view lisp/calc/calc-alg.el @ 63308:51d38cfbe542

Warn about using "cvs up -kb" if one intends to commit changes. Add a pointer to another site with detailed configure and build instructions. Suggest to look at config.log when configure fails. Add MinGW Make 3.80 to the list of successful combinations.
author Eli Zaretskii <eliz@gnu.org>
date Sat, 11 Jun 2005 11:31:29 +0000
parents a27ed02e5a65
children 1db49616ce05 62afea0771d8
line wrap: on
line source

;;; calc-alg.el --- algebraic functions for Calc

;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2005 Free Software Foundation, Inc.

;; Author: David Gillespie <daveg@synaptics.com>
;; Maintainer: Jay Belanger  <belanger@truman.edu>

;; This file is part of GNU Emacs.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY.  No author or distributor
;; accepts responsibility to anyone for the consequences of using it
;; or for whether it serves any particular purpose or works at all,
;; unless he says so in writing.  Refer to the GNU Emacs General Public
;; License for full details.

;; Everyone is granted permission to copy, modify and redistribute
;; GNU Emacs, but only under the conditions described in the
;; GNU Emacs General Public License.   A copy of this license is
;; supposed to have been given to you along with GNU Emacs so you
;; can know your rights and responsibilities.  It should be in a
;; file named COPYING.  Among other things, the copyright notice
;; and this notice must be preserved on all copies.

;;; Commentary:

;;; Code:

;; This file is autoloaded from calc-ext.el.

(require 'calc-ext)
(require 'calc-macs)

;;; Algebra commands.

(defun calc-alg-evaluate (arg)
  (interactive "p")
  (calc-slow-wrapper
   (calc-with-default-simplification
    (let ((math-simplify-only nil))
      (calc-modify-simplify-mode arg)
      (calc-enter-result 1 "dsmp" (calc-top 1))))))

(defun calc-modify-simplify-mode (arg)
  (if (= (math-abs arg) 2)
      (setq calc-simplify-mode 'alg)
    (if (>= (math-abs arg) 3)
	(setq calc-simplify-mode 'ext)))
  (if (< arg 0)
      (setq calc-simplify-mode (list calc-simplify-mode))))

(defun calc-simplify ()
  (interactive)
  (calc-slow-wrapper
   (calc-with-default-simplification
    (calc-enter-result 1 "simp" (math-simplify (calc-top-n 1))))))

(defun calc-simplify-extended ()
  (interactive)
  (calc-slow-wrapper
   (calc-with-default-simplification
    (calc-enter-result 1 "esmp" (math-simplify-extended (calc-top-n 1))))))

(defun calc-expand-formula (arg)
  (interactive "p")
  (calc-slow-wrapper
   (calc-with-default-simplification
    (let ((math-simplify-only nil))
      (calc-modify-simplify-mode arg)
      (calc-enter-result 1 "expf"
			 (if (> arg 0)
			     (let ((math-expand-formulas t))
			       (calc-top-n 1))
			   (let ((top (calc-top-n 1)))
			     (or (math-expand-formula top)
				 top))))))))

(defun calc-factor (arg)
  (interactive "P")
  (calc-slow-wrapper
   (calc-unary-op "fctr" (if (calc-is-hyperbolic)
			     'calcFunc-factors 'calcFunc-factor)
		  arg)))

(defun calc-expand (n)
  (interactive "P")
  (calc-slow-wrapper
   (calc-enter-result 1 "expa"
		      (append (list 'calcFunc-expand
				    (calc-top-n 1))
			      (and n (list (prefix-numeric-value n)))))))

(defun calc-collect (&optional var)
  (interactive "sCollect terms involving: ")
  (calc-slow-wrapper
   (if (or (equal var "") (equal var "$") (null var))
       (calc-enter-result 2 "clct" (cons 'calcFunc-collect
					 (calc-top-list-n 2)))
     (let ((var (math-read-expr var)))
       (if (eq (car-safe var) 'error)
	   (error "Bad format in expression: %s" (nth 1 var)))
       (calc-enter-result 1 "clct" (list 'calcFunc-collect
					 (calc-top-n 1)
					 var))))))

(defun calc-apart (arg)
  (interactive "P")
  (calc-slow-wrapper
   (calc-unary-op "aprt" 'calcFunc-apart arg)))

(defun calc-normalize-rat (arg)
  (interactive "P")
  (calc-slow-wrapper
   (calc-unary-op "nrat" 'calcFunc-nrat arg)))

(defun calc-poly-gcd (arg)
  (interactive "P")
  (calc-slow-wrapper
   (calc-binary-op "pgcd" 'calcFunc-pgcd arg)))


(defun calc-poly-div (arg)
  (interactive "P")
  (calc-slow-wrapper
   (let ((calc-poly-div-remainder nil))
     (calc-binary-op "pdiv" 'calcFunc-pdiv arg)
     (if (and calc-poly-div-remainder (null arg))
         (progn
           (calc-clear-command-flag 'clear-message)
           (calc-record calc-poly-div-remainder "prem")
           (if (not (Math-zerop calc-poly-div-remainder))
               (message "(Remainder was %s)"
                        (math-format-flat-expr calc-poly-div-remainder 0))
             (message "(No remainder)")))))))

(defun calc-poly-rem (arg)
  (interactive "P")
  (calc-slow-wrapper
   (calc-binary-op "prem" 'calcFunc-prem arg)))

(defun calc-poly-div-rem (arg)
  (interactive "P")
  (calc-slow-wrapper
   (if (calc-is-hyperbolic)
       (calc-binary-op "pdvr" 'calcFunc-pdivide arg)
     (calc-binary-op "pdvr" 'calcFunc-pdivrem arg))))

(defun calc-substitute (&optional oldname newname)
  (interactive "sSubstitute old: ")
  (calc-slow-wrapper
   (let (old new (num 1) expr)
     (if (or (equal oldname "") (equal oldname "$") (null oldname))
	 (setq new (calc-top-n 1)
	       old (calc-top-n 2)
	       expr (calc-top-n 3)
	       num 3)
       (or newname
	   (progn (calc-unread-command ?\C-a)
		  (setq newname (read-string (concat "Substitute old: "
						     oldname
						     ", new: ")
					     oldname))))
       (if (or (equal newname "") (equal newname "$") (null newname))
	   (setq new (calc-top-n 1)
		 expr (calc-top-n 2)
		 num 2)
	 (setq new (if (stringp newname) (math-read-expr newname) newname))
	 (if (eq (car-safe new) 'error)
	     (error "Bad format in expression: %s" (nth 1 new)))
	 (setq expr (calc-top-n 1)))
       (setq old (if (stringp oldname) (math-read-expr oldname) oldname))
       (if (eq (car-safe old) 'error)
	   (error "Bad format in expression: %s" (nth 1 old)))
       (or (math-expr-contains expr old)
	   (error "No occurrences found")))
     (calc-enter-result num "sbst" (math-expr-subst expr old new)))))


(defun calc-has-rules (name)
  (setq name (calc-var-value name))
  (and (consp name)
       (memq (car name) '(vec calcFunc-assign calcFunc-condition))
       name))

;; math-eval-rules-cache and math-eval-rules-cache-other are
;; declared in calc.el, but are used here by math-recompile-eval-rules.
(defvar math-eval-rules-cache)
(defvar math-eval-rules-cache-other)

(defun math-recompile-eval-rules ()
  (setq math-eval-rules-cache (and (calc-has-rules 'var-EvalRules)
				   (math-compile-rewrites
				    '(var EvalRules var-EvalRules)))
	math-eval-rules-cache-other (assq nil math-eval-rules-cache)
	math-eval-rules-cache-tag (calc-var-value 'var-EvalRules)))


;;; Try to expand a formula according to its definition.
(defun math-expand-formula (expr)
  (and (consp expr)
       (symbolp (car expr))
       (or (get (car expr) 'calc-user-defn)
	   (get (car expr) 'math-expandable))
       (let ((res (let ((math-expand-formulas t))
		    (apply (car expr) (cdr expr)))))
	 (and (not (eq (car-safe res) (car expr)))
	      res))))




;;; True if A comes before B in a canonical ordering of expressions.  [P X X]
(defun math-beforep (a b)   ; [Public]
  (cond ((and (Math-realp a) (Math-realp b))
	 (let ((comp (math-compare a b)))
	   (or (eq comp -1)
	       (and (eq comp 0)
		    (not (equal a b))
		    (> (length (memq (car-safe a)
				     '(bigneg nil bigpos frac float)))
		       (length (memq (car-safe b)
				     '(bigneg nil bigpos frac float))))))))
	((equal b '(neg (var inf var-inf))) nil)
	((equal a '(neg (var inf var-inf))) t)
	((equal a '(var inf var-inf)) nil)
	((equal b '(var inf var-inf)) t)
	((Math-realp a)
	 (if (and (eq (car-safe b) 'intv) (math-intv-constp b))
	     (if (or (math-beforep a (nth 2 b)) (Math-equal a (nth 2 b)))
		 t
	       nil)
	   t))
	((Math-realp b)
	 (if (and (eq (car-safe a) 'intv) (math-intv-constp a))
	     (if (math-beforep (nth 2 a) b)
		 t
	       nil)
	   nil))
	((and (eq (car a) 'intv) (eq (car b) 'intv)
	      (math-intv-constp a) (math-intv-constp b))
	 (let ((comp (math-compare (nth 2 a) (nth 2 b))))
	   (cond ((eq comp -1) t)
		 ((eq comp 1) nil)
		 ((and (memq (nth 1 a) '(2 3)) (memq (nth 1 b) '(0 1))) t)
		 ((and (memq (nth 1 a) '(0 1)) (memq (nth 1 b) '(2 3))) nil)
		 ((eq (setq comp (math-compare (nth 3 a) (nth 3 b))) -1) t)
		 ((eq comp 1) nil)
		 ((and (memq (nth 1 a) '(0 2)) (memq (nth 1 b) '(1 3))) t)
		 (t nil))))
	((not (eq (not (Math-objectp a)) (not (Math-objectp b))))
	 (Math-objectp a))
	((eq (car a) 'var)
	 (if (eq (car b) 'var)
	     (string-lessp (symbol-name (nth 1 a)) (symbol-name (nth 1 b)))
	   (not (Math-numberp b))))
	((eq (car b) 'var) (Math-numberp a))
	((eq (car a) (car b))
	 (while (and (setq a (cdr a) b (cdr b)) a
		     (equal (car a) (car b))))
	 (and b
	      (or (null a)
		  (math-beforep (car a) (car b)))))
	(t (string-lessp (symbol-name (car a)) (symbol-name (car b))))))


