Mercurial > emacs
annotate doc/lispref/numbers.texi @ 109852:e56f669f17ce
initial imagemagick readme
author | Joakim <joakim@localhost.localdomain> |
---|---|
date | Wed, 12 May 2010 14:32:06 +0200 |
parents | 11f018190d5c |
children | 71353caf35e3 |
rev | line source |
---|---|
84091 | 1 @c -*-texinfo-*- |
2 @c This is part of the GNU Emacs Lisp Reference Manual. | |
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001, | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
4 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
5 @c Free Software Foundation, Inc. |
84091 | 6 @c See the file elisp.texi for copying conditions. |
84116
0ba80d073e27
(setfilename): Go up one more level to ../../info.
Glenn Morris <rgm@gnu.org>
parents:
84091
diff
changeset
|
7 @setfilename ../../info/numbers |
84091 | 8 @node Numbers, Strings and Characters, Lisp Data Types, Top |
9 @chapter Numbers | |
10 @cindex integers | |
11 @cindex numbers | |
12 | |
13 GNU Emacs supports two numeric data types: @dfn{integers} and | |
14 @dfn{floating point numbers}. Integers are whole numbers such as | |
15 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point | |
16 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or | |
17 2.71828. They can also be expressed in exponential notation: 1.5e2 | |
18 equals 150; in this example, @samp{e2} stands for ten to the second | |
19 power, and that is multiplied by 1.5. Floating point values are not | |
20 exact; they have a fixed, limited amount of precision. | |
21 | |
22 @menu | |
23 * Integer Basics:: Representation and range of integers. | |
24 * Float Basics:: Representation and range of floating point. | |
25 * Predicates on Numbers:: Testing for numbers. | |
26 * Comparison of Numbers:: Equality and inequality predicates. | |
27 * Numeric Conversions:: Converting float to integer and vice versa. | |
28 * Arithmetic Operations:: How to add, subtract, multiply and divide. | |
29 * Rounding Operations:: Explicitly rounding floating point numbers. | |
30 * Bitwise Operations:: Logical and, or, not, shifting. | |
31 * Math Functions:: Trig, exponential and logarithmic functions. | |
32 * Random Numbers:: Obtaining random integers, predictable or not. | |
33 @end menu | |
34 | |
35 @node Integer Basics | |
36 @comment node-name, next, previous, up | |
37 @section Integer Basics | |
38 | |
39 The range of values for an integer depends on the machine. The | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
40 minimum range is @minus{}536870912 to 536870911 (30 bits; i.e., |
84091 | 41 @ifnottex |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
42 -2**29 |
84091 | 43 @end ifnottex |
44 @tex | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
45 @math{-2^{29}} |
84091 | 46 @end tex |
47 to | |
48 @ifnottex | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
49 2**29 - 1), |
84091 | 50 @end ifnottex |
51 @tex | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
52 @math{2^{29}-1}), |
84091 | 53 @end tex |
54 but some machines may provide a wider range. Many examples in this | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
55 chapter assume an integer has 30 bits. |
84091 | 56 @cindex overflow |
57 | |
58 The Lisp reader reads an integer as a sequence of digits with optional | |
59 initial sign and optional final period. | |
60 | |
61 @example | |
62 1 ; @r{The integer 1.} | |
63 1. ; @r{The integer 1.} | |
64 +1 ; @r{Also the integer 1.} | |
65 -1 ; @r{The integer @minus{}1.} | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
66 1073741825 ; @r{Also the integer 1, due to overflow.} |
84091 | 67 0 ; @r{The integer 0.} |
68 -0 ; @r{The integer 0.} | |
69 @end example | |
70 | |
71 @cindex integers in specific radix | |
72 @cindex radix for reading an integer | |
73 @cindex base for reading an integer | |
74 @cindex hex numbers | |
75 @cindex octal numbers | |
76 @cindex reading numbers in hex, octal, and binary | |
77 The syntax for integers in bases other than 10 uses @samp{#} | |
78 followed by a letter that specifies the radix: @samp{b} for binary, | |
79 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to | |
80 specify radix @var{radix}. Case is not significant for the letter | |
81 that specifies the radix. Thus, @samp{#b@var{integer}} reads | |
82 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads | |
83 @var{integer} in radix @var{radix}. Allowed values of @var{radix} run | |
84 from 2 to 36. For example: | |
85 | |
86 @example | |
87 #b101100 @result{} 44 | |
88 #o54 @result{} 44 | |
89 #x2c @result{} 44 | |
90 #24r1k @result{} 44 | |
91 @end example | |
92 | |
93 To understand how various functions work on integers, especially the | |
94 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to | |
95 view the numbers in their binary form. | |
96 | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
97 In 30-bit binary, the decimal integer 5 looks like this: |
84091 | 98 |
99 @example | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
100 00 0000 0000 0000 0000 0000 0000 0101 |
84091 | 101 @end example |
102 | |
103 @noindent | |
104 (We have inserted spaces between groups of 4 bits, and two spaces | |
105 between groups of 8 bits, to make the binary integer easier to read.) | |
106 | |
107 The integer @minus{}1 looks like this: | |
108 | |
109 @example | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
110 11 1111 1111 1111 1111 1111 1111 1111 |
84091 | 111 @end example |
112 | |
113 @noindent | |
114 @cindex two's complement | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
115 @minus{}1 is represented as 30 ones. (This is called @dfn{two's |
84091 | 116 complement} notation.) |
117 | |
118 The negative integer, @minus{}5, is creating by subtracting 4 from | |
119 @minus{}1. In binary, the decimal integer 4 is 100. Consequently, | |
120 @minus{}5 looks like this: | |
121 | |
122 @example | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
123 11 1111 1111 1111 1111 1111 1111 1011 |
84091 | 124 @end example |
125 | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
126 In this implementation, the largest 30-bit binary integer value is |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
127 536,870,911 in decimal. In binary, it looks like this: |
84091 | 128 |
129 @example | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
130 01 1111 1111 1111 1111 1111 1111 1111 |
84091 | 131 @end example |
132 | |
133 Since the arithmetic functions do not check whether integers go | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
134 outside their range, when you add 1 to 536,870,911, the value is the |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
135 negative integer @minus{}536,870,912: |
84091 | 136 |
137 @example | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
138 (+ 1 536870911) |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
139 @result{} -536870912 |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
140 @result{} 10 0000 0000 0000 0000 0000 0000 0000 |
84091 | 141 @end example |
142 | |
143 Many of the functions described in this chapter accept markers for | |
144 arguments in place of numbers. (@xref{Markers}.) Since the actual | |
145 arguments to such functions may be either numbers or markers, we often | |
146 give these arguments the name @var{number-or-marker}. When the argument | |
147 value is a marker, its position value is used and its buffer is ignored. | |
148 | |
149 @defvar most-positive-fixnum | |
150 The value of this variable is the largest integer that Emacs Lisp | |
151 can handle. | |
152 @end defvar | |
153 | |
154 @defvar most-negative-fixnum | |
155 The value of this variable is the smallest integer that Emacs Lisp can | |
156 handle. It is negative. | |
157 @end defvar | |
158 | |
100026
ce90a3ecf576
(Integer Basics): Add an @xref to `max-char'.
