Mercurial > emacs
annotate lisp/calc/calc-nlfit.el @ 85693:dbd6dad40424
*** empty log message ***
author | Juanma Barranquero <lekktu@gmail.com> |
---|---|
date | Sat, 27 Oct 2007 13:51:27 +0000 |
parents | 3f6660bf6595 |
children | 9a67bab483db |
rev | line source |
---|---|
82260 | 1 ;;; calc-nlfit.el --- nonlinear curve fitting for Calc |
2 | |
3 ;; Copyright (C) 2007 Free Software Foundation, Inc. | |
4 | |
5 ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com> | |
6 | |
7 ;; This file is part of GNU Emacs. | |
8 | |
9 ;; GNU Emacs is free software; you can redistribute it and/or modify | |
10 ;; it under the terms of the GNU General Public License as published by | |
11 ;; the Free Software Foundation; either version 3, or (at your option) | |
12 ;; any later version. | |
13 | |
14 ;; GNU Emacs is distributed in the hope that it will be useful, | |
15 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 ;; GNU General Public License for more details. | |
18 | |
19 ;; You should have received a copy of the GNU General Public License | |
20 ;; along with GNU Emacs; see the file COPYING. If not, write to the | |
21 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, | |
22 ;; Boston, MA 02110-1301, USA. | |
23 | |
24 ;;; Commentary: | |
25 | |
26 ;; This code uses the Levenberg-Marquardt method, as described in | |
27 ;; _Numerical Analysis_ by H. R. Schwarz, to fit data to | |
28 ;; nonlinear curves. Currently, the only the following curves are | |
29 ;; supported: | |
30 ;; The logistic S curve, y=a/(1+exp(b*(t-c))) | |
31 ;; Here, y is usually interpreted as the population of some | |
32 ;; quantity at time t. So we will think of the data as consisting | |
33 ;; of quantities q0, q1, ..., qn and their respective times | |
34 ;; t0, t1, ..., tn. | |
35 | |
36 ;; The logistic bell curve, y=A*exp(B*(t-C))/(1+exp(B*(t-C)))^2 | |
37 ;; Note that this is the derivative of the formula for the S curve. | |
38 ;; We get A=-a*b, B=b and C=c. Here, y is interpreted as the rate | |
39 ;; of growth of a population at time t. So we will think of the | |
40 ;; data as consisting of rates p0, p1, ..., pn and their | |
41 ;; respective times t0, t1, ..., tn. | |
42 | |
43 ;; The Hubbert Linearization, y/x=A*(1-x/B) | |
44 ;; Here, y is thought of as the rate of growth of a population | |
45 ;; and x represents the actual population. This is essentially | |
46 ;; the differential equation describing the actual population. | |
47 | |
48 ;; The Levenberg-Marquardt method is an iterative process: it takes | |
49 ;; an initial guess for the parameters and refines them. To get an | |
50 ;; initial guess for the parameters, we'll use a method described by | |
51 ;; Luis de Sousa in "Hubbert's Peak Mathematics". The idea is that | |
52 ;; given quantities Q and the corresponding rates P, they should | |
53 ;; satisfy P/Q= mQ+a. We can use the parameter a for an | |
54 ;; approximation for the parameter a in the S curve, and | |
55 ;; approximations for b and c are found using least squares on the | |
56 ;; linearization log((a/y)-1) = log(bb) + cc*t of | |
57 ;; y=a/(1+bb*exp(cc*t)), which is equivalent to the above s curve | |
58 ;; formula, and then tranlating it to b and c. From this, we can | |
59 ;; also get approximations for the bell curve parameters. | |
60 | |
61 ;;; Code: | |
62 | |
63 (require 'calc-arith) | |
64 | |
65 (defun math-nlfit-least-squares (xdata ydata &optional sdata sigmas) | |
66 "Return the parameters A and B for the best least squares fit y=a+bx." | |
67 (let* ((n (length xdata)) | |
68 (s2data (if sdata | |
