6510
|
1 @c -*-texinfo-*-
|
|
2 @c This is part of the GNU Emacs Lisp Reference Manual.
|
|
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
|
|
4 @c See the file elisp.texi for copying conditions.
|
|
5 @setfilename ../info/numbers
|
|
6 @node Numbers, Strings and Characters, Types of Lisp Object, Top
|
|
7 @chapter Numbers
|
|
8 @cindex integers
|
|
9 @cindex numbers
|
|
10
|
|
11 GNU Emacs supports two numeric data types: @dfn{integers} and
|
|
12 @dfn{floating point numbers}. Integers are whole numbers such as
|
|
13 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point
|
|
14 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
|
|
15 2.71828. They can also be expressed in an exponential notation as well:
|
|
16 thus, 1.5e2 equals 150; in this example, @samp{e2} stands for ten to the
|
|
17 second power, and is multiplied by 1.5. Floating point values are not
|
|
18 exact; they have a fixed, limited amount of precision.
|
|
19
|
|
20 Support for floating point numbers is a new feature in Emacs 19, and it
|
|
21 is controlled by a separate compilation option, so you may encounter a site
|
|
22 where Emacs does not support them.
|
|
23
|
|
24 @menu
|
|
25 * Integer Basics:: Representation and range of integers.
|
|
26 * Float Basics:: Representation and range of floating point.
|
|
27 * Predicates on Numbers:: Testing for numbers.
|
|
28 * Comparison of Numbers:: Equality and inequality predicates.
|
|
29 * Numeric Conversions:: Converting float to integer and vice versa.
|
|
30 * Arithmetic Operations:: How to add, subtract, multiply and divide.
|
|
31 * Rounding Operations:: Explicitly rounding floating point numbers.
|
|
32 * Bitwise Operations:: Logical and, or, not, shifting.
|
|
33 * Transcendental Functions:: Trig, exponential and logarithmic functions.
|
|
34 * Random Numbers:: Obtaining random integers, predictable or not.
|
|
35 @end menu
|
|
36
|
|
37 @node Integer Basics
|
|
38 @comment node-name, next, previous, up
|
|
39 @section Integer Basics
|
|
40
|
|
41 The range of values for an integer depends on the machine. The
|
|
42 range is @minus{}8388608 to 8388607 (24 bits; i.e.,
|
|
43 @ifinfo
|
|
44 -2**23
|
|
45 @end ifinfo
|
|
46 @tex
|
|
47 $-2^{23}$
|
|
48 @end tex
|
|
49 to
|
|
50 @ifinfo
|
|
51 2**23 - 1)
|
|
52 @end ifinfo
|
|
53 @tex
|
|
54 $2^{23}-1$)
|
|
55 @end tex
|
|
56 on most machines, but on others it is @minus{}16777216 to 16777215 (25
|
|
57 bits), or @minus{}33554432 to 33554431 (26 bits). Many examples in this
|
|
58 chapter assume an integer has 24 bits.
|
|
59 @cindex overflow
|
|
60
|
|
61 The Lisp reader reads an integer as a sequence of digits with optional
|
|
62 initial sign and optional final period.
|
|
63
|
|
64 @example
|
|
65 1 ; @r{The integer 1.}
|
|
66 1. ; @r{The integer 1.}
|
|
67 +1 ; @r{Also the integer 1.}
|
|
68 -1 ; @r{The integer @minus{}1.}
|
|
69 16777217 ; @r{Also the integer 1, due to overflow.}
|
|
70 0 ; @r{The integer 0.}
|
|
71 -0 ; @r{The integer 0.}
|
|
72 @end example
|
|
73
|
|
74 To understand how various functions work on integers, especially the
|
|
75 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
|
|
76 view the numbers in their binary form.
|
|
77
|
|
78 In 24 bit binary, the decimal integer 5 looks like this:
|
|
79
|
|
80 @example
|
|
81 0000 0000 0000 0000 0000 0101
|
|
82 @end example
|
|
83
|
|
84 @noindent
|
|
85 (We have inserted spaces between groups of 4 bits, and two spaces
|
|
86 between groups of 8 bits, to make the binary integer easier to read.)
|
|
87
|
|
88 The integer @minus{}1 looks like this:
|
|
89
|
|
90 @example
|
|
91 1111 1111 1111 1111 1111 1111
|
|
92 @end example
|
|
93
|
|
94 @noindent
|
|
95 @cindex two's complement
|
|
96 @minus{}1 is represented as 24 ones. (This is called @dfn{two's
|
|
97 complement} notation.)
|
|
98
|
|
99 The negative integer, @minus{}5, is creating by subtracting 4 from
|
|
100 @minus{}1. In binary, the decimal integer 4 is 100. Consequently,
|
|
101 @minus{}5 looks like this:
|
|
102
|
|
103 @example
|
|
104 1111 1111 1111 1111 1111 1011
|
|
105 @end example
|
|
106
|
|
107 In this implementation, the largest 24 bit binary integer is the
|
|
108 decimal integer 8,388,607. In binary, it looks like this:
|
|
109
|
|
110 @example
|
|
111 0111 1111 1111 1111 1111 1111
|
|
112 @end example
|
|
113
|
|
114 Since the arithmetic functions do not check whether integers go
|
|
115 outside their range, when you add 1 to 8,388,607, the value is negative
|
|
116 integer @minus{}8,388,608:
|
|
117
|
|
118 @example
|
|
119 (+ 1 8388607)
|
|
120 @result{} -8388608
|
|
121 @result{} 1000 0000 0000 0000 0000 0000
|
|
122 @end example
|
|
123
|
|
124 Many of the following functions accept markers for arguments as well
|
|
125 as integers. (@xref{Markers}.) More precisely, the actual arguments to
|
|
126 such functions may be either integers or markers, which is why we often
|
|
127 give these arguments the name @var{int-or-marker}. When the argument
|
|
128 value is a marker, its position value is used and its buffer is ignored.