Eli Zaretskii <eliz@gnu.org>
parents:
87649
diff
changeset
|
159 @xref{Character Codes, max-char}, for the maximum value of a valid |
ce90a3ecf576
(Integer Basics): Add an @xref to `max-char'.
Eli Zaretskii <eliz@gnu.org>
parents:
87649
diff
changeset
|
160 character codepoint. |
ce90a3ecf576
(Integer Basics): Add an @xref to `max-char'.
Eli Zaretskii <eliz@gnu.org>
parents:
87649
diff
changeset
|
161 |
84091 | 162 @node Float Basics |
163 @section Floating Point Basics | |
164 | |
165 Floating point numbers are useful for representing numbers that are | |
166 not integral. The precise range of floating point numbers is | |
167 machine-specific; it is the same as the range of the C data type | |
168 @code{double} on the machine you are using. | |
169 | |
170 The read-syntax for floating point numbers requires either a decimal | |
171 point (with at least one digit following), an exponent, or both. For | |
172 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and | |
173 @samp{.15e4} are five ways of writing a floating point number whose | |
174 value is 1500. They are all equivalent. You can also use a minus sign | |
175 to write negative floating point numbers, as in @samp{-1.0}. | |
176 | |
177 @cindex @acronym{IEEE} floating point | |
178 @cindex positive infinity | |
179 @cindex negative infinity | |
180 @cindex infinity | |
181 @cindex NaN | |
182 Most modern computers support the @acronym{IEEE} floating point standard, | |
183 which provides for positive infinity and negative infinity as floating point | |
184 values. It also provides for a class of values called NaN or | |
185 ``not-a-number''; numerical functions return such values in cases where | |
186 there is no correct answer. For example, @code{(/ 0.0 0.0)} returns a | |
187 NaN. For practical purposes, there's no significant difference between | |
188 different NaN values in Emacs Lisp, and there's no rule for precisely | |
189 which NaN value should be used in a particular case, so Emacs Lisp | |
190 doesn't try to distinguish them (but it does report the sign, if you | |
191 print it). Here are the read syntaxes for these special floating | |
192 point values: | |
193 | |
194 @table @asis | |
195 @item positive infinity | |
196 @samp{1.0e+INF} | |
197 @item negative infinity | |
198 @samp{-1.0e+INF} | |
199 @item Not-a-number | |
200 @samp{0.0e+NaN} or @samp{-0.0e+NaN}. | |
201 @end table | |
202 | |
203 To test whether a floating point value is a NaN, compare it with | |
204 itself using @code{=}. That returns @code{nil} for a NaN, and | |
205 @code{t} for any other floating point value. | |
206 | |
207 The value @code{-0.0} is distinguishable from ordinary zero in | |
208 @acronym{IEEE} floating point, but Emacs Lisp @code{equal} and | |
209 @code{=} consider them equal values. | |
210 | |
211 You can use @code{logb} to extract the binary exponent of a floating | |
212 point number (or estimate the logarithm of an integer): | |
213 | |
214 @defun logb number | |
215 This function returns the binary exponent of @var{number}. More | |
216 precisely, the value is the logarithm of @var{number} base 2, rounded | |
217 down to an integer. | |
218 | |
219 @example | |
220 (logb 10) | |
221 @result{} 3 | |
222 (logb 10.0e20) | |
223 @result{} 69 | |
224 @end example | |
225 @end defun | |
226 | |
227 @node Predicates on Numbers | |
228 @section Type Predicates for Numbers | |
229 @cindex predicates for numbers | |
230 | |
231 The functions in this section test for numbers, or for a specific | |
232 type of number. The functions @code{integerp} and @code{floatp} can | |
233 take any type of Lisp object as argument (they would not be of much | |
234 use otherwise), but the @code{zerop} predicate requires a number as | |
235 its argument. See also @code{integer-or-marker-p} and | |
236 @code{number-or-marker-p}, in @ref{Predicates on Markers}. | |
237 | |
238 @defun floatp object | |
239 This predicate tests whether its argument is a floating point | |
240 number and returns @code{t} if so, @code{nil} otherwise. | |
241 | |
242 @code{floatp} does not exist in Emacs versions 18 and earlier. | |
243 @end defun | |
244 | |
245 @defun integerp object | |
246 This predicate tests whether its argument is an integer, and returns | |
247 @code{t} if so, @code{nil} otherwise. | |
248 @end defun | |
249 | |
250 @defun numberp object | |
251 This predicate tests whether its argument is a number (either integer or | |
252 floating point), and returns @code{t} if so, @code{nil} otherwise. | |
253 @end defun | |
254 | |
255 @defun wholenump object | |
256 @cindex natural numbers | |
257 The @code{wholenump} predicate (whose name comes from the phrase | |
258 ``whole-number-p'') tests to see whether its argument is a nonnegative | |
259 integer, and returns @code{t} if so, @code{nil} otherwise. 0 is | |
260 considered non-negative. | |
261 | |
262 @findex natnump | |
263 @code{natnump} is an obsolete synonym for @code{wholenump}. | |
264 @end defun | |
265 | |
266 @defun zerop number | |
267 This predicate tests whether its argument is zero, and returns @code{t} | |
268 if so, @code{nil} otherwise. The argument must be a number. | |
269 | |
270 @code{(zerop x)} is equivalent to @code{(= x 0)}. | |
271 @end defun | |
272 | |
273 @node Comparison of Numbers | |
274 @section Comparison of Numbers | |
275 @cindex number comparison | |
276 @cindex comparing numbers | |
277 | |
278 To test numbers for numerical equality, you should normally use | |
279 @code{=}, not @code{eq}. There can be many distinct floating point | |
280 number objects with the same numeric value. If you use @code{eq} to | |
281 compare them, then you test whether two values are the same | |
282 @emph{object}. By contrast, @code{=} compares only the numeric values | |