(defsubst math-simplify-extended (a)
  (let ((math-living-dangerously t))
    (math-simplify a)))

(defalias 'calcFunc-esimplify 'math-simplify-extended)

;; math-top-only is local to math-simplify, but is used by 
;; math-simplify-step, which is called by math-simplify.
(defvar math-top-only)

(defun math-simplify (top-expr)
  (let ((math-simplifying t)
	(math-top-only (consp calc-simplify-mode))
	(simp-rules (append (and (calc-has-rules 'var-AlgSimpRules)
				 '((var AlgSimpRules var-AlgSimpRules)))
			    (and math-living-dangerously
				 (calc-has-rules 'var-ExtSimpRules)
				 '((var ExtSimpRules var-ExtSimpRules)))
			    (and math-simplifying-units
				 (calc-has-rules 'var-UnitSimpRules)
				 '((var UnitSimpRules var-UnitSimpRules)))
			    (and math-integrating
				 (calc-has-rules 'var-IntegSimpRules)
				 '((var IntegSimpRules var-IntegSimpRules)))))
	res)
    (if math-top-only
	(let ((r simp-rules))
	  (setq res (math-simplify-step (math-normalize top-expr))
		calc-simplify-mode '(nil)
		top-expr (math-normalize res))
	  (while r
	    (setq top-expr (math-rewrite top-expr (car r)
					 '(neg (var inf var-inf)))
		  r (cdr r))))
      (calc-with-default-simplification
       (while (let ((r simp-rules))
		(setq res (math-normalize top-expr))
		(while r
		  (setq res (math-rewrite res (car r))
			r (cdr r)))
		(not (equal top-expr (setq res (math-simplify-step res)))))
	 (setq top-expr res)))))
  top-expr)

(defalias 'calcFunc-simplify 'math-simplify)

;;; The following has a "bug" in that if any recursive simplifications
;;; occur only the first handler will be tried; this doesn't really
;;; matter, since math-simplify-step is iterated to a fixed point anyway.
(defun math-simplify-step (a)
  (if (Math-primp a)
      a
    (let ((aa (if (or math-top-only
		      (memq (car a) '(calcFunc-quote calcFunc-condition
						     calcFunc-evalto)))
		  a
		(cons (car a) (mapcar 'math-simplify-step (cdr a))))))
      (and (symbolp (car aa))
	   (let ((handler (get (car aa) 'math-simplify)))
	     (and handler
		  (while (and handler
			      (equal (setq aa (or (funcall (car handler) aa)
						  aa))
				     a))
		    (setq handler (cdr handler))))))
      aa)))


(defmacro math-defsimplify (funcs &rest code)
  (append '(progn)
          (mapcar (function
                   (lambda (func)
                     (list 'put (list 'quote func) ''math-simplify
                           (list 'nconc
                                 (list 'get (list 'quote func) ''math-simplify)
                                 (list 'list
                                       (list 'function
                                             (append '(lambda (math-simplify-expr))
                                                     code)))))))
                  (if (symbolp funcs) (list funcs) funcs))))
(put 'math-defsimplify 'lisp-indent-hook 1)

;; The function created by math-defsimplify uses the variable
;; math-simplify-expr, and so is used by functions in math-defsimplify
(defvar math-simplify-expr)

(math-defsimplify (+ -)
  (math-simplify-plus))

(defun math-simplify-plus ()
  (cond ((and (memq (car-safe (nth 1 math-simplify-expr)) '(+ -))
	      (Math-numberp (nth 2 (nth 1 math-simplify-expr)))
	      (not (Math-numberp (nth 2 math-simplify-expr))))
	 (let ((x (nth 2 math-simplify-expr))
	       (op (car math-simplify-expr)))
	   (setcar (cdr (cdr math-simplify-expr)) (nth 2 (nth 1 math-simplify-expr)))
	   (setcar math-simplify-expr (car (nth 1 math-simplify-expr)))
	   (setcar (cdr (cdr (nth 1 math-simplify-expr))) x)
	   (setcar (nth 1 math-simplify-expr) op)))
	((and (eq (car math-simplify-expr) '+)
	      (Math-numberp (nth 1 math-simplify-expr))
	      (not (Math-numberp (nth 2 math-simplify-expr))))
	 (let ((x (nth 2 math-simplify-expr)))
	   (setcar (cdr (cdr math-simplify-expr)) (nth 1 math-simplify-expr))
	   (setcar (cdr math-simplify-expr) x))))
  (let ((aa math-simplify-expr)
	aaa temp)
    (while (memq (car-safe (setq aaa (nth 1 aa))) '(+ -))
      (if (setq temp (math-combine-sum (nth 2 aaa) (nth 2 math-simplify-expr)
				       (eq (car aaa) '-) 
                                       (eq (car math-simplify-expr) '-) t))
	  (progn
	    (setcar (cdr (cdr math-simplify-expr)) temp)
	    (setcar math-simplify-expr '+)
	    (setcar (cdr (cdr aaa)) 0)))
      (setq aa (nth 1 aa)))
    (if (setq temp (math-combine-sum aaa (nth 2 math-simplify-expr)
				     nil (eq (car math-simplify-expr) '-) t))
	(progn
	  (setcar (cdr (cdr math-simplify-expr)) temp)
	  (setcar math-simplify-expr '+)
	  (setcar (cdr aa) 0)))
    math-simplify-expr))

(math-defsimplify *
  (math-simplify-times))

(defun math-simplify-times ()
  (if (eq (car-safe (nth 2 math-simplify-expr)) '*)
      (and (math-beforep (nth 1 (nth 2 math-simplify-expr)) (nth 1 math-simplify-expr))
	   (or (math-known-scalarp (nth 1 math-simplify-expr) t)
	       (math-known-scalarp (nth 1 (nth 2 math-simplify-expr)) t))
	   (let ((x (nth 1 math-simplify-expr)))
	     (setcar (cdr math-simplify-expr) (nth 1 (nth 2 math-simplify-expr)))
	     (setcar (cdr (nth 2 math-simplify-expr)) x)))
    (and (math-beforep (nth 2 math-simplify-expr) (nth 1 math-simplify-expr))
	 (or (math-known-scalarp (nth 1 math-simplify-expr) t)
	     (math-known-scalarp (nth 2 math-simplify-expr) t))
	 (let ((x (nth 2 math-simplify-expr)))
	   (setcar (cdr (cdr math-simplify-expr)) (nth 1 math-simplify-expr))
	   (setcar (cdr math-simplify-expr) x))))
  (let ((aa math-simplify-expr)
	aaa temp
	(safe t) (scalar (math-known-scalarp (nth 1 math-simplify-expr))))
    (if (and (Math-ratp (nth 1 math-simplify-expr))
	     (setq temp (math-common-constant-factor (nth 2 math-simplify-expr))))
	(progn
	  (setcar (cdr (cdr math-simplify-expr))
		  (math-cancel-common-factor (nth 2 math-simplify-expr) temp))
	  (setcar (cdr math-simplify-expr) (math-mul (nth 1 math-simplify-expr) temp))))
    (while (and (eq (car-safe (setq aaa (nth 2 aa))) '*)
		safe)
      (if (setq temp (math-combine-prod (nth 1 math-simplify-expr) 
                                        (nth 1 aaa) nil nil t))
	  (progn
	    (setcar (cdr math-simplify-expr) temp)
	    (setcar (cdr aaa) 1)))
      (setq safe (or scalar (math-known-scalarp (nth 1 aaa) t))
	    aa (nth 2 aa)))
    (if (and (setq temp (math-combine-prod aaa (nth 1 math-simplify-expr) nil nil t))
	     safe)
	(progn
	  (setcar (cdr math-simplify-expr) temp)
	  (setcar (cdr (cdr aa)) 1)))
    (if (and (eq (car-safe (nth 1 math-simplify-expr)) 'frac)
	     (memq (nth 1 (nth 1 math-simplify-expr)) '(1 -1)))
	(math-div (math-mul (nth 2 math-simplify-expr) 
                            (nth 1 (nth 1 math-simplify-expr)))
		  (nth 2 (nth 1 math-simplify-expr)))
      math-simplify-expr)))

(math-defsimplify /
  (math-simplify-divide))