69 (mapcar 'calcFunc-sqr sdata) | |
70 (make-list n 1))) | |
71 (S (if sdata 0 n)) | |
72 (Sx 0) | |
73 (Sy 0) | |
74 (Sxx 0) | |
75 (Sxy 0) | |
76 D) | |
77 (while xdata | |
78 (let ((x (car xdata)) | |
79 (y (car ydata)) | |
80 (s (car s2data))) | |
81 (setq Sx (math-add Sx (if s (math-div x s) x))) | |
82 (setq Sy (math-add Sy (if s (math-div y s) y))) | |
83 (setq Sxx (math-add Sxx (if s (math-div (math-mul x x) s) | |
84 (math-mul x x)))) | |
85 (setq Sxy (math-add Sxy (if s (math-div (math-mul x y) s) | |
86 (math-mul x y)))) | |
87 (if sdata | |
88 (setq S (math-add S (math-div 1 s))))) | |
89 (setq xdata (cdr xdata)) | |
90 (setq ydata (cdr ydata)) | |
91 (setq s2data (cdr s2data))) | |
92 (setq D (math-sub (math-mul S Sxx) (math-mul Sx Sx))) | |
93 (let ((A (math-div (math-sub (math-mul Sxx Sy) (math-mul Sx Sxy)) D)) | |
94 (B (math-div (math-sub (math-mul S Sxy) (math-mul Sx Sy)) D))) | |
95 (if sigmas | |
96 (let ((C11 (math-div Sxx D)) | |
97 (C12 (math-neg (math-div Sx D))) | |
98 (C22 (math-div S D))) | |
99 (list (list 'sdev A (calcFunc-sqrt C11)) | |
100 (list 'sdev B (calcFunc-sqrt C22)) | |
101 (list 'vec | |
102 (list 'vec C11 C12) | |
103 (list 'vec C12 C22)))) | |
104 (list A B))))) | |
105 | |
106 ;;; The methods described by de Sousa require the cumulative data qdata | |
107 ;;; and the rates pdata. We will assume that we are given either | |
108 ;;; qdata and the corresponding times tdata, or pdata and the corresponding | |
109 ;;; tdata. The following two functions will find pdata or qdata, | |
110 ;;; given the other.. | |
111 | |
112 ;;; First, given two lists; one of values q0, q1, ..., qn and one of | |
113 ;;; corresponding times t0, t1, ..., tn; return a list | |
114 ;;; p0, p1, ..., pn of the rates of change of the qi with respect to t. | |
115 ;;; p0 is the right hand derivative (q1 - q0)/(t1 - t0). | |
116 ;;; pn is the left hand derivative (qn - q(n-1))/(tn - t(n-1)). | |
117 ;;; The other pis are the averages of the two: | |
118 ;;; (1/2)((qi - q(i-1))/(ti - t(i-1)) + (q(i+1) - qi)/(t(i+1) - ti)). | |
119 | |
120 (defun math-nlfit-get-rates-from-cumul (tdata qdata) | |
121 (let ((pdata (list | |
122 (math-div | |
123 (math-sub (nth 1 qdata) | |
124 (nth 0 qdata)) | |
125 (math-sub (nth 1 tdata) | |
126 (nth 0 tdata)))))) | |
127 (while (> (length qdata) 2) | |
128 (setq pdata | |
129 (cons | |
130 (math-mul | |
131 '(float 5 -1) | |
132 (math-add | |
133 (math-div | |
134 (math-sub (nth 2 qdata) | |
135 (nth 1 qdata)) | |
136 (math-sub (nth 2 tdata) | |
137 (nth 1 tdata))) | |
138 (math-div | |
139 (math-sub (nth 1 qdata) | |
140 (nth 0 qdata)) | |
141 (math-sub (nth 1 tdata) | |
142 (nth 0 tdata))))) | |
143 pdata)) | |
144 (setq qdata (cdr qdata))) | |
145 (setq pdata | |
146 (cons | |
147 (math-div | |
148 (math-sub (nth 1 qdata) | |
149 (nth 0 qdata)) | |
150 (math-sub (nth 1 tdata) | |
151 (nth 0 tdata))) | |
152 pdata)) | |
153 (reverse pdata))) | |
154 | |
155 ;;; Next, given two lists -- one of rates p0, p1, ..., pn and one of | |
156 ;;; corresponding times t0, t1, ..., tn -- and an initial values q0, | |
157 ;;; return a list q0, q1, ..., qn of the cumulative values. | |
158 ;;; q0 is the initial value given. | |
159 ;;; For i>0, qi is computed using the trapezoid rule: | |
160 ;;; qi = q(i-1) + (1/2)(pi + p(i-1))(ti - t(i-1)) | |
161 | |
162 (defun math-nlfit-get-cumul-from-rates (tdata pdata q0) | |
163 (let* ((qdata (list q0))) | |
164 (while (cdr pdata) | |
165 (setq qdata | |
166 (cons | |
167 (math-add (car qdata) | |
168 (math-mul | |
169 (math-mul | |
170 '(float 5 -1) | |