283 of the objects. | |
284 | |
285 At present, each integer value has a unique Lisp object in Emacs Lisp. | |
286 Therefore, @code{eq} is equivalent to @code{=} where integers are | |
287 concerned. It is sometimes convenient to use @code{eq} for comparing an | |
288 unknown value with an integer, because @code{eq} does not report an | |
289 error if the unknown value is not a number---it accepts arguments of any | |
290 type. By contrast, @code{=} signals an error if the arguments are not | |
291 numbers or markers. However, it is a good idea to use @code{=} if you | |
292 can, even for comparing integers, just in case we change the | |
293 representation of integers in a future Emacs version. | |
294 | |
295 Sometimes it is useful to compare numbers with @code{equal}; it | |
296 treats two numbers as equal if they have the same data type (both | |
297 integers, or both floating point) and the same value. By contrast, | |
298 @code{=} can treat an integer and a floating point number as equal. | |
299 @xref{Equality Predicates}. | |
300 | |
301 There is another wrinkle: because floating point arithmetic is not | |
302 exact, it is often a bad idea to check for equality of two floating | |
303 point values. Usually it is better to test for approximate equality. | |
304 Here's a function to do this: | |
305 | |
306 @example | |
307 (defvar fuzz-factor 1.0e-6) | |
308 (defun approx-equal (x y) | |
309 (or (and (= x 0) (= y 0)) | |
310 (< (/ (abs (- x y)) | |
311 (max (abs x) (abs y))) | |
312 fuzz-factor))) | |
313 @end example | |
314 | |
315 @cindex CL note---integers vrs @code{eq} | |
316 @quotation | |
317 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires | |
318 @code{=} because Common Lisp implements multi-word integers, and two | |
319 distinct integer objects can have the same numeric value. Emacs Lisp | |
320 can have just one integer object for any given value because it has a | |
321 limited range of integer values. | |
322 @end quotation | |
323 | |
324 @defun = number-or-marker1 number-or-marker2 | |
325 This function tests whether its arguments are numerically equal, and | |
326 returns @code{t} if so, @code{nil} otherwise. | |
327 @end defun | |
328 | |
329 @defun eql value1 value2 | |
330 This function acts like @code{eq} except when both arguments are | |
331 numbers. It compares numbers by type and numeric value, so that | |
332 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and | |
333 @code{(eql 1 1)} both return @code{t}. | |
334 @end defun | |
335 | |
336 @defun /= number-or-marker1 number-or-marker2 | |
337 This function tests whether its arguments are numerically equal, and | |
338 returns @code{t} if they are not, and @code{nil} if they are. | |
339 @end defun | |
340 | |
341 @defun < number-or-marker1 number-or-marker2 | |
342 This function tests whether its first argument is strictly less than | |
343 its second argument. It returns @code{t} if so, @code{nil} otherwise. | |
344 @end defun | |
345 | |
346 @defun <= number-or-marker1 number-or-marker2 | |
347 This function tests whether its first argument is less than or equal | |
348 to its second argument. It returns @code{t} if so, @code{nil} | |
349 otherwise. | |
350 @end defun | |
351 | |
352 @defun > number-or-marker1 number-or-marker2 | |
353 This function tests whether its first argument is strictly greater | |
354 than its second argument. It returns @code{t} if so, @code{nil} | |
355 otherwise. | |
356 @end defun | |
357 | |
358 @defun >= number-or-marker1 number-or-marker2 | |
359 This function tests whether its first argument is greater than or | |
360 equal to its second argument. It returns @code{t} if so, @code{nil} | |
361 otherwise. | |
362 @end defun | |
363 | |
364 @defun max number-or-marker &rest numbers-or-markers | |
365 This function returns the largest of its arguments. | |
366 If any of the arguments is floating-point, the value is returned | |
367 as floating point, even if it was given as an integer. | |
368 | |
369 @example | |
370 (max 20) | |
371 @result{} 20 | |
372 (max 1 2.5) | |
373 @result{} 2.5 | |
374 (max 1 3 2.5) | |
375 @result{} 3.0 | |
376 @end example | |
377 @end defun | |
378 | |
379 @defun min number-or-marker &rest numbers-or-markers | |
380 This function returns the smallest of its arguments. | |
381 If any of the arguments is floating-point, the value is returned | |
382 as floating point, even if it was given as an integer. | |
383 | |
384 @example | |
385 (min -4 1) | |
386 @result{} -4 | |
387 @end example | |
388 @end defun | |
389 | |
390 @defun abs number | |
391 This function returns the absolute value of @var{number}. | |
392 @end defun | |
393 | |
394 @node Numeric Conversions | |
395 @section Numeric Conversions | |
396 @cindex rounding in conversions | |
397 @cindex number conversions | |
398 @cindex converting numbers | |
399 | |
400 To convert an integer to floating point, use the function @code{float}. | |
401 | |
402 @defun float number | |
403 This returns @var{number} converted to floating point. | |
404 If @var{number} is already a floating point number, @code{float} returns | |
405 it unchanged. | |
406 @end defun | |
407 | |
408 There are four functions to convert floating point numbers to integers; | |
409 they differ in how they round. All accept an argument @var{number} | |
410 and an optional argument @var{divisor}. Both arguments may be | |
411 integers or floating point numbers. @var{divisor} may also be | |
412 @code{nil}. If @var{divisor} is @code{nil} or omitted, these | |
413 functions convert @var{number} to an integer, or return it unchanged | |
414 if it already is an integer. If @var{divisor} is non-@code{nil}, they | |
415 divide @var{number} by @var{divisor} and convert the result to an | |