|
|
129
|
|
130 @ignore
|
|
131 In version 19, except where @emph{integer} is specified as an
|
|
132 argument, all of the functions for markers and integers also work for
|
|
133 floating point numbers.
|
|
134 @end ignore
|
|
135
|
|
136 @node Float Basics
|
|
137 @section Floating Point Basics
|
|
138
|
|
139 @cindex @code{LISP_FLOAT_TYPE} configuration macro
|
|
140 Emacs version 19 supports floating point numbers, if compiled with the
|
|
141 macro @code{LISP_FLOAT_TYPE} defined. The precise range of floating
|
|
142 point numbers is machine-specific; it is the same as the range of the C
|
|
143 data type @code{double} on the machine in question.
|
|
144
|
|
145 The printed representation for floating point numbers requires either
|
|
146 a decimal point (with at least one digit following), an exponent, or
|
|
147 both. For example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2},
|
|
148 @samp{1.5e3}, and @samp{.15e4} are five ways of writing a floating point
|
|
149 number whose value is 1500. They are all equivalent. You can also use
|
|
150 a minus sign to write negative floating point numbers, as in
|
|
151 @samp{-1.0}.
|
|
152
|
|
153 @cindex IEEE floating point
|
|
154 @cindex positive infinity
|
|
155 @cindex negative infinity
|
|
156 @cindex infinity
|
|
157 @cindex NaN
|
|
158 Most modern computers support the IEEE floating point standard, which
|
|
159 provides for positive infinity and negative infinity as floating point
|
|
160 values. It also provides for a value called NaN or ``not-a-number''
|
|
161 which is the result you get from numerical functions in cases where
|
|
162 there is no correct answer. For example, @code{(sqrt -1.0)} returns
|
|
163 NaN. There is no read syntax for NaN or infinities; perhaps we should
|
|
164 create a syntax in the future.
|
|
165
|
|
166 You can use @code{logb} to extract the binary exponent of a floating
|
|
167 point number (or estimate the logarithm of an integer):
|
|
168
|
|
169 @defun logb number
|
|
170 This function returns the binary exponent of @var{number}. More
|
|
171 precisely, the value is the logarithm of @var{number} base 2, rounded
|
|
172 down to an integer.
|
|
173 @end defun
|
|
174
|
|
175 @node Predicates on Numbers
|
|
176 @section Type Predicates for Numbers
|
|
177
|
|
178 The functions in this section test whether the argument is a number or
|
|
179 whether it is a certain sort of number. The functions @code{integerp}
|
|
180 and @code{floatp} can take any type of Lisp object as argument (the
|
|
181 predicates would not be of much use otherwise); but the @code{zerop}
|
|
182 predicate requires a number as its argument. See also
|
|
183 @code{integer-or-marker-p} and @code{number-or-marker-p}, in
|
|
184 @ref{Predicates on Markers}.
|
|
185
|
|
186 @defun floatp object
|
|
187 This predicate tests whether its argument is a floating point
|
|
188 number and returns @code{t} if so, @code{nil} otherwise.
|
|
189
|
|
190 @code{floatp} does not exist in Emacs versions 18 and earlier.
|
|
191 @end defun
|
|
192
|
|
193 @defun integerp object
|
|
194 This predicate tests whether its argument is an integer, and returns
|
|
195 @code{t} if so, @code{nil} otherwise.
|
|
196 @end defun
|
|
197
|
|
198 @defun numberp object
|
|
199 This predicate tests whether its argument is a number (either integer or
|
|
200 floating point), and returns @code{t} if so, @code{nil} otherwise.
|
|
201 @end defun
|
|
202
|
|
203 @defun natnump object
|
|
204 @cindex natural numbers
|
|
205 The @code{natnump} predicate (whose name comes from the phrase
|
|
206 ``natural-number-p'') tests to see whether its argument is a nonnegative
|
|
207 integer, and returns @code{t} if so, @code{nil} otherwise. 0 is
|
|
208 considered non-negative.
|
|
209
|
|
210 Markers are not converted to integers, hence @code{natnump} of a marker
|
|
211 is always @code{nil}.
|
|
212
|
|
213 People have pointed out that this function is misnamed, because the term
|
|
214 ``natural number'' is usually understood as excluding zero. We are open
|
|
215 to suggestions for a better name to use in a future version.
|
|
216 @end defun
|
|
217
|
|
218 @defun zerop number
|
|
219 This predicate tests whether its argument is zero, and returns @code{t}
|
|
220 if so, @code{nil} otherwise. The argument must be a number.
|
|
221
|
|
222 These two forms are equivalent: @code{(zerop x)} @equiv{} @code{(= x 0)}.
|
|
223 @end defun
|
|
224
|
|
225 @node Comparison of Numbers
|
|
226 @section Comparison of Numbers
|
|
227 @cindex number equality
|
|
228
|
|
229 Floating point numbers in Emacs Lisp actually take up storage, and
|
|
230 there can be many distinct floating point number objects with the same
|
|
231 numeric value. If you use @code{eq} to compare them, then you test
|
|
232 whether two values are the same @emph{object}. If you want to test for
|
|
233 numerical equality, use @code{=}.
|
|
234
|
|
235 If you use @code{eq} to compare two integers, it always returns
|
|
236 @code{t} if they have the same value. This is sometimes useful, because
|
|
237 @code{eq} accepts arguments of any type and never causes an error,
|
|
238 whereas @code{=} signals an error if the arguments are not numbers or
|
|
239 markers. However, it is a good idea to use @code{=} if you can, even
|
|
240 for comparing integers, just in case we change the representation of
|
|
241 integers in a future Emacs version.
