Mercurial > emacs
view lisp/calc/calc-poly.el @ 41091:418fff19f92e
Minor clarification.
author | Richard M. Stallman <rms@gnu.org> |
---|---|
date | Thu, 15 Nov 2001 18:53:38 +0000 |
parents | 73f364fd8aaa |
children | fcd507927105 |
line wrap: on
line source
;; Calculator for GNU Emacs, part II [calc-poly.el] ;; Copyright (C) 1990, 1991, 1992, 1993, 2001 Free Software Foundation, Inc. ;; Written by Dave Gillespie, daveg@synaptics.com. ;; This file is part of GNU Emacs. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY. No author or distributor ;; accepts responsibility to anyone for the consequences of using it ;; or for whether it serves any particular purpose or works at all, ;; unless he says so in writing. Refer to the GNU Emacs General Public ;; License for full details. ;; Everyone is granted permission to copy, modify and redistribute ;; GNU Emacs, but only under the conditions described in the ;; GNU Emacs General Public License. A copy of this license is ;; supposed to have been given to you along with GNU Emacs so you ;; can know your rights and responsibilities. It should be in a ;; file named COPYING. Among other things, the copyright notice ;; and this notice must be preserved on all copies. ;; This file is autoloaded from calc-ext.el. (require 'calc-ext) (require 'calc-macs) (defun calc-Need-calc-poly () nil) (defun calcFunc-pcont (expr &optional var) (cond ((Math-primp expr) (cond ((Math-zerop expr) 1) ((Math-messy-integerp expr) (math-trunc expr)) ((Math-objectp expr) expr) ((or (equal expr var) (not var)) 1) (t expr))) ((eq (car expr) '*) (math-mul (calcFunc-pcont (nth 1 expr) var) (calcFunc-pcont (nth 2 expr) var))) ((eq (car expr) '/) (math-div (calcFunc-pcont (nth 1 expr) var) (calcFunc-pcont (nth 2 expr) var))) ((and (eq (car expr) '^) (Math-natnump (nth 2 expr))) (math-pow (calcFunc-pcont (nth 1 expr) var) (nth 2 expr))) ((memq (car expr) '(neg polar)) (calcFunc-pcont (nth 1 expr) var)) ((consp var) (let ((p (math-is-polynomial expr var))) (if p (let ((lead (nth (1- (length p)) p)) (cont (math-poly-gcd-list p))) (if (math-guess-if-neg lead) (math-neg cont) cont)) 1))) ((memq (car expr) '(+ - cplx sdev)) (let ((cont (calcFunc-pcont (nth 1 expr) var))) (if (eq cont 1) 1 (let ((c2 (calcFunc-pcont (nth 2 expr) var))) (if (and (math-negp cont) (if (eq (car expr) '-) (math-posp c2) (math-negp c2))) (math-neg (math-poly-gcd cont c2)) (math-poly-gcd cont c2)))))) (var expr) (t 1))) (defun calcFunc-pprim (expr &optional var) (let ((cont (calcFunc-pcont expr var))) (if (math-equal-int cont 1) expr (math-poly-div-exact expr cont var)))) (defun math-div-poly-const (expr c) (cond ((memq (car-safe expr) '(+ -)) (list (car expr) (math-div-poly-const (nth 1 expr) c) (math-div-poly-const (nth 2 expr) c))) (t (math-div expr c)))) (defun calcFunc-pdeg (expr &optional var) (if (Math-zerop expr) '(neg (var inf var-inf)) (if var (or (math-polynomial-p expr var) (math-reject-arg expr "Expected a polynomial")) (math-poly-degree expr)))) (defun math-poly-degree (expr) (cond ((Math-primp expr) (if (eq (car-safe expr) 'var) 1 0)) ((eq (car expr) 'neg) (math-poly-degree (nth 1 expr))) ((eq (car expr) '*) (+ (math-poly-degree (nth 1 expr)) (math-poly-degree (nth 2 expr)))) ((eq (car expr) '/) (- (math-poly-degree (nth 1 expr)) (math-poly-degree (nth 2 expr)))) ((and (eq (car expr) '^) (natnump (nth 2 expr))) (* (math-poly-degree (nth 1 expr)) (nth 2 expr))) ((memq (car expr) '(+ -)) (max (math-poly-degree (nth 1 expr)) (math-poly-degree (nth 2 expr)))) (t 1))) (defun calcFunc-plead (expr var) (cond ((eq (car-safe expr) '*) (math-mul (calcFunc-plead (nth 1 expr) var) (calcFunc-plead (nth 2 expr) var))) ((eq (car-safe expr) '/) (math-div (calcFunc-plead (nth 1 expr) var) (calcFunc-plead (nth 2 expr) var))) ((and (eq (car-safe expr) '^) (math-natnump (nth 2 expr))) (math-pow (calcFunc-plead (nth 1 expr) var) (nth 2 expr))) ((Math-primp expr) (if (equal expr var) 1 