Mercurial > emacs
annotate doc/lispref/numbers.texi @ 94697:f8e080083e06
Update autoloads.
author | Juanma Barranquero <lekktu@gmail.com> |
---|---|
date | Tue, 06 May 2008 23:44:24 +0000 |
parents | 107ccd98fa12 |
children | ce90a3ecf576 |
rev | line source |
---|---|
84091 | 1 @c -*-texinfo-*- |
2 @c This is part of the GNU Emacs Lisp Reference Manual. | |
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001, | |
87649 | 4 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. |
84091 | 5 @c See the file elisp.texi for copying conditions. |
84116
0ba80d073e27
(setfilename): Go up one more level to ../../info.
Glenn Morris <rgm@gnu.org>
parents:
84091
diff
changeset
|
6 @setfilename ../../info/numbers |
84091 | 7 @node Numbers, Strings and Characters, Lisp Data Types, Top |
8 @chapter Numbers | |
9 @cindex integers | |
10 @cindex numbers | |
11 | |
12 GNU Emacs supports two numeric data types: @dfn{integers} and | |
13 @dfn{floating point numbers}. Integers are whole numbers such as | |
14 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point | |
15 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or | |
16 2.71828. They can also be expressed in exponential notation: 1.5e2 | |
17 equals 150; in this example, @samp{e2} stands for ten to the second | |
18 power, and that is multiplied by 1.5. Floating point values are not | |
19 exact; they have a fixed, limited amount of precision. | |
20 | |
21 @menu | |
22 * Integer Basics:: Representation and range of integers. | |
23 * Float Basics:: Representation and range of floating point. | |
24 * Predicates on Numbers:: Testing for numbers. | |
25 * Comparison of Numbers:: Equality and inequality predicates. | |
26 * Numeric Conversions:: Converting float to integer and vice versa. | |
27 * Arithmetic Operations:: How to add, subtract, multiply and divide. | |
28 * Rounding Operations:: Explicitly rounding floating point numbers. | |
29 * Bitwise Operations:: Logical and, or, not, shifting. | |
30 * Math Functions:: Trig, exponential and logarithmic functions. | |
31 * Random Numbers:: Obtaining random integers, predictable or not. | |
32 @end menu | |
33 | |
34 @node Integer Basics | |
35 @comment node-name, next, previous, up | |
36 @section Integer Basics | |
37 | |
38 The range of values for an integer depends on the machine. The | |
39 minimum range is @minus{}268435456 to 268435455 (29 bits; i.e., | |
40 @ifnottex | |
41 -2**28 | |
42 @end ifnottex | |
43 @tex | |
44 @math{-2^{28}} | |
45 @end tex | |
46 to | |
47 @ifnottex | |
48 2**28 - 1), | |
49 @end ifnottex | |
50 @tex | |
51 @math{2^{28}-1}), | |
52 @end tex | |
53 but some machines may provide a wider range. Many examples in this | |
54 chapter assume an integer has 29 bits. | |
55 @cindex overflow | |
56 | |
57 The Lisp reader reads an integer as a sequence of digits with optional | |
58 initial sign and optional final period. | |
59 | |
60 @example | |
61 1 ; @r{The integer 1.} | |
62 1. ; @r{The integer 1.} | |
63 +1 ; @r{Also the integer 1.} | |
64 -1 ; @r{The integer @minus{}1.} | |
65 536870913 ; @r{Also the integer 1, due to overflow.} | |
66 0 ; @r{The integer 0.} | |
67 -0 ; @r{The integer 0.} | |
68 @end example | |
69 | |
70 @cindex integers in specific radix | |
71 @cindex radix for reading an integer | |
72 @cindex base for reading an integer | |
73 @cindex hex numbers | |
74 @cindex octal numbers | |
75 @cindex reading numbers in hex, octal, and binary | |
76 The syntax for integers in bases other than 10 uses @samp{#} | |
77 followed by a letter that specifies the radix: @samp{b} for binary, | |
78 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to | |
79 specify radix @var{radix}. Case is not significant for the letter | |
80 that specifies the radix. Thus, @samp{#b@var{integer}} reads | |
81 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads | |
82 @var{integer} in radix @var{radix}. Allowed values of @var{radix} run | |
83 from 2 to 36. For example: | |
84 | |
85 @example | |
86 #b101100 @result{} 44 | |
87 #o54 @result{} 44 | |
88 #x2c @result{} 44 | |
89 #24r1k @result{} 44 | |
90 @end example | |
91 | |
92 To understand how various functions work on integers, especially the | |
93 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to | |
94 view the numbers in their binary form. | |
95 | |
96 In 29-bit binary, the decimal integer 5 looks like this: | |
97 | |
98 @example | |
99 0 0000 0000 0000 0000 0000 0000 0101 | |
100 @end example | |
101 | |
102 @noindent | |
103 (We have inserted spaces between groups of 4 bits, and two spaces | |
104 between groups of 8 bits, to make the binary integer easier to read.) | |
105 | |
106 The integer @minus{}1 looks like this: | |
107 | |
108 @example | |
109 1 1111 1111 1111 1111 1111 1111 1111 | |
110 @end example | |
111 | |
112 @noindent | |
113 @cindex two's complement | |
114 @minus{}1 is represented as 29 ones. (This is called @dfn{two's | |
115 complement} notation.) | |
116 | |
117 The negative integer, @minus{}5, is creating by subtracting 4 from | |
118 @minus{}1. In binary, the decimal integer 4 is 100. Consequently, | |
119 @minus{}5 looks like this: | |
120 | |
121 @example | |
122 1 1111 1111 1111 1111 1111 1111 1011 | |
123 @end example | |
124 | |
125 In this implementation, the largest 29-bit binary integer value is | |
126 268,435,455 in decimal. In binary, it looks like this: | |
127 | |
128 @example | |
129 0 1111 1111 1111 1111 1111 1111 1111 | |
130 @end example | |
131 | |
132 Since the arithmetic functions do not check whether integers go | |
133 outside their range, when you add 1 to 268,435,455, the value is the | |
134 negative integer @minus{}268,435,456: | |
135 | |
136 @example | |