416 integer. An @code{arith-error} results if @var{divisor} is 0. | |
417 | |
418 @defun truncate number &optional divisor | |
419 This returns @var{number}, converted to an integer by rounding towards | |
420 zero. | |
421 | |
422 @example | |
423 (truncate 1.2) | |
424 @result{} 1 | |
425 (truncate 1.7) | |
426 @result{} 1 | |
427 (truncate -1.2) | |
428 @result{} -1 | |
429 (truncate -1.7) | |
430 @result{} -1 | |
431 @end example | |
432 @end defun | |
433 | |
434 @defun floor number &optional divisor | |
435 This returns @var{number}, converted to an integer by rounding downward | |
436 (towards negative infinity). | |
437 | |
438 If @var{divisor} is specified, this uses the kind of division | |
439 operation that corresponds to @code{mod}, rounding downward. | |
440 | |
441 @example | |
442 (floor 1.2) | |
443 @result{} 1 | |
444 (floor 1.7) | |
445 @result{} 1 | |
446 (floor -1.2) | |
447 @result{} -2 | |
448 (floor -1.7) | |
449 @result{} -2 | |
450 (floor 5.99 3) | |
451 @result{} 1 | |
452 @end example | |
453 @end defun | |
454 | |
455 @defun ceiling number &optional divisor | |
456 This returns @var{number}, converted to an integer by rounding upward | |
457 (towards positive infinity). | |
458 | |
459 @example | |
460 (ceiling 1.2) | |
461 @result{} 2 | |
462 (ceiling 1.7) | |
463 @result{} 2 | |
464 (ceiling -1.2) | |
465 @result{} -1 | |
466 (ceiling -1.7) | |
467 @result{} -1 | |
468 @end example | |
469 @end defun | |
470 | |
471 @defun round number &optional divisor | |
472 This returns @var{number}, converted to an integer by rounding towards the | |
473 nearest integer. Rounding a value equidistant between two integers | |
474 may choose the integer closer to zero, or it may prefer an even integer, | |
475 depending on your machine. | |
476 | |
477 @example | |
478 (round 1.2) | |
479 @result{} 1 | |
480 (round 1.7) | |
481 @result{} 2 | |
482 (round -1.2) | |
483 @result{} -1 | |
484 (round -1.7) | |
485 @result{} -2 | |
486 @end example | |
487 @end defun | |
488 | |
489 @node Arithmetic Operations | |
490 @section Arithmetic Operations | |
491 @cindex arithmetic operations | |
492 | |
493 Emacs Lisp provides the traditional four arithmetic operations: | |
494 addition, subtraction, multiplication, and division. Remainder and modulus | |
495 functions supplement the division functions. The functions to | |
496 add or subtract 1 are provided because they are traditional in Lisp and | |
497 commonly used. | |
498 | |
499 All of these functions except @code{%} return a floating point value | |
500 if any argument is floating. | |
501 | |
502 It is important to note that in Emacs Lisp, arithmetic functions | |
503 do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to | |
504 @minus{}268435456, depending on your hardware. | |
505 | |
506 @defun 1+ number-or-marker | |
507 This function returns @var{number-or-marker} plus 1. | |
508 For example, | |
509 | |
510 @example | |
511 (setq foo 4) | |
512 @result{} 4 | |
513 (1+ foo) | |
514 @result{} 5 | |
515 @end example | |
516 | |
517 This function is not analogous to the C operator @code{++}---it does not | |
518 increment a variable. It just computes a sum. Thus, if we continue, | |
519 | |
520 @example | |
521 foo | |
522 @result{} 4 | |
523 @end example | |
524 | |
525 If you want to increment the variable, you must use @code{setq}, | |
526 like this: | |
527 | |
528 @example | |
529 (setq foo (1+ foo)) | |
530 @result{} 5 | |
531 @end example | |
532 @end defun | |
533 | |
534 @defun 1- number-or-marker | |
535 This function returns @var{number-or-marker} minus 1. | |
536 @end defun | |
537 | |
538 @defun + &rest numbers-or-markers | |
539 This function adds its arguments together. When given no arguments, | |
540 @code{+} returns 0. | |
541 | |
542 @example | |
543 (+) | |
544 @result{} 0 | |
545 (+ 1) | |
546 @result{} 1 | |
547 (+ 1 2 3 4) | |
548 @result{} 10 | |
549 @end example | |
550 @end defun | |
551 | |
552 @defun - &optional number-or-marker &rest more-numbers-or-markers | |
553 The @code{-} function serves two purposes: negation and subtraction. | |
554 When @code{-} has a single argument, the value is the negative of the | |
555 argument. When there are multiple arguments, @code{-} subtracts each of | |
556 the @var{more-numbers-or-markers} from @var{number-or-marker}, | |
557 cumulatively. If there are no arguments, the result is 0. | |
558 | |
559 @example | |
560 (- 10 1 2 3 4) | |
561 @result{} 0 | |
562 (- 10) | |
563 @result{} -10 | |
564 (-) | |
565 @result{} 0 | |
566 @end example | |
567 @end defun | |
568 | |
569 @defun * &rest numbers-or-markers | |
570 This function multiplies its arguments together, and returns the | |
571 product. When given no arguments, @code{*} returns 1. | |
572 | |
573 @example | |
574 (*) | |
575 @result{} 1 | |
576 (* 1) | |
577 @result{} 1 | |
578 (* 1 2 3 4) | |
579 @result{} 24 | |
580 @end example | |
581 @end defun | |
582 | |
583 @defun / dividend divisor &rest divisors | |
584 This function divides @var{dividend} by @var{divisor} and returns the | |
585 quotient. If there are additional arguments @var{divisors}, then it | |
586 divides @var{dividend} by each divisor in turn. Each argument may be a | |
587 number or a marker. | |
588 | |
589 If all the arguments are integers, then the result is an integer too. | |
590 This means the result has to be rounded. On most machines, the result | |
591 is rounded towards zero after each division, but some machines may round | |
592 differently with negative arguments. This is because the Lisp function | |
593 @code{/} is implemented using the C division operator, which also | |
594 permits machine-dependent rounding. As a practical matter, all known | |