171 (math-add (nth 1 pdata) (nth 0 pdata))) | |
172 (math-sub (nth 1 tdata) | |
173 (nth 0 tdata)))) | |
174 qdata)) | |
175 (setq pdata (cdr pdata)) | |
176 (setq tdata (cdr tdata))) | |
177 (reverse qdata))) | |
178 | |
179 ;;; Given the qdata, pdata and tdata, find the parameters | |
180 ;;; a, b and c that fit q = a/(1+b*exp(c*t)). | |
181 ;;; a is found using the method described by de Sousa. | |
182 ;;; b and c are found using least squares on the linearization | |
183 ;;; log((a/q)-1) = log(b) + c*t | |
184 ;;; In some cases (where the logistic curve may well be the wrong | |
185 ;;; model), the computed a will be less than or equal to the maximum | |
186 ;;; value of q in qdata; in which case the above linearization won't work. | |
187 ;;; In this case, a will be replaced by a number slightly above | |
188 ;;; the maximum value of q. | |
189 | |
190 (defun math-nlfit-find-qmax (qdata pdata tdata) | |
191 (let* ((ratios (mapcar* 'math-div pdata qdata)) | |
192 (lsdata (math-nlfit-least-squares ratios tdata)) | |
193 (qmax (math-max-list (car qdata) (cdr qdata))) | |
194 (a (math-neg (math-div (nth 1 lsdata) (nth 0 lsdata))))) | |
195 (if (math-lessp a qmax) | |
196 (math-add '(float 5 -1) qmax) | |
197 a))) | |
198 | |
199 (defun math-nlfit-find-logistic-parameters (qdata pdata tdata) | |
200 (let* ((a (math-nlfit-find-qmax qdata pdata tdata)) | |
201 (newqdata | |
202 (mapcar (lambda (q) (calcFunc-ln (math-sub (math-div a q) 1))) | |
203 qdata)) | |
204 (bandc (math-nlfit-least-squares tdata newqdata))) | |
205 (list | |
206 a | |
207 (calcFunc-exp (nth 0 bandc)) | |
208 (nth 1 bandc)))) | |
209 | |
210 ;;; Next, given the pdata and tdata, we can find the qdata if we know q0. | |
211 ;;; We first try to find q0, using the fact that when p takes on its largest | |
212 ;;; value, q is half of its maximum value. So we'll find the maximum value | |
213 ;;; of q given various q0, and use bisection to approximate the correct q0. | |
214 | |
215 ;;; First, given pdata and tdata, find what half of qmax would be if q0=0. | |
216 | |
217 (defun math-nlfit-find-qmaxhalf (pdata tdata) | |
218 (let ((pmax (math-max-list (car pdata) (cdr pdata))) | |
219 (qmh 0)) | |
220 (while (math-lessp (car pdata) pmax) | |
221 (setq qmh | |
222 (math-add qmh | |
223 (math-mul | |
224 (math-mul | |
225 '(float 5 -1) | |
226 (math-add (nth 1 pdata) (nth 0 pdata))) | |
227 (math-sub (nth 1 tdata) | |
228 (nth 0 tdata))))) | |
229 (setq pdata (cdr pdata)) | |
230 (setq tdata (cdr tdata))) | |
231 qmh)) | |
232 | |
233 ;;; Next, given pdata and tdata, approximate q0. | |
234 | |
235 (defun math-nlfit-find-q0 (pdata tdata) | |
236 (let* ((qhalf (math-nlfit-find-qmaxhalf pdata tdata)) | |
237 (q0 (math-mul 2 qhalf)) | |
238 (qdata (math-nlfit-get-cumul-from-rates tdata pdata q0))) | |
239 (while (math-lessp (math-nlfit-find-qmax | |
240 (mapcar | |
241 (lambda (q) (math-add q0 q)) | |
242 qdata) | |
243 pdata tdata) | |
244 (math-mul | |
245 '(float 5 -1) | |
246 (math-add | |
247 q0 | |
248 qhalf))) | |
249 (setq q0 (math-add q0 qhalf))) | |
250 (let* ((qmin (math-sub q0 qhalf)) | |
251 (qmax q0) | |
252 (qt (math-nlfit-find-qmax | |
253 (mapcar | |
254 (lambda (q) (math-add q0 q)) | |
255 qdata) | |
256 pdata tdata)) | |
257 (i 0)) | |
258 (while (< i 10) | |
259 (setq q0 (math-mul '(float 5 -1) (math-add qmin qmax))) | |
260 (if (math-lessp | |
261 (math-nlfit-find-qmax | |
262 (mapcar | |
263 (lambda (q) (math-add q0 q)) | |
264 qdata) | |
265 pdata tdata) | |
266 (math-mul '(float 5 -1) (math-add qhalf q0))) | |
267 (setq qmin q0) | |
268 (setq qmax q0)) | |