137 (+ 1 268435455) | |
138 @result{} -268435456 | |
139 @result{} 1 0000 0000 0000 0000 0000 0000 0000 | |
140 @end example | |
141 | |
142 Many of the functions described in this chapter accept markers for | |
143 arguments in place of numbers. (@xref{Markers}.) Since the actual | |
144 arguments to such functions may be either numbers or markers, we often | |
145 give these arguments the name @var{number-or-marker}. When the argument | |
146 value is a marker, its position value is used and its buffer is ignored. | |
147 | |
148 @defvar most-positive-fixnum | |
149 The value of this variable is the largest integer that Emacs Lisp | |
150 can handle. | |
151 @end defvar | |
152 | |
153 @defvar most-negative-fixnum | |
154 The value of this variable is the smallest integer that Emacs Lisp can | |
155 handle. It is negative. | |
156 @end defvar | |
157 | |
158 @node Float Basics | |
159 @section Floating Point Basics | |
160 | |
161 Floating point numbers are useful for representing numbers that are | |
162 not integral. The precise range of floating point numbers is | |
163 machine-specific; it is the same as the range of the C data type | |
164 @code{double} on the machine you are using. | |
165 | |
166 The read-syntax for floating point numbers requires either a decimal | |
167 point (with at least one digit following), an exponent, or both. For | |
168 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and | |
169 @samp{.15e4} are five ways of writing a floating point number whose | |
170 value is 1500. They are all equivalent. You can also use a minus sign | |
171 to write negative floating point numbers, as in @samp{-1.0}. | |
172 | |
173 @cindex @acronym{IEEE} floating point | |
174 @cindex positive infinity | |
175 @cindex negative infinity | |
176 @cindex infinity | |
177 @cindex NaN | |
178 Most modern computers support the @acronym{IEEE} floating point standard, | |
179 which provides for positive infinity and negative infinity as floating point | |
180 values. It also provides for a class of values called NaN or | |
181 ``not-a-number''; numerical functions return such values in cases where | |
182 there is no correct answer. For example, @code{(/ 0.0 0.0)} returns a | |
183 NaN. For practical purposes, there's no significant difference between | |
184 different NaN values in Emacs Lisp, and there's no rule for precisely | |
185 which NaN value should be used in a particular case, so Emacs Lisp | |
186 doesn't try to distinguish them (but it does report the sign, if you | |
187 print it). Here are the read syntaxes for these special floating | |
188 point values: | |
189 | |
190 @table @asis | |
191 @item positive infinity | |
192 @samp{1.0e+INF} | |
193 @item negative infinity | |
194 @samp{-1.0e+INF} | |
195 @item Not-a-number | |
196 @samp{0.0e+NaN} or @samp{-0.0e+NaN}. | |
197 @end table | |
198 | |
199 To test whether a floating point value is a NaN, compare it with | |
200 itself using @code{=}. That returns @code{nil} for a NaN, and | |
201 @code{t} for any other floating point value. | |
202 | |
203 The value @code{-0.0} is distinguishable from ordinary zero in | |
204 @acronym{IEEE} floating point, but Emacs Lisp @code{equal} and | |
205 @code{=} consider them equal values. | |
206 | |
207 You can use @code{logb} to extract the binary exponent of a floating | |
208 point number (or estimate the logarithm of an integer): | |
209 | |
210 @defun logb number | |
211 This function returns the binary exponent of @var{number}. More | |
212 precisely, the value is the logarithm of @var{number} base 2, rounded | |
213 down to an integer. | |
214 | |
215 @example | |
216 (logb 10) | |
217 @result{} 3 | |
218 (logb 10.0e20) | |
219 @result{} 69 | |
220 @end example | |
221 @end defun | |
222 | |
223 @node Predicates on Numbers | |
224 @section Type Predicates for Numbers | |
225 @cindex predicates for numbers | |
226 | |
227 The functions in this section test for numbers, or for a specific | |
228 type of number. The functions @code{integerp} and @code{floatp} can | |
229 take any type of Lisp object as argument (they would not be of much | |
230 use otherwise), but the @code{zerop} predicate requires a number as | |
231 its argument. See also @code{integer-or-marker-p} and | |
232 @code{number-or-marker-p}, in @ref{Predicates on Markers}. | |
233 | |
234 @defun floatp object | |
235 This predicate tests whether its argument is a floating point | |
236 number and returns @code{t} if so, @code{nil} otherwise. | |
237 | |
238 @code{floatp} does not exist in Emacs versions 18 and earlier. | |
239 @end defun | |
240 | |
241 @defun integerp object | |
242 This predicate tests whether its argument is an integer, and returns | |
243 @code{t} if so, @code{nil} otherwise. | |
244 @end defun | |
245 | |
246 @defun numberp object | |
247 This predicate tests whether its argument is a number (either integer or | |
248 floating point), and returns @code{t} if so, @code{nil} otherwise. | |
249 @end defun | |
250 | |
251 @defun wholenump object | |
252 @cindex natural numbers | |
253 The @code{wholenump} predicate (whose name comes from the phrase | |
254 ``whole-number-p'') tests to see whether its argument is a nonnegative | |
255 integer, and returns @code{t} if so, @code{nil} otherwise. 0 is | |
256 considered non-negative. | |
257 | |
258 @findex natnump | |
259 @code{natnump} is an obsolete synonym for @code{wholenump}. | |
260 @end defun | |
261 | |
262 @defun zerop number | |
263 This predicate tests whether its argument is zero, and returns @code{t} | |
264 if so, @code{nil} otherwise. The argument must be a number. | |
265 | |
266 @code{(zerop x)} is equivalent to @code{(= x 0)}. | |