595 machines round in the standard fashion. | |
596 | |
597 @cindex @code{arith-error} in division | |
598 If you divide an integer by 0, an @code{arith-error} error is signaled. | |
599 (@xref{Errors}.) Floating point division by zero returns either | |
600 infinity or a NaN if your machine supports @acronym{IEEE} floating point; | |
601 otherwise, it signals an @code{arith-error} error. | |
602 | |
603 @example | |
604 @group | |
605 (/ 6 2) | |
606 @result{} 3 | |
607 @end group | |
608 (/ 5 2) | |
609 @result{} 2 | |
610 (/ 5.0 2) | |
611 @result{} 2.5 | |
612 (/ 5 2.0) | |
613 @result{} 2.5 | |
614 (/ 5.0 2.0) | |
615 @result{} 2.5 | |
616 (/ 25 3 2) | |
617 @result{} 4 | |
618 @group | |
619 (/ -17 6) | |
620 @result{} -2 @r{(could in theory be @minus{}3 on some machines)} | |
621 @end group | |
622 @end example | |
623 @end defun | |
624 | |
625 @defun % dividend divisor | |
626 @cindex remainder | |
627 This function returns the integer remainder after division of @var{dividend} | |
628 by @var{divisor}. The arguments must be integers or markers. | |
629 | |
630 For negative arguments, the remainder is in principle machine-dependent | |
631 since the quotient is; but in practice, all known machines behave alike. | |
632 | |
633 An @code{arith-error} results if @var{divisor} is 0. | |
634 | |
635 @example | |
636 (% 9 4) | |
637 @result{} 1 | |
638 (% -9 4) | |
639 @result{} -1 | |
640 (% 9 -4) | |
641 @result{} 1 | |
642 (% -9 -4) | |
643 @result{} -1 | |
644 @end example | |
645 | |
646 For any two integers @var{dividend} and @var{divisor}, | |
647 | |
648 @example | |
649 @group | |
650 (+ (% @var{dividend} @var{divisor}) | |
651 (* (/ @var{dividend} @var{divisor}) @var{divisor})) | |
652 @end group | |
653 @end example | |
654 | |
655 @noindent | |
656 always equals @var{dividend}. | |
657 @end defun | |
658 | |
659 @defun mod dividend divisor | |
660 @cindex modulus | |
661 This function returns the value of @var{dividend} modulo @var{divisor}; | |
662 in other words, the remainder after division of @var{dividend} | |
663 by @var{divisor}, but with the same sign as @var{divisor}. | |
664 The arguments must be numbers or markers. | |
665 | |
666 Unlike @code{%}, @code{mod} returns a well-defined result for negative | |
667 arguments. It also permits floating point arguments; it rounds the | |
668 quotient downward (towards minus infinity) to an integer, and uses that | |
669 quotient to compute the remainder. | |
670 | |
671 An @code{arith-error} results if @var{divisor} is 0. | |
672 | |
673 @example | |
674 @group | |
675 (mod 9 4) | |
676 @result{} 1 | |
677 @end group | |
678 @group | |
679 (mod -9 4) | |
680 @result{} 3 | |
681 @end group | |
682 @group | |
683 (mod 9 -4) | |
684 @result{} -3 | |
685 @end group | |
686 @group | |
687 (mod -9 -4) | |
688 @result{} -1 | |
689 @end group | |
690 @group | |
691 (mod 5.5 2.5) | |
692 @result{} .5 | |
693 @end group | |
694 @end example | |
695 | |
696 For any two numbers @var{dividend} and @var{divisor}, | |
697 | |
698 @example | |
699 @group | |
700 (+ (mod @var{dividend} @var{divisor}) | |
701 (* (floor @var{dividend} @var{divisor}) @var{divisor})) | |
702 @end group | |
703 @end example | |
704 | |
705 @noindent | |
706 always equals @var{dividend}, subject to rounding error if either | |
707 argument is floating point. For @code{floor}, see @ref{Numeric | |
708 Conversions}. | |
709 @end defun | |
710 | |
711 @node Rounding Operations | |
712 @section Rounding Operations | |
713 @cindex rounding without conversion | |
714 | |
715 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and | |
716 @code{ftruncate} take a floating point argument and return a floating | |
717 point result whose value is a nearby integer. @code{ffloor} returns the | |
718 nearest integer below; @code{fceiling}, the nearest integer above; | |
719 @code{ftruncate}, the nearest integer in the direction towards zero; | |
720 @code{fround}, the nearest integer. | |
721 | |
722 @defun ffloor float | |
723 This function rounds @var{float} to the next lower integral value, and | |
724 returns that value as a floating point number. | |
725 @end defun | |
726 | |
727 @defun fceiling float | |
728 This function rounds @var{float} to the next higher integral value, and | |
729 returns that value as a floating point number. | |
730 @end defun | |
731 | |
732 @defun ftruncate float | |
733 This function rounds @var{float} towards zero to an integral value, and | |
734 returns that value as a floating point number. | |
735 @end defun | |
736 | |
737 @defun fround float | |
738 This function rounds @var{float} to the nearest integral value, | |
739 and returns that value as a floating point number. | |
740 @end defun | |
741 | |
742 @node Bitwise Operations | |
743 @section Bitwise Operations on Integers | |
744 @cindex bitwise arithmetic | |
745 @cindex logical arithmetic | |
746 | |
747 In a computer, an integer is represented as a binary number, a | |
748 sequence of @dfn{bits} (digits which are either zero or one). A bitwise | |
749 operation acts on the individual bits of such a sequence. For example, | |
750 @dfn{shifting} moves the whole sequence left or right one or more places, | |
751 reproducing the same pattern ``moved over.'' | |
752 | |
753 The bitwise operations in Emacs Lisp apply only to integers. | |
754 | |
755 @defun lsh integer1 count | |
756 @cindex logical shift | |
757 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the | |
758 bits in @var{integer1} to the left @var{count} places, or to the right | |
759 if @var{count} is negative, bringing zeros into the vacated bits. If | |
760 @var{count} is negative, @code{lsh} shifts zeros into the leftmost | |
761 (most-significant) bit, producing a positive result even if | |