(defun math-simplify-divide ()
  (let ((np (cdr math-simplify-expr))
	(nover nil)
	(nn (and (or (eq (car math-simplify-expr) '/) 
                     (not (Math-realp (nth 2 math-simplify-expr))))
		 (math-common-constant-factor (nth 2 math-simplify-expr))))
	n op)
    (if nn
	(progn
	  (setq n (and (or (eq (car math-simplify-expr) '/) 
                           (not (Math-realp (nth 1 math-simplify-expr))))
		       (math-common-constant-factor (nth 1 math-simplify-expr))))
	  (if (and (eq (car-safe nn) 'frac) (eq (nth 1 nn) 1) (not n))
	      (progn
		(setcar (cdr math-simplify-expr) 
                        (math-mul (nth 2 nn) (nth 1 math-simplify-expr)))
		(setcar (cdr (cdr math-simplify-expr))
			(math-cancel-common-factor (nth 2 math-simplify-expr) nn))
		(if (and (math-negp nn)
			 (setq op (assq (car math-simplify-expr) calc-tweak-eqn-table)))
		    (setcar math-simplify-expr (nth 1 op))))
	    (if (and n (not (eq (setq n (math-frac-gcd n nn)) 1)))
		(progn
		  (setcar (cdr math-simplify-expr)
			  (math-cancel-common-factor (nth 1 math-simplify-expr) n))
		  (setcar (cdr (cdr math-simplify-expr))
			  (math-cancel-common-factor (nth 2 math-simplify-expr) n))
		  (if (and (math-negp n)
			   (setq op (assq (car math-simplify-expr) 
                                          calc-tweak-eqn-table)))
		      (setcar math-simplify-expr (nth 1 op))))))))
    (if (and (eq (car-safe (car np)) '/)
	     (math-known-scalarp (nth 2 math-simplify-expr) t))
	(progn
	  (setq np (cdr (nth 1 math-simplify-expr)))
	  (while (eq (car-safe (setq n (car np))) '*)
	    (and (math-known-scalarp (nth 2 n) t)
		 (math-simplify-divisor (cdr n) (cdr (cdr math-simplify-expr)) nil t))
	    (setq np (cdr (cdr n))))
	  (math-simplify-divisor np (cdr (cdr math-simplify-expr)) nil t)
	  (setq nover t
		np (cdr (cdr (nth 1 math-simplify-expr))))))
    (while (eq (car-safe (setq n (car np))) '*)
      (and (math-known-scalarp (nth 2 n) t)
	   (math-simplify-divisor (cdr n) (cdr (cdr math-simplify-expr)) nover t))
      (setq np (cdr (cdr n))))
    (math-simplify-divisor np (cdr (cdr math-simplify-expr)) nover t)
    math-simplify-expr))

;; The variables math-simplify-divisor-nover and math-simplify-divisor-dover
;; are local variables for math-simplify-divisor, but are used by
;; math-simplify-one-divisor.
(defvar math-simplify-divisor-nover)
(defvar math-simplify-divisor-dover)

(defun math-simplify-divisor (np dp math-simplify-divisor-nover 
                                 math-simplify-divisor-dover)
  (cond ((eq (car-safe (car dp)) '/)
	 (math-simplify-divisor np (cdr (car dp)) 
                                math-simplify-divisor-nover 
                                math-simplify-divisor-dover)
	 (and (math-known-scalarp (nth 1 (car dp)) t)
	      (math-simplify-divisor np (cdr (cdr (car dp)))
				     math-simplify-divisor-nover 
                                     (not math-simplify-divisor-dover))))
	((or (or (eq (car math-simplify-expr) '/)
		 (let ((signs (math-possible-signs (car np))))
		   (or (memq signs '(1 4))
		       (and (memq (car math-simplify-expr) '(calcFunc-eq calcFunc-neq))
			    (eq signs 5))
		       math-living-dangerously)))
	     (math-numberp (car np)))
	 (let (d
               (safe t) 
               (scalar (math-known-scalarp (car np))))
	   (while (and (eq (car-safe (setq d (car dp))) '*)
		       safe)
	     (math-simplify-one-divisor np (cdr d))
	     (setq safe (or scalar (math-known-scalarp (nth 1 d) t))
		   dp (cdr (cdr d))))
	   (if safe
	       (math-simplify-one-divisor np dp))))))

(defun math-simplify-one-divisor (np dp)
  (let ((temp (math-combine-prod (car np) (car dp) math-simplify-divisor-nover 
                                 math-simplify-divisor-dover t))
        op)
    (if temp 
        (progn
          (and (not (memq (car math-simplify-expr) '(/ calcFunc-eq calcFunc-neq)))
               (math-known-negp (car dp))
               (setq op (assq (car math-simplify-expr) calc-tweak-eqn-table))
               (setcar math-simplify-expr (nth 1 op)))
          (setcar np (if math-simplify-divisor-nover (math-div 1 temp) temp))
          (setcar dp 1))
      (and math-simplify-divisor-dover (not math-simplify-divisor-nover) 
           (eq (car math-simplify-expr) '/)
           (eq (car-safe (car dp)) 'calcFunc-sqrt)
           (Math-integerp (nth 1 (car dp)))
           (progn
             (setcar np (math-mul (car np)
                                  (list 'calcFunc-sqrt (nth 1 (car dp)))))
             (setcar dp (nth 1 (car dp))))))))

(defun math-common-constant-factor (expr)
  (if (Math-realp expr)
      (if (Math-ratp expr)
	  (and (not (memq expr '(0 1 -1)))
	       (math-abs expr))
	(if (math-ratp (setq expr (math-to-simple-fraction expr)))
	    (math-common-constant-factor expr)))
    (if (memq (car expr) '(+ - cplx sdev))
	(let ((f1 (math-common-constant-factor (nth 1 expr)))
	      (f2 (math-common-constant-factor (nth 2 expr))))
	  (and f1 f2
	       (not (eq (setq f1 (math-frac-gcd f1 f2)) 1))
	       f1))
      (if (memq (car expr) '(* polar))
	  (math-common-constant-factor (nth 1 expr))
	(if (eq (car expr) '/)
	    (or (math-common-constant-factor (nth 1 expr))
		(and (Math-integerp (nth 2 expr))
		     (list 'frac 1 (math-abs (nth 2 expr))))))))))

(defun math-cancel-common-factor (expr val)
  (if (memq (car-safe expr) '(+ - cplx sdev))
      (progn
	(setcar (cdr expr) (math-cancel-common-factor (nth 1 expr) val))
	(setcar (cdr (cdr expr)) (math-cancel-common-factor (nth 2 expr) val))
	expr)
    (if (eq (car-safe expr) '*)
	(math-mul (math-cancel-common-factor (nth 1 expr) val) (nth 2 expr))
      (math-div expr val))))

(defun math-frac-gcd (a b)
  (if (Math-zerop a)
      b
    (if (Math-zerop b)
	a
      (if (and (Math-integerp a)
	       (Math-integerp b))
	  (math-gcd a b)
	(and (Math-integerp a) (setq a (list 'frac a 1)))
	(and (Math-integerp b) (setq b (list 'frac b 1)))
	(math-make-frac (math-gcd (nth 1 a) (nth 1 b))
			(math-gcd (nth 2 a) (nth 2 b)))))))

(math-defsimplify %
  (math-simplify-mod))

(defun math-simplify-mod ()
  (and (Math-realp (nth 2 math-simplify-expr))
       (Math-posp (nth 2 math-simplify-expr))
       (let ((lin (math-is-linear (nth 1 math-simplify-expr)))
	     t1 t2 t3)
	 (or (and lin
		  (or (math-negp (car lin))
		      (not (Math-lessp (car lin) (nth 2 math-simplify-expr))))
		  (list '%
			(list '+
			      (math-mul (nth 1 lin) (nth 2 lin))
			      (math-mod (car lin) (nth 2 math-simplify-expr)))
			(nth 2 math-simplify-expr)))
	     (and lin
		  (not (math-equal-int (nth 1 lin) 1))
		  (math-num-integerp (nth 1 lin))
		  (math-num-integerp (nth 2 math-simplify-expr))
		  (setq t1 (calcFunc-gcd (nth 1 lin) (nth 2 math-simplify-expr)))
		  (not (math-equal-int t1 1))
		  (list '*
			t1
			(list '%
			      (list '+
				    (math-mul (math-div (nth 1 lin) t1)
					      (nth 2 lin))
				    (let ((calc-prefer-frac t))
				      (math-div (car lin) t1)))
			      (math-div (nth 2 math-simplify-expr) t1))))
	     (and (math-equal-int (nth 2 math-simplify-expr) 1)
		  (math-known-integerp (if lin
					   (math-mul (nth 1 lin) (nth 2 lin))
					 (nth 1 math-simplify-expr)))
		  (if lin (math-mod (car lin) 1) 0))))))

(math-defsimplify (calcFunc-eq calcFunc-neq calcFunc-lt
			       calcFunc-gt calcFunc-leq calcFunc-geq)
  (if (= (length math-simplify-expr) 3)
      (math-simplify-ineq)))

(defun math-simplify-ineq ()
  (let ((np (cdr math-simplify-expr))
	n)
    (while (memq (car-safe (setq n (car np))) '(+ -))
      (math-simplify-add-term (cdr (cdr n)) (cdr (cdr math-simplify-expr))
			      (eq (car n) '-) nil)
      (setq np (cdr n)))
    (math-simplify-add-term np (cdr (cdr math-simplify-expr)) nil 
                            (eq np (cdr math-simplify-expr)))
    (math-simplify-divide)
    (let ((signs (math-possible-signs (cons '- (cdr math-simplify-expr)))))
      (or (cond ((eq (car math-simplify-expr) 'calcFunc-eq)
		 (or (and (eq signs 2) 1)
		     (and (memq signs '(1 4 5)) 0)))
		((eq (car math-simplify-expr) 'calcFunc-neq)
		 (or (and (eq signs 2) 0)
		     (and (memq signs '(1 4 5)) 1)))
		((eq (car math-simplify-expr) 'calcFunc-lt)
		 (or (and (eq signs 1) 1)
		     (and (memq signs '(2 4 6)) 0)))
		((eq (car math-simplify-expr) 'calcFunc-gt)
		 (or (and (eq signs 4) 1)
		     (and (memq signs '(1 2 3)) 0)))
		((eq (car math-simplify-expr) 'calcFunc-leq)
		 (or (and (eq signs 4) 0)
		     (and (memq signs '(1 2 3)) 1)))
		((eq (car math-simplify-expr) 'calcFunc-geq)
		 (or (and (eq signs 1) 0)
		     (and (memq signs '(2 4 6)) 1))))
	  math-simplify-expr))))