|
|
242
|
|
243 There is another wrinkle: because floating point arithmetic is not
|
|
244 exact, it is often a bad idea to check for equality of two floating
|
|
245 point values. Usually it is better to test for approximate equality.
|
|
246 Here's a function to do this:
|
|
247
|
|
248 @example
|
|
249 (defvar fuzz-factor 1.0e-6)
|
|
250 (defun approx-equal (x y)
|
|
251 (< (/ (abs (- x y))
|
|
252 (max (abs x) (abs y)))
|
|
253 fuzz-factor))
|
|
254 @end example
|
|
255
|
|
256 @cindex CL note---integers vrs @code{eq}
|
|
257 @quotation
|
|
258 @b{Common Lisp note:} comparing numbers in Common Lisp always requires
|
|
259 @code{=} because Common Lisp implements multi-word integers, and two
|
|
260 distinct integer objects can have the same numeric value. Emacs Lisp
|
|
261 can have just one integer object for any given value because it has a
|
|
262 limited range of integer values.
|
|
263 @end quotation
|
|
264
|
|
265 @defun = number-or-marker1 number-or-marker2
|
|
266 This function tests whether its arguments are numerically equal, and
|
|
267 returns @code{t} if so, @code{nil} otherwise.
|
|
268 @end defun
|
|
269
|
|
270 @defun /= number-or-marker1 number-or-marker2
|
|
271 This function tests whether its arguments are numerically equal, and
|
|
272 returns @code{t} if they are not, and @code{nil} if they are.
|
|
273 @end defun
|
|
274
|
|
275 @defun < number-or-marker1 number-or-marker2
|
|
276 This function tests whether its first argument is strictly less than
|
|
277 its second argument. It returns @code{t} if so, @code{nil} otherwise.
|
|
278 @end defun
|
|
279
|
|
280 @defun <= number-or-marker1 number-or-marker2
|
|
281 This function tests whether its first argument is less than or equal
|
|
282 to its second argument. It returns @code{t} if so, @code{nil}
|
|
283 otherwise.
|
|
284 @end defun
|
|
285
|
|
286 @defun > number-or-marker1 number-or-marker2
|
|
287 This function tests whether its first argument is strictly greater
|
|
288 than its second argument. It returns @code{t} if so, @code{nil}
|
|
289 otherwise.
|
|
290 @end defun
|
|
291
|
|
292 @defun >= number-or-marker1 number-or-marker2
|
|
293 This function tests whether its first argument is greater than or
|
|
294 equal to its second argument. It returns @code{t} if so, @code{nil}
|
|
295 otherwise.
|
|
296 @end defun
|
|
297
|
|
298 @defun max number-or-marker &rest numbers-or-markers
|
|
299 This function returns the largest of its arguments.
|
|
300
|
|
301 @example
|
|
302 (max 20)
|
|
303 @result{} 20
|
|
304 (max 1 2.5)
|
|
305 @result{} 2.5
|
|
306 (max 1 3 2.5)
|
|
307 @result{} 3
|
|
308 @end example
|
|
309 @end defun
|
|
310
|
|
311 @defun min number-or-marker &rest numbers-or-markers
|
|
312 This function returns the smallest of its arguments.
|
|
313
|
|
314 @example
|
|
315 (min -4 1)
|
|
316 @result{} -4
|
|
317 @end example
|
|
318 @end defun
|
|
319
|
|
320 @node Numeric Conversions
|
|
321 @section Numeric Conversions
|
|
322 @cindex rounding in conversions
|
|
323
|
|
324 To convert an integer to floating point, use the function @code{float}.
|
|
325
|
|
326 @defun float number
|
|
327 This returns @var{number} converted to floating point.
|
|
328 If @var{number} is already a floating point number, @code{float} returns
|
|
329 it unchanged.
|
|
330 @end defun
|
|
331
|
|
332 There are four functions to convert floating point numbers to integers;
|
|
333 they differ in how they round. These functions accept integer arguments
|
|
334 also, and return such arguments unchanged.
|
|
335
|
|
336 @defun truncate number
|
|
337 This returns @var{number}, converted to an integer by rounding towards
|
|
338 zero.
|
|
339 @end defun
|
|
340
|
|
341 @defun floor number &optional divisor
|
|
342 This returns @var{number}, converted to an integer by rounding downward
|
|
343 (towards negative infinity).
|
|
344
|
|
345 If @var{divisor} is specified, @var{number} is divided by @var{divisor}
|
|
346 before the floor is taken; this is the division operation that
|
|
347 corresponds to @code{mod}. An @code{arith-error} results if
|
|
348 @var{divisor} is 0.
|
|
349 @end defun
|
|
350
|
|
351 @defun ceiling number
|
|
352 This returns @var{number}, converted to an integer by rounding upward
|
|
353 (towards positive infinity).
|
|
354 @end defun
|
|
355
|
|
356 @defun round number
|
|
357 This returns @var{number}, converted to an integer by rounding towards the
|
|
358 nearest integer.
|
|
359 @end defun
|
|
360
|
|
361 @node Arithmetic Operations
|
|
362 @section Arithmetic Operations
|
|
363
|
|
364 Emacs Lisp provides the traditional four arithmetic operations:
|
|
365 addition, subtraction, multiplication, and division. Remainder and modulus
|
|
366 functions supplement the division functions. The functions to
|
|
367 add or subtract 1 are provided because they are traditional in Lisp and
|
|
368 commonly used.
|
|
369
|
|
370 All of these functions except @code{%} return a floating point value
|
|
371 if any argument is floating.
