Mercurial > emacs
view src/intervals.c @ 1312:540110352c0d
* termhooks.h (struct input_event): Doc fix.
(NUM_MOUSE_BUTTONS): New constant.
(click_modifier): New modifier.
(NUM_MODIFIER_COMBOS): Removed.
author | Jim Blandy <jimb@redhat.com> |
---|---|
date | Sat, 03 Oct 1992 00:01:09 +0000 |
parents | b469633740b3 |
children | f09c5c6563b8 |
line wrap: on
line source
/* Code for doing intervals. Copyright (C) 1991, 1992 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* NOTES: Have to ensure that we can't put symbol nil on a plist, or some functions may work incorrectly. An idea: Have the owner of the tree keep count of splits and/or insertion lengths (in intervals), and balance after every N. Need to call *_left_hook when buffer is killed. Scan for zero-length, or 0-length to see notes about handling zero length interval-markers. There are comments around about freeing intervals. It might be faster to explicitly free them (put them on the free list) than to GC them. */ #include "config.h" #include "lisp.h" #include "intervals.h" #include "buffer.h" /* The rest of the file is within this conditional. */ #ifdef USE_TEXT_PROPERTIES /* Factor for weight-balancing interval trees. */ Lisp_Object interval_balance_threshold; /* Utility functions for intervals. */ /* Create the root interval of some object, a buffer or string. */ INTERVAL create_root_interval (parent) Lisp_Object parent; { INTERVAL new = make_interval (); if (XTYPE (parent) == Lisp_Buffer) { new->total_length = BUF_Z (XBUFFER (parent)) - 1; XBUFFER (parent)->intervals = new; } else if (XTYPE (parent) == Lisp_String) { new->total_length = XSTRING (parent)->size; XSTRING (parent)->intervals = new; } new->parent = (INTERVAL) parent; new->position = 1; return new; } /* Make the interval TARGET have exactly the properties of SOURCE */ void copy_properties (source, target) register INTERVAL source, target; { if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target)) return; COPY_INTERVAL_CACHE (source, target); target->plist = Fcopy_sequence (source->plist); } /* Merge the properties of interval SOURCE into the properties of interval TARGET. */ static void merge_properties (source, target) register INTERVAL source, target; { register Lisp_Object o, sym, val; if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target)) return; MERGE_INTERVAL_CACHE (source, target); o = source->plist; while (! EQ (o, Qnil)) { sym = Fcar (o); val = Fmemq (sym, target->plist); if (NILP (val)) { o = Fcdr (o); val = Fcar (o); target->plist = Fcons (sym, Fcons (val, target->plist)); o = Fcdr (o); } else o = Fcdr (Fcdr (o)); } } /* Return 1 if the two intervals have the same properties, 0 otherwise. */ int intervals_equal (i0, i1) INTERVAL i0, i1; { register Lisp_Object i0_cdr, i0_sym, i1_val; register i1_len; if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1)) return 1; i1_len = XFASTINT (Flength (i1->plist)); if (i1_len & 0x1) /* Paranoia -- plists are always even */ abort (); i1_len /= 2; i0_cdr = i0->plist; while (!NILP (i0_cdr)) { /* Lengths of the two plists were unequal */ if (i1_len == 0) return 0; i0_sym = Fcar (i0_cdr); i1_val = Fmemq (i0_sym, i1->plist); /* i0 has something i1 doesn't */ if (EQ (i1_val, Qnil)) return 0; /* i0 and i1 both have sym, but it has different values in each */ i0_cdr = Fcdr (i0_cdr); if (! Fequal (i1_val, Fcar (i0_cdr))) return 0; i0_cdr = Fcdr (i0_cdr); i1_len--; } /* Lengths of the two plists were unequal */ if (i1_len > 0) return 0; return 1; } static int icount; static int idepth; static int zero_length; static int depth; /* Traverse an interval tree TREE, performing FUNCTION on each node. Perhaps we should pass the depth as an argument. */ void traverse_intervals (tree, position, function) INTERVAL tree; int position; void (* function) (); { if (NULL_INTERVAL_P (tree)) return; depth++; traverse_intervals (tree->left, position, function); position += LEFT_TOTAL_LENGTH (tree); tree->position = position; (*function) (tree); position += LENGTH (tree); traverse_intervals (tree->right, position, function); depth--; } #if 0 /* These functions are temporary, for debugging purposes only. */ INTERVAL search_interval, found_interval; void check_for_interval (i) register INTERVAL i; { if (i == search_interval) { found_interval = i; icount++; } } INTERVAL search_for_interval (i, tree) register INTERVAL i, tree; { icount = 0; search_interval = i; found_interval = NULL_INTERVAL; traverse_intervals (tree, 1, &check_for_interval); return found_interval; } static void inc_interval_count (i) INTERVAL i; { icount++; if (LENGTH (i) == 0) zero_length++; if (depth > idepth) idepth = depth; } int count_intervals (i) register INTERVAL i; { icount = 0; idepth = 0; zero_length = 0; traverse_intervals (i, 1, &inc_interval_count); return icount; } static INTERVAL root_interval (interval) INTERVAL interval; { register INTERVAL i = interval; while (! ROOT_INTERVAL_P (i)) i = i->parent; return i; } #endif /* Assuming that a left child exists, perform the following operation: A B / \ / \ B => A / \ / \ c c */ static INTERVAL rotate_right (interval) INTERVAL interval; { INTERVAL i; INTERVAL B = interval->left; int len = LENGTH (interval); /* Deal with any Parent of A; make it point to B. */ if (! ROOT_INTERVAL_P (interval)) if (AM_LEFT_CHILD (interval)) interval->parent->left = interval->left; else interval->parent->right = interval->left; interval->left->parent = interval->parent; /* B gets the same length as A, since it get A's position in the tree. */ interval->left->total_length = interval->total_length; /* B becomes the parent of A. */ i = interval->left->right; interval->left->right = interval; interval->parent = interval->left; /* A gets c as left child. */ interval->left = i; if (! NULL_INTERVAL_P (i)) i->parent = interval; interval->total_length = (len + LEFT_TOTAL_LENGTH (interval) + RIGHT_TOTAL_LENGTH (interval)); return B; } /* Assuming that a right child exists, perform the following operation: A B / \ / \ B => A / \ / \ c c */ static INTERVAL rotate_left (interval) INTERVAL interval; { INTERVAL i; INTERVAL B = interval->right; int len = LENGTH (interval); /* Deal with the parent of A. */ if (! ROOT_INTERVAL_P (interval)) if (AM_LEFT_CHILD (interval)) interval->parent->left = interval->right; else interval->parent->right = interval->right; interval->right->parent = interval->parent; /* B must have the same total length of A. */ interval->right->total_length = interval->total_length; /* Make B the parent of A */ i = interval->right->left; interval->right->left = interval; interval->parent = interval->right; /* Make A point to c */ interval->right = i; if (! NULL_INTERVAL_P (i)) i->parent = interval; interval->total_length = (len + LEFT_TOTAL_LENGTH (interval) + RIGHT_TOTAL_LENGTH (interval)); return B; } /* Split INTERVAL into two pieces, starting the second piece at character position OFFSET (counting from 1), relative to INTERVAL. The right-hand piece (second, lexicographically) is returned. The size and position fields of the two intervals are set based upon those of the original interval. The property list of the new interval is reset, thus it is up to the caller to do the right thing with the result. Note that this does not change the position of INTERVAL; if it is a root, it is still a root after this operation. */ INTERVAL split_interval_right (interval, offset) INTERVAL interval; int offset; { INTERVAL new = make_interval (); int position = interval->position; int new_length = LENGTH (interval) - offset + 1; new->position = position + offset - 1; new->parent = interval; if (LEAF_INTERVAL_P (interval) || NULL_RIGHT_CHILD (interval)) { interval->right = new; new->total_length = new_length; return new; } /* Insert the new node between INTERVAL