expr)) (t (let ((p (math-is-polynomial expr var))) (if (cdr p) (nth (1- (length p)) p) 1))))) ;;; Polynomial quotient, remainder, and GCD. ;;; Originally by Ove Ewerlid (ewerlid@mizar.DoCS.UU.SE). ;;; Modifications and simplifications by daveg. (setq math-poly-modulus 1) ;;; Return gcd of two polynomials (defun calcFunc-pgcd (pn pd) (if (math-any-floats pn) (math-reject-arg pn "Coefficients must be rational")) (if (math-any-floats pd) (math-reject-arg pd "Coefficients must be rational")) (let ((calc-prefer-frac t) (math-poly-modulus (math-poly-modulus pn pd))) (math-poly-gcd pn pd))) ;;; Return only quotient to top of stack (nil if zero) (defun calcFunc-pdiv (pn pd &optional base) (let* ((calc-prefer-frac t) (math-poly-modulus (math-poly-modulus pn pd)) (res (math-poly-div pn pd base))) (setq calc-poly-div-remainder (cdr res)) (car res))) ;;; Return only remainder to top of stack (defun calcFunc-prem (pn pd &optional base) (let ((calc-prefer-frac t) (math-poly-modulus (math-poly-modulus pn pd))) (cdr (math-poly-div pn pd base)))) (defun calcFunc-pdivrem (pn pd &optional base) (let* ((calc-prefer-frac t) (math-poly-modulus (math-poly-modulus pn pd)) (res (math-poly-div pn pd base))) (list 'vec (car res) (cdr res)))) (defun calcFunc-pdivide (pn pd &optional base) (let* ((calc-prefer-frac t) (math-poly-modulus (math-poly-modulus pn pd)) (res (math-poly-div pn pd base))) (math-add (car res) (math-div (cdr res) pd)))) ;;; Multiply two terms, expanding out products of sums. (defun math-mul-thru (lhs rhs) (if (memq (car-safe lhs) '(+ -)) (list (car lhs) (math-mul-thru (nth 1 lhs) rhs) (math-mul-thru (nth 2 lhs) rhs)) (if (memq (car-safe rhs) '(+ -)) (list (car rhs) (math-mul-thru lhs (nth 1 rhs)) (math-mul-thru lhs (nth 2 rhs))) (math-mul lhs rhs)))) (defun math-div-thru (num den) (if (memq (car-safe num) '(+ -)) (list (car num) (math-div-thru (nth 1 num) den) (math-div-thru (nth 2 num) den)) (math-div num den))) ;;; Sort the terms of a sum into canonical order. (defun math-sort-terms (expr) (if (memq (car-safe expr) '(+ -)) (math-list-to-sum (sort (math-sum-to-list expr) (function (lambda (a b) (math-beforep (car a) (car b)))))) expr)) (defun math-list-to-sum (lst) (if (cdr lst) (list (if (cdr (car lst)) '- '+) (math-list-to-sum (cdr lst)) (car (car lst))) (if (cdr (car lst)) (math-neg (car (car lst))) (car (car lst))))) (defun math-sum-to-list (tree &optional neg) (cond ((eq (car-safe tree) '+) (nconc (math-sum-to-list (nth 1 tree) neg) (math-sum-to-list (nth 2 tree) neg))) ((eq (car-safe tree) '-) (nconc (math-sum-to-list (nth 1 tree) neg) (math-sum-to-list (nth 2 tree) (not neg)))) (t (list (cons tree neg))))) ;;; Check if the polynomial coefficients are modulo forms. (defun math-poly-modulus (expr &optional expr2) (or (math-poly-modulus-rec expr) (and expr2 (math-poly-modulus-rec expr2)) 1)) (defun math-poly-modulus-rec (expr) (if (and (eq (car-safe expr) 'mod) (Math-natnump (nth 2 expr))) (list 'mod 1 (nth 2 expr)) (and (memq (car-safe expr) '(+ - * /)) (or (math-poly-modulus-rec (nth 1 expr)) (math-poly-modulus-rec (nth 2 expr)))))) ;;; Divide two polynomials. Return (quotient . remainder). (defun math-poly-div (u v &optional math-poly-div-base) (if math-poly-div-base (math-do-poly-div u v) (math-do-poly-div (calcFunc-expand u) (calcFunc-expand v)))) (setq math-poly-div-base nil) (defun math-poly-div-exact (u v &optional base) (let ((res (math-poly-div u v base))) (if (eq (cdr res) 0) (car res) (math-reject-arg (list 'vec u v) "Argument is not a polynomial")))) (defun math-do-poly-div (u v) (cond ((math-constp u) (if (math-constp v) (cons (math-div u v) 0) (cons 0 u))) ((math-constp v) (cons (if (eq v 1) u (if (memq (car-safe u) '(+ -)) (math-add-or-sub (math-poly-div-exact (nth 1 u) v) (math-poly-div-exact (nth 2 u) v) nil (eq (car u) '-)) (math-div u v))) 0)) ((Math-equal u v) (cons math-poly-modulus 0)) ((and (math-atomic-factorp u) (math-atomic-factorp