Mercurial > emacs
view lisp/calc/calc-mtx.el @ 68687:181e4961596a
Minor cleanups.
author | Richard M. Stallman <rms@gnu.org> |
---|---|
date | Tue, 07 Feb 2006 23:49:23 +0000 |
parents | 6bf177f8065b |
children | 7a3f13e2dd57 c5406394f567 |
line wrap: on
line source
;;; calc-mtx.el --- matrix functions for Calc ;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004, ;; 2005, 2006 Free Software Foundation, Inc. ;; Author: David Gillespie <daveg@synaptics.com> ;; Maintainer: Jay Belanger <belanger@truman.edu> ;; This file is part of GNU Emacs. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY. No author or distributor ;; accepts responsibility to anyone for the consequences of using it ;; or for whether it serves any particular purpose or works at all, ;; unless he says so in writing. Refer to the GNU Emacs General Public ;; License for full details. ;; Everyone is granted permission to copy, modify and redistribute ;; GNU Emacs, but only under the conditions described in the ;; GNU Emacs General Public License. A copy of this license is ;; supposed to have been given to you along with GNU Emacs so you ;; can know your rights and responsibilities. It should be in a ;; file named COPYING. Among other things, the copyright notice ;; and this notice must be preserved on all copies. ;;; Commentary: ;;; Code: ;; This file is autoloaded from calc-ext.el. (require 'calc-ext) (require 'calc-macs) (defun calc-mdet (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "mdet" 'calcFunc-det arg))) (defun calc-mtrace (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "mtr" 'calcFunc-tr arg))) (defun calc-mlud (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "mlud" 'calcFunc-lud arg))) ;;; Coerce row vector A to be a matrix. [V V] (defun math-row-matrix (a) (if (and (Math-vectorp a) (not (math-matrixp a))) (list 'vec a) a)) ;;; Coerce column vector A to be a matrix. [V V] (defun math-col-matrix (a) (if (and (Math-vectorp a) (not (math-matrixp a))) (cons 'vec (mapcar (function (lambda (x) (list 'vec x))) (cdr a))) a)) ;;; Multiply matrices A and B. [V V V] (defun math-mul-mats (a b) (let ((mat nil) (cols (length (nth 1 b))) row col ap bp accum) (while (setq a (cdr a)) (setq col cols row nil) (while (> (setq col (1- col)) 0) (setq ap (cdr (car a)) bp (cdr b) accum (math-mul (car ap) (nth col (car bp)))) (while (setq ap (cdr ap) bp (cdr bp)) (setq accum (math-add accum (math-mul (car ap) (nth col (car bp)))))) (setq row (cons accum row))) (setq mat (cons (cons 'vec row) mat))) (cons 'vec (nreverse mat)))) (defun math-mul-mat-vec (a b) (cons 'vec (mapcar (function (lambda (row) (math-dot-product row b))) (cdr a)))) (defun calcFunc-tr (mat) ; [Public] (if (math-square-matrixp mat) (math-matrix-trace-step 2 (1- (length mat)) mat (nth 1 (nth 1 mat))) (math-reject-arg mat 'square-matrixp))) (defun math-matrix-trace-step (n size mat sum) (if (<= n size) (math-matrix-trace-step (1+ n) size mat (math-add sum (nth n (nth n mat)))) sum)) ;;; Matrix inverse and determinant. (defun math-matrix-inv-raw (m) (let ((n (1- (length m)))) (if (<= n 3) (let ((det (math-det-raw m))) (and (not (math-zerop det)) (math-div (cond ((= n 1) 1) ((= n 2) (list 'vec (list 'vec (nth 2 (nth 2 m)) (math-neg (nth 2 (nth 1 m)))) (list 'vec (math-neg (nth 1 (nth 2 m))) (nth 1 (nth 1 m))))) ((= n 3) (list 'vec (list 'vec (math-sub (math-mul (nth 3 (nth 3 m)) (nth 2 (nth 2 m))) (math-mul (nth 3 (nth 2 m)) (nth 2 (nth 3 m)))) (math-sub (math-mul (nth 3 (nth 1 m)) (nth 2 (nth 3 m))) (math-mul (nth 3 (nth 3 m)) (nth 2 (nth 1 m)))) (math-sub (math-mul (nth 3 (nth 2 m)) (nth 2 (nth 1 m))) (math-mul (nth 3 (nth 1 m)) (nth 2 (nth 2 m))))) (list 'vec (math-sub (math-mul (nth 3 (nth 2 m)) (nth 1 (nth 3 m))) (math-mul (nth 3 (nth 3 m)) (nth 1 (nth 2 m)))) (math-sub (math-mul (nth 3 (nth 3 m)) (nth 1 (nth 1 m))) (math-mul (nth 3 (nth 1 m)) (nth 1 (nth 3 m)))) (math-sub (math-mul (nth 3 (nth 1 m)) (nth 1 (nth 2 m))) (math-mul (nth 3 (nth 2 m)) (nth 1 (nth 1 m))))) (list 'vec (math-sub (math-mul (nth 2 (nth 3 m)) (nth 1 (nth 2 m))) (math-mul (nth 2 (nth 2 m)) (nth 1 (nth 3 m)))) (math-sub (math-mul (nth 2 (nth 1 m)) (nth 1 (nth 3 m))) (math-mul (nth 2 (nth 3 m)) (nth 1 (nth 1 m)))) (math-sub (math-mul (nth 2 (nth 2 m)) (nth 1 (nth 1 m))) (math-mul (nth 2 (nth 1 m)) (nth 1 (nth 2 m)))))))) det))) (let ((lud (math-matrix-lud m))) (and lud (math-lud-solve lud (calcFunc-idn 1 n))))))) (defun calcFunc-det (m) (if (math-square-matrixp m) (math-with-extra-prec 2 (math-det-raw m)) (if (and (eq (car-safe m) 'calcFunc-idn) (or (math-zerop (nth 1 m)) (math-equal-int (nth 1 m) 1))) (nth 1 m) (math-reject-arg m 'square-matrixp)))) ;; The variable math-det-lu is local to math-det-raw, but is ;; used by math-det-step, which is called by math-det-raw. (defvar math-det-lu) (defun math-det-raw (m) (let ((n (1- (length m)))) (cond ((= n 1) (nth 1 (nth 1 m))) ((= n 2) (math-sub (math-mul (nth 1 (nth 1 m)) (nth 2 (nth 2 m))) (math-mul (nth 2 (nth 1 m)) (nth 1 (nth 2 m))))) ((= n 3) (math-sub (math-sub (math-sub (math-add (math-add (math-mul (nth 1 (nth 1 m)) (math-mul (nth 2 (nth 2 m)) (nth 3 (nth 3 m)))) (math-mul (nth 2 (nth 1 m)) (math-mul (nth 3 (nth 2 m)) (nth 1 (nth 3 m))))) (math-mul (nth 3 (nth 1 m)) (math-mul (nth 1 (nth 2 m)) (nth 2 (nth 3 m))))) (math-mul (nth 3 (nth 1 m)) (math-mul (nth 2 (nth 2 m)) (nth 1 (nth 3 m))))) (math-mul (nth 1 (nth 1 m)) (math-mul (nth 3 (nth 2 m)) (nth 2 (nth 3 m))))) (math-mul (nth 2 (nth 1 m)) (math-mul (nth 1 (nth 2 m)) (nth 3 (nth 3 m)))))) (t (let ((lud (math-matrix-lud m))) (if lud (let ((math-det-lu (car lud))) (math-det-step n (nth 2 lud))) 0)))))) (defun math-det-step (n prod) (if (> n 0) (math-det-step (1- n) (math-mul prod (nth n (nth n math-det-lu)))) prod)) ;;; This returns a list (LU index d), or nil if not possible. ;;; Argument M must be a square matrix. (defvar math-lud-cache nil) (defun math-matrix-lud (m) (let ((old (assoc m math-lud-cache)) (context (list calc-internal-prec calc-prefer-frac))) (if (and old (equal (nth 1 old) context)) (cdr (cdr old)) (let* ((lud (catch 'singular (math-do-matrix-lud m))) (entry (cons context lud))) (if old (setcdr old entry) (setq math-lud-cache (cons (cons m entry) math-lud-cache))) lud)))) ;;; Numerical Recipes