762 @var{integer1} is negative. Contrast this with @code{ash}, below. | |
763 | |
764 Here are two examples of @code{lsh}, shifting a pattern of bits one | |
765 place to the left. We show only the low-order eight bits of the binary | |
766 pattern; the rest are all zero. | |
767 | |
768 @example | |
769 @group | |
770 (lsh 5 1) | |
771 @result{} 10 | |
772 ;; @r{Decimal 5 becomes decimal 10.} | |
773 00000101 @result{} 00001010 | |
774 | |
775 (lsh 7 1) | |
776 @result{} 14 | |
777 ;; @r{Decimal 7 becomes decimal 14.} | |
778 00000111 @result{} 00001110 | |
779 @end group | |
780 @end example | |
781 | |
782 @noindent | |
783 As the examples illustrate, shifting the pattern of bits one place to | |
784 the left produces a number that is twice the value of the previous | |
785 number. | |
786 | |
787 Shifting a pattern of bits two places to the left produces results | |
788 like this (with 8-bit binary numbers): | |
789 | |
790 @example | |
791 @group | |
792 (lsh 3 2) | |
793 @result{} 12 | |
794 ;; @r{Decimal 3 becomes decimal 12.} | |
795 00000011 @result{} 00001100 | |
796 @end group | |
797 @end example | |
798 | |
799 On the other hand, shifting one place to the right looks like this: | |
800 | |
801 @example | |
802 @group | |
803 (lsh 6 -1) | |
804 @result{} 3 | |
805 ;; @r{Decimal 6 becomes decimal 3.} | |
806 00000110 @result{} 00000011 | |
807 @end group | |
808 | |
809 @group | |
810 (lsh 5 -1) | |
811 @result{} 2 | |
812 ;; @r{Decimal 5 becomes decimal 2.} | |
813 00000101 @result{} 00000010 | |
814 @end group | |
815 @end example | |
816 | |
817 @noindent | |
818 As the example illustrates, shifting one place to the right divides the | |
819 value of a positive integer by two, rounding downward. | |
820 | |
821 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does | |
822 not check for overflow, so shifting left can discard significant bits | |
823 and change the sign of the number. For example, left shifting | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
824 536,870,911 produces @minus{}2 on a 30-bit machine: |
84091 | 825 |
826 @example | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
827 (lsh 536870911 1) ; @r{left shift} |
84091 | 828 @result{} -2 |
829 @end example | |
830 | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
831 In binary, in the 30-bit implementation, the argument looks like this: |
84091 | 832 |
833 @example | |
834 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
835 ;; @r{Decimal 536,870,911} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
836 01 1111 1111 1111 1111 1111 1111 1111 |
84091 | 837 @end group |
838 @end example | |
839 | |
840 @noindent | |
841 which becomes the following when left shifted: | |
842 | |
843 @example | |
844 @group | |
845 ;; @r{Decimal @minus{}2} | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
846 11 1111 1111 1111 1111 1111 1111 1110 |
84091 | 847 @end group |
848 @end example | |
849 @end defun | |
850 | |
851 @defun ash integer1 count | |
852 @cindex arithmetic shift | |
853 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1} | |
854 to the left @var{count} places, or to the right if @var{count} | |
855 is negative. | |
856 | |
857 @code{ash} gives the same results as @code{lsh} except when | |
858 @var{integer1} and @var{count} are both negative. In that case, | |
859 @code{ash} puts ones in the empty bit positions on the left, while | |
860 @code{lsh} puts zeros in those bit positions. | |
861 | |
862 Thus, with @code{ash}, shifting the pattern of bits one place to the right | |
863 looks like this: | |
864 | |
865 @example | |
866 @group | |
867 (ash -6 -1) @result{} -3 | |
868 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.} | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
869 11 1111 1111 1111 1111 1111 1111 1010 |
84091 | 870 @result{} |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
871 11 1111 1111 1111 1111 1111 1111 1101 |
84091 | 872 @end group |
873 @end example | |
874 | |
875 In contrast, shifting the pattern of bits one place to the right with | |
876 @code{lsh} looks like this: | |
877 | |
878 @example | |
879 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
880 (lsh -6 -1) @result{} 536870909 |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
881 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
882 11 1111 1111 1111 1111 1111 1111 1010 |
84091 | 883 @result{} |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
884 01 1111 1111 1111 1111 1111 1111 1101 |
84091 | 885 @end group |
886 @end example | |
887 | |
888 Here are other examples: | |
889 | |
890 @c !!! Check if lined up in smallbook format! XDVI shows problem | |
891 @c with smallbook but not with regular book! --rjc 16mar92 | |
892 @smallexample | |
893 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
894 ; @r{ 30-bit binary values} |
84091 | 895 |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
896 (lsh 5 2) ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
897 @result{} 20 ; = @r{00 0000 0000 0000 0000 0000 0001 0100} |
84091 | 898 @end group |
899 @group | |
900 (ash 5 2) | |
901 @result{} 20 | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
902 (lsh -5 2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
903 @result{} -20 ; = @r{11 1111 1111 1111 1111 1111 1110 1100} |
84091 | 904 (ash -5 2) |
905 @result{} -20 | |
906 @end group | |
907 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
908 (lsh 5 -2) ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
909 @result{} 1 ; = @r{00 0000 0000 0000 0000 0000 0000 0001} |
84091 | 910 @end group |
911 @group | |
912 (ash 5 -2) | |
913 @result{} 1 | |
914 @end group | |
915 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
