847 @end example | |
848 @end defun | |
849 | |
850 @defun ash integer1 count | |
851 @cindex arithmetic shift | |
852 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1} | |
853 to the left @var{count} places, or to the right if @var{count} | |
854 is negative. | |
855 | |
856 @code{ash} gives the same results as @code{lsh} except when | |
857 @var{integer1} and @var{count} are both negative. In that case, | |
858 @code{ash} puts ones in the empty bit positions on the left, while | |
859 @code{lsh} puts zeros in those bit positions. | |
860 | |
861 Thus, with @code{ash}, shifting the pattern of bits one place to the right | |
862 looks like this: | |
863 | |
864 @example | |
865 @group | |
866 (ash -6 -1) @result{} -3 | |
867 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.} | |
868 1 1111 1111 1111 1111 1111 1111 1010 | |
869 @result{} | |
870 1 1111 1111 1111 1111 1111 1111 1101 | |
871 @end group | |
872 @end example | |
873 | |
874 In contrast, shifting the pattern of bits one place to the right with | |
875 @code{lsh} looks like this: | |
876 | |
877 @example | |
878 @group | |
879 (lsh -6 -1) @result{} 268435453 | |
880 ;; @r{Decimal @minus{}6 becomes decimal 268,435,453.} | |
881 1 1111 1111 1111 1111 1111 1111 1010 | |
882 @result{} | |
883 0 1111 1111 1111 1111 1111 1111 1101 | |
884 @end group | |
885 @end example | |
886 | |
887 Here are other examples: | |
888 | |
889 @c !!! Check if lined up in smallbook format! XDVI shows problem | |
890 @c with smallbook but not with regular book! --rjc 16mar92 | |
891 @smallexample | |
892 @group | |
893 ; @r{ 29-bit binary values} | |
894 | |
895 (lsh 5 2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
896 @result{} 20 ; = @r{0 0000 0000 0000 0000 0000 0001 0100} | |
897 @end group | |
898 @group | |
899 (ash 5 2) | |
900 @result{} 20 | |
901 (lsh -5 2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011} | |
902 @result{} -20 ; = @r{1 1111 1111 1111 1111 1111 1110 1100} | |
903 (ash -5 2) | |
904 @result{} -20 | |
905 @end group | |
906 @group | |
907 (lsh 5 -2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
908 @result{} 1 ; = @r{0 0000 0000 0000 0000 0000 0000 0001} | |
909 @end group | |
910 @group | |
911 (ash 5 -2) | |
912 @result{} 1 | |
913 @end group | |
914 @group | |
915 (lsh -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011} | |
916 @result{} 134217726 ; = @r{0 0111 1111 1111 1111 1111 1111 1110} | |
917 @end group | |
918 @group | |
919 (ash -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011} | |
920 @result{} -2 ; = @r{1 1111 1111 1111 1111 1111 1111 1110} | |
921 @end group | |
922 @end smallexample | |
923 @end defun | |
924 | |
925 @defun logand &rest ints-or-markers | |
926 This function returns the ``logical and'' of the arguments: the | |
927 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is | |
928 set in all the arguments. (``Set'' means that the value of the bit is 1 | |
929 rather than 0.) | |
930 | |
931 For example, using 4-bit binary numbers, the ``logical and'' of 13 and | |
932 12 is 12: 1101 combined with 1100 produces 1100. | |
933 In both the binary numbers, the leftmost two bits are set (i.e., they | |
934 are 1's), so the leftmost two bits of the returned value are set. | |
935 However, for the rightmost two bits, each is zero in at least one of | |
936 the arguments, so the rightmost two bits of the returned value are 0's. | |
937 | |
938 @noindent | |
939 Therefore, | |
940 | |
941 @example | |
942 @group | |
943 (logand 13 12) | |
944 @result{} 12 | |
945 @end group | |
946 @end example | |
947 | |
948 If @code{logand} is not passed any argument, it returns a value of | |
949 @minus{}1. This number is an identity element for @code{logand} | |
950 because its binary representation consists entirely of ones. If | |
951 @code{logand} is passed just one argument, it returns that argument. | |
952 | |
953 @smallexample | |
954 @group | |
955 ; @r{ 29-bit binary values} | |
956 | |
957 (logand 14 13) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110} | |
958 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101} | |
959 @result{} 12 ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} | |
960 @end group | |
961 | |
962 @group | |
963 (logand 14 13 4) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110} | |
964 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101} | |
965 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100} | |
966 @result{} 4 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100} | |
967 @end group | |
968 | |
969 @group | |
970 (logand) | |