section 2.3; implicit pivoting omitted. (defun math-do-matrix-lud (m) (let* ((lu (math-copy-matrix m)) (n (1- (length lu))) i (j 1) k imax sum big (d 1) (index nil)) (while (<= j n) (setq i 1 big 0 imax j) (while (< i j) (math-working "LUD step" (format "%d/%d" j i)) (setq sum (nth j (nth i lu)) k 1) (while (< k i) (setq sum (math-sub sum (math-mul (nth k (nth i lu)) (nth j (nth k lu)))) k (1+ k))) (setcar (nthcdr j (nth i lu)) sum) (setq i (1+ i))) (while (<= i n) (math-working "LUD step" (format "%d/%d" j i)) (setq sum (nth j (nth i lu)) k 1) (while (< k j) (setq sum (math-sub sum (math-mul (nth k (nth i lu)) (nth j (nth k lu)))) k (1+ k))) (setcar (nthcdr j (nth i lu)) sum) (let ((dum (math-abs-approx sum))) (if (Math-lessp big dum) (setq big dum imax i))) (setq i (1+ i))) (if (> imax j) (setq lu (math-swap-rows lu j imax) d (- d))) (setq index (cons imax index)) (let ((pivot (nth j (nth j lu)))) (if (math-zerop pivot) (throw 'singular nil) (setq i j) (while (<= (setq i (1+ i)) n) (setcar (nthcdr j (nth i lu)) (math-div (nth j (nth i lu)) pivot))))) (setq j (1+ j))) (list lu (nreverse index) d))) (defun math-swap-rows (m r1 r2) (or (= r1 r2) (let* ((r1prev (nthcdr (1- r1) m)) (row1 (cdr r1prev)) (r2prev (nthcdr (1- r2) m)) (row2 (cdr r2prev)) (r2next (cdr row2))) (setcdr r2prev row1) (setcdr r1prev row2) (setcdr row2 (cdr row1)) (setcdr row1 r2next))) m) (defun math-lud-solve (lud b &optional need) (if lud (let* ((x (math-copy-matrix b)) (n (1- (length x))) (m (1- (length (nth 1 x)))) (lu (car lud)) (col 1) i j ip ii index sum) (while (<= col m) (math-working "LUD solver step" col) (setq i 1 ii nil index (nth 1 lud)) (while (<= i n) (setq ip (car index) index (cdr index) sum (nth col (nth ip x))) (setcar (nthcdr col (nth ip x)) (nth col (nth i x))) (if (null ii) (or (math-zerop sum) (setq ii i)) (setq j ii) (while (< j i) (setq sum (math-sub sum (math-mul (nth j (nth i lu)) (nth col (nth j x)))) j (1+ j)))) (setcar (nthcdr col (nth i x)) sum) (setq i (1+ i))) (while (>= (setq i (1- i)) 1) (setq sum (nth col (nth i x)) j i) (while (<= (setq j (1+ j)) n) (setq sum (math-sub sum (math-mul (nth j (nth i lu)) (nth col (nth j x)))))) (setcar (nthcdr col (nth i x)) (math-div sum (nth i (nth i lu))))) (setq col (1+ col))) x) (and need (math-reject-arg need "*Singular matrix")))) (defun calcFunc-lud (m) (if (math-square-matrixp m) (or (math-with-extra-prec 2 (let ((lud (math-matrix-lud m))) (and lud (let* ((lmat (math-copy-matrix (car lud))) (umat (math-copy-matrix (car lud))) (n (1- (length (car lud)))) (perm (calcFunc-idn 1 n)) i (j 1)) (while (<= j n) (setq i 1) (while (< i j) (setcar (nthcdr j (nth i lmat)) 0) (setq i (1+ i))) (setcar (nthcdr j (nth j lmat)) 1) (while (<= (setq i (1+ i)) n) (setcar (nthcdr j (nth i umat)) 0)) (setq j (1+ j))) (while (>= (setq j (1- j)) 1) (let ((pos (nth (1- j) (nth 1 lud)))) (or (= pos j) (setq perm (math-swap-rows perm j pos))))) (list 'vec perm lmat umat))))) (math-reject-arg m "*Singular matrix")) (math-reject-arg m 'square-matrixp))) (provide 'calc-mtx) ;;; arch-tag: fc0947b1-90e1-4a23-8950-d8ead9c3a306 ;;; calc-mtx.el ends here