269 (setq i (1+ i))) | |
270 (math-mul '(float 5 -1) (math-add qmin qmax))))) | |
271 | |
272 ;;; To improve the approximations to the parameters, we can use | |
273 ;;; Marquardt method as described in Schwarz's book. | |
274 | |
275 ;;; Small numbers used in the Givens algorithm | |
276 (defvar math-nlfit-delta '(float 1 -8)) | |
277 | |
278 (defvar math-nlfit-epsilon '(float 1 -5)) | |
279 | |
280 ;;; Maximum number of iterations | |
281 (defvar math-nlfit-max-its 100) | |
282 | |
283 ;;; Next, we need some functions for dealing with vectors and | |
284 ;;; matrices. For convenience, we'll work with Emacs lists | |
285 ;;; as vectors, rather than Calc's vectors. | |
286 | |
287 (defun math-nlfit-set-elt (vec i x) | |
288 (setcar (nthcdr (1- i) vec) x)) | |
289 | |
290 (defun math-nlfit-get-elt (vec i) | |
291 (nth (1- i) vec)) | |
292 | |
293 (defun math-nlfit-make-matrix (i j) | |
294 (let ((row (make-list j 0)) | |
295 (mat nil) | |
296 (k 0)) | |
297 (while (< k i) | |
298 (setq mat (cons (copy-list row) mat)) | |
299 (setq k (1+ k))) | |
300 mat)) | |
301 | |
302 (defun math-nlfit-set-matx-elt (mat i j x) | |
303 (setcar (nthcdr (1- j) (nth (1- i) mat)) x)) | |
304 | |
305 (defun math-nlfit-get-matx-elt (mat i j) | |
306 (nth (1- j) (nth (1- i) mat))) | |
307 | |
308 ;;; For solving the linearized system. | |
309 ;;; (The Givens method, from Schwarz.) | |
310 | |
311 (defun math-nlfit-givens (C d) | |
312 (let* ((C (copy-tree C)) | |
313 (d (copy-tree d)) | |
314 (n (length (car C))) | |
315 (N (length C)) | |
316 (j 1) | |
317 (r (make-list N 0)) | |
318 (x (make-list N 0)) | |
319 w | |
320 gamma | |
321 sigma | |
322 rho) | |
323 (while (<= j n) | |
324 (let ((i (1+ j))) | |
325 (while (<= i N) | |
326 (let ((cij (math-nlfit-get-matx-elt C i j)) | |
327 (cjj (math-nlfit-get-matx-elt C j j))) | |
328 (when (not (math-equal 0 cij)) | |
329 (if (math-lessp (calcFunc-abs cjj) | |
330 (math-mul math-nlfit-delta (calcFunc-abs cij))) | |
331 (setq w (math-neg cij) | |
332 gamma 0 | |
333 sigma 1 | |
334 rho 1) | |
335 (setq w (math-mul | |
336 (calcFunc-sign cjj) | |
337 (calcFunc-sqrt | |
338 (math-add | |
339 (math-mul cjj cjj) | |
340 (math-mul cij cij)))) | |
341 gamma (math-div cjj w) | |
342 sigma (math-neg (math-div cij w))) | |
343 (if (math-lessp (calcFunc-abs sigma) gamma) | |
344 (setq rho sigma) | |
345 (setq rho (math-div (calcFunc-sign sigma) gamma)))) | |
346 (setq cjj w | |
347 cij rho) | |
348 (math-nlfit-set-matx-elt C j j w) | |
349 (math-nlfit-set-matx-elt C i j rho) | |
350 (let ((k (1+ j))) | |
351 (while (<= k n) | |
352 (let* ((cjk (math-nlfit-get-matx-elt C j k)) | |
353 (cik (math-nlfit-get-matx-elt C i k)) | |
354 (h (math-sub | |
355 (math-mul gamma cjk) (math-mul sigma cik)))) | |
356 (setq cik (math-add | |
357 (math-mul sigma cjk) | |
358 (math-mul gamma cik))) | |
359 (setq cjk h) | |
360 (math-nlfit-set-matx-elt C i k cik) | |
361 (math-nlfit-set-matx-elt C j k cjk) | |
362 (setq k (1+ k))))) | |
363 (let* ((di (math-nlfit-get-elt d i)) | |
364 (dj (math-nlfit-get-elt d j)) | |
365 (h (math-sub | |
366 (math-mul gamma dj) | |
367 (math-mul sigma di)))) | |
368 (setq di (math-add | |
369 (math-mul sigma dj) | |
370 (math-mul gamma di))) | |
371 (setq dj h) | |
372 (math-nlfit-set-elt d i di) | |
373 (math-nlfit-set-elt d j dj)))) | |
374 (setq i (1+ i)))) | |
375 (setq j (1+ j))) | |
82279
3f6660bf6595
(math-nlfit-curve): Remove unnecessary variables.
Jay Belanger <jay.p.belanger@gmail.com>
parents:
82274
diff
changeset
|
376 (let ((i n) |
3f6660bf6595
(math-nlfit-curve): Remove unnecessary variables.