(defun math-simplify-add-term (np dp minus lplain)
  (or (math-vectorp (car np))
      (let ((rplain t)
	    n d dd temp)
	(while (memq (car-safe (setq n (car np) d (car dp))) '(+ -))
	  (setq rplain nil)
	  (if (setq temp (math-combine-sum n (nth 2 d)
					   minus (eq (car d) '+) t))
	      (if (or lplain (eq (math-looks-negp temp) minus))
		  (progn
		    (setcar np (setq n (if minus (math-neg temp) temp)))
		    (setcar (cdr (cdr d)) 0))
		(progn
		  (setcar np 0)
		  (setcar (cdr (cdr d)) (setq n (if (eq (car d) '+)
						    (math-neg temp)
						  temp))))))
	  (setq dp (cdr d)))
	(if (setq temp (math-combine-sum n d minus t t))
	    (if (or lplain
		    (and (not rplain)
			 (eq (math-looks-negp temp) minus)))
		(progn
		  (setcar np (setq n (if minus (math-neg temp) temp)))
		  (setcar dp 0))
	      (progn
		(setcar np 0)
		(setcar dp (setq n (math-neg temp)))))))))

(math-defsimplify calcFunc-sin
  (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
	   (nth 1 (nth 1 math-simplify-expr)))
      (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-sin (math-neg (nth 1 math-simplify-expr)))))
      (and (eq calc-angle-mode 'rad)
	   (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
	     (and n
		  (math-known-sin (car n) (nth 1 n) 120 0))))
      (and (eq calc-angle-mode 'deg)
	   (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
	     (and n
		  (math-known-sin (car n) (nth 1 n) '(frac 2 3) 0))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
	   (list 'calcFunc-sqrt (math-sub 1 (math-sqr 
                                             (nth 1 (nth 1 math-simplify-expr))))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
	   (math-div (nth 1 (nth 1 math-simplify-expr))
		     (list 'calcFunc-sqrt
			   (math-add 1 (math-sqr 
                                        (nth 1 (nth 1 math-simplify-expr)))))))
      (let ((m (math-should-expand-trig (nth 1 math-simplify-expr))))
	(and m (integerp (car m))
	     (let ((n (car m)) (a (nth 1 m)))
	       (list '+
		     (list '* (list 'calcFunc-sin (list '* (1- n) a))
			   (list 'calcFunc-cos a))
		     (list '* (list 'calcFunc-cos (list '* (1- n) a))
			   (list 'calcFunc-sin a))))))))

(math-defsimplify calcFunc-cos
  (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
	   (nth 1 (nth 1 math-simplify-expr)))
      (and (math-looks-negp (nth 1 math-simplify-expr))
	   (list 'calcFunc-cos (math-neg (nth 1 math-simplify-expr))))
      (and (eq calc-angle-mode 'rad)
	   (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
	     (and n
		  (math-known-sin (car n) (nth 1 n) 120 300))))
      (and (eq calc-angle-mode 'deg)
	   (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
	     (and n
		  (math-known-sin (car n) (nth 1 n) '(frac 2 3) 300))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
	   (list 'calcFunc-sqrt 
                 (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr))))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
	   (math-div 1
		     (list 'calcFunc-sqrt
			   (math-add 1 
                                     (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
      (let ((m (math-should-expand-trig (nth 1 math-simplify-expr))))
	(and m (integerp (car m))
	     (let ((n (car m)) (a (nth 1 m)))
	       (list '-
		     (list '* (list 'calcFunc-cos (list '* (1- n) a))
			   (list 'calcFunc-cos a))
		     (list '* (list 'calcFunc-sin (list '* (1- n) a))
			   (list 'calcFunc-sin a))))))))

(math-defsimplify calcFunc-sec
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (list 'calcFunc-sec (math-neg (nth 1 math-simplify-expr))))
      (and (eq calc-angle-mode 'rad)
	   (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
	     (and n
		  (math-div 1 (math-known-sin (car n) (nth 1 n) 120 300)))))
      (and (eq calc-angle-mode 'deg)
	   (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
	     (and n
                  (math-div 1 (math-known-sin (car n) (nth 1 n) '(frac 2 3) 300)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
           (math-div 
            1
            (list 'calcFunc-sqrt 
                  (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
           (math-div 
            1
            (nth 1 (nth 1 math-simplify-expr))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
           (list 'calcFunc-sqrt
                 (math-add 1 
                           (math-sqr (nth 1 (nth 1 math-simplify-expr))))))))

(math-defsimplify calcFunc-csc
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-csc (math-neg (nth 1 math-simplify-expr)))))
      (and (eq calc-angle-mode 'rad)
	   (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
	     (and n
                  (math-div 1 (math-known-sin (car n) (nth 1 n) 120 0)))))
      (and (eq calc-angle-mode 'deg)
	   (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
	     (and n
                  (math-div 1 (math-known-sin (car n) (nth 1 n) '(frac 2 3) 0)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
	   (math-div 1 (nth 1 (nth 1 math-simplify-expr))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
           (math-div 
            1
            (list 'calcFunc-sqrt (math-sub 1 (math-sqr 
                                              (nth 1 (nth 1 math-simplify-expr)))))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
	   (math-div (list 'calcFunc-sqrt
			   (math-add 1 (math-sqr 
                                        (nth 1 (nth 1 math-simplify-expr)))))
                     (nth 1 (nth 1 math-simplify-expr))))))

(defun math-should-expand-trig (x &optional hyperbolic)
  (let ((m (math-is-multiple x)))
    (and math-living-dangerously
	 m (or (and (integerp (car m)) (> (car m) 1))
	       (equal (car m) '(frac 1 2)))
	 (or math-integrating
	     (memq (car-safe (nth 1 m))
		   (if hyperbolic
		       '(calcFunc-arcsinh calcFunc-arccosh calcFunc-arctanh)
		     '(calcFunc-arcsin calcFunc-arccos calcFunc-arctan)))
	     (and (eq (car-safe (nth 1 m)) 'calcFunc-ln)
		  (eq hyperbolic 'exp)))
	 m)))

(defun math-known-sin (plus n mul off)
  (setq n (math-mul n mul))
  (and (math-num-integerp n)
       (setq n (math-mod (math-add (math-trunc n) off) 240))
       (if (>= n 120)
	   (and (setq n (math-known-sin plus (- n 120) 1 0))
		(math-neg n))
	 (if (> n 60)
	     (setq n (- 120 n)))
	 (if (math-zerop plus)
	     (and (or calc-symbolic-mode
		      (memq n '(0 20 60)))
		  (cdr (assq n
			     '( (0 . 0)
				(10 . (/ (calcFunc-sqrt
					  (- 2 (calcFunc-sqrt 3))) 2))
				(12 . (/ (- (calcFunc-sqrt 5) 1) 4))
				(15 . (/ (calcFunc-sqrt
					  (- 2 (calcFunc-sqrt 2))) 2))
				(20 . (/ 1 2))
				(24 . (* (^ (/ 1 2) (/ 3 2))
					 (calcFunc-sqrt
					  (- 5 (calcFunc-sqrt 5)))))
				(30 . (/ (calcFunc-sqrt 2) 2))
				(36 . (/ (+ (calcFunc-sqrt 5) 1) 4))
				(40 . (/ (calcFunc-sqrt 3) 2))
				(45 . (/ (calcFunc-sqrt
					  (+ 2 (calcFunc-sqrt 2))) 2))
				(48 . (* (^ (/ 1 2) (/ 3 2))
					 (calcFunc-sqrt
					  (+ 5 (calcFunc-sqrt 5)))))
				(50 . (/ (calcFunc-sqrt
					  (+ 2 (calcFunc-sqrt 3))) 2))
				(60 . 1)))))
	   (cond ((eq n 0) (math-normalize (list 'calcFunc-sin plus)))
		 ((eq n 60) (math-normalize (list 'calcFunc-cos plus)))
		 (t nil))))))

(math-defsimplify calcFunc-tan
  (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
	   (nth 1 (nth 1 math-simplify-expr)))
      (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-tan (math-neg (nth 1 math-simplify-expr)))))
      (and (eq calc-angle-mode 'rad)
	   (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
	     (and n
		  (math-known-tan (car n) (nth 1 n) 120))))
      (and (eq calc-angle-mode 'deg)
	   (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
	     (and n
		  (math-known-tan (car n) (nth 1 n) '(frac 2 3)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
	   (math-div (nth 1 (nth 1 math-simplify-expr))
		     (list 'calcFunc-sqrt
			   (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
	   (math-div (list 'calcFunc-sqrt
			   (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))
		     (nth 1 (nth 1 math-simplify-expr))))
      (let ((m (math-should-expand-trig (nth 1 math-simplify-expr))))
	(and m
	     (if (equal (car m) '(frac 1 2))
		 (math-div (math-sub 1 (list 'calcFunc-cos (nth 1 m)))
			   (list 'calcFunc-sin (nth 1 m)))
	       (math-div (list 'calcFunc-sin (nth 1 math-simplify-expr))
			 (list 'calcFunc-cos (nth 1 math-simplify-expr))))))))

(math-defsimplify calcFunc-cot
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-cot (math-neg (nth 1 math-simplify-expr)))))
      (and (eq calc-angle-mode 'rad)
	   (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
	     (and n
                  (math-div 1 (math-known-tan (car n) (nth 1 n) 120)))))
      (and (eq calc-angle-mode 'deg)
	   (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
	     (and n
                  (math-div 1 (math-known-tan (car n) (nth 1 n) '(frac 2 3))))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
	   (math-div (list 'calcFunc-sqrt
			   (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))
                     (nth 1 (nth 1 math-simplify-expr))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
	   (math-div (nth 1 (nth 1 math-simplify-expr))
                     (list 'calcFunc-sqrt
			   (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
	   (math-div 1 (nth 1 (nth 1 math-simplify-expr))))))

