Mercurial > emacs
view lisp/emacs-lisp/avl-tree.el @ 91025:3cb16c370b58
(x_set_glyph_string_clipping): Use
get_glyph_string_clip_rects.
(x_set_glyph_string_clipping_exactly): Adjusted for the change fo
struct glyph_string.
(x_draw_glyph_string): Likewise.
author | Kenichi Handa <handa@m17n.org> |
---|---|
date | Thu, 13 Sep 2007 11:02:20 +0000 |
parents | 7224e10a56f5 |
children | 17a8beea7b8c |
line wrap: on
line source
;;; avl-tree.el --- balanced binary trees, AVL-trees ;; Copyright (C) 1995, 2007 Free Software Foundation, Inc. ;; Author: Per Cederqvist <ceder@lysator.liu.se> ;; Inge Wallin <inge@lysator.liu.se> ;; Thomas Bellman <bellman@lysator.liu.se> ;; Maintainer: FSF ;; Created: 10 May 1991 ;; Keywords: extensions, data structures ;; This file is part of GNU Emacs. ;; GNU Emacs is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GNU Emacs; see the file COPYING. If not, write to the ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, ;; Boston, MA 02110-1301, USA. ;;; Commentary: ;; An AVL tree is a nearly-perfect balanced binary tree. A tree ;; consists of two cons cells, the first one holding the tag ;; 'AVL-TREE in the car cell, and the second one having the tree ;; in the car and the compare function in the cdr cell. The tree has ;; a dummy node as its root with the real tree in the left pointer. ;; ;; Each node of the tree consists of one data element, one left ;; sub-tree and one right sub-tree. Each node also has a balance ;; count, which is the difference in depth of the left and right ;; sub-trees. ;; ;; The "public" functions (prefixed with "avl-tree") are: ;; -create, -p, -compare-function, -empty, -enter, -delete, ;; -member, -map, -first, -last, -copy, -flatten, -size, -clear. ;;; Code: ;;; ================================================================ ;;; Functions and macros handling an AVL tree node. (defmacro avl-tree-node-create (left right data balance) ;; Create and return an avl-tree node. `(vector ,left ,right ,data ,balance)) (defmacro avl-tree-node-left (node) ;; Return the left pointer of NODE. `(aref ,node 0)) (defmacro avl-tree-node-right (node) ;; Return the right pointer of NODE. `(aref ,node 1)) (defmacro avl-tree-node-data (node) ;; Return the data of NODE. `(aref ,node 2)) (defmacro avl-tree-node-set-left (node newleft) ;; Set the left pointer of NODE to NEWLEFT. `(aset ,node 0 ,newleft)) (defmacro avl-tree-node-set-right (node newright) ;; Set the right pointer of NODE to NEWRIGHT. `(aset ,node 1 ,newright)) (defmacro avl-tree-node-set-data (node newdata) ;; Set the data of NODE to NEWDATA. `(aset ,node 2 ,newdata)) (defmacro avl-tree-node-branch (node branch) "Get value of a branch of a node. NODE is the node, and BRANCH is the branch. 0 for left pointer, 1 for right pointer and 2 for the data.\"" `(aref ,node ,branch)) (defmacro avl-tree-node-set-branch (node branch newval) "Set value of a branch of a node. NODE is the node, and BRANCH is the branch. 0 for left pointer, 1 for the right pointer and 2 for the data. NEWVAL is new value of the branch.\"" `(aset ,node ,branch ,newval)) (defmacro avl-tree-node-balance (node) ;; Return the balance field of a node. `(aref ,node 3)) (defmacro avl-tree-node-set-balance (node newbal) ;; Set the balance field of a node. `(aset ,node 3 ,newbal)) ;;; ================================================================ ;;; Internal functions for use in the AVL tree package (defmacro avl-tree-root (tree) ;; Return the root node for an avl-tree. INTERNAL USE ONLY. `(avl-tree-node-left (car (cdr ,tree)))) (defmacro avl-tree-dummyroot (tree) ;; Return the dummy node of an avl-tree. INTERNAL USE ONLY. `(car (cdr ,tree))) (defmacro avl-tree-cmpfun (tree) ;; Return