|
|
372
|
|
373 It is important to note that in GNU Emacs Lisp, arithmetic functions
|
|
374 do not check for overflow. Thus @code{(1+ 8388607)} may evaluate to
|
|
375 @minus{}8388608, depending on your hardware.
|
|
376
|
|
377 @defun 1+ number-or-marker
|
|
378 This function returns @var{number-or-marker} plus 1.
|
|
379 For example,
|
|
380
|
|
381 @example
|
|
382 (setq foo 4)
|
|
383 @result{} 4
|
|
384 (1+ foo)
|
|
385 @result{} 5
|
|
386 @end example
|
|
387
|
|
388 This function is not analogous to the C operator @code{++}---it does
|
|
389 not increment a variable. It just computes a sum. Thus,
|
|
390
|
|
391 @example
|
|
392 foo
|
|
393 @result{} 4
|
|
394 @end example
|
|
395
|
|
396 If you want to increment the variable, you must use @code{setq},
|
|
397 like this:
|
|
398
|
|
399 @example
|
|
400 (setq foo (1+ foo))
|
|
401 @result{} 5
|
|
402 @end example
|
|
403 @end defun
|
|
404
|
|
405 @defun 1- number-or-marker
|
|
406 This function returns @var{number-or-marker} minus 1.
|
|
407 @end defun
|
|
408
|
|
409 @defun abs number
|
|
410 This returns the absolute value of @var{number}.
|
|
411 @end defun
|
|
412
|
|
413 @defun + &rest numbers-or-markers
|
|
414 This function adds its arguments together. When given no arguments,
|
|
415 @code{+} returns 0. It does not check for overflow.
|
|
416
|
|
417 @example
|
|
418 (+)
|
|
419 @result{} 0
|
|
420 (+ 1)
|
|
421 @result{} 1
|
|
422 (+ 1 2 3 4)
|
|
423 @result{} 10
|
|
424 @end example
|
|
425 @end defun
|
|
426
|
|
427 @defun - &optional number-or-marker &rest other-numbers-or-markers
|
|
428 The @code{-} function serves two purposes: negation and subtraction.
|
|
429 When @code{-} has a single argument, the value is the negative of the
|
|
430 argument. When there are multiple arguments, @code{-} subtracts each of
|
|
431 the @var{other-numbers-or-markers} from @var{number-or-marker},
|
|
432 cumulatively. If there are no arguments, the result is 0. This
|
|
433 function does not check for overflow.
|
|
434
|
|
435 @example
|
|
436 (- 10 1 2 3 4)
|
|
437 @result{} 0
|
|
438 (- 10)
|
|
439 @result{} -10
|
|
440 (-)
|
|
441 @result{} 0
|
|
442 @end example
|
|
443 @end defun
|
|
444
|
|
445 @defun * &rest numbers-or-markers
|
|
446 This function multiplies its arguments together, and returns the
|
|
447 product. When given no arguments, @code{*} returns 1. It does
|
|
448 not check for overflow.
|
|
449
|
|
450 @example
|
|
451 (*)
|
|
452 @result{} 1
|
|
453 (* 1)
|
|
454 @result{} 1
|
|
455 (* 1 2 3 4)
|
|
456 @result{} 24
|
|
457 @end example
|
|
458 @end defun
|
|
459
|
|
460 @defun / dividend divisor &rest divisors
|
|
461 This function divides @var{dividend} by @var{divisors} and returns the
|
|
462 quotient. If there are additional arguments @var{divisors}, then it
|
|
463 divides @var{dividend} by each divisor in turn. Each argument may be a
|
|
464 number or a marker.
|
|
465
|
|
466 If all the arguments are integers, then the result is an integer too.
|
|
467 This means the result has to be rounded. On most machines, the result
|
|
468 is rounded towards zero after each division, but some machines may round
|
|
469 differently with negative arguments. This is because the Lisp function
|
|
470 @code{/} is implemented using the C division operator, which also
|
|
471 permits machine-dependent rounding. As a practical matter, all known
|
|
472 machines round in the standard fashion.
|
|
473
|
|
474 @cindex @code{arith-error} in division
|
|
475 If you divide by 0, an @code{arith-error} error is signaled.
|
|
476 (@xref{Errors}.)
|
|
477
|
|
478 @example
|
|
479 (/ 6 2)
|
|
480 @result{} 3
|
|
481 (/ 5 2)
|
|
482 @result{} 2
|
|
483 (/ 25 3 2)
|
|
484 @result{} 4
|
|
485 (/ -17 6)
|
|
486 @result{} -2
|
|
487 @end example
|
|
488
|
|
489 The result of @code{(/ -17 6)} could in principle be -3 on some
|
|
490 machines.
|
|
491 @end defun
|
|
492
|
|
493 @defun % dividend divisor
|
|
494 @cindex remainder
|
|
495 This function returns the integer remainder after division of @var{dividend}
|
|
496 by @var{divisor}. The arguments must be integers or markers.
|
|
497
|
|
498 For negative arguments, the remainder is in principle machine-dependent
|
|
499 since the quotient is; but in practice, all known machines behave alike.
|
|
500
|
|
501 An @code{arith-error} results if @var{divisor} is 0.
|
|
502
|
|
503 @example
|
|
504 (% 9 4)
|
|
505 @result{} 1
|
|
506 (% -9 4)
|
|
507 @result{} -1
|
|
508 (% 9 -4)
|
|
509 @result{} 1
|
|
510 (% -9 -4)
|
|
511 @result{} -1
|
|
512 @end example
|
|
513
|
|
514 For any two integers @var{dividend} and @var{divisor},
|
|
515
|
|
516 @example
|
|
517 @group
|
|
518 (+ (% @var{dividend} @var{divisor})
|
|
519 (* (/ @var{dividend} @var{divisor}) @var{divisor}))
|
|
520 @end group
|
|
521 @end example
|
|
522
|
|
523 @noindent
|
|
524 always equals @var{dividend}.