916 (lsh -5 -2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
917 @result{} 268435454 ; = @r{00 0111 1111 1111 1111 1111 1111 1110} |
84091 | 918 @end group |
919 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
920 (ash -5 -2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
921 @result{} -2 ; = @r{11 1111 1111 1111 1111 1111 1111 1110} |
84091 | 922 @end group |
923 @end smallexample | |
924 @end defun | |
925 | |
926 @defun logand &rest ints-or-markers | |
927 This function returns the ``logical and'' of the arguments: the | |
928 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is | |
929 set in all the arguments. (``Set'' means that the value of the bit is 1 | |
930 rather than 0.) | |
931 | |
932 For example, using 4-bit binary numbers, the ``logical and'' of 13 and | |
933 12 is 12: 1101 combined with 1100 produces 1100. | |
934 In both the binary numbers, the leftmost two bits are set (i.e., they | |
935 are 1's), so the leftmost two bits of the returned value are set. | |
936 However, for the rightmost two bits, each is zero in at least one of | |
937 the arguments, so the rightmost two bits of the returned value are 0's. | |
938 | |
939 @noindent | |
940 Therefore, | |
941 | |
942 @example | |
943 @group | |
944 (logand 13 12) | |
945 @result{} 12 | |
946 @end group | |
947 @end example | |
948 | |
949 If @code{logand} is not passed any argument, it returns a value of | |
950 @minus{}1. This number is an identity element for @code{logand} | |
951 because its binary representation consists entirely of ones. If | |
952 @code{logand} is passed just one argument, it returns that argument. | |
953 | |
954 @smallexample | |
955 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
956 ; @r{ 30-bit binary values} |
84091 | 957 |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
958 (logand 14 13) ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
959 ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
960 @result{} 12 ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100} |
84091 | 961 @end group |
962 | |
963 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
964 (logand 14 13 4) ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
965 ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
966 ; 4 = @r{00 0000 0000 0000 0000 0000 0000 0100} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
967 @result{} 4 ; 4 = @r{00 0000 0000 0000 0000 0000 0000 0100} |
84091 | 968 @end group |
969 | |
970 @group | |
971 (logand) | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
972 @result{} -1 ; -1 = @r{11 1111 1111 1111 1111 1111 1111 1111} |
84091 | 973 @end group |
974 @end smallexample | |
975 @end defun | |
976 | |
977 @defun logior &rest ints-or-markers | |
978 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit | |
979 is set in the result if, and only if, the @var{n}th bit is set in at least | |
980 one of the arguments. If there are no arguments, the result is zero, | |
981 which is an identity element for this operation. If @code{logior} is | |
982 passed just one argument, it returns that argument. | |
983 | |
984 @smallexample | |
985 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
986 ; @r{ 30-bit binary values} |
84091 | 987 |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
988 (logior 12 5) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
989 ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
990 @result{} 13 ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101} |
84091 | 991 @end group |
992 | |
993 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
994 (logior 12 5 7) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
995 ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
996 ; 7 = @r{00 0000 0000 0000 0000 0000 0000 0111} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
997 @result{} 15 ; 15 = @r{00 0000 0000 0000 0000 0000 0000 1111} |
84091 | 998 @end group |
999 @end smallexample | |
1000 @end defun | |
1001 | |
1002 @defun logxor &rest ints-or-markers | |
1003 This function returns the ``exclusive or'' of its arguments: the | |
1004 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is | |
1005 set in an odd number of the arguments. If there are no arguments, the | |
1006 result is 0, which is an identity element for this operation. If | |
1007 @code{logxor} is passed just one argument, it returns that argument. | |
1008 | |
1009 @smallexample | |
1010 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1011 ; @r{ 30-bit binary values} |
84091 | 1012 |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1013 (logxor 12 5) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1014 ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1015 @result{} 9 ; 9 = @r{00 0000 0000 0000 0000 0000 0000 1001} |
84091 | 1016 @end group |
1017 | |
1018 @group | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1019 (logxor 12 5 7) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1020 ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1021 ; 7 = @r{00 0000 0000 0000 0000 0000 0000 0111} |
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1022 @result{} 14 ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110} |
84091 | 1023 @end group |
1024 @end smallexample | |
1025 @end defun | |
1026 | |
1027 @defun lognot integer | |
1028 This function returns the logical complement of its argument: the @var{n}th | |
1029 bit is one in the result if, and only if, the @var{n}th bit is zero in | |
1030 @var{integer}, and vice-versa. | |
1031 | |
1032 @example | |
1033 (lognot 5) | |
1034 @result{} -6 | |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1035 ;; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101} |
84091 | 1036 ;; @r{becomes} |
107328
11f018190d5c
Update Lispref for 30-bit integers.