Jay Belanger <jay.p.belanger@gmail.com>
parents:
82274
diff
changeset
|
377 s) |
82260 | 378 (while (>= i 1) |
379 (math-nlfit-set-elt r i 0) | |
380 (setq s (math-nlfit-get-elt d i)) | |
381 (let ((k (1+ i))) | |
382 (while (<= k n) | |
383 (setq s (math-add s (math-mul (math-nlfit-get-matx-elt C i k) | |
384 (math-nlfit-get-elt x k)))) | |
385 (setq k (1+ k)))) | |
386 (math-nlfit-set-elt x i | |
387 (math-neg | |
388 (math-div s | |
389 (math-nlfit-get-matx-elt C i i)))) | |
390 (setq i (1- i)))) | |
391 (let ((i (1+ n))) | |
392 (while (<= i N) | |
393 (math-nlfit-set-elt r i (math-nlfit-get-elt d i)) | |
394 (setq i (1+ i)))) | |
395 (let ((j n)) | |
396 (while (>= j 1) | |
397 (let ((i N)) | |
398 (while (>= i (1+ j)) | |
399 (setq rho (math-nlfit-get-matx-elt C i j)) | |
400 (if (math-equal rho 1) | |
401 (setq gamma 0 | |
402 sigma 1) | |
403 (if (math-lessp (calcFunc-abs rho) 1) | |
404 (setq sigma rho | |
405 gamma (calcFunc-sqrt | |
406 (math-sub 1 (math-mul sigma sigma)))) | |
407 (setq gamma (math-div 1 (calcFunc-abs rho)) | |
408 sigma (math-mul (calcFunc-sign rho) | |
409 (calcFunc-sqrt | |
410 (math-sub 1 (math-mul gamma gamma))))))) | |
411 (let ((ri (math-nlfit-get-elt r i)) | |
82279
3f6660bf6595
(math-nlfit-curve): Remove unnecessary variables.
Jay Belanger <jay.p.belanger@gmail.com>
parents:
82274
diff
changeset
|
412 (rj (math-nlfit-get-elt r j)) |
3f6660bf6595
(math-nlfit-curve): Remove unnecessary variables.
Jay Belanger <jay.p.belanger@gmail.com>
parents:
82274
diff
changeset
|
413 h) |
82260 | 414 (setq h (math-add (math-mul gamma rj) |
415 (math-mul sigma ri))) | |
416 (setq ri (math-sub | |
417 (math-mul gamma ri) | |
418 (math-mul sigma rj))) | |
419 (setq rj h) | |
420 (math-nlfit-set-elt r i ri) | |
421 (math-nlfit-set-elt r j rj)) | |
422 (setq i (1- i)))) | |
423 (setq j (1- j)))) | |
424 | |
425 x)) | |
426 | |
427 (defun math-nlfit-jacobian (grad xlist parms &optional slist) | |
428 (let ((j nil)) | |
429 (while xlist | |
430 (let ((row (apply grad (car xlist) parms))) | |
431 (setq j | |
432 (cons | |
433 (if slist | |
434 (mapcar (lambda (x) (math-div x (car slist))) row) | |
435 row) | |
436 j))) | |
437 (setq slist (cdr slist)) | |
438 (setq xlist (cdr xlist))) | |
439 (reverse j))) | |
440 | |
441 (defun math-nlfit-make-ident (l n) | |
442 (let ((m (math-nlfit-make-matrix n n)) | |
443 (i 1)) | |
444 (while (<= i n) | |
445 (math-nlfit-set-matx-elt m i i l) | |
446 (setq i (1+ i))) | |
447 m)) | |
448 | |
449 (defun math-nlfit-chi-sq (xlist ylist parms fn &optional slist) | |
450 (let ((cs 0)) | |
451 (while xlist | |
452 (let ((c | |
453 (math-sub | |
454 (apply fn (car xlist) parms) | |
455 (car ylist)))) | |
456 (if slist | |
457 (setq c (math-div c (car slist)))) | |
458 (setq cs | |
459 (math-add cs | |
460 (math-mul c c)))) | |
461 (setq xlist (cdr xlist)) | |
462 (setq ylist (cdr ylist)) | |
463 (setq slist (cdr slist))) | |
464 cs)) | |
465 | |
466 (defun math-nlfit-init-lambda (C) | |
467 (let ((l 0) | |
468 (n (length (car C))) | |
469 (N (length C))) | |
470 (while C | |
471 (let ((row (car C))) | |
472 (while row | |
473 (setq l (math-add l (math-mul (car row) (car row)))) | |
474 (setq row (cdr row)))) | |
475 (setq C (cdr C))) | |
476 (calcFunc-sqrt (math-div l (math-mul n N))))) | |
477 | |
478 (defun math-nlfit-make-Ctilda (C l) | |
479 (let* ((n (length (car C))) | |
480 (bot (math-nlfit-make-ident l n))) | |
481 (append C bot))) | |
482 | |
483 (defun math-nlfit-make-d (fn xdata ydata parms &optional sdata) | |
484 (let ((d nil)) | |
485 (while xdata | |
486 (setq d (cons | |