|
|
525 @end defun
|
|
526
|
|
527 @defun mod dividend divisor
|
|
528 @cindex modulus
|
|
529 This function returns the value of @var{dividend} modulo @var{divisor};
|
|
530 in other words, the remainder after division of @var{dividend}
|
|
531 by @var{divisor}, but with the same sign as @var{divisor}.
|
|
532 The arguments must be numbers or markers.
|
|
533
|
|
534 Unlike @code{%}, @code{mod} returns a well-defined result for negative
|
|
535 arguments. It also permits floating point arguments; it rounds the
|
|
536 quotient downward (towards minus infinity) to an integer, and uses that
|
|
537 quotient to compute the remainder.
|
|
538
|
|
539 An @code{arith-error} results if @var{divisor} is 0.
|
|
540
|
|
541 @example
|
|
542 (mod 9 4)
|
|
543 @result{} 1
|
|
544 (mod -9 4)
|
|
545 @result{} 3
|
|
546 (mod 9 -4)
|
|
547 @result{} -3
|
|
548 (mod -9 -4)
|
|
549 @result{} -1
|
|
550 (mod 5.5 2.5)
|
|
551 @result{} .5
|
|
552 @end example
|
|
553
|
|
554 For any two numbers @var{dividend} and @var{divisor},
|
|
555
|
|
556 @example
|
|
557 @group
|
|
558 (+ (mod @var{dividend} @var{divisor})
|
|
559 (* (floor @var{dividend} @var{divisor}) @var{divisor}))
|
|
560 @end group
|
|
561 @end example
|
|
562
|
|
563 @noindent
|
|
564 always equals @var{dividend}, subject to rounding error if
|
|
565 either argument is floating point.
|
|
566 @end defun
|
|
567
|
|
568 @node Rounding Operations
|
|
569 @section Rounding Operations
|
|
570 @cindex rounding without conversion
|
|
571
|
|
572 The functions @code{ffloor}, @code{fceil}, @code{fround} and
|
|
573 @code{ftruncate} take a floating point argument and return a floating
|
|
574 point result whose value is a nearby integer. @code{ffloor} returns the
|
|
575 nearest integer below; @code{fceil}, the nearest integer above;
|
|
576 @code{ftrucate}, the nearest integer in the direction towards zero;
|
|
577 @code{fround}, the nearest integer.
|
|
578
|
|
579 @defun ffloor float
|
|
580 This function rounds @var{float} to the next lower integral value, and
|
|
581 returns that value as a floating point number.
|
|
582 @end defun
|
|
583
|
|
584 @defun fceil float
|
|
585 This function rounds @var{float} to the next higher integral value, and
|
|
586 returns that value as a floating point number.
|
|
587 @end defun
|
|
588
|
|
589 @defun ftrunc float
|
|
590 This function rounds @var{float} towards zero to an integral value, and
|
|
591 returns that value as a floating point number.
|
|
592 @end defun
|
|
593
|
|
594 @defun fround float
|
|
595 This function rounds @var{float} to the nearest integral value,
|
|
596 and returns that value as a floating point number.
|
|
597 @end defun
|
|
598
|
|
599 @node Bitwise Operations
|
|
600 @section Bitwise Operations on Integers
|
|
601
|
|
602 In a computer, an integer is represented as a binary number, a
|
|
603 sequence of @dfn{bits} (digits which are either zero or one). A bitwise
|
|
604 operation acts on the individual bits of such a sequence. For example,
|
|
605 @dfn{shifting} moves the whole sequence left or right one or more places,
|
|
606 reproducing the same pattern ``moved over''.
|
|
607
|
|
608 The bitwise operations in Emacs Lisp apply only to integers.
|
|
609
|
|
610 @defun lsh integer1 count
|
|
611 @cindex logical shift
|
|
612 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
|
|
613 bits in @var{integer1} to the left @var{count} places, or to the
|
|
614 right if @var{count} is negative. If @var{count} is negative,
|
|
615 @code{lsh} shifts zeros into the most-significant bit, producing a
|
|
616 positive result even if @var{integer1} is negative. Contrast this with
|
|
617 @code{ash}, below.
|
|
618
|
|
619 Thus, the decimal number 5 is the binary number 00000101. Shifted once
|
|
620 to the left, with a zero put in the one's place, the number becomes
|
|
621 00001010, decimal 10.
|
|
622
|
|
623 Here are two examples of shifting the pattern of bits one place to the
|
|
624 left. Since the contents of the rightmost place has been moved one
|
|
625 place to the left, a value has to be inserted into the rightmost place.
|
|
626 With @code{lsh}, a zero is placed into the rightmost place. (These
|
|
627 examples show only the low-order eight bits of the binary pattern; the
|
|
628 rest are all zero.)
|
|
629
|
|
630 @example
|
|
631 @group
|
|
632 (lsh 5 1)
|
|
633 @result{} 10
|
|
634 ;; @r{Decimal 5 becomes decimal 10.}
|
|
635 00000101 @result{} 00001010
|
|
636
|
|
637 (lsh 7 1)
|
|
638 @result{} 14
|
|
639 ;; @r{Decimal 7 becomes decimal 14.}
|
|
640 00000111 @result{} 00001110
|
|
641 @end group
|
|
642 @end example
|
|
643
|
|
644 @noindent
|
|
645 As the examples illustrate, shifting the pattern of bits one place to
|
|
646 the left produces a number that is twice the value of the previous
|
|
647 number.