v)) (cons (math-simplify (math-div u v)) 0)) (t (let ((base (or math-poly-div-base (math-poly-div-base u v))) vp up res) (if (or (null base) (null (setq vp (math-is-polynomial v base nil 'gen)))) (cons 0 u) (setq up (math-is-polynomial u base nil 'gen) res (math-poly-div-coefs up vp)) (cons (math-build-polynomial-expr (car res) base) (math-build-polynomial-expr (cdr res) base))))))) (defun math-poly-div-rec (u v) (cond ((math-constp u) (math-div u v)) ((math-constp v) (if (eq v 1) u (if (memq (car-safe u) '(+ -)) (math-add-or-sub (math-poly-div-rec (nth 1 u) v) (math-poly-div-rec (nth 2 u) v) nil (eq (car u) '-)) (math-div u v)))) ((Math-equal u v) math-poly-modulus) ((and (math-atomic-factorp u) (math-atomic-factorp v)) (math-simplify (math-div u v))) (math-poly-div-base (math-div u v)) (t (let ((base (math-poly-div-base u v)) vp up res) (if (or (null base) (null (setq vp (math-is-polynomial v base nil 'gen)))) (math-div u v) (setq up (math-is-polynomial u base nil 'gen) res (math-poly-div-coefs up vp)) (math-add (math-build-polynomial-expr (car res) base) (math-div (math-build-polynomial-expr (cdr res) base) v))))))) ;;; Divide two polynomials in coefficient-list form. Return (quot . rem). (defun math-poly-div-coefs (u v) (cond ((null v) (math-reject-arg nil "Division by zero")) ((< (length u) (length v)) (cons nil u)) ((cdr u) (let ((q nil) (urev (reverse u)) (vrev (reverse v))) (while (let ((qk (math-poly-div-rec (math-simplify (car urev)) (car vrev))) (up urev) (vp vrev)) (if (or q (not (math-zerop qk))) (setq q (cons qk q))) (while (setq up (cdr up) vp (cdr vp)) (setcar up (math-sub (car up) (math-mul-thru qk (car vp))))) (setq urev (cdr urev)) up)) (while (and urev (Math-zerop (car urev))) (setq urev (cdr urev))) (cons q (nreverse (mapcar 'math-simplify urev))))) (t (cons (list (math-poly-div-rec (car u) (car v))) nil)))) ;;; Perform a pseudo-division of polynomials. (See Knuth section 4.6.1.) ;;; This returns only the remainder from the pseudo-division. (defun math-poly-pseudo-div (u v) (cond ((null v) nil) ((< (length u) (length v)) u) ((or (cdr u) (cdr v)) (let ((urev (reverse u)) (vrev (reverse v)) up) (while (let ((vp vrev)) (setq up urev) (while (setq up (cdr up) vp (cdr vp)) (setcar up (math-sub (math-mul-thru (car vrev) (car up)) (math-mul-thru (car urev) (car vp))))) (setq urev (cdr urev)) up) (while up (setcar up (math-mul-thru (car vrev) (car up))) (setq up (cdr up)))) (while (and urev (Math-zerop (car urev))) (setq urev (cdr urev))) (nreverse (mapcar 'math-simplify urev)))) (t nil))) ;;; Compute the GCD of two multivariate polynomials. (defun math-poly-gcd (u v) (cond ((Math-equal u v) u) ((math-constp u) (if (Math-zerop u) v (calcFunc-gcd u (calcFunc-pcont v)))) ((math-constp v) (if (Math-zerop v) v (calcFunc-gcd v (calcFunc-pcont u)))) (t (let ((base (math-poly-gcd-base u v))) (if base (math-simplify (calcFunc-expand (math-build-polynomial-expr (math-poly-gcd-coefs (math-is-polynomial u base nil 'gen) (math-is-polynomial v base nil 'gen)) base))) (calcFunc-gcd (calcFunc-pcont u) (calcFunc-pcont u))))))) (defun math-poly-div-list (lst a) (if (eq a 1) lst (if (eq a -1) (math-mul-list lst a) (mapcar (function (lambda (x) (math-poly-div-exact x a))) lst)))) (defun math-mul-list (lst a) (if (eq a 1) lst (if (eq a -1) (mapcar 'math-neg lst) (and (not (eq a 0)) (mapcar (function (lambda (x) (math-mul x a))) lst))))) ;;; Run GCD on all elements in a list. (defun math-poly-gcd-list (lst) (if (or (memq 1 lst) (memq -1 lst)) (math-poly-gcd-frac-list lst) (let ((gcd (car lst))) (while (and (setq lst (cdr lst)) (not (eq gcd 1))) (or (eq (car lst) 0) (setq gcd (math-poly-gcd gcd (car lst))))) (if lst (setq lst (math-poly-gcd-frac-list lst))) gcd))) (defun math-poly-gcd-frac-list (lst) (while (and lst (not (eq (car-safe (car lst)) 'frac))) (setq lst (cdr lst))) (if lst (let ((denom (nth 2 (car lst)))) (while (setq lst (cdr lst)) (if (eq (car-safe (car lst)) 