267 @end defun | |
268 | |
269 @node Comparison of Numbers | |
270 @section Comparison of Numbers | |
271 @cindex number comparison | |
272 @cindex comparing numbers | |
273 | |
274 To test numbers for numerical equality, you should normally use | |
275 @code{=}, not @code{eq}. There can be many distinct floating point | |
276 number objects with the same numeric value. If you use @code{eq} to | |
277 compare them, then you test whether two values are the same | |
278 @emph{object}. By contrast, @code{=} compares only the numeric values | |
279 of the objects. | |
280 | |
281 At present, each integer value has a unique Lisp object in Emacs Lisp. | |
282 Therefore, @code{eq} is equivalent to @code{=} where integers are | |
283 concerned. It is sometimes convenient to use @code{eq} for comparing an | |
284 unknown value with an integer, because @code{eq} does not report an | |
285 error if the unknown value is not a number---it accepts arguments of any | |
286 type. By contrast, @code{=} signals an error if the arguments are not | |
287 numbers or markers. However, it is a good idea to use @code{=} if you | |
288 can, even for comparing integers, just in case we change the | |
289 representation of integers in a future Emacs version. | |
290 | |
291 Sometimes it is useful to compare numbers with @code{equal}; it | |
292 treats two numbers as equal if they have the same data type (both | |
293 integers, or both floating point) and the same value. By contrast, | |
294 @code{=} can treat an integer and a floating point number as equal. | |
295 @xref{Equality Predicates}. | |
296 | |
297 There is another wrinkle: because floating point arithmetic is not | |
298 exact, it is often a bad idea to check for equality of two floating | |
299 point values. Usually it is better to test for approximate equality. | |
300 Here's a function to do this: | |
301 | |
302 @example | |
303 (defvar fuzz-factor 1.0e-6) | |
304 (defun approx-equal (x y) | |
305 (or (and (= x 0) (= y 0)) | |
306 (< (/ (abs (- x y)) | |
307 (max (abs x) (abs y))) | |
308 fuzz-factor))) | |
309 @end example | |
310 | |
311 @cindex CL note---integers vrs @code{eq} | |
312 @quotation | |
313 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires | |
314 @code{=} because Common Lisp implements multi-word integers, and two | |
315 distinct integer objects can have the same numeric value. Emacs Lisp | |
316 can have just one integer object for any given value because it has a | |
317 limited range of integer values. | |
318 @end quotation | |
319 | |
320 @defun = number-or-marker1 number-or-marker2 | |
321 This function tests whether its arguments are numerically equal, and | |
322 returns @code{t} if so, @code{nil} otherwise. | |
323 @end defun | |
324 | |
325 @defun eql value1 value2 | |
326 This function acts like @code{eq} except when both arguments are | |
327 numbers. It compares numbers by type and numeric value, so that | |
328 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and | |
329 @code{(eql 1 1)} both return @code{t}. | |
330 @end defun | |
331 | |
332 @defun /= number-or-marker1 number-or-marker2 | |
333 This function tests whether its arguments are numerically equal, and | |
334 returns @code{t} if they are not, and @code{nil} if they are. | |
335 @end defun | |
336 | |
337 @defun < number-or-marker1 number-or-marker2 | |
338 This function tests whether its first argument is strictly less than | |
339 its second argument. It returns @code{t} if so, @code{nil} otherwise. | |
340 @end defun | |
341 | |
342 @defun <= number-or-marker1 number-or-marker2 | |
343 This function tests whether its first argument is less than or equal | |
344 to its second argument. It returns @code{t} if so, @code{nil} | |
345 otherwise. | |
346 @end defun | |
347 | |
348 @defun > number-or-marker1 number-or-marker2 | |
349 This function tests whether its first argument is strictly greater | |
350 than its second argument. It returns @code{t} if so, @code{nil} | |
351 otherwise. | |
352 @end defun | |
353 | |
354 @defun >= number-or-marker1 number-or-marker2 | |
355 This function tests whether its first argument is greater than or | |
356 equal to its second argument. It returns @code{t} if so, @code{nil} | |
357 otherwise. | |
358 @end defun | |
359 | |
360 @defun max number-or-marker &rest numbers-or-markers | |
361 This function returns the largest of its arguments. | |
362 If any of the arguments is floating-point, the value is returned | |
363 as floating point, even if it was given as an integer. | |
364 | |
365 @example | |
366 (max 20) | |
367 @result{} 20 | |
368 (max 1 2.5) | |
369 @result{} 2.5 | |
370 (max 1 3 2.5) | |
371 @result{} 3.0 | |
372 @end example | |
373 @end defun | |
374 | |
375 @defun min number-or-marker &rest numbers-or-markers | |
376 This function returns the smallest of its arguments. | |
377 If any of the arguments is floating-point, the value is returned | |
378 as floating point, even if it was given as an integer. | |
379 | |
380 @example | |
381 (min -4 1) | |
382 @result{} -4 | |
383 @end example | |
384 @end defun | |
385 | |
386 @defun abs number | |
387 This function returns the absolute value of @var{number}. | |
388 @end defun | |
389 | |
390 @node Numeric Conversions | |
391 @section Numeric Conversions | |
392 @cindex rounding in conversions | |
393 @cindex number conversions | |
394 @cindex converting numbers | |
395 | |
396 To convert an integer to floating point, use the function @code{float}. | |
397 | |
398 @defun float number | |
399 This returns @var{number} converted to floating point. | |
400 If @var{number} is already a floating point number, @code{float} returns | |
401 it unchanged. | |
402 @end defun | |