|
|
648
|
|
649 Note, however that functions do not check for overflow, and a returned
|
|
650 value may be negative (and in any case, no more than a 24 bit value)
|
|
651 when an integer is sufficiently left shifted.
|
|
652
|
|
653 For example, left shifting 8,388,607 produces @minus{}2:
|
|
654
|
|
655 @example
|
|
656 (lsh 8388607 1) ; @r{left shift}
|
|
657 @result{} -2
|
|
658 @end example
|
|
659
|
|
660 In binary, in the 24 bit implementation, the numbers looks like this:
|
|
661
|
|
662 @example
|
|
663 @group
|
|
664 ;; @r{Decimal 8,388,607}
|
|
665 0111 1111 1111 1111 1111 1111
|
|
666 @end group
|
|
667 @end example
|
|
668
|
|
669 @noindent
|
|
670 which becomes the following when left shifted:
|
|
671
|
|
672 @example
|
|
673 @group
|
|
674 ;; @r{Decimal @minus{}2}
|
|
675 1111 1111 1111 1111 1111 1110
|
|
676 @end group
|
|
677 @end example
|
|
678
|
|
679 Shifting the pattern of bits two places to the left produces results
|
|
680 like this (with 8-bit binary numbers):
|
|
681
|
|
682 @example
|
|
683 @group
|
|
684 (lsh 3 2)
|
|
685 @result{} 12
|
|
686 ;; @r{Decimal 3 becomes decimal 12.}
|
|
687 00000011 @result{} 00001100
|
|
688 @end group
|
|
689 @end example
|
|
690
|
|
691 On the other hand, shifting the pattern of bits one place to the right
|
|
692 looks like this:
|
|
693
|
|
694 @example
|
|
695 @group
|
|
696 (lsh 6 -1)
|
|
697 @result{} 3
|
|
698 ;; @r{Decimal 6 becomes decimal 3.}
|
|
699 00000110 @result{} 00000011
|
|
700 @end group
|
|
701
|
|
702 @group
|
|
703 (lsh 5 -1)
|
|
704 @result{} 2
|
|
705 ;; @r{Decimal 5 becomes decimal 2.}
|
|
706 00000101 @result{} 00000010
|
|
707 @end group
|
|
708 @end example
|
|
709
|
|
710 @noindent
|
|
711 As the example illustrates, shifting the pattern of bits one place to
|
|
712 the right divides the value of the binary number by two, rounding downward.
|
|
713 @end defun
|
|
714
|
|
715 @defun ash integer1 count
|
|
716 @cindex arithmetic shift
|
|
717 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
|
|
718 to the left @var{count} places, or to the right if @var{count}
|
|
719 is negative.
|
|
720
|
|
721 @code{ash} gives the same results as @code{lsh} except when
|
|
722 @var{integer1} and @var{count} are both negative. In that case,
|
|
723 @code{ash} puts a one in the leftmost position, while @code{lsh} puts
|
|
724 a zero in the leftmost position.
|
|
725
|
|
726 Thus, with @code{ash}, shifting the pattern of bits one place to the right
|
|
727 looks like this:
|
|
728
|
|
729 @example
|
|
730 @group
|
|
731 (ash -6 -1) @result{} -3
|
|
732 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
|
|
733 1111 1111 1111 1111 1111 1010
|
|
734 @result{}
|
|
735 1111 1111 1111 1111 1111 1101
|
|
736 @end group
|
|
737 @end example
|
|
738
|
|
739 In contrast, shifting the pattern of bits one place to the right with
|
|
740 @code{lsh} looks like this:
|
|
741
|
|
742 @example
|
|
743 @group
|
|
744 (lsh -6 -1) @result{} 8388605
|
|
745 ;; @r{Decimal @minus{}6 becomes decimal 8,388,605.}
|
|
746 1111 1111 1111 1111 1111 1010
|
|
747 @result{}
|
|
748 0111 1111 1111 1111 1111 1101
|
|
749 @end group
|
|
750 @end example
|
|
751
|
|
752 @noindent
|
|
753 In this case, the 1 in the leftmost position is shifted one place to the
|
|
754 right, and a zero is shifted into the leftmost position.
|
|
755
|
|
756 Here are other examples:
|
|
757
|
|
758 @c !!! Check if lined up in smallbook format! XDVI shows problem
|
|
759 @c with smallbook but not with regular book! --rjc 16mar92
|
|
760 @smallexample
|
|
761 @group
|
|
762 ; @r{ 24-bit binary values}
|
|
763
|
|
764 (lsh 5 2) ; 5 = @r{0000 0000 0000 0000 0000 0101}
|
|
765 @result{} 20 ; 20 = @r{0000 0000 0000 0000 0001 0100}
|
|
766 @end group
|
|
767 @group
|
|
768 (ash 5 2)
|
|
769 @result{} 20
|
|
770 (lsh -5 2) ; -5 = @r{1111 1111 1111 1111 1111 1011}
|
|
771 @result{} -20 ; -20 = @r{1111 1111 1111 1111 1110 1100}
|
|
772 (ash -5 2)
|
|
773 @result{} -20
|
|
774 @end group
|
|
775 @group
|
|
776 (lsh 5 -2) ; 5 = @r{0000 0000 0000 0000 0000 0101}
|
|
777 @result{} 1 ; 1 = @r{0000 0000 0000 0000 0000 0001}
|
|
778 @end group
|
|
779 @group
|
|
780 (ash 5 -2)
|
|
781 @result{} 1
|
|
782 @end group
|
|
783 @group
|
|
784 (lsh -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1011}
|
|
785 @result{} 4194302 ; @r{0011 1111 1111 1111 1111 1110}
|
|
786 @end group
|
|
787 @group
|
|
788 (ash -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1011}
|
|
789 @result{} -2 ; -2 = @r{1111 1111 1111 1111 1111 1110}
|
|
790 @end group
|
|
791 @end smallexample
|
|
792 @end defun
|
|
793
|
|
794 @defun logand &rest ints-or-markers
|
|
795 @cindex logical and
|
|
796 @cindex bitwise and
|
|
797 This function returns the ``logical and'' of the arguments: the
|
|
798 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
|
|
799 set in all the arguments. (``Set'' means that the value of the bit is 1
|
|
800 rather than 0.)