971 @result{} -1 ; -1 = @r{1 1111 1111 1111 1111 1111 1111 1111} | |
972 @end group | |
973 @end smallexample | |
974 @end defun | |
975 | |
976 @defun logior &rest ints-or-markers | |
977 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit | |
978 is set in the result if, and only if, the @var{n}th bit is set in at least | |
979 one of the arguments. If there are no arguments, the result is zero, | |
980 which is an identity element for this operation. If @code{logior} is | |
981 passed just one argument, it returns that argument. | |
982 | |
983 @smallexample | |
984 @group | |
985 ; @r{ 29-bit binary values} | |
986 | |
987 (logior 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} | |
988 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
989 @result{} 13 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101} | |
990 @end group | |
991 | |
992 @group | |
993 (logior 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} | |
994 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
995 ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111} | |
996 @result{} 15 ; 15 = @r{0 0000 0000 0000 0000 0000 0000 1111} | |
997 @end group | |
998 @end smallexample | |
999 @end defun | |
1000 | |
1001 @defun logxor &rest ints-or-markers | |
1002 This function returns the ``exclusive or'' of its arguments: the | |
1003 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is | |
1004 set in an odd number of the arguments. If there are no arguments, the | |
1005 result is 0, which is an identity element for this operation. If | |
1006 @code{logxor} is passed just one argument, it returns that argument. | |
1007 | |
1008 @smallexample | |
1009 @group | |
1010 ; @r{ 29-bit binary values} | |
1011 | |
1012 (logxor 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} | |
1013 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
1014 @result{} 9 ; 9 = @r{0 0000 0000 0000 0000 0000 0000 1001} | |
1015 @end group | |
1016 | |
1017 @group | |
1018 (logxor 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} | |
1019 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
1020 ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111} | |
1021 @result{} 14 ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110} | |
1022 @end group | |
1023 @end smallexample | |
1024 @end defun | |
1025 | |
1026 @defun lognot integer | |
1027 This function returns the logical complement of its argument: the @var{n}th | |
1028 bit is one in the result if, and only if, the @var{n}th bit is zero in | |
1029 @var{integer}, and vice-versa. | |
1030 | |
1031 @example | |
1032 (lognot 5) | |
1033 @result{} -6 | |
1034 ;; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
1035 ;; @r{becomes} | |
1036 ;; -6 = @r{1 1111 1111 1111 1111 1111 1111 1010} | |
1037 @end example | |
1038 @end defun | |
1039 | |
1040 @node Math Functions | |
1041 @section Standard Mathematical Functions | |
1042 @cindex transcendental functions | |
1043 @cindex mathematical functions | |
1044 @cindex floating-point functions | |
1045 | |
1046 These mathematical functions allow integers as well as floating point | |
1047 numbers as arguments. | |
1048 | |
1049 @defun sin arg | |
1050 @defunx cos arg | |
1051 @defunx tan arg | |
1052 These are the ordinary trigonometric functions, with argument measured | |
1053 in radians. | |
1054 @end defun | |
1055 | |
1056 @defun asin arg | |
1057 The value of @code{(asin @var{arg})} is a number between | |
1058 @ifnottex | |
1059 @minus{}pi/2 | |
1060 @end ifnottex | |
1061 @tex | |
1062 @math{-\pi/2} | |
1063 @end tex | |
1064 and | |
1065 @ifnottex | |
1066 pi/2 | |
1067 @end ifnottex | |
1068 @tex | |
1069 @math{\pi/2} | |
1070 @end tex | |
1071 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of | |
1072 range (outside [@minus{}1, 1]), it signals a @code{domain-error} error. | |
1073 @end defun | |
1074 | |
1075 @defun acos arg | |
1076 The value of @code{(acos @var{arg})} is a number between 0 and | |
1077 @ifnottex | |
1078 pi | |
1079 @end ifnottex | |
1080 @tex | |
1081 @math{\pi} | |
1082 @end tex | |
1083 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out | |
1084 of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error. | |
1085 @end defun | |
1086 | |
1087 @defun atan y &optional x | |
1088 The value of @code{(atan @var{y})} is a number between | |
1089 @ifnottex | |
1090 @minus{}pi/2 | |
1091 @end ifnottex | |
1092 @tex | |
1093 @math{-\pi/2} | |
1094 @end tex | |
1095 and | |
1096 @ifnottex | |
1097 pi/2 | |
1098 @end ifnottex | |
1099 @tex | |
1100 @math{\pi/2} | |
1101 @end tex | |