403 | |
404 There are four functions to convert floating point numbers to integers; | |
405 they differ in how they round. All accept an argument @var{number} | |
406 and an optional argument @var{divisor}. Both arguments may be | |
407 integers or floating point numbers. @var{divisor} may also be | |
408 @code{nil}. If @var{divisor} is @code{nil} or omitted, these | |
409 functions convert @var{number} to an integer, or return it unchanged | |
410 if it already is an integer. If @var{divisor} is non-@code{nil}, they | |
411 divide @var{number} by @var{divisor} and convert the result to an | |
412 integer. An @code{arith-error} results if @var{divisor} is 0. | |
413 | |
414 @defun truncate number &optional divisor | |
415 This returns @var{number}, converted to an integer by rounding towards | |
416 zero. | |
417 | |
418 @example | |
419 (truncate 1.2) | |
420 @result{} 1 | |
421 (truncate 1.7) | |
422 @result{} 1 | |
423 (truncate -1.2) | |
424 @result{} -1 | |
425 (truncate -1.7) | |
426 @result{} -1 | |
427 @end example | |
428 @end defun | |
429 | |
430 @defun floor number &optional divisor | |
431 This returns @var{number}, converted to an integer by rounding downward | |
432 (towards negative infinity). | |
433 | |
434 If @var{divisor} is specified, this uses the kind of division | |
435 operation that corresponds to @code{mod}, rounding downward. | |
436 | |
437 @example | |
438 (floor 1.2) | |
439 @result{} 1 | |
440 (floor 1.7) | |
441 @result{} 1 | |
442 (floor -1.2) | |
443 @result{} -2 | |
444 (floor -1.7) | |
445 @result{} -2 | |
446 (floor 5.99 3) | |
447 @result{} 1 | |
448 @end example | |
449 @end defun | |
450 | |
451 @defun ceiling number &optional divisor | |
452 This returns @var{number}, converted to an integer by rounding upward | |
453 (towards positive infinity). | |
454 | |
455 @example | |
456 (ceiling 1.2) | |
457 @result{} 2 | |
458 (ceiling 1.7) | |
459 @result{} 2 | |
460 (ceiling -1.2) | |
461 @result{} -1 | |
462 (ceiling -1.7) | |
463 @result{} -1 | |
464 @end example | |
465 @end defun | |
466 | |
467 @defun round number &optional divisor | |
468 This returns @var{number}, converted to an integer by rounding towards the | |
469 nearest integer. Rounding a value equidistant between two integers | |
470 may choose the integer closer to zero, or it may prefer an even integer, | |
471 depending on your machine. | |
472 | |
473 @example | |
474 (round 1.2) | |
475 @result{} 1 | |
476 (round 1.7) | |
477 @result{} 2 | |
478 (round -1.2) | |
479 @result{} -1 | |
480 (round -1.7) | |
481 @result{} -2 | |
482 @end example | |
483 @end defun | |
484 | |
485 @node Arithmetic Operations | |
486 @section Arithmetic Operations | |
487 @cindex arithmetic operations | |
488 | |
489 Emacs Lisp provides the traditional four arithmetic operations: | |
490 addition, subtraction, multiplication, and division. Remainder and modulus | |
491 functions supplement the division functions. The functions to | |
492 add or subtract 1 are provided because they are traditional in Lisp and | |
493 commonly used. | |
494 | |
495 All of these functions except @code{%} return a floating point value | |
496 if any argument is floating. | |
497 | |
498 It is important to note that in Emacs Lisp, arithmetic functions | |
499 do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to | |
500 @minus{}268435456, depending on your hardware. | |
501 | |
502 @defun 1+ number-or-marker | |
503 This function returns @var{number-or-marker} plus 1. | |
504 For example, | |
505 | |
506 @example | |
507 (setq foo 4) | |
508 @result{} 4 | |
509 (1+ foo) | |
510 @result{} 5 | |
511 @end example | |
512 | |
513 This function is not analogous to the C operator @code{++}---it does not | |
514 increment a variable. It just computes a sum. Thus, if we continue, | |
515 | |
516 @example | |
517 foo | |
518 @result{} 4 | |
519 @end example | |
520 | |
521 If you want to increment the variable, you must use @code{setq}, | |
522 like this: | |
523 | |
524 @example | |
525 (setq foo (1+ foo)) | |
526 @result{} 5 | |
527 @end example | |
528 @end defun | |
529 | |
530 @defun 1- number-or-marker | |
531 This function returns @var{number-or-marker} minus 1. | |
532 @end defun | |
533 | |
534 @defun + &rest numbers-or-markers | |
535 This function adds its arguments together. When given no arguments, | |
536 @code{+} returns 0. | |
537 | |
538 @example | |
539 (+) | |
540 @result{} 0 | |
541 (+ 1) | |
542 @result{} 1 | |
543 (+ 1 2 3 4) | |
544 @result{} 10 | |
545 @end example | |
546 @end defun | |
547 | |
548 @defun - &optional number-or-marker &rest more-numbers-or-markers | |
549 The @code{-} function serves two purposes: negation and subtraction. | |
550 When @code{-} has a single argument, the value is the negative of the | |
551 argument. When there are multiple arguments, @code{-} subtracts each of | |
552 the @var{more-numbers-or-markers} from @var{number-or-marker}, | |
553 cumulatively. If there are no arguments, the result is 0. | |
554 | |
555 @example | |
556 (- 10 1 2 3 4) | |
557 @result{} 0 | |
558 (- 10) | |
559 @result{} -10 | |
560 (-) | |
561 @result{} 0 | |
562 @end example | |
563 @end defun | |
564 | |
565 @defun * &rest numbers-or-markers | |
566 This function multiplies its arguments together, and returns the | |
567 product. When given no arguments, @code{*} returns 1. | |
568 | |
569 @example | |
570 (*) | |
571 @result{} 1 | |
572 (* 1) | |
573 @result{} 1 | |
574 (* 1 2 3 4) | |
575 @result{} 24 | |
576 @end example | |
577 @end defun | |
578 | |
579 @defun / dividend divisor &rest divisors | |
580 This function divides @var{dividend} by @var{divisor} and returns the | |