487 (let ((dd (math-sub (apply fn (car xdata) parms) | |
488 (car ydata)))) | |
489 (if sdata (math-div dd (car sdata)) dd)) | |
490 d)) | |
491 (setq xdata (cdr xdata)) | |
492 (setq ydata (cdr ydata)) | |
493 (setq sdata (cdr sdata))) | |
494 (reverse d))) | |
495 | |
496 (defun math-nlfit-make-dtilda (d n) | |
497 (append d (make-list n 0))) | |
498 | |
499 (defun math-nlfit-fit (xlist ylist parms fn grad &optional slist) | |
500 (let* | |
501 ((C (math-nlfit-jacobian grad xlist parms slist)) | |
502 (d (math-nlfit-make-d fn xlist ylist parms slist)) | |
503 (chisq (math-nlfit-chi-sq xlist ylist parms fn slist)) | |
504 (lambda (math-nlfit-init-lambda C)) | |
505 (really-done nil) | |
506 (iters 0)) | |
507 (while (and | |
508 (not really-done) | |
509 (< iters math-nlfit-max-its)) | |
510 (setq iters (1+ iters)) | |
511 (let ((done nil)) | |
512 (while (not done) | |
513 (let* ((Ctilda (math-nlfit-make-Ctilda C lambda)) | |
514 (dtilda (math-nlfit-make-dtilda d (length (car C)))) | |
515 (zeta (math-nlfit-givens Ctilda dtilda)) | |
516 (newparms (mapcar* 'math-add (copy-tree parms) zeta)) | |
517 (newchisq (math-nlfit-chi-sq xlist ylist newparms fn slist))) | |
518 (if (math-lessp newchisq chisq) | |
519 (progn | |
520 (if (math-lessp | |
521 (math-div | |
522 (math-sub chisq newchisq) newchisq) math-nlfit-epsilon) | |
523 (setq really-done t)) | |
524 (setq lambda (math-div lambda 10)) | |
525 (setq chisq newchisq) | |
526 (setq parms newparms) | |
527 (setq done t)) | |
528 (setq lambda (math-mul lambda 10))))) | |
529 (setq C (math-nlfit-jacobian grad xlist parms slist)) | |
530 (setq d (math-nlfit-make-d fn xlist ylist parms slist)))) | |
531 (list chisq parms))) | |
532 | |
533 ;;; The functions that describe our models, and their gradients. | |
534 | |
535 (defun math-nlfit-s-logistic-fn (x a b c) | |
536 (math-div a (math-add 1 (math-mul b (calcFunc-exp (math-mul c x)))))) | |
537 | |
538 (defun math-nlfit-s-logistic-grad (x a b c) | |
539 (let* ((ep (calcFunc-exp (math-mul c x))) | |
540 (d (math-add 1 (math-mul b ep))) | |
541 (d2 (math-mul d d))) | |
542 (list | |
543 (math-div 1 d) | |
544 (math-neg (math-div (math-mul a ep) d2)) | |
545 (math-neg (math-div (math-mul a (math-mul b (math-mul x ep))) d2))))) | |
546 | |
547 (defun math-nlfit-b-logistic-fn (x a c d) | |
548 (let ((ex (calcFunc-exp (math-mul c (math-sub x d))))) | |
549 (math-div | |
550 (math-mul a ex) | |
551 (math-sqr | |
552 (math-add | |
553 1 ex))))) | |
554 | |
555 (defun math-nlfit-b-logistic-grad (x a c d) | |
556 (let* ((ex (calcFunc-exp (math-mul c (math-sub x d)))) | |
557 (ex1 (math-add 1 ex)) | |
558 (xd (math-sub x d))) | |
559 (list | |
560 (math-div | |
561 ex | |
562 (math-sqr ex1)) | |
563 (math-sub | |
564 (math-div | |
565 (math-mul a (math-mul xd ex)) | |
566 (math-sqr ex1)) | |
567 (math-div | |
568 (math-mul 2 (math-mul a (math-mul xd (math-sqr ex)))) | |
569 (math-pow ex1 3))) | |
570 (math-sub | |
571 (math-div | |
572 (math-mul 2 (math-mul a (math-mul c (math-sqr ex)))) | |
573 (math-pow ex1 3)) | |
574 (math-div | |
575 (math-mul a (math-mul c ex)) | |
576 (math-sqr ex1)))))) | |
577 | |
578 ;;; Functions to get the final covariance matrix and the sdevs | |
579 | |
580 (defun math-nlfit-find-covar (grad xlist pparms) | |
581 (let ((j nil)) | |
582 (while xlist | |
583 (setq j (cons (cons 'vec (apply grad (car xlist) pparms)) j)) | |
584 (setq xlist (cdr xlist))) | |
585 (setq j (cons 'vec (reverse j))) | |
586 (setq j | |
587 (math-mul | |
588 (calcFunc-trn j) j)) | |
589 (calcFunc-inv j))) | |
590 | |
591 (defun math-nlfit-get-sigmas (grad xlist pparms chisq) | |