and its right child. */ new->right = interval->right; interval->right->parent = new; interval->right = new; new->total_length = new_length + new->right->total_length; return new; } /* Split INTERVAL into two pieces, starting the second piece at character position OFFSET (counting from 1), relative to INTERVAL. The left-hand piece (first, lexicographically) is returned. The size and position fields of the two intervals are set based upon those of the original interval. The property list of the new interval is reset, thus it is up to the caller to do the right thing with the result. Note that this does not change the position of INTERVAL; if it is a root, it is still a root after this operation. */ INTERVAL split_interval_left (interval, offset) INTERVAL interval; int offset; { INTERVAL new = make_interval (); int position = interval->position; int new_length = offset - 1; new->position = interval->position; interval->position = interval->position + offset - 1; new->parent = interval; if (NULL_LEFT_CHILD (interval)) { interval->left = new; new->total_length = new_length; return new; } /* Insert the new node between INTERVAL and its left child. */ new->left = interval->left; new->left->parent = new; interval->left = new; new->total_length = LENGTH (new) + LEFT_TOTAL_LENGTH (new); return new; } /* Find the interval containing text position POSITION in the text represented by the interval tree TREE. POSITION is relative to the beginning of that text. The `position' field, which is a cache of an interval's position, is updated in the interval found. Other functions (e.g., next_interval) will update this cache based on the result of find_interval. */ INLINE INTERVAL find_interval (tree, position) register INTERVAL tree; register int position; { register int relative_position = position; if (NULL_INTERVAL_P (tree)) return NULL_INTERVAL; if (position > TOTAL_LENGTH (tree)) abort (); /* Paranoia */ #if 0 position = TOTAL_LENGTH (tree); #endif while (1) { if (relative_position <= LEFT_TOTAL_LENGTH (tree)) { tree = tree->left; } else if (relative_position > (TOTAL_LENGTH (tree) - RIGHT_TOTAL_LENGTH (tree))) { relative_position -= (TOTAL_LENGTH (tree) - RIGHT_TOTAL_LENGTH (tree)); tree = tree->right; } else { tree->position = LEFT_TOTAL_LENGTH (tree) + position - relative_position + 1; return tree; } } } /* Find the succeeding interval (lexicographically) to INTERVAL. Sets the `position' field based on that of INTERVAL (see find_interval). */ INTERVAL next_interval (interval) register INTERVAL interval; { register INTERVAL i = interval; register int next_position; if (NULL_INTERVAL_P (i)) return NULL_INTERVAL; next_position = interval->position + LENGTH (interval); if (! NULL_RIGHT_CHILD (i)) { i = i->right; while (! NULL_LEFT_CHILD (i)) i = i->left; i->position = next_position; return i; } while (! NULL_PARENT (i)) { if (AM_LEFT_CHILD (i)) { i = i->parent; i->position = next_position; return i; } i = i->parent; } return NULL_INTERVAL; } /* Find the preceding interval (lexicographically) to INTERVAL. Sets the `position' field based on that of INTERVAL (see find_interval). */ INTERVAL previous_interval (interval) register INTERVAL interval; { register INTERVAL i; register position_of_previous; if (NULL_INTERVAL_P (interval)) return NULL_INTERVAL; if (! NULL_LEFT_CHILD (interval)) { i = interval->left; while (! NULL_RIGHT_CHILD (i)) i = i->right; i->position = interval->position - LENGTH (i); return i; } i = interval; while (! NULL_PARENT (i)) { if (AM_RIGHT_CHILD (i)) { i = i->parent; i->position = interval->position - LENGTH (i); return i; } i = i->parent; } return NULL_INTERVAL; } #if 0 /* Traverse a path down the interval tree TREE to the interval containing POSITION, adjusting all nodes on the path for an addition of LENGTH characters. Insertion between two intervals (i.e., point == i->position, where i is second