581 quotient. If there are additional arguments @var{divisors}, then it | |
582 divides @var{dividend} by each divisor in turn. Each argument may be a | |
583 number or a marker. | |
584 | |
585 If all the arguments are integers, then the result is an integer too. | |
586 This means the result has to be rounded. On most machines, the result | |
587 is rounded towards zero after each division, but some machines may round | |
588 differently with negative arguments. This is because the Lisp function | |
589 @code{/} is implemented using the C division operator, which also | |
590 permits machine-dependent rounding. As a practical matter, all known | |
591 machines round in the standard fashion. | |
592 | |
593 @cindex @code{arith-error} in division | |
594 If you divide an integer by 0, an @code{arith-error} error is signaled. | |
595 (@xref{Errors}.) Floating point division by zero returns either | |
596 infinity or a NaN if your machine supports @acronym{IEEE} floating point; | |
597 otherwise, it signals an @code{arith-error} error. | |
598 | |
599 @example | |
600 @group | |
601 (/ 6 2) | |
602 @result{} 3 | |
603 @end group | |
604 (/ 5 2) | |
605 @result{} 2 | |
606 (/ 5.0 2) | |
607 @result{} 2.5 | |
608 (/ 5 2.0) | |
609 @result{} 2.5 | |
610 (/ 5.0 2.0) | |
611 @result{} 2.5 | |
612 (/ 25 3 2) | |
613 @result{} 4 | |
614 @group | |
615 (/ -17 6) | |
616 @result{} -2 @r{(could in theory be @minus{}3 on some machines)} | |
617 @end group | |
618 @end example | |
619 @end defun | |
620 | |
621 @defun % dividend divisor | |
622 @cindex remainder | |
623 This function returns the integer remainder after division of @var{dividend} | |
624 by @var{divisor}. The arguments must be integers or markers. | |
625 | |
626 For negative arguments, the remainder is in principle machine-dependent | |
627 since the quotient is; but in practice, all known machines behave alike. | |
628 | |
629 An @code{arith-error} results if @var{divisor} is 0. | |
630 | |
631 @example | |
632 (% 9 4) | |
633 @result{} 1 | |
634 (% -9 4) | |
635 @result{} -1 | |
636 (% 9 -4) | |
637 @result{} 1 | |
638 (% -9 -4) | |
639 @result{} -1 | |
640 @end example | |
641 | |
642 For any two integers @var{dividend} and @var{divisor}, | |
643 | |
644 @example | |
645 @group | |
646 (+ (% @var{dividend} @var{divisor}) | |
647 (* (/ @var{dividend} @var{divisor}) @var{divisor})) | |
648 @end group | |
649 @end example | |
650 | |
651 @noindent | |
652 always equals @var{dividend}. | |
653 @end defun | |
654 | |
655 @defun mod dividend divisor | |
656 @cindex modulus | |
657 This function returns the value of @var{dividend} modulo @var{divisor}; | |
658 in other words, the remainder after division of @var{dividend} | |
659 by @var{divisor}, but with the same sign as @var{divisor}. | |
660 The arguments must be numbers or markers. | |
661 | |
662 Unlike @code{%}, @code{mod} returns a well-defined result for negative | |
663 arguments. It also permits floating point arguments; it rounds the | |
664 quotient downward (towards minus infinity) to an integer, and uses that | |
665 quotient to compute the remainder. | |
666 | |
667 An @code{arith-error} results if @var{divisor} is 0. | |
668 | |
669 @example | |
670 @group | |
671 (mod 9 4) | |
672 @result{} 1 | |
673 @end group | |
674 @group | |
675 (mod -9 4) | |
676 @result{} 3 | |
677 @end group | |
678 @group | |
679 (mod 9 -4) | |
680 @result{} -3 | |
681 @end group | |
682 @group | |
683 (mod -9 -4) | |
684 @result{} -1 | |
685 @end group | |
686 @group | |
687 (mod 5.5 2.5) | |
688 @result{} .5 | |
689 @end group | |
690 @end example | |
691 | |
692 For any two numbers @var{dividend} and @var{divisor}, | |
693 | |
694 @example | |
695 @group | |
696 (+ (mod @var{dividend} @var{divisor}) | |
697 (* (floor @var{dividend} @var{divisor}) @var{divisor})) | |
698 @end group | |
699 @end example | |
700 | |
701 @noindent | |
702 always equals @var{dividend}, subject to rounding error if either | |
703 argument is floating point. For @code{floor}, see @ref{Numeric | |
704 Conversions}. | |
705 @end defun | |
706 | |
707 @node Rounding Operations | |
708 @section Rounding Operations | |
709 @cindex rounding without conversion | |
710 | |
711 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and | |
712 @code{ftruncate} take a floating point argument and return a floating | |
713 point result whose value is a nearby integer. @code{ffloor} returns the | |
714 nearest integer below; @code{fceiling}, the nearest integer above; | |
715 @code{ftruncate}, the nearest integer in the direction towards zero; | |
716 @code{fround}, the nearest integer. | |
717 | |
718 @defun ffloor float | |
719 This function rounds @var{float} to the next lower integral value, and | |
720 returns that value as a floating point number. | |
721 @end defun | |
722 | |
723 @defun fceiling float | |
724 This function rounds @var{float} to the next higher integral value, and | |
725 returns that value as a floating point number. | |
726 @end defun | |
727 | |
728 @defun ftruncate float | |
729 This function rounds @var{float} towards zero to an integral value, and | |
730 returns that value as a floating point number. | |
731 @end defun | |
732 | |
733 @defun fround float | |
734 This function rounds @var{float} to the nearest integral value, | |
735 and returns that value as a floating point number. | |
736 @end defun | |
737 | |
738 @node Bitwise Operations | |
739 @section Bitwise Operations on Integers | |
740 @cindex bitwise arithmetic | |
741 @cindex logical arithmetic | |
742 | |
743 In a computer, an integer is represented as a binary number, a | |
744 sequence of @dfn{bits} (digits which are either zero or one). A bitwise | |