'frac) (setq denom (calcFunc-lcm denom (nth 2 (car lst)))))) (list 'frac 1 denom)) 1)) ;;; Compute the GCD of two monovariate polynomial lists. ;;; Knuth section 4.6.1, algorithm C. (defun math-poly-gcd-coefs (u v) (let ((d (math-poly-gcd (math-poly-gcd-list u) (math-poly-gcd-list v))) (g 1) (h 1) (z 0) hh r delta ghd) (while (and u v (Math-zerop (car u)) (Math-zerop (car v))) (setq u (cdr u) v (cdr v) z (1+ z))) (or (eq d 1) (setq u (math-poly-div-list u d) v (math-poly-div-list v d))) (while (progn (setq delta (- (length u) (length v))) (if (< delta 0) (setq r u u v v r delta (- delta))) (setq r (math-poly-pseudo-div u v)) (cdr r)) (setq u v v (math-poly-div-list r (math-mul g (math-pow h delta))) g (nth (1- (length u)) u) h (if (<= delta 1) (math-mul (math-pow g delta) (math-pow h (- 1 delta))) (math-poly-div-exact (math-pow g delta) (math-pow h (1- delta)))))) (setq v (if r (list d) (math-mul-list (math-poly-div-list v (math-poly-gcd-list v)) d))) (if (math-guess-if-neg (nth (1- (length v)) v)) (setq v (math-mul-list v -1))) (while (>= (setq z (1- z)) 0) (setq v (cons 0 v))) v)) ;;; Return true if is a factor containing no sums or quotients. (defun math-atomic-factorp (expr) (cond ((eq (car-safe expr) '*) (and (math-atomic-factorp (nth 1 expr)) (math-atomic-factorp (nth 2 expr)))) ((memq (car-safe expr) '(+ - /)) nil) ((memq (car-safe expr) '(^ neg)) (math-atomic-factorp (nth 1 expr))) (t t))) ;;; Find a suitable base for dividing a by b. ;;; The base must exist in both expressions. ;;; The degree in the numerator must be higher or equal than the ;;; degree in the denominator. ;;; If the above conditions are not met the quotient is just a remainder. ;;; Return nil if this is the case. (defun math-poly-div-base (a b) (let (a-base b-base) (and (setq a-base (math-total-polynomial-base a)) (setq b-base (math-total-polynomial-base b)) (catch 'return (while a-base (let ((maybe (assoc (car (car a-base)) b-base))) (if maybe (if (>= (nth 1 (car a-base)) (nth 1 maybe)) (throw 'return (car (car a-base)))))) (setq a-base (cdr a-base))))))) ;;; Same as above but for gcd algorithm. ;;; Here there is no requirement that degree(a) > degree(b). ;;; Take the base that has the highest degree considering both a and b. ;;; ("a^20+b^21+x^3+a+b", "a+b^2+x^5+a^22+b^10") --> (a 22) (defun math-poly-gcd-base (a b) (let (a-base b-base) (and (setq a-base (math-total-polynomial-base a)) (setq b-base (math-total-polynomial-base b)) (catch 'return (while (and a-base b-base) (if (> (nth 1 (car a-base)) (nth 1 (car b-base))) (if (assoc (car (car a-base)) b-base) (throw 'return (car (car a-base))) (setq a-base (cdr a-base))) (if (assoc (car (car b-base)) a-base) (throw 'return (car (car b-base))) (setq b-base (cdr b-base))))))))) ;;; Sort a list of polynomial bases. (defun math-sort-poly-base-list (lst) (sort lst (function (lambda (a b) (or (> (nth 1 a) (nth 1 b)) (and (= (nth 1 a) (nth 1 b)) (math-beforep (car a) (car b)))))))) ;;; Given an expression find all variables that are polynomial bases. ;;; Return list in the form '( (var1 degree1) (var2 degree2) ... ). ;;; Note dynamic scope of mpb-total-base. (defun math-total-polynomial-base (expr) (let ((mpb-total-base nil)) (math-polynomial-base expr 'math-polynomial-p1) (math-sort-poly-base-list mpb-total-base))) (defun math-polynomial-p1 (subexpr) (or (assoc subexpr mpb-total-base) (memq (car subexpr) '(+ - * / neg)) (and (eq (car subexpr) '^) (natnump (nth 2 subexpr))) (let* ((math-poly-base-variable subexpr) (exponent (math-polynomial-p mpb-top-expr subexpr))) (if exponent (setq mpb-total-base (cons (list subexpr exponent) mpb-total-base))))) nil) (defun calcFunc-factors (expr &optional var) (let ((math-factored-vars (if var t nil)) (math-to-list t) (calc-prefer-frac t)) (or var (setq var (math-polynomial-base expr))) (let ((res (math-factor-finish (or (catch 'factor (math-factor-expr-try var)) expr)))) (math-simplify (if (math-vectorp