(defun math-known-tan (plus n mul)
  (setq n (math-mul n mul))
  (and (math-num-integerp n)
       (setq n (math-mod (math-trunc n) 120))
       (if (> n 60)
	   (and (setq n (math-known-tan plus (- 120 n) 1))
		(math-neg n))
	 (if (math-zerop plus)
	     (and (or calc-symbolic-mode
		      (memq n '(0 30 60)))
		  (cdr (assq n '( (0 . 0)
				  (10 . (- 2 (calcFunc-sqrt 3)))
				  (12 . (calcFunc-sqrt
					 (- 1 (* (/ 2 5) (calcFunc-sqrt 5)))))
				  (15 . (- (calcFunc-sqrt 2) 1))
				  (20 . (/ (calcFunc-sqrt 3) 3))
				  (24 . (calcFunc-sqrt
					 (- 5 (* 2 (calcFunc-sqrt 5)))))
				  (30 . 1)
				  (36 . (calcFunc-sqrt
					 (+ 1 (* (/ 2 5) (calcFunc-sqrt 5)))))
				  (40 . (calcFunc-sqrt 3))
				  (45 . (+ (calcFunc-sqrt 2) 1))
				  (48 . (calcFunc-sqrt
					 (+ 5 (* 2 (calcFunc-sqrt 5)))))
				  (50 . (+ 2 (calcFunc-sqrt 3)))
				  (60 . (var uinf var-uinf))))))
	   (cond ((eq n 0) (math-normalize (list 'calcFunc-tan plus)))
		 ((eq n 60) (math-normalize (list '/ -1
						  (list 'calcFunc-tan plus))))
		 (t nil))))))

(math-defsimplify calcFunc-sinh
  (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
	   (nth 1 (nth 1 math-simplify-expr)))
      (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-sinh (math-neg (nth 1 math-simplify-expr)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
	   math-living-dangerously
	   (list 'calcFunc-sqrt 
                 (math-sub (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1)))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
	   math-living-dangerously
	   (math-div (nth 1 (nth 1 math-simplify-expr))
		     (list 'calcFunc-sqrt
			   (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
      (let ((m (math-should-expand-trig (nth 1 math-simplify-expr) t)))
	(and m (integerp (car m))
	     (let ((n (car m)) (a (nth 1 m)))
	       (if (> n 1)
		   (list '+
			 (list '* (list 'calcFunc-sinh (list '* (1- n) a))
			       (list 'calcFunc-cosh a))
			 (list '* (list 'calcFunc-cosh (list '* (1- n) a))
			       (list 'calcFunc-sinh a)))))))))

(math-defsimplify calcFunc-cosh
  (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
	   (nth 1 (nth 1 math-simplify-expr)))
      (and (math-looks-negp (nth 1 math-simplify-expr))
	   (list 'calcFunc-cosh (math-neg (nth 1 math-simplify-expr))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
	   math-living-dangerously
	   (list 'calcFunc-sqrt 
                 (math-add (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1)))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
	   math-living-dangerously
	   (math-div 1
		     (list 'calcFunc-sqrt
			   (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
      (let ((m (math-should-expand-trig (nth 1 math-simplify-expr) t)))
	(and m (integerp (car m))
	     (let ((n (car m)) (a (nth 1 m)))
	       (if (> n 1)
		   (list '+
			 (list '* (list 'calcFunc-cosh (list '* (1- n) a))
			       (list 'calcFunc-cosh a))
			 (list '* (list 'calcFunc-sinh (list '* (1- n) a))
			       (list 'calcFunc-sinh a)))))))))

(math-defsimplify calcFunc-tanh
  (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
	   (nth 1 (nth 1 math-simplify-expr)))
      (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-tanh (math-neg (nth 1 math-simplify-expr)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
	   math-living-dangerously
	   (math-div (nth 1 (nth 1 math-simplify-expr))
		     (list 'calcFunc-sqrt
			   (math-add (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
	   math-living-dangerously
	   (math-div (list 'calcFunc-sqrt
			   (math-sub (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))
		     (nth 1 (nth 1 math-simplify-expr))))
      (let ((m (math-should-expand-trig (nth 1 math-simplify-expr) t)))
	(and m
	     (if (equal (car m) '(frac 1 2))
		 (math-div (math-sub (list 'calcFunc-cosh (nth 1 m)) 1)
			   (list 'calcFunc-sinh (nth 1 m)))
	       (math-div (list 'calcFunc-sinh (nth 1 math-simplify-expr))
			 (list 'calcFunc-cosh (nth 1 math-simplify-expr))))))))

(math-defsimplify calcFunc-sech
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (list 'calcFunc-sech (math-neg (nth 1 math-simplify-expr))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
	   math-living-dangerously
           (math-div 
            1
            (list 'calcFunc-sqrt 
                  (math-add (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
	   math-living-dangerously
           (math-div 1 (nth 1 (nth 1 math-simplify-expr))) 1)
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
	   math-living-dangerously
           (list 'calcFunc-sqrt
                 (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr))))))))

(math-defsimplify calcFunc-csch
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-csch (math-neg (nth 1 math-simplify-expr)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
	   math-living-dangerously
           (math-div 1 (nth 1 (nth 1 math-simplify-expr))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
	   math-living-dangerously
           (math-div 
            1
            (list 'calcFunc-sqrt 
                  (math-sub (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
	   math-living-dangerously
	   (math-div (list 'calcFunc-sqrt
			   (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))
                     (nth 1 (nth 1 math-simplify-expr))))))

(math-defsimplify calcFunc-coth
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-coth (math-neg (nth 1 math-simplify-expr)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
	   math-living-dangerously
	   (math-div (list 'calcFunc-sqrt
			   (math-add (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))
                     (nth 1 (nth 1 math-simplify-expr))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
	   math-living-dangerously
	   (math-div (nth 1 (nth 1 math-simplify-expr))
                     (list 'calcFunc-sqrt
			   (math-sub (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
	   math-living-dangerously
	   (math-div 1 (nth 1 (nth 1 math-simplify-expr))))))

(math-defsimplify calcFunc-arcsin
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-arcsin (math-neg (nth 1 math-simplify-expr)))))
      (and (eq (nth 1 math-simplify-expr) 1)
	   (math-quarter-circle t))
      (and (equal (nth 1 math-simplify-expr) '(frac 1 2))
	   (math-div (math-half-circle t) 6))
      (and math-living-dangerously
	   (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sin)
	   (nth 1 (nth 1 math-simplify-expr)))
      (and math-living-dangerously
	   (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cos)
	   (math-sub (math-quarter-circle t)
		     (nth 1 (nth 1 math-simplify-expr))))))

(math-defsimplify calcFunc-arccos
  (or (and (eq (nth 1 math-simplify-expr) 0)
	   (math-quarter-circle t))
      (and (eq (nth 1 math-simplify-expr) -1)
	   (math-half-circle t))
      (and (equal (nth 1 math-simplify-expr) '(frac 1 2))
	   (math-div (math-half-circle t) 3))
      (and (equal (nth 1 math-simplify-expr) '(frac -1 2))
	   (math-div (math-mul (math-half-circle t) 2) 3))
      (and math-living-dangerously
	   (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cos)
	   (nth 1 (nth 1 math-simplify-expr)))
      (and math-living-dangerously
	   (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sin)
	   (math-sub (math-quarter-circle t)
		     (nth 1 (nth 1 math-simplify-expr))))))

(math-defsimplify calcFunc-arctan
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-arctan (math-neg (nth 1 math-simplify-expr)))))
      (and (eq (nth 1 math-simplify-expr) 1)
	   (math-div (math-half-circle t) 4))
      (and math-living-dangerously
	   (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-tan)
	   (nth 1 (nth 1 math-simplify-expr)))))

(math-defsimplify calcFunc-arcsinh
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-arcsinh (math-neg (nth 1 math-simplify-expr)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sinh)
	   (or math-living-dangerously
	       (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
	   (nth 1 (nth 1 math-simplify-expr)))))

(math-defsimplify calcFunc-arccosh
  (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cosh)
       (or math-living-dangerously
	   (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
       (nth 1 (nth 1 math-simplify-expr))))

(math-defsimplify calcFunc-arctanh
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-arctanh (math-neg (nth 1 math-simplify-expr)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-tanh)
	   (or math-living-dangerously
	       (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
	   (nth 1 (nth 1 math-simplify-expr)))))

(math-defsimplify calcFunc-sqrt
  (math-simplify-sqrt))