592 (let* ((sgs nil) | |
593 (covar (math-nlfit-find-covar grad xlist pparms)) | |
594 (n (1- (length covar))) | |
595 (N (length xlist)) | |
596 (i 1)) | |
597 (when (> N n) | |
598 (while (<= i n) | |
599 (setq sgs (cons (calcFunc-sqrt (nth i (nth i covar))) sgs)) | |
600 (setq i (1+ i))) | |
601 (setq sgs (reverse sgs))) | |
602 (list sgs covar))) | |
603 | |
604 ;;; Now the Calc functions | |
605 | |
606 (defun math-nlfit-s-logistic-params (xdata ydata) | |
607 (let ((pdata (math-nlfit-get-rates-from-cumul xdata ydata))) | |
608 (math-nlfit-find-logistic-parameters ydata pdata xdata))) | |
609 | |
610 (defun math-nlfit-b-logistic-params (xdata ydata) | |
611 (let* ((q0 (math-nlfit-find-q0 ydata xdata)) | |
612 (qdata (math-nlfit-get-cumul-from-rates xdata ydata q0)) | |
613 (abc (math-nlfit-find-logistic-parameters qdata ydata xdata)) | |
614 (B (nth 1 abc)) | |
615 (C (nth 2 abc)) | |
616 (A (math-neg | |
617 (math-mul | |
618 (nth 0 abc) | |
619 (math-mul B C)))) | |
620 (D (math-neg (math-div (calcFunc-ln B) C))) | |
621 (A (math-div A B))) | |
622 (list A C D))) | |
623 | |
624 ;;; Some functions to turn the parameter lists and variables | |
625 ;;; into the appropriate functions. | |
626 | |
627 (defun math-nlfit-s-logistic-solnexpr (pms var) | |
628 (let ((a (nth 0 pms)) | |
629 (b (nth 1 pms)) | |
630 (c (nth 2 pms))) | |
631 (list '/ a | |
632 (list '+ | |
633 1 | |
634 (list '* | |
635 b | |
636 (calcFunc-exp | |
637 (list '* | |
638 c | |
639 var))))))) | |
640 | |
641 (defun math-nlfit-b-logistic-solnexpr (pms var) | |
642 (let ((a (nth 0 pms)) | |
643 (c (nth 1 pms)) | |
644 (d (nth 2 pms))) | |
645 (list '/ | |
646 (list '* | |
647 a | |
648 (calcFunc-exp | |
649 (list '* | |
650 c | |
651 (list '- var d)))) | |
652 (list '^ | |
653 (list '+ | |
654 1 | |
655 (calcFunc-exp | |
656 (list '* | |
657 c | |
658 (list '- var d)))) | |
659 2)))) | |
660 | |
661 (defun math-nlfit-enter-result (n prefix vals) | |
662 (setq calc-aborted-prefix prefix) | |
663 (calc-pop-push-record-list n prefix vals) | |
664 (calc-handle-whys)) | |
665 | |
666 (defun math-nlfit-fit-curve (fn grad solnexpr initparms &optional sdv) | |
667 (calc-slow-wrapper | |
668 (let* ((sdevv (or (eq sdv 'calcFunc-efit) (eq sdv 'calcFunc-xfit))) | |
669 (calc-display-working-message nil) | |
670 (data (calc-top 1)) | |
671 (xdata (cdr (car (cdr data)))) | |
672 (ydata (cdr (car (cdr (cdr data))))) | |
673 (sdata (if (math-contains-sdev-p ydata) | |
674 (mapcar (lambda (x) (math-get-sdev x t)) ydata) | |
675 nil)) | |
676 (ydata (mapcar (lambda (x) (math-get-value x)) ydata)) | |
677 (calc-curve-varnames nil) | |
678 (calc-curve-coefnames nil) | |
679 (calc-curve-nvars 1) | |
680 (fitvars (calc-get-fit-variables 1 3)) | |
681 (var (nth 1 calc-curve-varnames)) | |
682 (parms (cdr calc-curve-coefnames)) | |
683 (parmguess | |
684 (funcall initparms xdata ydata)) | |
685 (fit (math-nlfit-fit xdata ydata parmguess fn grad sdata)) | |
686 (finalparms (nth 1 fit)) | |
687 (sigmacovar | |
688 (if sdevv | |
689 (math-nlfit-get-sigmas grad xdata finalparms (nth 0 fit)))) | |
690 (sigmas | |
691 (if sdevv | |
692 (nth 0 sigmacovar))) | |
693 (finalparms | |
694 (if sigmas | |
695 (mapcar* (lambda (x y) (list 'sdev x y)) finalparms sigmas) | |
696 finalparms)) | |
697 (soln (funcall solnexpr finalparms var))) | |
698 (let ((calc-fit-to-trail t) | |
699 (traillist nil)) | |
700 (while parms | |
701 (setq traillist (cons (list 'calcFunc-eq (car parms) (car finalparms)) | |
702 traillist)) | |
703 (setq finalparms (cdr finalparms)) | |
704 (setq parms (cdr parms))) | |
