Mercurial > emacs
view lisp/calc/calc-frac.el @ 46393:4f6ec0250812
(describe-variable): Remove useless trailing whitespace.
author | Juanma Barranquero <lekktu@gmail.com> |
---|---|
date | Mon, 15 Jul 2002 16:17:01 +0000 |
parents | 5b80d417cf80 |
children | f4d68f97221e |
line wrap: on
line source
;;; calc-frac.el --- fraction functions for Calc ;; Copyright (C) 1990, 1991, 1992, 1993, 2001 Free Software Foundation, Inc. ;; Author: David Gillespie <daveg@synaptics.com> ;; Maintainer: Colin Walters <walters@debian.org> ;; This file is part of GNU Emacs. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY. No author or distributor ;; accepts responsibility to anyone for the consequences of using it ;; or for whether it serves any particular purpose or works at all, ;; unless he says so in writing. Refer to the GNU Emacs General Public ;; License for full details. ;; Everyone is granted permission to copy, modify and redistribute ;; GNU Emacs, but only under the conditions described in the ;; GNU Emacs General Public License. A copy of this license is ;; supposed to have been given to you along with GNU Emacs so you ;; can know your rights and responsibilities. It should be in a ;; file named COPYING. Among other things, the copyright notice ;; and this notice must be preserved on all copies. ;;; Commentary: ;;; Code: ;; This file is autoloaded from calc-ext.el. (require 'calc-ext) (require 'calc-macs) (defun calc-Need-calc-frac () nil) (defun calc-fdiv (arg) (interactive "P") (calc-slow-wrapper (calc-binary-op ":" 'calcFunc-fdiv arg 1))) (defun calc-fraction (arg) (interactive "P") (calc-slow-wrapper (let ((func (if (calc-is-hyperbolic) 'calcFunc-frac 'calcFunc-pfrac))) (if (eq arg 0) (calc-enter-result 2 "frac" (list func (calc-top-n 2) (calc-top-n 1))) (calc-enter-result 1 "frac" (list func (calc-top-n 1) (prefix-numeric-value (or arg 0)))))))) (defun calc-over-notation (fmt) (interactive (list (completing-read "Fraction separator: " (mapcar (lambda (s) (cons s 0)) '(":" "::" "/" "//" ":/")) nil t))) (calc-wrapper (if (string-match "\\`\\([^ 0-9][^ 0-9]?\\)[0-9]*\\'" fmt) (let ((n nil)) (if (/= (match-end 0) (match-end 1)) (setq n (string-to-int (substring fmt (match-end 1))) fmt (math-match-substring fmt 1))) (if (eq n 0) (error "Bad denominator")) (calc-change-mode 'calc-frac-format (list fmt n) t)) (error "Bad fraction separator format")))) (defun calc-slash-notation (n) (interactive "P") (calc-wrapper (calc-change-mode 'calc-frac-format (if n '("//" nil) '("/" nil)) t))) (defun calc-frac-mode (n) (interactive "P") (calc-wrapper (calc-change-mode 'calc-prefer-frac n nil t) (message (if calc-prefer-frac "Integer division will now generate fractions" "Integer division will now generate floating-point results")))) ;;;; Fractions. ;;; Build a normalized fraction. [R I I] ;;; (This could probably be implemented more efficiently than using ;;; the plain gcd algorithm.) (defun math-make-frac (num den) (if (Math-integer-negp den) (setq num (math-neg num) den (math-neg den))) (let ((gcd (math-gcd num den))) (if (eq gcd 1) (if (eq den 1) num (list 'frac num den)) (if (equal gcd den) (math-quotient num gcd) (list 'frac (math-quotient num gcd) (math-quotient den gcd)))))) (defun calc-add-fractions (a b) (if (eq (car-safe a) 'frac) (if (eq (car-safe b) 'frac) (math-make-frac (math-add (math-mul (nth 1 a) (nth 2 b)) (math-mul (nth 2 a) (nth 1 b))) (math-mul (nth 2 a) (nth 2 b))) (math-make-frac (math-add (nth 1 a) (math-mul (nth 2 a) b)) (nth 2 a))) (math-make-frac (math-add (math-mul a (nth 2 b)) (nth 1 b)) (nth 2 b)))) (defun calc-mul-fractions (a b) (if (eq (car-safe a) 'frac) (if (eq (car-safe b) 'frac) (math-make-frac (math-mul (nth 1 a) (nth 1 b)) (math-mul (nth 2 a) (nth 2 b))) (math-make-frac (math-mul (nth 1 a) b) (nth 2 a))) (math-make-frac (math-mul a (nth 1 b)) (nth 2 b)))) (defun calc-div-fractions (a b) (if (eq (car-safe a) 'frac) (if (eq (car-safe b) 'frac) (math-make-frac (math-mul (nth 1 a) (nth 2 b)) (math-mul (nth 2 a) (nth 1 b))) (math-make-frac (nth 1 a) (math-mul (nth 2 a) b))) (math-make-frac (math-mul a (nth 2 b)) (nth 1 b)))) ;;; Convert a real value to fractional form. [T R I; T R F] [Public] (defun calcFunc-frac (a &optional tol) (or tol (setq tol 0)) (cond ((Math-ratp a) a) ((memq (car a) '(cplx polar vec hms date sdev intv mod)) (cons (car a) (mapcar (function (lambda (x) (calcFunc-frac x tol))) (cdr a)))) ((Math-messy-integerp a) (math-trunc a)) ((Math-negp a) (math-neg (calcFunc-frac (math-neg a) tol))) ((not (eq (car a) 'float)) (if (math-infinitep a) a (if (math-provably-integerp a) a (math-reject-arg a 'numberp)))) ((integerp tol) (if (<= tol 0) (setq tol (+ tol calc-internal-prec))) (calcFunc-frac a (list 'float 5 (- (+ (math-numdigs (nth 1 a)) (nth 2 a)) (1+ tol))))) ((not (eq (car tol) 'float)) (if (Math-realp tol) (calcFunc-frac a (math-float tol)) (math-reject-arg tol 'realp))) ((Math-negp tol) (calcFunc-frac a (math-neg tol))) ((Math-zerop tol) (calcFunc-frac a 0)) ((not (math-lessp-float tol '(float 1 0))) (math-trunc a)) ((Math-zerop a) 0) (t (let ((cfrac (math-continued-fraction a tol)) (calc-prefer-frac t)) (math-eval-continued-fraction cfrac))))) (defun math-continued-fraction (a tol) (let ((calc-internal-prec (+ calc-internal-prec 2))) (let ((cfrac nil) (aa a) (calc-prefer-frac nil) int) (while (or (null cfrac) (and (not (Math-zerop aa)) (not (math-lessp-float (math-abs (math-sub a (let ((f (math-eval-continued-fraction cfrac))) (math-working "Fractionalize" f) f))) tol)))) (setq int (math-trunc aa) aa (math-sub aa int) cfrac (cons int cfrac)) (or (Math-zerop aa) (setq aa (math-div 1 aa)))) cfrac))) (defun math-eval-continued-fraction (cf) (let ((n (car cf)) (d 1) temp) (while (setq cf (cdr cf)) (setq temp (math-add (math-mul (car cf) n) d) d n n temp)) (math-div n d))) (defun calcFunc-fdiv (a b) ; [R I I] [Public] (if (Math-num-integerp a) (if (Math-num-integerp b) (if (Math-zerop b) (math-reject-arg a "*Division by zero") (math-make-frac (math-trunc a) (math-trunc b))) (math-reject-arg b 'integerp)) (math-reject-arg a 'integerp))) ;;; calc-frac.el ends here