(defun math-simplify-sqrt ()
  (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'frac)
	   (math-div (list 'calcFunc-sqrt 
                           (math-mul (nth 1 (nth 1 math-simplify-expr))
                                     (nth 2 (nth 1 math-simplify-expr))))
		     (nth 2 (nth 1 math-simplify-expr))))
      (let ((fac (if (math-objectp (nth 1 math-simplify-expr))
		     (math-squared-factor (nth 1 math-simplify-expr))
		   (math-common-constant-factor (nth 1 math-simplify-expr)))))
	(and fac (not (eq fac 1))
	     (math-mul (math-normalize (list 'calcFunc-sqrt fac))
		       (math-normalize
			(list 'calcFunc-sqrt
			      (math-cancel-common-factor 
                               (nth 1 math-simplify-expr) fac))))))
      (and math-living-dangerously
	   (or (and (eq (car-safe (nth 1 math-simplify-expr)) '-)
		    (math-equal-int (nth 1 (nth 1 math-simplify-expr)) 1)
		    (eq (car-safe (nth 2 (nth 1 math-simplify-expr))) '^)
		    (math-equal-int (nth 2 (nth 2 (nth 1 math-simplify-expr))) 2)
		    (or (and (eq (car-safe (nth 1 (nth 2 (nth 1 math-simplify-expr))))
				 'calcFunc-sin)
			     (list 'calcFunc-cos
				   (nth 1 (nth 1 (nth 2 (nth 1 math-simplify-expr))))))
			(and (eq (car-safe (nth 1 (nth 2 (nth 1 math-simplify-expr))))
				 'calcFunc-cos)
			     (list 'calcFunc-sin
				   (nth 1 (nth 1 (nth 2 
                                                      (nth 1 math-simplify-expr))))))))
	       (and (eq (car-safe (nth 1 math-simplify-expr)) '-)
		    (math-equal-int (nth 2 (nth 1 math-simplify-expr)) 1)
		    (eq (car-safe (nth 1 (nth 1 math-simplify-expr))) '^)
		    (math-equal-int (nth 2 (nth 1 (nth 1 math-simplify-expr))) 2)
		    (and (eq (car-safe (nth 1 (nth 1 (nth 1 math-simplify-expr))))
			     'calcFunc-cosh)
			 (list 'calcFunc-sinh
			       (nth 1 (nth 1 (nth 1 (nth 1 math-simplify-expr)))))))
	       (and (eq (car-safe (nth 1 math-simplify-expr)) '+)
		    (let ((a (nth 1 (nth 1 math-simplify-expr)))
			  (b (nth 2 (nth 1 math-simplify-expr))))
		      (and (or (and (math-equal-int a 1)
				    (setq a b b (nth 1 (nth 1 math-simplify-expr))))
			       (math-equal-int b 1))
			   (eq (car-safe a) '^)
			   (math-equal-int (nth 2 a) 2)
			   (or (and (eq (car-safe (nth 1 a)) 'calcFunc-sinh)
				    (list 'calcFunc-cosh (nth 1 (nth 1 a))))
                               (and (eq (car-safe (nth 1 a)) 'calcFunc-csch)
				    (list 'calcFunc-coth (nth 1 (nth 1 a))))
			       (and (eq (car-safe (nth 1 a)) 'calcFunc-tan)
				    (list '/ 1 (list 'calcFunc-cos
						     (nth 1 (nth 1 a)))))
			       (and (eq (car-safe (nth 1 a)) 'calcFunc-cot)
				    (list '/ 1 (list 'calcFunc-sin
						     (nth 1 (nth 1 a)))))))))
	       (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
		    (list '^
			  (nth 1 (nth 1 math-simplify-expr))
			  (math-div (nth 2 (nth 1 math-simplify-expr)) 2)))
	       (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sqrt)
		    (list '^ (nth 1 (nth 1 math-simplify-expr)) (math-div 1 4)))
	       (and (memq (car-safe (nth 1 math-simplify-expr)) '(* /))
		    (list (car (nth 1 math-simplify-expr))
			  (list 'calcFunc-sqrt (nth 1 (nth 1 math-simplify-expr)))
			  (list 'calcFunc-sqrt (nth 2 (nth 1 math-simplify-expr)))))
	       (and (memq (car-safe (nth 1 math-simplify-expr)) '(+ -))
		    (not (math-any-floats (nth 1 math-simplify-expr)))
		    (let ((f (calcFunc-factors (calcFunc-expand
						(nth 1 math-simplify-expr)))))
		      (and (math-vectorp f)
			   (or (> (length f) 2)
			       (> (nth 2 (nth 1 f)) 1))
			   (let ((out 1) (rest 1) (sums 1) fac pow)
			     (while (setq f (cdr f))
			       (setq fac (nth 1 (car f))
				     pow (nth 2 (car f)))
			       (if (> pow 1)
				   (setq out (math-mul out (math-pow
							    fac (/ pow 2)))
					 pow (% pow 2)))
			       (if (> pow 0)
				   (if (memq (car-safe fac) '(+ -))
				       (setq sums (math-mul-thru sums fac))
				     (setq rest (math-mul rest fac)))))
			     (and (not (and (eq out 1) (memq rest '(1 -1))))
				  (math-mul
				   out
				   (list 'calcFunc-sqrt
					 (math-mul sums rest))))))))))))

;;; Rather than factoring x into primes, just check for the first ten primes.
(defun math-squared-factor (x)
  (if (Math-integerp x)
      (let ((prsqr '(4 9 25 49 121 169 289 361 529 841))
	    (fac 1)
	    res)
	(while prsqr
	  (if (eq (cdr (setq res (math-idivmod x (car prsqr)))) 0)
	      (setq x (car res)
		    fac (math-mul fac (car prsqr)))
	    (setq prsqr (cdr prsqr))))
	fac)))

(math-defsimplify calcFunc-exp
  (math-simplify-exp (nth 1 math-simplify-expr)))

(defun math-simplify-exp (x)
  (or (and (eq (car-safe x) 'calcFunc-ln)
	   (nth 1 x))
      (and math-living-dangerously
	   (or (and (eq (car-safe x) 'calcFunc-arcsinh)
		    (math-add (nth 1 x)
			      (list 'calcFunc-sqrt
				    (math-add (math-sqr (nth 1 x)) 1))))
	       (and (eq (car-safe x) 'calcFunc-arccosh)
		    (math-add (nth 1 x)
			      (list 'calcFunc-sqrt
				    (math-sub (math-sqr (nth 1 x)) 1))))
	       (and (eq (car-safe x) 'calcFunc-arctanh)
		    (math-div (list 'calcFunc-sqrt (math-add 1 (nth 1 x)))
			      (list 'calcFunc-sqrt (math-sub 1 (nth 1 x)))))
	       (let ((m (math-should-expand-trig x 'exp)))
		 (and m (integerp (car m))
		      (list '^ (list 'calcFunc-exp (nth 1 m)) (car m))))))
      (and calc-symbolic-mode
	   (math-known-imagp x)
	   (let* ((ip (calcFunc-im x))
		  (n (math-linear-in ip '(var pi var-pi)))
		  s c)
	     (and n
		  (setq s (math-known-sin (car n) (nth 1 n) 120 0))
		  (setq c (math-known-sin (car n) (nth 1 n) 120 300))
		  (list '+ c (list '* s '(var i var-i))))))))

(math-defsimplify calcFunc-ln
  (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-exp)
	   (or math-living-dangerously
	       (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
	   (nth 1 (nth 1 math-simplify-expr)))
      (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
	   (equal (nth 1 (nth 1 math-simplify-expr)) '(var e var-e))
	   (or math-living-dangerously
	       (math-known-realp (nth 2 (nth 1 math-simplify-expr))))
	   (nth 2 (nth 1 math-simplify-expr)))
      (and calc-symbolic-mode
	   (math-known-negp (nth 1 math-simplify-expr))
	   (math-add (list 'calcFunc-ln (math-neg (nth 1 math-simplify-expr)))
		     '(* (var pi var-pi) (var i var-i))))
      (and calc-symbolic-mode
	   (math-known-imagp (nth 1 math-simplify-expr))
	   (let* ((ip (calcFunc-im (nth 1 math-simplify-expr)))
		  (ips (math-possible-signs ip)))
	     (or (and (memq ips '(4 6))
		      (math-add (list 'calcFunc-ln ip)
				'(/ (* (var pi var-pi) (var i var-i)) 2)))
		 (and (memq ips '(1 3))
		      (math-sub (list 'calcFunc-ln (math-neg ip))
				'(/ (* (var pi var-pi) (var i var-i)) 2))))))))

(math-defsimplify ^
  (math-simplify-pow))

(defun math-simplify-pow ()
  (or (and math-living-dangerously
	   (or (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
		    (list '^
			  (nth 1 (nth 1 math-simplify-expr))
			  (math-mul (nth 2 math-simplify-expr) 
                                    (nth 2 (nth 1 math-simplify-expr)))))
	       (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sqrt)
		    (list '^
			  (nth 1 (nth 1 math-simplify-expr))
			  (math-div (nth 2 math-simplify-expr) 2)))
	       (and (memq (car-safe (nth 1 math-simplify-expr)) '(* /))
		    (list (car (nth 1 math-simplify-expr))
			  (list '^ (nth 1 (nth 1 math-simplify-expr)) 
                                (nth 2 math-simplify-expr))
			  (list '^ (nth 2 (nth 1 math-simplify-expr)) 
                                (nth 2 math-simplify-expr))))))
      (and (math-equal-int (nth 1 math-simplify-expr) 10)
	   (eq (car-safe (nth 2 math-simplify-expr)) 'calcFunc-log10)
	   (nth 1 (nth 2 math-simplify-expr)))
      (and (equal (nth 1 math-simplify-expr) '(var e var-e))
	   (math-simplify-exp (nth 2 math-simplify-expr)))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-exp)
	   (not math-integrating)
	   (list 'calcFunc-exp (math-mul (nth 1 (nth 1 math-simplify-expr)) 
                                         (nth 2 math-simplify-expr))))
      (and (equal (nth 1 math-simplify-expr) '(var i var-i))
	   (math-imaginary-i)
	   (math-num-integerp (nth 2 math-simplify-expr))
	   (let ((x (math-mod (math-trunc (nth 2 math-simplify-expr)) 4)))
	     (cond ((eq x 0) 1)
		   ((eq x 1) (nth 1 math-simplify-expr))
		   ((eq x 2) -1)
		   ((eq x 3) (math-neg (nth 1 math-simplify-expr))))))
      (and math-integrating
	   (integerp (nth 2 math-simplify-expr))
	   (>= (nth 2 math-simplify-expr) 2)
	   (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cos)
		    (math-mul (math-pow (nth 1 math-simplify-expr) 
                                        (- (nth 2 math-simplify-expr) 2))
			      (math-sub 1
					(math-sqr
					 (list 'calcFunc-sin
					       (nth 1 (nth 1 math-simplify-expr)))))))
	       (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cosh)
		    (math-mul (math-pow (nth 1 math-simplify-expr) 
                                        (- (nth 2 math-simplify-expr) 2))
			      (math-add 1
					(math-sqr
					 (list 'calcFunc-sinh
					       (nth 1 (nth 1 math-simplify-expr)))))))))
      (and (eq (car-safe (nth 2 math-simplify-expr)) 'frac)
	   (Math-ratp (nth 1 math-simplify-expr))
	   (Math-posp (nth 1 math-simplify-expr))
	   (if (equal (nth 2 math-simplify-expr) '(frac 1 2))
	       (list 'calcFunc-sqrt (nth 1 math-simplify-expr))
	     (let ((flr (math-floor (nth 2 math-simplify-expr))))
	       (and (not (Math-zerop flr))
		    (list '* (list '^ (nth 1 math-simplify-expr) flr)
			  (list '^ (nth 1 math-simplify-expr)
				(math-sub (nth 2 math-simplify-expr) flr)))))))
      (and (eq (math-quarter-integer (nth 2 math-simplify-expr)) 2)
	   (let ((temp (math-simplify-sqrt)))
	     (and temp
		  (list '^ temp (math-mul (nth 2 math-simplify-expr) 2)))))))