the compare function of AVL tree TREE. INTERNAL USE ONLY. `(cdr (cdr ,tree))) ;; ---------------------------------------------------------------- ;; Deleting data (defun avl-tree-del-balance1 (node branch) ;; Rebalance a tree and return t if the height of the tree has shrunk. (let ((br (avl-tree-node-branch node branch)) p1 b1 p2 b2 result) (cond ((< (avl-tree-node-balance br) 0) (avl-tree-node-set-balance br 0) t) ((= (avl-tree-node-balance br) 0) (avl-tree-node-set-balance br +1) nil) (t ;; Rebalance. (setq p1 (avl-tree-node-right br) b1 (avl-tree-node-balance p1)) (if (>= b1 0) ;; Single RR rotation. (progn (avl-tree-node-set-right br (avl-tree-node-left p1)) (avl-tree-node-set-left p1 br) (if (= 0 b1) (progn (avl-tree-node-set-balance br +1) (avl-tree-node-set-balance p1 -1) (setq result nil)) (avl-tree-node-set-balance br 0) (avl-tree-node-set-balance p1 0) (setq result t)) (avl-tree-node-set-branch node branch p1) result) ;; Double RL rotation. (setq p2 (avl-tree-node-left p1) b2 (avl-tree-node-balance p2)) (avl-tree-node-set-left p1 (avl-tree-node-right p2)) (avl-tree-node-set-right p2 p1) (avl-tree-node-set-right br (avl-tree-node-left p2)) (avl-tree-node-set-left p2 br) (if (> b2 0) (avl-tree-node-set-balance br -1) (avl-tree-node-set-balance br 0)) (if (< b2 0) (avl-tree-node-set-balance p1 +1) (avl-tree-node-set-balance p1 0)) (avl-tree-node-set-branch node branch p2) (avl-tree-node-set-balance p2 0) t))))) (defun avl-tree-del-balance2 (node branch) (let ((br (avl-tree-node-branch node branch)) p1 b1 p2 b2 result) (cond ((> (avl-tree-node-balance br) 0) (avl-tree-node-set-balance br 0) t) ((= (avl-tree-node-balance br) 0) (avl-tree-node-set-balance br -1) nil) (t ;; Rebalance. (setq p1 (avl-tree-node-left br) b1 (avl-tree-node-balance p1)) (if (<= b1 0) ;; Single LL rotation. (progn (avl-tree-node-set-left br (avl-tree-node-right p1)) (avl-tree-node-set-right p1 br) (if (= 0 b1) (progn (avl-tree-node-set-balance br -1) (avl-tree-node-set-balance p1 +1) (setq result nil)) (avl-tree-node-set-balance br 0) (avl-tree-node-set-balance p1 0) (setq result t)) (avl-tree-node-set-branch node branch p1) result) ;; Double LR rotation. (setq p2 (avl-tree-node-right p1) b2 (avl-tree-node-balance p2)) (avl-tree-node-set-right p1 (avl-tree-node-left p2)) (avl-tree-node-set-left p2 p1) (avl-tree-node-set-left br (avl-tree-node-right p2)) (avl-tree-node-set-right p2 br) (if (< b2 0) (avl-tree-node-set-balance br +1) (avl-tree-node-set-balance br 0)) (if (> b2 0) (avl-tree-node-set-balance p1 -1) (avl-tree-node-set-balance p1 0)) (avl-tree-node-set-branch node branch p2) (avl-tree-node-set-balance p2 0) t))))) (defun avl-tree-do-del-internal (node branch q) (let ((br (avl-tree-node-branch node branch))) (if (avl-tree-node-right br) (if (avl-tree-do-del-internal br +1 q) (avl-tree-del-balance2 node branch)) (avl-tree-node-set-data q (avl-tree-node-data br)) (avl-tree-node-set-branch node branch (avl-tree-node-left br)) t))) (defun avl-tree-do-delete (cmpfun root branch data) ;; Return t if the height of the tree has shrunk. (let ((br (avl-tree-node-branch root branch))) (cond ((null br) nil) ((funcall cmpfun data (avl-tree-node-data br)) (if (avl-tree-do-delete cmpfun br 0 data) (avl-tree-del-balance1 root branch))) ((funcall cmpfun (avl-tree-node-data br) data) (if (avl-tree-do-delete cmpfun br 1 data) (avl-tree-del-balance2 root branch))) (t ;; Found it. Let's delete it. (cond ((null (avl-tree-node-right br)) (avl-tree-node-set-branch root branch (avl-tree-node-left br)) t) ((null (avl-tree-node-left br)) (avl-tree-node-set-branch root branch (avl-tree-node-right br)) t) (t (if (avl-tree-do-del-internal br 0 br) (avl-tree-del-balance1 root