|
|
801
|
|
802 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
|
|
803 12 is 12: 1101 combined with 1100 produces 1100.
|
|
804
|
|
805 In both the binary numbers, the leftmost two bits are set (i.e., they
|
|
806 are 1's), so the leftmost two bits of the returned value are set.
|
|
807 However, for the rightmost two bits, each is zero in at least one of
|
|
808 the arguments, so the rightmost two bits of the returned value are 0's.
|
|
809
|
|
810 @noindent
|
|
811 Therefore,
|
|
812
|
|
813 @example
|
|
814 @group
|
|
815 (logand 13 12)
|
|
816 @result{} 12
|
|
817 @end group
|
|
818 @end example
|
|
819
|
|
820 If @code{logand} is not passed any argument, it returns a value of
|
|
821 @minus{}1. This number is an identity element for @code{logand}
|
|
822 because its binary representation consists entirely of ones. If
|
|
823 @code{logand} is passed just one argument, it returns that argument.
|
|
824
|
|
825 @smallexample
|
|
826 @group
|
|
827 ; @r{ 24-bit binary values}
|
|
828
|
|
829 (logand 14 13) ; 14 = @r{0000 0000 0000 0000 0000 1110}
|
|
830 ; 13 = @r{0000 0000 0000 0000 0000 1101}
|
|
831 @result{} 12 ; 12 = @r{0000 0000 0000 0000 0000 1100}
|
|
832 @end group
|
|
833
|
|
834 @group
|
|
835 (logand 14 13 4) ; 14 = @r{0000 0000 0000 0000 0000 1110}
|
|
836 ; 13 = @r{0000 0000 0000 0000 0000 1101}
|
|
837 ; 4 = @r{0000 0000 0000 0000 0000 0100}
|
|
838 @result{} 4 ; 4 = @r{0000 0000 0000 0000 0000 0100}
|
|
839 @end group
|
|
840
|
|
841 @group
|
|
842 (logand)
|
|
843 @result{} -1 ; -1 = @r{1111 1111 1111 1111 1111 1111}
|
|
844 @end group
|
|
845 @end smallexample
|
|
846 @end defun
|
|
847
|
|
848 @defun logior &rest ints-or-markers
|
|
849 @cindex logical inclusive or
|
|
850 @cindex bitwise or
|
|
851 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
|
|
852 is set in the result if, and only if, the @var{n}th bit is set in at least
|
|
853 one of the arguments. If there are no arguments, the result is zero,
|
|
854 which is an identity element for this operation. If @code{logior} is
|
|
855 passed just one argument, it returns that argument.
|
|
856
|
|
857 @smallexample
|
|
858 @group
|
|
859 ; @r{ 24-bit binary values}
|
|
860
|
|
861 (logior 12 5) ; 12 = @r{0000 0000 0000 0000 0000 1100}
|
|
862 ; 5 = @r{0000 0000 0000 0000 0000 0101}
|
|
863 @result{} 13 ; 13 = @r{0000 0000 0000 0000 0000 1101}
|
|
864 @end group
|
|
865
|
|
866 @group
|
|
867 (logior 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 1100}
|
|
868 ; 5 = @r{0000 0000 0000 0000 0000 0101}
|
|
869 ; 7 = @r{0000 0000 0000 0000 0000 0111}
|
|
870 @result{} 15 ; 15 = @r{0000 0000 0000 0000 0000 1111}
|
|
871 @end group
|
|
872 @end smallexample
|
|
873 @end defun
|
|
874
|
|
875 @defun logxor &rest ints-or-markers
|
|
876 @cindex bitwise exclusive or
|
|
877 @cindex logical exclusive or
|
|
878 This function returns the ``exclusive or'' of its arguments: the
|
|
879 @var{n}th bit is set in the result if, and only if, the @var{n}th bit
|
|
880 is set in an odd number of the arguments. If there are no arguments,
|
|
881 the result is 0. If @code{logxor} is passed just one argument, it returns
|
|
882 that argument.
|
|
883
|
|
884 @smallexample
|
|
885 @group
|
|
886 ; @r{ 24-bit binary values}
|
|
887
|
|
888 (logxor 12 5) ; 12 = @r{0000 0000 0000 0000 0000 1100}
|
|
889 ; 5 = @r{0000 0000 0000 0000 0000 0101}
|
|
890 @result{} 9 ; 9 = @r{0000 0000 0000 0000 0000 1001}
|
|
891 @end group
|
|
892
|
|
893 @group
|
|
894 (logxor 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 1100}
|
|
895 ; 5 = @r{0000 0000 0000 0000 0000 0101}
|
|
896 ; 7 = @r{0000 0000 0000 0000 0000 0111}
|
|
897 @result{} 14 ; 14 = @r{0000 0000 0000 0000 0000 1110}
|
|
898 @end group
|
|
899 @end smallexample
|
|
900 @end defun
|
|
901
|
|
902 @defun lognot integer
|
|
903 @cindex logical not
|
|
904 @cindex bitwise not
|
|
905 This function returns the logical complement of its argument: the @var{n}th
|
|
906 bit is one in the result if, and only if, the @var{n}th bit is zero in
|
|
907 @var{integer}, and vice-versa.