(math-defsimplify calcFunc-log10
  (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
       (math-equal-int (nth 1 (nth 1 math-simplify-expr)) 10)
       (or math-living-dangerously
	   (math-known-realp (nth 2 (nth 1 math-simplify-expr))))
       (nth 2 (nth 1 math-simplify-expr))))


(math-defsimplify calcFunc-erf
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-neg (list 'calcFunc-erf (math-neg (nth 1 math-simplify-expr)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-conj)
	   (list 'calcFunc-conj 
                 (list 'calcFunc-erf (nth 1 (nth 1 math-simplify-expr)))))))

(math-defsimplify calcFunc-erfc
  (or (and (math-looks-negp (nth 1 math-simplify-expr))
	   (math-sub 2 (list 'calcFunc-erfc (math-neg (nth 1 math-simplify-expr)))))
      (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-conj)
	   (list 'calcFunc-conj 
                 (list 'calcFunc-erfc (nth 1 (nth 1 math-simplify-expr)))))))


(defun math-linear-in (expr term &optional always)
  (if (math-expr-contains expr term)
      (let* ((calc-prefer-frac t)
	     (p (math-is-polynomial expr term 1)))
	(and (cdr p)
	     p))
    (and always (list expr 0))))

(defun math-multiple-of (expr term)
  (let ((p (math-linear-in expr term)))
    (and p
	 (math-zerop (car p))
	 (nth 1 p))))

; not perfect, but it'll do
(defun math-integer-plus (expr)
  (cond ((Math-integerp expr)
	 (list 0 expr))
	((and (memq (car expr) '(+ -))
	      (Math-integerp (nth 1 expr)))
	 (list (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))
	       (nth 1 expr)))
	((and (memq (car expr) '(+ -))
	      (Math-integerp (nth 2 expr)))
	 (list (nth 1 expr)
	       (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))))
	(t nil)))

(defun math-is-linear (expr &optional always)
  (let ((offset nil)
	(coef nil))
    (if (eq (car-safe expr) '+)
	(if (Math-objectp (nth 1 expr))
	    (setq offset (nth 1 expr)
		  expr (nth 2 expr))
	  (if (Math-objectp (nth 2 expr))
	      (setq offset (nth 2 expr)
		    expr (nth 1 expr))))
      (if (eq (car-safe expr) '-)
	  (if (Math-objectp (nth 1 expr))
	      (setq offset (nth 1 expr)
		    expr (math-neg (nth 2 expr)))
	    (if (Math-objectp (nth 2 expr))
		(setq offset (math-neg (nth 2 expr))
		      expr (nth 1 expr))))))
    (setq coef (math-is-multiple expr always))
    (if offset
	(list offset (or (car coef) 1) (or (nth 1 coef) expr))
      (if coef
	  (cons 0 coef)))))

(defun math-is-multiple (expr &optional always)
  (or (if (eq (car-safe expr) '*)
	  (if (Math-objectp (nth 1 expr))
	      (list (nth 1 expr) (nth 2 expr)))
	(if (eq (car-safe expr) '/)
	    (if (and (Math-objectp (nth 1 expr))
		     (not (math-equal-int (nth 1 expr) 1)))
		(list (nth 1 expr) (math-div 1 (nth 2 expr)))
	      (if (Math-objectp (nth 2 expr))
		  (list (math-div 1 (nth 2 expr)) (nth 1 expr))
		(let ((res (math-is-multiple (nth 1 expr))))
		  (if res
		      (list (car res)
			    (math-div (nth 2 (nth 1 expr)) (nth 2 expr)))
		    (setq res (math-is-multiple (nth 2 expr)))
		    (if res
			(list (math-div 1 (car res))
			      (math-div (nth 1 expr)
					(nth 2 (nth 2 expr)))))))))
	  (if (eq (car-safe expr) 'neg)
	      (list -1 (nth 1 expr)))))
      (if (Math-objvecp expr)
	  (and (eq always 1)
	       (list expr 1))
	(and always
	     (list 1 expr)))))

(defun calcFunc-lin (expr &optional var)
  (if var
      (let ((res (math-linear-in expr var t)))
	(or res (math-reject-arg expr "Linear term expected"))
	(list 'vec (car res) (nth 1 res) var))
    (let ((res (math-is-linear expr t)))
      (or res (math-reject-arg expr "Linear term expected"))
      (cons 'vec res))))

(defun calcFunc-linnt (expr &optional var)
  (if var
      (let ((res (math-linear-in expr var)))
	(or res (math-reject-arg expr "Linear term expected"))
	(list 'vec (car res) (nth 1 res) var))
    (let ((res (math-is-linear expr)))
      (or res (math-reject-arg expr "Linear term expected"))
      (cons 'vec res))))

(defun calcFunc-islin (expr &optional var)
  (if (and (Math-objvecp expr) (not var))
      0
    (calcFunc-lin expr var)
    1))

(defun calcFunc-islinnt (expr &optional var)
  (if (Math-objvecp expr)
      0
    (calcFunc-linnt expr var)
    1))




;;; Simple operations on expressions.

;;; Return number of occurrences of thing in expr, or nil if none.
(defun math-expr-contains-count (expr thing)
  (cond ((equal expr thing) 1)
	((Math-primp expr) nil)
	(t
	 (let ((num 0))
	   (while (setq expr (cdr expr))
	     (setq num (+ num (or (math-expr-contains-count
				   (car expr) thing) 0))))
	   (and (> num 0)
		num)))))

(defun math-expr-contains (expr thing)
  (cond ((equal expr thing) 1)
	((Math-primp expr) nil)
	(t
	 (while (and (setq expr (cdr expr))
		     (not (math-expr-contains (car expr) thing))))
	 expr)))

;;; Return non-nil if any variable of thing occurs in expr.
(defun math-expr-depends (expr thing)
  (if (Math-primp thing)
      (and (eq (car-safe thing) 'var)
	   (math-expr-contains expr thing))
    (while (and (setq thing (cdr thing))
		(not (math-expr-depends expr (car thing)))))
    thing))

;;; Substitute all occurrences of old for new in expr (non-destructive).

;; The variables math-expr-subst-old and math-expr-subst-new are local
;; for math-expr-subst, but used by math-expr-subst-rec.
(defvar math-expr-subst-old)
(defvar math-expr-subst-new)

(defun math-expr-subst (expr math-expr-subst-old math-expr-subst-new)
  (math-expr-subst-rec expr))

(defalias 'calcFunc-subst 'math-expr-subst)

(defun math-expr-subst-rec (expr)
  (cond ((equal expr math-expr-subst-old) math-expr-subst-new)
	((Math-primp expr) expr)
	((memq (car expr) '(calcFunc-deriv
			    calcFunc-tderiv))
	 (if (= (length expr) 2)
	     (if (equal (nth 1 expr) math-expr-subst-old)
		 (append expr (list math-expr-subst-new))
	       expr)
	   (list (car expr) (nth 1 expr)
		 (math-expr-subst-rec (nth 2 expr)))))
	(t
	 (cons (car expr)
	       (mapcar 'math-expr-subst-rec (cdr expr))))))

;;; Various measures of the size of an expression.
(defun math-expr-weight (expr)
  (if (Math-primp expr)
      1
    (let ((w 1))
      (while (setq expr (cdr expr))
	(setq w (+ w (math-expr-weight (car expr)))))
      w)))

(defun math-expr-height (expr)
  (if (Math-primp expr)
      0
    (let ((h 0))
      (while (setq expr (cdr expr))
	(setq h (max h (math-expr-height (car expr)))))
      (1+ h))))




;;; Polynomial operations (to support the integrator and solve-for).

(defun calcFunc-collect (expr base)
  (let ((p (math-is-polynomial expr base 50 t)))
    (if (cdr p)
	(math-normalize   ; fix selection bug
	 (math-build-polynomial-expr p base))
      expr)))

;;; If expr is of the form "a + bx + cx^2 + ...", return the list (a b c ...),
;;; else return nil if not in polynomial form.  If "loose" (math-is-poly-loose), 
;;; coefficients may contain x, e.g., sin(x) + cos(x) x^2 is a loose polynomial in x.