745 operation acts on the individual bits of such a sequence. For example, | |
746 @dfn{shifting} moves the whole sequence left or right one or more places, | |
747 reproducing the same pattern ``moved over.'' | |
748 | |
749 The bitwise operations in Emacs Lisp apply only to integers. | |
750 | |
751 @defun lsh integer1 count | |
752 @cindex logical shift | |
753 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the | |
754 bits in @var{integer1} to the left @var{count} places, or to the right | |
755 if @var{count} is negative, bringing zeros into the vacated bits. If | |
756 @var{count} is negative, @code{lsh} shifts zeros into the leftmost | |
757 (most-significant) bit, producing a positive result even if | |
758 @var{integer1} is negative. Contrast this with @code{ash}, below. | |
759 | |
760 Here are two examples of @code{lsh}, shifting a pattern of bits one | |
761 place to the left. We show only the low-order eight bits of the binary | |
762 pattern; the rest are all zero. | |
763 | |
764 @example | |
765 @group | |
766 (lsh 5 1) | |
767 @result{} 10 | |
768 ;; @r{Decimal 5 becomes decimal 10.} | |
769 00000101 @result{} 00001010 | |
770 | |
771 (lsh 7 1) | |
772 @result{} 14 | |
773 ;; @r{Decimal 7 becomes decimal 14.} | |
774 00000111 @result{} 00001110 | |
775 @end group | |
776 @end example | |
777 | |
778 @noindent | |
779 As the examples illustrate, shifting the pattern of bits one place to | |
780 the left produces a number that is twice the value of the previous | |
781 number. | |
782 | |
783 Shifting a pattern of bits two places to the left produces results | |
784 like this (with 8-bit binary numbers): | |
785 | |
786 @example | |
787 @group | |
788 (lsh 3 2) | |
789 @result{} 12 | |
790 ;; @r{Decimal 3 becomes decimal 12.} | |
791 00000011 @result{} 00001100 | |
792 @end group | |
793 @end example | |
794 | |
795 On the other hand, shifting one place to the right looks like this: | |
796 | |
797 @example | |
798 @group | |
799 (lsh 6 -1) | |
800 @result{} 3 | |
801 ;; @r{Decimal 6 becomes decimal 3.} | |
802 00000110 @result{} 00000011 | |
803 @end group | |
804 | |
805 @group | |
806 (lsh 5 -1) | |
807 @result{} 2 | |
808 ;; @r{Decimal 5 becomes decimal 2.} | |
809 00000101 @result{} 00000010 | |
810 @end group | |
811 @end example | |
812 | |
813 @noindent | |
814 As the example illustrates, shifting one place to the right divides the | |
815 value of a positive integer by two, rounding downward. | |
816 | |
817 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does | |
818 not check for overflow, so shifting left can discard significant bits | |
819 and change the sign of the number. For example, left shifting | |
820 268,435,455 produces @minus{}2 on a 29-bit machine: | |
821 | |
822 @example | |
823 (lsh 268435455 1) ; @r{left shift} | |
824 @result{} -2 | |
825 @end example | |
826 | |
827 In binary, in the 29-bit implementation, the argument looks like this: | |
828 | |
829 @example | |
830 @group | |
831 ;; @r{Decimal 268,435,455} | |
832 0 1111 1111 1111 1111 1111 1111 1111 | |
833 @end group | |
834 @end example | |
835 | |
836 @noindent | |
837 which becomes the following when left shifted: | |
838 | |
839 @example | |
840 @group | |
841 ;; @r{Decimal @minus{}2} | |
842 1 1111 1111 1111 1111 1111 1111 1110 | |
843 @end group | |
844 @end example | |
845 @end defun | |
846 | |
847 @defun ash integer1 count | |
848 @cindex arithmetic shift | |
849 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1} | |
850 to the left @var{count} places, or to the right if @var{count} | |
851 is negative. | |
852 | |
853 @code{ash} gives the same results as @code{lsh} except when | |
854 @var{integer1} and @var{count} are both negative. In that case, | |
855 @code{ash} puts ones in the empty bit positions on the left, while | |
856 @code{lsh} puts zeros in those bit positions. | |
857 | |
858 Thus, with @code{ash}, shifting the pattern of bits one place to the right | |
859 looks like this: | |
860 | |
861 @example | |
862 @group | |
863 (ash -6 -1) @result{} -3 | |
864 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.} | |
865 1 1111 1111 1111 1111 1111 1111 1010 | |
866 @result{} | |
867 1 1111 1111 1111 1111 1111 1111 1101 | |
868 @end group | |
869 @end example | |
870 | |
871 In contrast, shifting the pattern of bits one place to the right with | |
872 @code{lsh} looks like this: | |
873 | |
874 @example | |
875 @group | |
876 (lsh -6 -1) @result{} 268435453 | |
877 ;; @r{Decimal @minus{}6 becomes decimal 268,435,453.} | |
878 1 1111 1111 1111 1111 1111 1111 1010 | |
879 @result{} | |
880 0 1111 1111 1111 1111 1111 1111 1101 | |
881 @end group | |
882 @end example | |
883 | |
884 Here are other examples: | |
885 | |
886 @c !!! Check if lined up in smallbook format! XDVI shows problem | |
887 @c with smallbook but not with regular book! --rjc 16mar92 | |
888 @smallexample | |
889 @group | |
890 ; @r{ 29-bit binary values} | |
891 | |
892 (lsh 5 2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
893 @result{} 20 ; = @r{0 0000 0000 0000 0000 0000 0001 0100} | |
894 @end group | |
895 @group | |
896 (ash 5 2) | |
897 @result{} 20 | |
898 (lsh -5 2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011} | |
899 @result{} -20 ; = @r{1 1111 1111 1111 1111 1111 1110 1100} | |
900 (ash -5 2) | |
901 @result{} -20 | |
902 @end group | |
903 @group | |
904 (lsh 5 -2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
905 @result{} 1 ; = @r{0 0000 0000 0000 0000 0000 0000 0001} | |
906 @end group | |
907 @group | |
908 (ash 5 -2) | |
909 @result{} 1 | |
910 @end group | |
911 @group | |
912 (lsh -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011} | |