Glenn Morris <rgm@gnu.org>
parents:
106815
diff
changeset
|
1037 ;; -6 = @r{11 1111 1111 1111 1111 1111 1111 1010} |
84091 | 1038 @end example |
1039 @end defun | |
1040 | |
1041 @node Math Functions | |
1042 @section Standard Mathematical Functions | |
1043 @cindex transcendental functions | |
1044 @cindex mathematical functions | |
1045 @cindex floating-point functions | |
1046 | |
1047 These mathematical functions allow integers as well as floating point | |
1048 numbers as arguments. | |
1049 | |
1050 @defun sin arg | |
1051 @defunx cos arg | |
1052 @defunx tan arg | |
1053 These are the ordinary trigonometric functions, with argument measured | |
1054 in radians. | |
1055 @end defun | |
1056 | |
1057 @defun asin arg | |
1058 The value of @code{(asin @var{arg})} is a number between | |
1059 @ifnottex | |
1060 @minus{}pi/2 | |
1061 @end ifnottex | |
1062 @tex | |
1063 @math{-\pi/2} | |
1064 @end tex | |
1065 and | |
1066 @ifnottex | |
1067 pi/2 | |
1068 @end ifnottex | |
1069 @tex | |
1070 @math{\pi/2} | |
1071 @end tex | |
1072 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of | |
1073 range (outside [@minus{}1, 1]), it signals a @code{domain-error} error. | |
1074 @end defun | |
1075 | |
1076 @defun acos arg | |
1077 The value of @code{(acos @var{arg})} is a number between 0 and | |
1078 @ifnottex | |
1079 pi | |
1080 @end ifnottex | |
1081 @tex | |
1082 @math{\pi} | |
1083 @end tex | |
1084 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out | |
1085 of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error. | |
1086 @end defun | |
1087 | |
1088 @defun atan y &optional x | |
1089 The value of @code{(atan @var{y})} is a number between | |
1090 @ifnottex | |
1091 @minus{}pi/2 | |
1092 @end ifnottex | |
1093 @tex | |
1094 @math{-\pi/2} | |
1095 @end tex | |
1096 and | |
1097 @ifnottex | |
1098 pi/2 | |
1099 @end ifnottex | |
1100 @tex | |
1101 @math{\pi/2} | |
1102 @end tex | |
1103 (exclusive) whose tangent is @var{y}. If the optional second | |
1104 argument @var{x} is given, the value of @code{(atan y x)} is the | |
1105 angle in radians between the vector @code{[@var{x}, @var{y}]} and the | |
1106 @code{X} axis. | |
1107 @end defun | |
1108 | |
1109 @defun exp arg | |
1110 This is the exponential function; it returns | |
1111 @tex | |
1112 @math{e} | |
1113 @end tex | |
1114 @ifnottex | |
1115 @i{e} | |
1116 @end ifnottex | |
1117 to the power @var{arg}. | |
1118 @tex | |
1119 @math{e} | |
1120 @end tex | |
1121 @ifnottex | |
1122 @i{e} | |
1123 @end ifnottex | |
1124 is a fundamental mathematical constant also called the base of natural | |
1125 logarithms. | |
1126 @end defun | |
1127 | |
1128 @defun log arg &optional base | |
1129 This function returns the logarithm of @var{arg}, with base @var{base}. | |
1130 If you don't specify @var{base}, the base | |
1131 @tex | |
1132 @math{e} | |
1133 @end tex | |
1134 @ifnottex | |
1135 @i{e} | |
1136 @end ifnottex | |
1137 is used. If @var{arg} is negative, it signals a @code{domain-error} | |
1138 error. | |
1139 @end defun | |
1140 | |
1141 @ignore | |
1142 @defun expm1 arg | |
1143 This function returns @code{(1- (exp @var{arg}))}, but it is more | |
1144 accurate than that when @var{arg} is negative and @code{(exp @var{arg})} | |
1145 is close to 1. | |
1146 @end defun | |
1147 | |
1148 @defun log1p arg | |
1149 This function returns @code{(log (1+ @var{arg}))}, but it is more | |
1150 accurate than that when @var{arg} is so small that adding 1 to it would | |
1151 lose accuracy. | |
1152 @end defun | |
1153 @end ignore | |
1154 | |
1155 @defun log10 arg | |
1156 This function returns the logarithm of @var{arg}, with base 10. If | |
1157 @var{arg} is negative, it signals a @code{domain-error} error. | |
1158 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least | |
1159 approximately. | |
1160 @end defun | |
1161 | |
1162 @defun expt x y | |
1163 This function returns @var{x} raised to power @var{y}. If both | |
1164 arguments are integers and @var{y} is positive, the result is an | |
1165 integer; in this case, overflow causes truncation, so watch out. | |
1166 @end defun | |
1167 | |
1168 @defun sqrt arg | |
1169 This returns the square root of @var{arg}. If @var{arg} is negative, | |
1170 it signals a @code{domain-error} error. | |
1171 @end defun | |
1172 | |
1173 @node Random Numbers | |
1174 @section Random Numbers | |
1175 @cindex random numbers | |
1176 | |
1177 A deterministic computer program cannot generate true random numbers. | |
1178 For most purposes, @dfn{pseudo-random numbers} suffice. A series of | |
1179 pseudo-random numbers is generated in a deterministic fashion. The | |
1180 numbers are not truly random, but they have certain properties that | |
1181 mimic a random series. For example, all possible values occur equally | |
1182 often in a pseudo-random series. | |
1183 | |
1184 In Emacs, pseudo-random numbers are generated from a ``seed'' number. | |
1185 Starting from any given seed, the @code{random} function always | |
1186 generates the same sequence of numbers. Emacs always starts with the | |
1187 same seed value, so the sequence of values of @code{random} is actually | |
1188 the same in each Emacs run! For example, in one operating system, the | |
1189 first call to @code{(random)} after you start Emacs always returns | |
1190 @minus{}1457731, and the second one always returns @minus{}7692030. This | |
1191 repeatability is helpful for debugging. | |
1192 | |
1193 If you want random numbers that don't always come out the same, execute | |
1194 @code{(random t)}. This chooses a new seed based on the current time of | |
1195 day and on Emacs's process @acronym{ID} number. | |
1196 | |
1197 @defun random &optional limit | |
1198 This function returns a pseudo-random integer. Repeated calls return a | |
1199 series of pseudo-random integers. | |
1200 | |
1201 If @var{limit} is a positive integer, the value is chosen to be | |
1202 nonnegative and less than @var{limit}. | |
1203 | |
1204 If @var{limit} is @code{t}, it means to choose a new seed based on the | |
1205 current time of day and on Emacs's process @acronym{ID} number. | |
1206 @c "Emacs'" is incorrect usage! | |
1207 | |
1208 On some machines, any integer representable in Lisp may be the result | |
1209 of @code{random}. On other machines, the result can never be larger | |
1210 than a certain maximum or less than a certain (negative) minimum. | |
1211 @end defun | |
1212 | |
1213 @ignore | |
1214 arch-tag: 574e8dd2-d513-4616-9844-c9a27869782e | |
1215 @end ignore |