branch)))))))) ;; ---------------------------------------------------------------- ;; Entering data (defun avl-tree-enter-balance1 (node branch) ;; Rebalance a tree and return t if the height of the tree has grown. (let ((br (avl-tree-node-branch node branch)) p1 p2 b2 result) (cond ((< (avl-tree-node-balance br) 0) (avl-tree-node-set-balance br 0) nil) ((= (avl-tree-node-balance br) 0) (avl-tree-node-set-balance br +1) t) (t ;; Tree has grown => Rebalance. (setq p1 (avl-tree-node-right br)) (if (> (avl-tree-node-balance p1) 0) ;; Single RR rotation. (progn (avl-tree-node-set-right br (avl-tree-node-left p1)) (avl-tree-node-set-left p1 br) (avl-tree-node-set-balance br 0) (avl-tree-node-set-branch node branch p1)) ;; Double RL rotation. (setq p2 (avl-tree-node-left p1) b2 (avl-tree-node-balance p2)) (avl-tree-node-set-left p1 (avl-tree-node-right p2)) (avl-tree-node-set-right p2 p1) (avl-tree-node-set-right br (avl-tree-node-left p2)) (avl-tree-node-set-left p2 br) (if (> b2 0) (avl-tree-node-set-balance br -1) (avl-tree-node-set-balance br 0)) (if (< b2 0) (avl-tree-node-set-balance p1 +1) (avl-tree-node-set-balance p1 0)) (avl-tree-node-set-branch node branch p2)) (avl-tree-node-set-balance (avl-tree-node-branch node branch) 0) nil)))) (defun avl-tree-enter-balance2 (node branch) ;; Return t if the tree has grown. (let ((br (avl-tree-node-branch node branch)) p1 p2 b2) (cond ((> (avl-tree-node-balance br) 0) (avl-tree-node-set-balance br 0) nil) ((= (avl-tree-node-balance br) 0) (avl-tree-node-set-balance br -1) t) (t ;; Balance was -1 => Rebalance. (setq p1 (avl-tree-node-left br)) (if (< (avl-tree-node-balance p1) 0) ;; Single LL rotation. (progn (avl-tree-node-set-left br (avl-tree-node-right p1)) (avl-tree-node-set-right p1 br) (avl-tree-node-set-balance br 0) (avl-tree-node-set-branch node branch p1)) ;; Double LR rotation. (setq p2 (avl-tree-node-right p1) b2 (avl-tree-node-balance p2)) (avl-tree-node-set-right p1 (avl-tree-node-left p2)) (avl-tree-node-set-left p2 p1) (avl-tree-node-set-left br (avl-tree-node-right p2)) (avl-tree-node-set-right p2 br) (if (< b2 0) (avl-tree-node-set-balance br +1) (avl-tree-node-set-balance br 0)) (if (> b2 0) (avl-tree-node-set-balance p1 -1) (avl-tree-node-set-balance p1 0)) (avl-tree-node-set-branch node branch p2)) (avl-tree-node-set-balance (avl-tree-node-branch node branch) 0) nil)))) (defun avl-tree-do-enter (cmpfun root branch data) ;; Return t if height of tree ROOT has grown. INTERNAL USE ONLY. (let ((br (avl-tree-node-branch root branch))) (cond ((null br) ;; Data not in tree, insert it. (avl-tree-node-set-branch root branch (avl-tree-node-create nil nil data 0)) t) ((funcall cmpfun data (avl-tree-node-data br)) (and (avl-tree-do-enter cmpfun br 0 data) (avl-tree-enter-balance2 root branch))) ((funcall cmpfun (avl-tree-node-data br) data) (and (avl-tree-do-enter cmpfun br 1 data) (avl-tree-enter-balance1 root branch))) (t (avl-tree-node-set-data br data) nil)))) ;; ---------------------------------------------------------------- (defun avl-tree-mapc (map-function root) ;; Apply MAP-FUNCTION to all nodes in the tree starting with ROOT. ;; The function is applied in-order. ;; ;; Note: MAP-FUNCTION is applied to the node and not to the data itself. ;; INTERNAL USE ONLY. (let ((node root) (stack nil) (go-left t)) (push nil stack) (while node (if (and go-left (avl-tree-node-left node)) ;; Do the left subtree first. (progn (push node stack) (setq node (avl-tree-node-left node))) ;; Apply the function... (funcall map-function node) ;; and do the right subtree. (if (avl-tree-node-right node) (setq node (avl-tree-node-right node) go-left t) (setq node (pop stack) go-left nil)))))) (defun avl-tree-do-copy (root) ;; Copy the avl tree with ROOT as root. ;; Highly recursive. INTERNAL USE ONLY. (if (null root) nil (avl-tree-node-create (avl-tree-do-copy (avl-tree-node-left root)) (avl-tree-do-copy (avl-tree-node-right root)) (avl-tree-node-data root) (avl-tree-node-balance root)))) ;;; ================================================================ ;;; The public functions which operate on AVL trees. (defun avl-tree-create (compare-function) "Create a new empty avl tree and return it. COMPARE-FUNCTION is a function which takes two arguments, A and B, and returns non-nil if A is less than B, and nil otherwise." (cons 'AVL-TREE (cons (avl-tree-node-create nil nil nil 0) compare-function))) (defun avl-tree-p (obj) "Return t if OBJ is an avl tree, nil otherwise." (eq (car-safe obj) 'AVL-TREE)) (defun avl-tree-compare-function (tree) "Return the comparison function for the avl tree TREE." (avl-tree-cmpfun tree)) (defun avl-tree-empty (tree) "Return t if avl tree TREE is emtpy, otherwise return nil." (null (avl-tree-root tree))) (defun avl-tree-enter (tree data) "In the avl tree TREE insert DATA. Return DATA." (avl-tree-do-enter (avl-tree-cmpfun tree) (avl-tree-dummyroot tree) 0 data) data) (defun avl-tree-delete (tree data) "From the avl tree TREE, delete DATA. Return the element in TREE which matched DATA, nil if no element matched." (avl-tree-do-delete (avl-tree-cmpfun tree) (avl-tree-dummyroot tree) 0 data)) (defun avl-tree-member (tree data) "Return the element in the avl tree TREE which matches DATA. Matching uses the compare function previously specified in `avl-tree-create' when TREE was created. If there is no such element in the tree, the value is nil." (let ((node (avl-tree-root tree)) (compare-function (avl-tree-cmpfun tree)) found) (while (and node (not found)) (cond ((funcall compare-function data (avl-tree-node-data node)) (setq node (avl-tree-node-left node))) ((funcall compare-function (avl-tree-node-data node) data) (setq node (avl-tree-node-right node))) (t (setq found t)))) (if node (avl-tree-node-data node) nil))) (defun avl-tree-map (__map-function__ tree) "Apply __MAP-FUNCTION__ to all elements in the avl tree TREE." (avl-tree-mapc (function (lambda (node) (avl-tree-node-set-data node (funcall __map-function__ (avl-tree-node-data node))))) (avl-tree-root tree))) (defun avl-tree-first (tree) "Return the first element in TREE, or nil if TREE is empty." (let ((node (avl-tree-root tree))) (if node (progn (while (avl-tree-node-left node) (setq node (avl-tree-node-left node))) (avl-tree-node-data node)) nil))) (defun avl-tree-last (tree) "Return the last element in TREE, or nil if TREE is empty." (let ((node (avl-tree-root tree))) (if node (progn (while (avl-tree-node-right node) (setq node (avl-tree-node-right node))) (avl-tree-node-data node)) nil))) (defun avl-tree-copy (tree) "Return a copy of the avl tree TREE." (let ((new-tree (avl-tree-create (avl-tree-cmpfun tree)))) (avl-tree-node-set-left (avl-tree-dummyroot new-tree) (avl-tree-do-copy (avl-tree-root tree))) new-tree)) (defun avl-tree-flatten (tree) "Return a sorted list containing all elements of TREE." (nreverse (let ((treelist nil)) (avl-tree-mapc (function (lambda (node) (setq treelist (cons (avl-tree-node-data node) treelist)))) (avl-tree-root tree)) treelist))) (defun avl-tree-size (tree) "Return the number of elements in TREE." (let ((treesize 0)) (avl-tree-mapc (function (lambda (data) (setq treesize (1+ treesize)) data)) (avl-tree-root tree)) treesize)) (defun avl-tree-clear (tree) "Clear the avl tree TREE." (avl-tree-node-set-left (avl-tree-dummyroot tree) nil)) (provide 'avl-tree) ;; arch-tag: 47e26701-43c9-4222-bd79-739eac6357a9 ;;; avl-tree.el ends here