1102 (exclusive) whose tangent is @var{y}. If the optional second | |
1103 argument @var{x} is given, the value of @code{(atan y x)} is the | |
1104 angle in radians between the vector @code{[@var{x}, @var{y}]} and the | |
1105 @code{X} axis. | |
1106 @end defun | |
1107 | |
1108 @defun exp arg | |
1109 This is the exponential function; it returns | |
1110 @tex | |
1111 @math{e} | |
1112 @end tex | |
1113 @ifnottex | |
1114 @i{e} | |
1115 @end ifnottex | |
1116 to the power @var{arg}. | |
1117 @tex | |
1118 @math{e} | |
1119 @end tex | |
1120 @ifnottex | |
1121 @i{e} | |
1122 @end ifnottex | |
1123 is a fundamental mathematical constant also called the base of natural | |
1124 logarithms. | |
1125 @end defun | |
1126 | |
1127 @defun log arg &optional base | |
1128 This function returns the logarithm of @var{arg}, with base @var{base}. | |
1129 If you don't specify @var{base}, the base | |
1130 @tex | |
1131 @math{e} | |
1132 @end tex | |
1133 @ifnottex | |
1134 @i{e} | |
1135 @end ifnottex | |
1136 is used. If @var{arg} is negative, it signals a @code{domain-error} | |
1137 error. | |
1138 @end defun | |
1139 | |
1140 @ignore | |
1141 @defun expm1 arg | |
1142 This function returns @code{(1- (exp @var{arg}))}, but it is more | |
1143 accurate than that when @var{arg} is negative and @code{(exp @var{arg})} | |
1144 is close to 1. | |
1145 @end defun | |
1146 | |
1147 @defun log1p arg | |
1148 This function returns @code{(log (1+ @var{arg}))}, but it is more | |
1149 accurate than that when @var{arg} is so small that adding 1 to it would | |
1150 lose accuracy. | |
1151 @end defun | |
1152 @end ignore | |
1153 | |
1154 @defun log10 arg | |
1155 This function returns the logarithm of @var{arg}, with base 10. If | |
1156 @var{arg} is negative, it signals a @code{domain-error} error. | |
1157 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least | |
1158 approximately. | |
1159 @end defun | |
1160 | |
1161 @defun expt x y | |
1162 This function returns @var{x} raised to power @var{y}. If both | |
1163 arguments are integers and @var{y} is positive, the result is an | |
1164 integer; in this case, overflow causes truncation, so watch out. | |
1165 @end defun | |
1166 | |
1167 @defun sqrt arg | |
1168 This returns the square root of @var{arg}. If @var{arg} is negative, | |
1169 it signals a @code{domain-error} error. | |
1170 @end defun | |
1171 | |
1172 @node Random Numbers | |
1173 @section Random Numbers | |
1174 @cindex random numbers | |
1175 | |
1176 A deterministic computer program cannot generate true random numbers. | |
1177 For most purposes, @dfn{pseudo-random numbers} suffice. A series of | |
1178 pseudo-random numbers is generated in a deterministic fashion. The | |
1179 numbers are not truly random, but they have certain properties that | |
1180 mimic a random series. For example, all possible values occur equally | |
1181 often in a pseudo-random series. | |
1182 | |
1183 In Emacs, pseudo-random numbers are generated from a ``seed'' number. | |
1184 Starting from any given seed, the @code{random} function always | |
1185 generates the same sequence of numbers. Emacs always starts with the | |
1186 same seed value, so the sequence of values of @code{random} is actually | |
1187 the same in each Emacs run! For example, in one operating system, the | |
1188 first call to @code{(random)} after you start Emacs always returns | |
1189 @minus{}1457731, and the second one always returns @minus{}7692030. This | |
1190 repeatability is helpful for debugging. | |
1191 | |
1192 If you want random numbers that don't always come out the same, execute | |
1193 @code{(random t)}. This chooses a new seed based on the current time of | |
1194 day and on Emacs's process @acronym{ID} number. | |
1195 | |
1196 @defun random &optional limit | |
1197 This function returns a pseudo-random integer. Repeated calls return a | |
1198 series of pseudo-random integers. | |
1199 | |
1200 If @var{limit} is a positive integer, the value is chosen to be | |
1201 nonnegative and less than @var{limit}. | |
1202 | |
1203 If @var{limit} is @code{t}, it means to choose a new seed based on the | |
1204 current time of day and on Emacs's process @acronym{ID} number. | |
1205 @c "Emacs'" is incorrect usage! | |
1206 | |
1207 On some machines, any integer representable in Lisp may be the result | |
1208 of @code{random}. On other machines, the result can never be larger | |
1209 than a certain maximum or less than a certain (negative) minimum. | |
1210 @end defun | |
1211 | |
1212 @ignore | |
1213 arch-tag: 574e8dd2-d513-4616-9844-c9a27869782e | |
1214 @end ignore |