|
|
908
|
|
909 @example
|
|
910 (lognot 5)
|
|
911 @result{} -6
|
|
912 ;; 5 = @r{0000 0000 0000 0000 0000 0101}
|
|
913 ;; @r{becomes}
|
|
914 ;; -6 = @r{1111 1111 1111 1111 1111 1010}
|
|
915 @end example
|
|
916 @end defun
|
|
917
|
|
918 @node Transcendental Functions
|
|
919 @section Transcendental Functions
|
|
920 @cindex transcendental functions
|
|
921 @cindex mathematical functions
|
|
922
|
|
923 These mathematical functions are available if floating point is
|
|
924 supported. They allow integers as well as floating point numbers
|
|
925 as arguments.
|
|
926
|
|
927 @defun sin arg
|
|
928 @defunx cos arg
|
|
929 @defunx tan arg
|
|
930 These are the ordinary trigonometric functions, with argument measured
|
|
931 in radians.
|
|
932 @end defun
|
|
933
|
|
934 @defun asin arg
|
|
935 The value of @code{(asin @var{arg})} is a number between @minus{} pi / 2
|
|
936 and pi / 2 (inclusive) whose sine is @var{arg}; if, however, @var{arg}
|
|
937 is out of range (outside [-1, 1]), then the result is a NaN.
|
|
938 @end defun
|
|
939
|
|
940 @defun acos arg
|
|
941 The value of @code{(acos @var{arg})} is a number between 0 and pi
|
|
942 (inclusive) whose cosine is @var{arg}; if, however, @var{arg}
|
|
943 is out of range (outside [-1, 1]), then the result is a NaN.
|
|
944 @end defun
|
|
945
|
|
946 @defun atan arg
|
|
947 The value of @code{(atan @var{arg})} is a number between @minus{} pi / 2
|
|
948 and pi / 2 (exclusive) whose tangent is @var{arg}.
|
|
949 @end defun
|
|
950
|
|
951 @defun exp arg
|
|
952 This is the exponential function; it returns @i{e} to the power
|
|
953 @var{arg}. @i{e} is a fundamental mathematical constant also called the
|
|
954 base of natural logarithms.
|
|
955 @end defun
|
|
956
|
|
957 @defun log arg &optional base
|
|
958 This function returns the logarithm of @var{arg}, with base @var{base}.
|
|
959 If you don't specify @var{base}, the base @var{e} is used. If @var{arg}
|
|
960 is negative, the result is a NaN.
|
|
961 @end defun
|
|
962
|
|
963 @ignore
|
|
964 @defun expm1 arg
|
|
965 This function returns @code{(1- (exp @var{arg}))}, but it is more
|
|
966 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
|
|
967 is close to 1.
|
|
968 @end defun
|
|
969
|
|
970 @defun log1p arg
|
|
971 This function returns @code{(log (1+ @var{arg}))}, but it is more
|
|
972 accurate than that when @var{arg} is so small that adding 1 to it would
|
|
973 lose accuracy.
|
|
974 @end defun
|
|
975 @end ignore
|
|
976
|
|
977 @defun log10 arg
|
|
978 This function returns the logarithm of @var{arg}, with base 10. If
|
|
979 @var{arg} is negative, the result is a NaN.
|
|
980 @end defun
|
|
981
|
|
982 @defun expt x y
|
|
983 This function returns @var{x} raised to power @var{y}.
|
|
984 @end defun
|
|
985
|
|
986 @defun sqrt arg
|
|
987 This returns the square root of @var{arg}. If @var{arg} is negative,
|
|
988 the value is a NaN.
|
|
989 @end defun
|
|
990
|
|
991 @node Random Numbers
|
|
992 @section Random Numbers
|
|
993 @cindex random numbers
|
|
994
|
|
995 A deterministic computer program cannot generate true random numbers.
|
|
996 For most purposes, @dfn{pseudo-random numbers} suffice. A series of
|
|
997 pseudo-random numbers is generated in a deterministic fashion. The
|
|
998 numbers are not truly random, but they have certain properties that
|
|
999 mimic a random series. For example, all possible values occur equally
|
|
1000 often in a pseudo-random series.
|
|
1001
|
|
1002 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
|
|
1003 Starting from any given seed, the @code{random} function always
|
|
1004 generates the same sequence of numbers. Emacs always starts with the
|
|
1005 same seed value, so the sequence of values of @code{random} is actually
|
|
1006 the same in each Emacs run! For example, in one operating system, the
|
|
1007 first call to @code{(random)} after you start Emacs always returns
|
|
1008 -1457731, and the second one always returns -7692030. This
|
|
1009 repeatability is helpful for debugging.
|
|
1010
|
|
1011 If you want truly unpredictable random numbers, execute @code{(random
|
|
1012 t)}. This chooses a new seed based on the current time of day and on
|
|
1013 Emacs's process @sc{id} number.
|
|
1014
|
|
1015 @defun random &optional limit
|
|
1016 This function returns a pseudo-random integer. Repeated calls return a
|
|
1017 series of pseudo-random integers.
|
|
1018
|
|
1019 If @var{limit} is @code{nil}, then the value may in principle be any
|
|
1020 integer. If @var{limit} is a positive integer, the value is chosen to
|
|
1021 be nonnegative and less than @var{limit} (only in Emacs 19).
|
|
1022
|
|
1023 If @var{limit} is @code{t}, it means to choose a new seed based on the
|
|
1024 current time of day and on Emacs's process @sc{id} number.
|
|
1025 @c "Emacs'" is incorrect usage!
|
|
1026
|
|
1027 On some machines, any integer representable in Lisp may be the result
|
|
1028 of @code{random}. On other machines, the result can never be larger
|
|
1029 than a certain maximum or less than a certain (negative) minimum.
|
|
1030 @end defun
|