res) res (list 'vec (list 'vec res 1))))))) (defun calcFunc-factor (expr &optional var) (let ((math-factored-vars nil) (math-to-list nil) (calc-prefer-frac t)) (math-simplify (math-factor-finish (if var (let ((math-factored-vars t)) (or (catch 'factor (math-factor-expr-try var)) expr)) (math-factor-expr expr)))))) (defun math-factor-finish (x) (if (Math-primp x) x (if (eq (car x) 'calcFunc-Fac-Prot) (math-factor-finish (nth 1 x)) (cons (car x) (mapcar 'math-factor-finish (cdr x)))))) (defun math-factor-protect (x) (if (memq (car-safe x) '(+ -)) (list 'calcFunc-Fac-Prot x) x)) (defun math-factor-expr (expr) (cond ((eq math-factored-vars t) expr) ((or (memq (car-safe expr) '(* / ^ neg)) (assq (car-safe expr) calc-tweak-eqn-table)) (cons (car expr) (mapcar 'math-factor-expr (cdr expr)))) ((memq (car-safe expr) '(+ -)) (let* ((math-factored-vars math-factored-vars) (y (catch 'factor (math-factor-expr-part expr)))) (if y (math-factor-expr y) expr))) (t expr))) (defun math-factor-expr-part (x) ; uses "expr" (if (memq (car-safe x) '(+ - * / ^ neg)) (while (setq x (cdr x)) (math-factor-expr-part (car x))) (and (not (Math-objvecp x)) (not (assoc x math-factored-vars)) (> (math-factor-contains expr x) 1) (setq math-factored-vars (cons (list x) math-factored-vars)) (math-factor-expr-try x)))) (defun math-factor-expr-try (x) (if (eq (car-safe expr) '*) (let ((res1 (catch 'factor (let ((expr (nth 1 expr))) (math-factor-expr-try x)))) (res2 (catch 'factor (let ((expr (nth 2 expr))) (math-factor-expr-try x))))) (and (or res1 res2) (throw 'factor (math-accum-factors (or res1 (nth 1 expr)) 1 (or res2 (nth 2 expr)))))) (let* ((p (math-is-polynomial expr x 30 'gen)) (math-poly-modulus (math-poly-modulus expr)) res) (and (cdr p) (setq res (math-factor-poly-coefs p)) (throw 'factor res))))) (defun math-accum-factors (fac pow facs) (if math-to-list (if (math-vectorp fac) (progn (while (setq fac (cdr fac)) (setq facs (math-accum-factors (nth 1 (car fac)) (* pow (nth 2 (car fac))) facs))) facs) (if (and (eq (car-safe fac) '^) (natnump (nth 2 fac))) (setq pow (* pow (nth 2 fac)) fac (nth 1 fac))) (if (eq fac 1) facs (or (math-vectorp facs) (setq facs (if (eq facs 1) '(vec) (list 'vec (list 'vec facs 1))))) (let ((found facs)) (while (and (setq found (cdr found)) (not (equal fac (nth 1 (car found)))))) (if found (progn (setcar (cdr (cdr (car found))) (+ pow (nth 2 (car found)))) facs) ;; Put constant term first. (if (and (cdr facs) (Math-ratp (nth 1 (nth 1 facs)))) (cons 'vec (cons (nth 1 facs) (cons (list 'vec fac pow) (cdr (cdr facs))))) (cons 'vec (cons (list 'vec fac pow) (cdr facs)))))))) (math-mul (math-pow fac pow) facs))) (defun math-factor-poly-coefs (p &optional square-free) ; uses "x" (let (t1 t2) (cond ((not (cdr p)) (or (car p) 0)) ;; Strip off multiples of x. ((Math-zerop (car p)) (let ((z 0)) (while (and p (Math-zerop (car p))) (setq z (1+ z) p (cdr p))) (if (cdr p) (setq p (math-factor-poly-coefs p square-free)) (setq p (math-sort-terms (math-factor-expr (car p))))) (math-accum-factors x z (math-factor-protect p)))) ;; Factor out content. ((and (not square-free) (not (eq 1 (setq t1 (math-mul (math-poly-gcd-list p) (if (math-guess-if-neg (nth (1- (length p)) p)) -1 1)))))) (math-accum-factors t1 1 (math-factor-poly-coefs (math-poly-div-list p t1) 'cont))) ;; Check if linear in x. ((not (cdr (cdr p))) (math-add (math-factor-protect (math-sort-terms (math-factor-expr (car p)))) (math-mul x (math-factor-protect (math-sort-terms (math-factor-expr (nth 1 p))))))) ;; If symbolic coefficients, use FactorRules. ((let ((pp p)) (while (and pp (or (Math-ratp (car pp)) (and (eq (car (car pp)) 'mod) (Math-integerp (nth 1 (car pp))) (Math-integerp (nth 2 (car pp)))))) (setq pp (cdr pp))) pp) (let ((res (math-rewrite (list 'calcFunc-thecoefs x (cons 'vec p)) '(var FactorRules var-FactorRules)))) (or (and (eq (car-safe res) 'calcFunc-thefactors) (= (length res) 3) (math-vectorp (nth 2 