;; The variables math-is-poly-degree and math-is-poly-loose are local to 
;; math-is-polynomial, but are used by math-is-poly-rec
(defvar math-is-poly-degree)
(defvar math-is-poly-loose)

(defun math-is-polynomial (expr var &optional math-is-poly-degree math-is-poly-loose)
  (let* ((math-poly-base-variable (if math-is-poly-loose
				      (if (eq math-is-poly-loose 'gen) var '(var XXX XXX))
				    math-poly-base-variable))
	 (poly (math-is-poly-rec expr math-poly-neg-powers)))
    (and (or (null math-is-poly-degree)
	     (<= (length poly) (1+ math-is-poly-degree)))
	 poly)))

(defun math-is-poly-rec (expr negpow)
  (math-poly-simplify
   (or (cond ((or (equal expr var)
		  (eq (car-safe expr) '^))
	      (let ((pow 1)
		    (expr expr))
		(or (equal expr var)
		    (setq pow (nth 2 expr)
			  expr (nth 1 expr)))
		(or (eq math-poly-mult-powers 1)
		    (setq pow (let ((m (math-is-multiple pow 1)))
				(and (eq (car-safe (car m)) 'cplx)
				     (Math-zerop (nth 1 (car m)))
				     (setq m (list (nth 2 (car m))
						   (math-mul (nth 1 m)
							     '(var i var-i)))))
				(and (if math-poly-mult-powers
					 (equal math-poly-mult-powers
						(nth 1 m))
				       (setq math-poly-mult-powers (nth 1 m)))
				     (or (equal expr var)
					 (eq math-poly-mult-powers 1))
				     (car m)))))
		(if (consp pow)
		    (progn
		      (setq pow (math-to-simple-fraction pow))
		      (and (eq (car-safe pow) 'frac)
			   math-poly-frac-powers
			   (equal expr var)
			   (setq math-poly-frac-powers
				 (calcFunc-lcm math-poly-frac-powers
					       (nth 2 pow))))))
		(or (memq math-poly-frac-powers '(1 nil))
		    (setq pow (math-mul pow math-poly-frac-powers)))
		(if (integerp pow)
		    (if (and (= pow 1)
			     (equal expr var))
			(list 0 1)
		      (if (natnump pow)
			  (let ((p1 (if (equal expr var)
					(list 0 1)
				      (math-is-poly-rec expr nil)))
				(n pow)
				(accum (list 1)))
			    (and p1
				 (or (null math-is-poly-degree)
				     (<= (* (1- (length p1)) n) math-is-poly-degree))
				 (progn
				   (while (>= n 1)
				     (setq accum (math-poly-mul accum p1)
					   n (1- n)))
				   accum)))
			(and negpow
			     (math-is-poly-rec expr nil)
			     (setq math-poly-neg-powers
				   (cons (math-pow expr (- pow))
					 math-poly-neg-powers))
			     (list (list '^ expr pow))))))))
	     ((Math-objectp expr)
	      (list expr))
	     ((memq (car expr) '(+ -))
	      (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
		(and p1
		     (let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
		       (and p2
			    (math-poly-mix p1 1 p2
					   (if (eq (car expr) '+) 1 -1)))))))
	     ((eq (car expr) 'neg)
	      (mapcar 'math-neg (math-is-poly-rec (nth 1 expr) negpow)))
	     ((eq (car expr) '*)
	      (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
		(and p1
		     (let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
		       (and p2
			    (or (null math-is-poly-degree)
				(<= (- (+ (length p1) (length p2)) 2) 
                                    math-is-poly-degree))
			    (math-poly-mul p1 p2))))))
	     ((eq (car expr) '/)
	      (and (or (not (math-poly-depends (nth 2 expr) var))
		       (and negpow
			    (math-is-poly-rec (nth 2 expr) nil)
			    (setq math-poly-neg-powers
				  (cons (nth 2 expr) math-poly-neg-powers))))
		   (not (Math-zerop (nth 2 expr)))
		   (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
		     (mapcar (function (lambda (x) (math-div x (nth 2 expr))))
			     p1))))
	     ((and (eq (car expr) 'calcFunc-exp)
		   (equal var '(var e var-e)))
	      (math-is-poly-rec (list '^ var (nth 1 expr)) negpow))
	     ((and (eq (car expr) 'calcFunc-sqrt)
		   math-poly-frac-powers)
	      (math-is-poly-rec (list '^ (nth 1 expr) '(frac 1 2)) negpow))
	     (t nil))
       (and (or (not (math-poly-depends expr var))
		math-is-poly-loose)
	    (not (eq (car expr) 'vec))
	    (list expr)))))

;;; Check if expr is a polynomial in var; if so, return its degree.
(defun math-polynomial-p (expr var)
  (cond ((equal expr var) 1)
	((Math-primp expr) 0)
	((memq (car expr) '(+ -))
	 (let ((p1 (math-polynomial-p (nth 1 expr) var))
	       p2)
	   (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var))
		(max p1 p2))))
	((eq (car expr) '*)
	 (let ((p1 (math-polynomial-p (nth 1 expr) var))
	       p2)
	   (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var))
		(+ p1 p2))))
	((eq (car expr) 'neg)
	 (math-polynomial-p (nth 1 expr) var))
	((and (eq (car expr) '/)
	      (not (math-poly-depends (nth 2 expr) var)))
	 (math-polynomial-p (nth 1 expr) var))
	((and (eq (car expr) '^)
	      (natnump (nth 2 expr)))
	 (let ((p1 (math-polynomial-p (nth 1 expr) var)))
	   (and p1 (* p1 (nth 2 expr)))))
	((math-poly-depends expr var) nil)
	(t 0)))

(defun math-poly-depends (expr var)
  (if math-poly-base-variable
      (math-expr-contains expr math-poly-base-variable)
    (math-expr-depends expr var)))

;;; Find the variable (or sub-expression) which is the base of polynomial expr.
;; The variables math-poly-base-const-ok and math-poly-base-pred are
;; local to math-polynomial-base, but are used by math-polynomial-base-rec.
(defvar math-poly-base-const-ok)
(defvar math-poly-base-pred)

;; The variable math-poly-base-top-expr is local to math-polynomial-base,
;; but is used by math-polynomial-p1 in calc-poly.el, which is called
;; by math-polynomial-base.

(defun math-polynomial-base (math-poly-base-top-expr &optional math-poly-base-pred)
  (or math-poly-base-pred
      (setq math-poly-base-pred (function (lambda (base) (math-polynomial-p
					       math-poly-base-top-expr base)))))
  (or (let ((math-poly-base-const-ok nil))
	(math-polynomial-base-rec math-poly-base-top-expr))
      (let ((math-poly-base-const-ok t))
	(math-polynomial-base-rec math-poly-base-top-expr))))

(defun math-polynomial-base-rec (mpb-expr)
  (and (not (Math-objvecp mpb-expr))
       (or (and (memq (car mpb-expr) '(+ - *))
		(or (math-polynomial-base-rec (nth 1 mpb-expr))
		    (math-polynomial-base-rec (nth 2 mpb-expr))))
	   (and (memq (car mpb-expr) '(/ neg))
		(math-polynomial-base-rec (nth 1 mpb-expr)))
	   (and (eq (car mpb-expr) '^)
		(math-polynomial-base-rec (nth 1 mpb-expr)))
	   (and (eq (car mpb-expr) 'calcFunc-exp)
		(math-polynomial-base-rec '(var e var-e)))
	   (and (or math-poly-base-const-ok (math-expr-contains-vars mpb-expr))
		(funcall math-poly-base-pred mpb-expr)
		mpb-expr))))

;;; Return non-nil if expr refers to any variables.
(defun math-expr-contains-vars (expr)
  (or (eq (car-safe expr) 'var)
      (and (not (Math-primp expr))
	   (progn
	     (while (and (setq expr (cdr expr))
			 (not (math-expr-contains-vars (car expr)))))
	     expr))))

;;; Simplify a polynomial in list form by stripping off high-end zeros.
;;; This always leaves the constant part, i.e., nil->nil and nonnil->nonnil.
(defun math-poly-simplify (p)
  (and p
       (if (Math-zerop (nth (1- (length p)) p))
	   (let ((pp (copy-sequence p)))
	     (while (and (cdr pp)
			 (Math-zerop (nth (1- (length pp)) pp)))
	       (setcdr (nthcdr (- (length pp) 2) pp) nil))
	     pp)
	 p)))

;;; Compute ac*a + bc*b for polynomials in list form a, b and
;;; coefficients ac, bc.  Result may be unsimplified.
(defun math-poly-mix (a ac b bc)
  (and (or a b)
       (cons (math-add (math-mul (or (car a) 0) ac)
		       (math-mul (or (car b) 0) bc))
	     (math-poly-mix (cdr a) ac (cdr b) bc))))

(defun math-poly-zerop (a)
  (or (null a)
      (and (null (cdr a)) (Math-zerop (car a)))))

;;; Multiply two polynomials in list form.
(defun math-poly-mul (a b)
  (and a b
       (math-poly-mix b (car a)
		      (math-poly-mul (cdr a) (cons 0 b)) 1)))

;;; Build an expression from a polynomial list.
(defun math-build-polynomial-expr (p var)
  (if p
      (if (Math-numberp var)
	  (math-with-extra-prec 1
	    (let* ((rp (reverse p))
		   (accum (car rp)))
	      (while (setq rp (cdr rp))
		(setq accum (math-add (car rp) (math-mul accum var))))
	      accum))
	(let* ((rp (reverse p))
	       (n (1- (length rp)))
	       (accum (math-mul (car rp) (math-pow var n)))
	       term)
	  (while (setq rp (cdr rp))
	    (setq n (1- n))
	    (or (math-zerop (car rp))
		(setq accum (list (if (math-looks-negp (car rp)) '- '+)
				  accum
				  (math-mul (if (math-looks-negp (car rp))
						(math-neg (car rp))
					      (car rp))
					    (math-pow var n))))))
	  accum))
    0))


(defun math-to-simple-fraction (f)
  (or (and (eq (car-safe f) 'float)
	   (or (and (>= (nth 2 f) 0)
		    (math-scale-int (nth 1 f) (nth 2 f)))
	       (and (integerp (nth 1 f))
		    (> (nth 1 f) -1000)
		    (< (nth 1 f) 1000)
		    (math-make-frac (nth 1 f)
				    (math-scale-int 1 (- (nth 2 f)))))))
      f))

(provide 'calc-alg)

;;; arch-tag: 52e7dcdf-9688-464d-a02b-4bbe789348d0
;;; calc-alg.el ends here