705 (setq traillist (calc-normalize (cons 'vec (nreverse traillist)))) | |
706 (cond ((eq sdv 'calcFunc-efit) | |
707 (math-nlfit-enter-result 1 "efit" soln)) | |
708 ((eq sdv 'calcFunc-xfit) | |
709 (let (sln) | |
710 (setq sln | |
711 (list 'vec | |
712 soln | |
713 traillist | |
714 (nth 1 sigmacovar) | |
715 '(vec) | |
716 (nth 0 fit) | |
717 (let ((n (length xdata)) | |
718 (m (length finalparms))) | |
719 (if (and sdata (> n m)) | |
720 (calcFunc-utpc (nth 0 fit) | |
721 (- n m)) | |
722 '(var nan var-nan))))) | |
723 (math-nlfit-enter-result 1 "xfit" sln))) | |
724 (t | |
725 (math-nlfit-enter-result 1 "fit" soln))) | |
726 (calc-record traillist "parm"))))) | |
727 | |
728 (defun calc-fit-s-shaped-logistic-curve (arg) | |
729 (interactive "P") | |
730 (math-nlfit-fit-curve 'math-nlfit-s-logistic-fn | |
731 'math-nlfit-s-logistic-grad | |
732 'math-nlfit-s-logistic-solnexpr | |
733 'math-nlfit-s-logistic-params | |
734 arg)) | |
735 | |
736 (defun calc-fit-bell-shaped-logistic-curve (arg) | |
737 (interactive "P") | |
738 (math-nlfit-fit-curve 'math-nlfit-b-logistic-fn | |
739 'math-nlfit-b-logistic-grad | |
740 'math-nlfit-b-logistic-solnexpr | |
741 'math-nlfit-b-logistic-params | |
742 arg)) | |
743 | |
744 (defun calc-fit-hubbert-linear-curve (&optional sdv) | |
745 (calc-slow-wrapper | |
746 (let* ((sdevv (or (eq sdv 'calcFunc-efit) (eq sdv 'calcFunc-xfit))) | |
747 (calc-display-working-message nil) | |
748 (data (calc-top 1)) | |
749 (qdata (cdr (car (cdr data)))) | |
750 (pdata (cdr (car (cdr (cdr data))))) | |
751 (sdata (if (math-contains-sdev-p pdata) | |
752 (mapcar (lambda (x) (math-get-sdev x t)) pdata) | |
753 nil)) | |
754 (pdata (mapcar (lambda (x) (math-get-value x)) pdata)) | |
755 (poverqdata (mapcar* 'math-div pdata qdata)) | |
756 (parmvals (math-nlfit-least-squares qdata poverqdata sdata sdevv)) | |
757 (finalparms (list (nth 0 parmvals) | |
758 (math-neg | |
759 (math-div (nth 0 parmvals) | |
760 (nth 1 parmvals))))) | |
761 (calc-curve-varnames nil) | |
762 (calc-curve-coefnames nil) | |
763 (calc-curve-nvars 1) | |
764 (fitvars (calc-get-fit-variables 1 2)) | |
765 (var (nth 1 calc-curve-varnames)) | |
766 (parms (cdr calc-curve-coefnames)) | |
767 (soln (list '* (nth 0 finalparms) | |
768 (list '- 1 | |
769 (list '/ var (nth 1 finalparms)))))) | |
770 (let ((calc-fit-to-trail t) | |
771 (traillist nil)) | |
772 (setq traillist | |
773 (list 'vec | |
774 (list 'calcFunc-eq (nth 0 parms) (nth 0 finalparms)) | |
775 (list 'calcFunc-eq (nth 1 parms) (nth 1 finalparms)))) | |
776 (cond ((eq sdv 'calcFunc-efit) | |
777 (math-nlfit-enter-result 1 "efit" soln)) | |
778 ((eq sdv 'calcFunc-xfit) | |
779 (let (sln | |
780 (chisq | |
781 (math-nlfit-chi-sq | |
782 qdata poverqdata | |
783 (list (nth 1 (nth 0 finalparms)) | |
784 (nth 1 (nth 1 finalparms))) | |
785 (lambda (x a b) | |
786 (math-mul a | |
787 (math-sub | |
788 1 | |
789 (math-div x b)))) | |
790 sdata))) | |
791 (setq sln | |
792 (list 'vec | |
793 soln | |
794 traillist | |
795 (nth 2 parmvals) | |
796 (list | |
797 'vec | |
798 '(calcFunc-fitdummy 1) | |
799 (list 'calcFunc-neg | |
800 (list '/ | |
801 '(calcFunc-fitdummy 1) | |
802 '(calcFunc-fitdummy 2)))) | |
803 chisq | |
804 (let ((n (length qdata))) | |
805 (if (and sdata (> n 2)) | |
806 (calcFunc-utpc | |
807 chisq | |
808 (- n 2)) | |
809 '(var nan var-nan))))) | |
810 (math-nlfit-enter-result 1 "xfit" sln))) | |
811 (t | |
812 (math-nlfit-enter-result 1 "fit" soln))) | |
813 (calc-record traillist "parm"))))) | |
814 | |
815 (provide 'calc-nlfit) | |
82274 | 816 |
817 ;; arch-tag: 6eba3cd6-f48b-4a84-8174-10c15a024928 |