913 @result{} 134217726 ; = @r{0 0111 1111 1111 1111 1111 1111 1110} | |
914 @end group | |
915 @group | |
916 (ash -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011} | |
917 @result{} -2 ; = @r{1 1111 1111 1111 1111 1111 1111 1110} | |
918 @end group | |
919 @end smallexample | |
920 @end defun | |
921 | |
922 @defun logand &rest ints-or-markers | |
923 This function returns the ``logical and'' of the arguments: the | |
924 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is | |
925 set in all the arguments. (``Set'' means that the value of the bit is 1 | |
926 rather than 0.) | |
927 | |
928 For example, using 4-bit binary numbers, the ``logical and'' of 13 and | |
929 12 is 12: 1101 combined with 1100 produces 1100. | |
930 In both the binary numbers, the leftmost two bits are set (i.e., they | |
931 are 1's), so the leftmost two bits of the returned value are set. | |
932 However, for the rightmost two bits, each is zero in at least one of | |
933 the arguments, so the rightmost two bits of the returned value are 0's. | |
934 | |
935 @noindent | |
936 Therefore, | |
937 | |
938 @example | |
939 @group | |
940 (logand 13 12) | |
941 @result{} 12 | |
942 @end group | |
943 @end example | |
944 | |
945 If @code{logand} is not passed any argument, it returns a value of | |
946 @minus{}1. This number is an identity element for @code{logand} | |
947 because its binary representation consists entirely of ones. If | |
948 @code{logand} is passed just one argument, it returns that argument. | |
949 | |
950 @smallexample | |
951 @group | |
952 ; @r{ 29-bit binary values} | |
953 | |
954 (logand 14 13) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110} | |
955 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101} | |
956 @result{} 12 ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} | |
957 @end group | |
958 | |
959 @group | |
960 (logand 14 13 4) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110} | |
961 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101} | |
962 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100} | |
963 @result{} 4 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100} | |
964 @end group | |
965 | |
966 @group | |
967 (logand) | |
968 @result{} -1 ; -1 = @r{1 1111 1111 1111 1111 1111 1111 1111} | |
969 @end group | |
970 @end smallexample | |
971 @end defun | |
972 | |
973 @defun logior &rest ints-or-markers | |
974 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit | |
975 is set in the result if, and only if, the @var{n}th bit is set in at least | |
976 one of the arguments. If there are no arguments, the result is zero, | |
977 which is an identity element for this operation. If @code{logior} is | |
978 passed just one argument, it returns that argument. | |
979 | |
980 @smallexample | |
981 @group | |
982 ; @r{ 29-bit binary values} | |
983 | |
984 (logior 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} | |
985 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
986 @result{} 13 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101} | |
987 @end group | |
988 | |
989 @group | |
990 (logior 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} | |
991 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
992 ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111} | |
993 @result{} 15 ; 15 = @r{0 0000 0000 0000 0000 0000 0000 1111} | |
994 @end group | |
995 @end smallexample | |
996 @end defun | |
997 | |
998 @defun logxor &rest ints-or-markers | |
999 This function returns the ``exclusive or'' of its arguments: the | |
1000 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is | |
1001 set in an odd number of the arguments. If there are no arguments, the | |
1002 result is 0, which is an identity element for this operation. If | |
1003 @code{logxor} is passed just one argument, it returns that argument. | |
1004 | |
1005 @smallexample | |
1006 @group | |
1007 ; @r{ 29-bit binary values} | |
1008 | |
1009 (logxor 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} | |
1010 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
1011 @result{} 9 ; 9 = @r{0 0000 0000 0000 0000 0000 0000 1001} | |
1012 @end group | |
1013 | |
1014 @group | |
1015 (logxor 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} | |
1016 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
1017 ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111} | |
1018 @result{} 14 ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110} | |
1019 @end group | |
1020 @end smallexample | |
1021 @end defun | |
1022 | |
1023 @defun lognot integer | |
1024 This function returns the logical complement of its argument: the @var{n}th | |
1025 bit is one in the result if, and only if, the @var{n}th bit is zero in | |
1026 @var{integer}, and vice-versa. | |
1027 | |
1028 @example | |
1029 (lognot 5) | |
1030 @result{} -6 | |
1031 ;; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} | |
1032 ;; @r{becomes} | |
1033 ;; -6 = @r{1 1111 1111 1111 1111 1111 1111 1010} | |
1034 @end example | |
1035 @end defun | |
1036 | |
1037 @node Math Functions | |
1038 @section Standard Mathematical Functions | |
1039 @cindex transcendental functions | |
1040 @cindex mathematical functions | |
1041 @cindex floating-point functions | |
1042 | |
1043 These mathematical functions allow integers as well as floating point | |
1044 numbers as arguments. | |
1045 | |
1046 @defun sin arg | |
1047 @defunx cos arg | |
1048 @defunx tan arg | |
1049 These are the ordinary trigonometric functions, with argument measured | |
1050 in radians. | |
1051 @end defun | |
1052 | |
1053 @defun asin arg | |
1054 The value of @code{(asin @var{arg})} is a number between | |
1055 @ifnottex | |
1056 @minus{}pi/2 | |