res)) (let ((facs 1) (vec (nth 2 res))) (while (setq vec (cdr vec)) (setq facs (math-accum-factors (car vec) 1 facs))) facs)) (math-build-polynomial-expr p x)))) ;; Check if rational coefficients (i.e., not modulo a prime). ((eq math-poly-modulus 1) ;; Check if there are any squared terms, or a content not = 1. (if (or (eq square-free t) (equal (setq t1 (math-poly-gcd-coefs p (setq t2 (math-poly-deriv-coefs p)))) '(1))) ;; We now have a square-free polynomial with integer coefs. ;; For now, we use a kludgey method that finds linear and ;; quadratic terms using floating-point root-finding. (if (setq t1 (let ((calc-symbolic-mode nil)) (math-poly-all-roots nil p t))) (let ((roots (car t1)) (csign (if (math-negp (nth (1- (length p)) p)) -1 1)) (expr 1) (unfac (nth 1 t1)) (scale (nth 2 t1))) (while roots (let ((coef0 (car (car roots))) (coef1 (cdr (car roots)))) (setq expr (math-accum-factors (if coef1 (let ((den (math-lcm-denoms coef0 coef1))) (setq scale (math-div scale den)) (math-add (math-add (math-mul den (math-pow x 2)) (math-mul (math-mul coef1 den) x)) (math-mul coef0 den))) (let ((den (math-lcm-denoms coef0))) (setq scale (math-div scale den)) (math-add (math-mul den x) (math-mul coef0 den)))) 1 expr) roots (cdr roots)))) (setq expr (math-accum-factors expr 1 (math-mul csign (math-build-polynomial-expr (math-mul-list (nth 1 t1) scale) x))))) (math-build-polynomial-expr p x)) ; can't factor it. ;; Separate out the squared terms (Knuth exercise 4.6.2-34). ;; This step also divides out the content of the polynomial. (let* ((cabs (math-poly-gcd-list p)) (csign (if (math-negp (nth (1- (length p)) p)) -1 1)) (t1s (math-mul-list t1 csign)) (uu nil) (v (car (math-poly-div-coefs p t1s))) (w (car (math-poly-div-coefs t2 t1s)))) (while (not (math-poly-zerop (setq t2 (math-poly-simplify (math-poly-mix w 1 (math-poly-deriv-coefs v) -1))))) (setq t1 (math-poly-gcd-coefs v t2) uu (cons t1 uu) v (car (math-poly-div-coefs v t1)) w (car (math-poly-div-coefs t2 t1)))) (setq t1 (length uu) t2 (math-accum-factors (math-factor-poly-coefs v t) (1+ t1) 1)) (while uu (setq t2 (math-accum-factors (math-factor-poly-coefs (car uu) t) t1 t2) t1 (1- t1) uu (cdr uu))) (math-accum-factors (math-mul cabs csign) 1 t2)))) ;; Factoring modulo a prime. ((and (= (length (setq temp (math-poly-gcd-coefs p (math-poly-deriv-coefs p)))) (length p))) (setq p (car temp)) (while (cdr temp) (setq temp (nthcdr (nth 2 math-poly-modulus) temp) p (cons (car temp) p))) (and (setq temp (math-factor-poly-coefs p)) (math-pow temp (nth 2 math-poly-modulus)))) (t (math-reject-arg nil "*Modulo factorization not yet implemented"))))) (defun math-poly-deriv-coefs (p) (let ((n 1) (dp nil)) (while (setq p (cdr p)) (setq dp (cons (math-mul (car p) n) dp) n (1+ n))) (nreverse dp))) (defun math-factor-contains (x a) (if (equal x a) 1 (if (memq (car-safe x) '(+ - * / neg)) (let ((sum 0)) (while (setq x (cdr x)) (setq sum (+ sum (math-factor-contains (car x) a)))) sum) (if (and (eq (car-safe x) '^) (natnump (nth 2 x))) (* (math-factor-contains (nth 1 x) a) (nth 2 x)) 0)))) ;;; Merge all quotients and expand/simplify the numerator (defun calcFunc-nrat (expr) (if (math-any-floats expr) (setq expr (calcFunc-pfrac expr))) (if (or (math-vectorp expr) (assq (car-safe expr) calc-tweak-eqn-table)) (cons (car expr) (mapcar 'calcFunc-nrat (cdr expr))) (let* ((calc-prefer-frac t) (res (math-to-ratpoly expr)) (num (math-simplify (math-sort-terms (calcFunc-expand (car res))))) (den (math-simplify (math-sort-terms (calcFunc-expand (cdr res))))) (g (math-poly-gcd num den))) (or (eq g 1) (let ((num2 (math-poly-div num g)) (den2 (math-poly-div den g))) (and (eq (cdr num2) 0) (eq (cdr den2) 0) (setq num (car num2) den (car den2))))) (math-simplify (math-div num den))))) ;;; Returns expressions (num . denom). (defun math-to-ratpoly (expr) (let ((res (math-to-ratpoly-rec expr))) (cons (math-simplify (car res)) (math-simplify (cdr res))))) (defun math-to-ratpoly-rec (expr) (cond ((Math-primp expr) (cons expr 1)) ((memq (car expr) '(+ -)) (let ((r1 (math-to-ratpoly-rec (nth 1 expr))) (r2 (math-to-ratpoly-rec (nth 2 expr)))) (if (equal (cdr r1) (cdr r2)) (cons (list (car expr) (car r1) (car r2)) (cdr r1)) (if (eq (cdr r1) 1) (cons (list (car expr) (math-mul (car r1) (cdr r2)) (car r2)) (cdr r2)) (if (eq (cdr r2) 1) (cons (list (car expr) (car r1) (math-mul (car r2) (cdr r1))) (cdr r1)) (let ((g (math-poly-gcd (cdr r1) (cdr r2)))) (let ((d1 (and (not (eq g 1)) (math-poly-div (cdr r1) g))) (d2 (and (not (eq g 1)) (math-poly-div (math-mul (car r1) (cdr r2)) g)))) (if (and (eq (cdr d1) 0) (eq (cdr d2) 0)) (cons (list (car expr) (car d2) (math-mul (car r2) (car d1))) (math-mul (car d1) (cdr r2))) (cons (list (car expr) (math-mul (car r1) (cdr r2)) (math-mul (car r2) (cdr r1))) (math-mul (cdr r1) (cdr r2))))))))))) ((eq (car expr) '*) (let* ((r1 (math-to-ratpoly-rec (nth 1 expr))) (r2 (math-to-ratpoly-rec (nth 2 expr))) (g (math-mul (math-poly-gcd (car r1) (cdr r2)) (math-poly-gcd (cdr r1) (car r2))))) (if (eq g 1) (cons (math-mul (car r1) (car r2)) (math-mul (cdr r1) (cdr r2))) (cons (math-poly-div-exact (math-mul (car r1) (car r2)) g) (math-poly-div-exact (math-mul (cdr r1) (cdr r2)) g))))) ((eq (car expr) '/) (let* ((r1 (math-to-ratpoly-rec (nth 1 expr))) (r2 (math-to-ratpoly-rec (nth 2 expr)))) (if (and (eq (cdr r1) 1) (eq (cdr r2) 1)) (cons (car r1) (car r2)) (let ((g (math-mul (math-poly-gcd (car r1) (car r2)) (math-poly-gcd (cdr r1) (cdr r2))))) (if (eq g 1) (cons (math-mul (car r1) (cdr r2)) (math-mul (cdr r1) (car r2))) (cons (math-poly-div-exact (math-mul (car r1) (cdr r2)) g) (math-poly-div-exact (math-mul (cdr r1) (car r2)) g))))))) ((and (eq (car expr) '^) (integerp (nth 2 expr))) (let ((r1 (math-to-ratpoly-rec (nth 1 expr)))) (if (> (nth 2 expr) 0) (cons (math-pow (car r1) (nth 2 expr)) (math-pow (cdr r1) (nth 2 expr))) (cons (math-pow (cdr r1) (- (nth 2 expr))) (math-pow (car r1) (- (nth 2 expr))))))) ((eq (car expr) 'neg) (let ((r1 (math-to-ratpoly-rec (nth 1 expr)))) (cons (math-neg (car r1)) (cdr r1)))) (t (cons expr 1)))) (defun math-ratpoly-p (expr &optional var) (cond ((equal expr var) 1) ((Math-primp expr) 0) ((memq (car expr) '(+ -)) (let ((p1 (math-ratpoly-p (nth 1 expr) var)) p2) (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var)) (max p1 p2)))) ((eq (car expr) '*) (let ((p1 (math-ratpoly-p (nth 1 expr) var)) p2) (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var)) (+ p1 p2)))) ((eq (car expr) 'neg) (math-ratpoly-p (nth 1 expr) var)) ((eq (car expr) '/) (let ((p1 (math-ratpoly-p (nth 1 expr) var)) p2) (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var)) (- p1 p2)))) ((and (eq (car expr) '^) (integerp (nth 2 expr))) (let ((p1 (math-ratpoly-p (nth 1 expr) var))) (and p1 (* p1 (nth 2 expr))))) ((not var) 1) ((math-poly-depends expr var) nil) (t 0))) (defun calcFunc-apart (expr &optional var) (cond ((Math-primp expr) expr) ((eq (car expr) '+) (math-add (calcFunc-apart (nth 1 expr) var) (calcFunc-apart (nth 2 expr) var))) ((eq (car expr) '-) (math-sub (calcFunc-apart (nth 1 expr) var) (calcFunc-apart (nth 2 expr) var))) ((not (math-ratpoly-p expr var)) (math-reject-arg expr "Expected a rational function")) (t (let* ((calc-prefer-frac t) (rat (math-to-ratpoly expr)) (num (car rat)) (den (cdr rat)) (qr (math-poly-div num den)) (q (car qr)) (r (cdr qr))) (or var (setq var (math-polynomial-base den))) (math-add q (or (and var (math-expr-contains den var) (math-partial-fractions r den var)) (math-div r den))))))) (defun math-padded-polynomial (expr var deg) (let ((p (math-is-polynomial expr var deg))) (append p (make-list (- deg (length p)) 0)))) (defun math-partial-fractions (r den var) (let* ((fden (calcFunc-factors den var)) (tdeg (math-polynomial-p den var)) (fp fden) (dlist nil) (eqns 0) (lz nil) (tz (make-list (1- tdeg) 0)) (calc-matrix-mode 'scalar)) (and (not (and (= (length fden) 2) (eq (nth 2 (nth 1 fden)) 1))) (progn (while (setq fp (cdr fp)) (let ((rpt (nth 2 (car fp))) (deg (math-polynomial-p (nth 1 (car fp)) var)) dnum dvar deg2) (while (> rpt 0) (setq deg2 deg dnum 0) (while (> deg2 0) (setq dvar (append '(vec) lz '(1) tz) lz (cons 0 lz) tz (cdr tz) deg2 (1- deg2) dnum (math-add dnum (math-mul dvar (math-pow var deg2))) dlist (cons (and (= deg2 (1- deg)) (math-pow (nth 1 (car fp)) rpt)) dlist))) (let ((fpp fden) (mult 1)) (while (setq fpp (cdr fpp)) (or (eq fpp fp) (setq mult (math-mul mult (math-pow (nth 1 (car fpp)) (nth 2 (car fpp))))))) (setq dnum (math-mul dnum mult))) (setq eqns (math-add eqns (math-mul dnum (math-pow (nth 1 (car fp)) (- (nth 2 (car fp)) rpt)))) rpt (1- rpt))))) (setq eqns (math-div (cons 'vec (math-padded-polynomial r var tdeg)) (math-transpose (cons 'vec (mapcar (function (lambda (x) (cons 'vec (math-padded-polynomial x var tdeg)))) (cdr eqns)))))) (and (math-vectorp eqns) (let ((res 0) (num nil)) (setq eqns (nreverse eqns)) (while eqns (setq num (cons (car eqns) num) eqns (cdr eqns)) (if (car dlist) (setq num (math-build-polynomial-expr (nreverse num) var) res (math-add res (math-div num (car dlist))) num nil)) (setq dlist (cdr dlist))) (math-normalize res))))))) (defun math-expand-term (expr) (cond ((and (eq (car-safe expr) '*) (memq (car-safe (nth 1 expr)) '(+ -))) (math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 2 expr)) (list '* (nth 2 (nth 1 expr)) (nth 2 expr)) nil (eq (car (nth 1 expr)) '-))) ((and (eq (car-safe expr) '*) (memq (car-safe (nth 2 expr)) '(+ -))) (math-add-or-sub (list '* (nth 1 expr) (nth 1 (nth 2 expr))) (list '* (nth 1 expr) (nth 2 (nth 2 expr))) nil (eq (car (nth 2 expr)) '-))) ((and (eq (car-safe expr) '/) (memq (car-safe (nth 1 expr)) '(+ -))) (math-add-or-sub (list '/ (nth 1 (nth 1 expr)) (nth 2 expr)) (list '/ (nth 2 (nth 1 expr)) (nth 2 expr)) nil (eq (car (nth 1 expr)) '-))) ((and (eq (car-safe expr) '^) (memq (car-safe (nth 1 expr)) '(+ -)) (integerp (nth 2 expr)) (if (> (nth 2 expr) 0) (or (and (or (> mmt-many 500000) (< mmt-many -500000)) (math-expand-power (nth 1 expr) (nth 2 expr) nil t)) (list '* (nth 1 expr) (list '^ (nth 1 expr) (1- (nth 2 expr))))) (if (< (nth 2 expr) 0) (list '/ 1 (list '^ (nth 1 expr) (- (nth 2 expr)))))))) (t expr))) (defun calcFunc-expand (expr &optional many) (math-normalize (math-map-tree 'math-expand-term expr many))) (defun math-expand-power (x n &optional var else-nil) (or (and (natnump n) (memq (car-safe x) '(+ -)) (let ((terms nil) (cterms nil)) (while (memq (car-safe x) '(+ -)) (setq terms (cons (if (eq (car x) '-) (math-neg (nth 2 x)) (nth 2 x)) terms) x (nth 1 x))) (setq terms (cons x terms)) (if var (let ((p terms)) (while p (or (math-expr-contains (car p) var) (setq terms (delq (car p) terms) cterms (cons (car p) cterms))) (setq p (cdr p))) (if cterms (setq terms (cons (apply 'calcFunc-add cterms) terms))))) (if (= (length terms) 2) (let ((i 0) (accum 0)) (while (<= i n) (setq accum (list '+ accum (list '* (calcFunc-choose n i) (list '* (list '^ (nth 1 terms) i) (list '^ (car terms) (- n i))))) i (1+ i))) accum) (if (= n 2) (let ((accum 0) (p1 terms) p2) (while p1 (setq accum (list '+ accum (list '^ (car p1) 2)) p2 p1) (while (setq p2 (cdr p2)) (setq accum (list '+ accum (list '* 2 (list '* (car p1) (car p2)))))) (setq p1 (cdr p1))) accum) (if (= n 3) (let ((accum 0) (p1 terms) p2 p3) (while p1 (setq accum (list '+ accum (list '^ (car p1) 3)) p2 p1) (while (setq p2 (cdr p2)) (setq accum (list '+ (list '+ accum (list '* 3 (list '* (list '^ (car p1) 2) (car p2)))) (list '* 3 (list '* (car p1) (list '^ (car p2) 2)))) p3 p2) (while (setq p3 (cdr p3)) (setq accum (list '+ accum (list '* 6 (list '* (car p1) (list '* (car p2) (car p3)))))))) (setq p1 (cdr p1))) accum)))))) (and (not else-nil) (list '^ x n)))) (defun calcFunc-expandpow (x n) (math-normalize (math-expand-power x n))) ;;; calc-poly.el ends here