1057 @end ifnottex | |
1058 @tex | |
1059 @math{-\pi/2} | |
1060 @end tex | |
1061 and | |
1062 @ifnottex | |
1063 pi/2 | |
1064 @end ifnottex | |
1065 @tex | |
1066 @math{\pi/2} | |
1067 @end tex | |
1068 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of | |
1069 range (outside [@minus{}1, 1]), it signals a @code{domain-error} error. | |
1070 @end defun | |
1071 | |
1072 @defun acos arg | |
1073 The value of @code{(acos @var{arg})} is a number between 0 and | |
1074 @ifnottex | |
1075 pi | |
1076 @end ifnottex | |
1077 @tex | |
1078 @math{\pi} | |
1079 @end tex | |
1080 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out | |
1081 of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error. | |
1082 @end defun | |
1083 | |
1084 @defun atan y &optional x | |
1085 The value of @code{(atan @var{y})} is a number between | |
1086 @ifnottex | |
1087 @minus{}pi/2 | |
1088 @end ifnottex | |
1089 @tex | |
1090 @math{-\pi/2} | |
1091 @end tex | |
1092 and | |
1093 @ifnottex | |
1094 pi/2 | |
1095 @end ifnottex | |
1096 @tex | |
1097 @math{\pi/2} | |
1098 @end tex | |
1099 (exclusive) whose tangent is @var{y}. If the optional second | |
1100 argument @var{x} is given, the value of @code{(atan y x)} is the | |
1101 angle in radians between the vector @code{[@var{x}, @var{y}]} and the | |
1102 @code{X} axis. | |
1103 @end defun | |
1104 | |
1105 @defun exp arg | |
1106 This is the exponential function; it returns | |
1107 @tex | |
1108 @math{e} | |
1109 @end tex | |
1110 @ifnottex | |
1111 @i{e} | |
1112 @end ifnottex | |
1113 to the power @var{arg}. | |
1114 @tex | |
1115 @math{e} | |
1116 @end tex | |
1117 @ifnottex | |
1118 @i{e} | |
1119 @end ifnottex | |
1120 is a fundamental mathematical constant also called the base of natural | |
1121 logarithms. | |
1122 @end defun | |
1123 | |
1124 @defun log arg &optional base | |
1125 This function returns the logarithm of @var{arg}, with base @var{base}. | |
1126 If you don't specify @var{base}, the base | |
1127 @tex | |
1128 @math{e} | |
1129 @end tex | |
1130 @ifnottex | |
1131 @i{e} | |
1132 @end ifnottex | |
1133 is used. If @var{arg} is negative, it signals a @code{domain-error} | |
1134 error. | |
1135 @end defun | |
1136 | |
1137 @ignore | |
1138 @defun expm1 arg | |
1139 This function returns @code{(1- (exp @var{arg}))}, but it is more | |
1140 accurate than that when @var{arg} is negative and @code{(exp @var{arg})} | |
1141 is close to 1. | |
1142 @end defun | |
1143 | |
1144 @defun log1p arg | |
1145 This function returns @code{(log (1+ @var{arg}))}, but it is more | |
1146 accurate than that when @var{arg} is so small that adding 1 to it would | |
1147 lose accuracy. | |
1148 @end defun | |
1149 @end ignore | |
1150 | |
1151 @defun log10 arg | |
1152 This function returns the logarithm of @var{arg}, with base 10. If | |
1153 @var{arg} is negative, it signals a @code{domain-error} error. | |
1154 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least | |
1155 approximately. | |
1156 @end defun | |
1157 | |
1158 @defun expt x y | |
1159 This function returns @var{x} raised to power @var{y}. If both | |
1160 arguments are integers and @var{y} is positive, the result is an | |
1161 integer; in this case, overflow causes truncation, so watch out. | |
1162 @end defun | |
1163 | |
1164 @defun sqrt arg | |
1165 This returns the square root of @var{arg}. If @var{arg} is negative, | |
1166 it signals a @code{domain-error} error. | |
1167 @end defun | |
1168 | |
1169 @node Random Numbers | |
1170 @section Random Numbers | |
1171 @cindex random numbers | |
1172 | |
1173 A deterministic computer program cannot generate true random numbers. | |
1174 For most purposes, @dfn{pseudo-random numbers} suffice. A series of | |
1175 pseudo-random numbers is generated in a deterministic fashion. The | |
1176 numbers are not truly random, but they have certain properties that | |
1177 mimic a random series. For example, all possible values occur equally | |
1178 often in a pseudo-random series. | |
1179 | |
1180 In Emacs, pseudo-random numbers are generated from a ``seed'' number. | |
1181 Starting from any given seed, the @code{random} function always | |
1182 generates the same sequence of numbers. Emacs always starts with the | |
1183 same seed value, so the sequence of values of @code{random} is actually | |
1184 the same in each Emacs run! For example, in one operating system, the | |
1185 first call to @code{(random)} after you start Emacs always returns | |
1186 @minus{}1457731, and the second one always returns @minus{}7692030. This | |
1187 repeatability is helpful for debugging. | |
1188 | |
1189 If you want random numbers that don't always come out the same, execute | |
1190 @code{(random t)}. This chooses a new seed based on the current time of | |
1191 day and on Emacs's process @acronym{ID} number. | |
1192 | |
1193 @defun random &optional limit | |
1194 This function returns a pseudo-random integer. Repeated calls return a | |
1195 series of pseudo-random integers. | |
1196 | |
1197 If @var{limit} is a positive integer, the value is chosen to be | |
1198 nonnegative and less than @var{limit}. | |
1199 | |
1200 If @var{limit} is @code{t}, it means to choose a new seed based on the | |
1201 current time of day and on Emacs's process @acronym{ID} number. | |
1202 @c "Emacs'" is incorrect usage! | |
1203 | |
1204 On some machines, any integer representable in Lisp may be the result | |
1205 of @code{random}. On other machines, the result can never be larger | |
1206 than a certain maximum or less than a certain (negative) minimum. | |
1207 @end defun | |
1208 | |
1209 @ignore | |
1210 arch-tag: 574e8dd2-d513-4616-9844-c9a27869782e | |
1211 @end ignore |