interval) means text goes into second interval. Modifications are needed to handle the hungry bits -- after simply finding the interval at position (don't add length going down), if it's the beginning of the interval, get the previous interval and check the hugry bits of both. Then add the length going back up to the root. */ static INTERVAL adjust_intervals_for_insertion (tree, position, length) INTERVAL tree; int position, length; { register int relative_position; register INTERVAL this; if (TOTAL_LENGTH (tree) == 0) /* Paranoia */ abort (); /* If inserting at point-max of a buffer, that position will be out of range */ if (position > TOTAL_LENGTH (tree)) position = TOTAL_LENGTH (tree); relative_position = position; this = tree; while (1) { if (relative_position <= LEFT_TOTAL_LENGTH (this)) { this->total_length += length; this = this->left; } else if (relative_position > (TOTAL_LENGTH (this) - RIGHT_TOTAL_LENGTH (this))) { relative_position -= (TOTAL_LENGTH (this) - RIGHT_TOTAL_LENGTH (this)); this->total_length += length; this = this->right; } else { /* If we are to use zero-length intervals as buffer pointers, then this code will have to change. */ this->total_length += length; this->position = LEFT_TOTAL_LENGTH (this) + position - relative_position + 1; return tree; } } } #endif /* Effect an adjustment corresponding to the addition of LENGTH characters of text. Do this by finding the interval containing POSITION in the interval tree TREE, and then adjusting all of it's ancestors by adding LENGTH to them. If POSITION is the first character of an interval, meaning that point is actually between the two intervals, make the new text belong to the interval which is "sticky". If both intervals are "sticky", then make them belong to the left-most interval. Another possibility would be to create a new interval for this text, and make it have the merged properties of both ends. */ static INTERVAL adjust_intervals_for_insertion (tree, position, length) INTERVAL tree; int position, length; { register INTERVAL i; if (TOTAL_LENGTH (tree) == 0) /* Paranoia */ abort (); /* If inserting at point-max of a buffer, that position will be out of range. */ if (position > TOTAL_LENGTH (tree)) position = TOTAL_LENGTH (tree); i = find_interval (tree, position); /* If we are positioned between intervals, check the stickiness of both of them. */ if (position == i->position && position != 1) { register INTERVAL prev = previous_interval (i); /* If both intervals are sticky here, then default to the left-most one. But perhaps we should create a new interval here instead... */ if (END_STICKY (prev)) i = prev; } while (! NULL_INTERVAL_P (i)) { i->total_length += length; i = i->parent; } return tree; } /* Delete an node I from its interval tree by merging its subtrees into one subtree which is then returned. Caller is responsible for storing the resulting subtree into its parent. */ static INTERVAL delete_node (i) register INTERVAL i; { register INTERVAL migrate, this; register int migrate_amt; if (NULL_INTERVAL_P (i->left)) return i->right; if (NULL_INTERVAL_P (i->right)) return i->left; migrate = i->left; migrate_amt = i->left->total_length; this = i->right; this->total_length += migrate_amt; while (! NULL_INTERVAL_P (this->left)) { this = this->left; this->total_length += migrate_amt; } this->left = migrate; migrate->parent = this; return i->right; } /* Delete interval I from its tree by calling `delete_node' and properly connecting the resultant subtree. I is presumed to be empty; that is, no adjustments are made for the length of I. */ void delete_interval (i) register INTERVAL i; { register INTERVAL parent; int amt = LENGTH (i); if (amt > 0) /* Only used on zero-length intervals now. */ abort (); if (ROOT_INTERVAL_P (i)) { Lisp_Object owner = (Lisp_Object) i->parent; parent = delete_node (i); if (! NULL_INTERVAL_P (parent)) parent->parent = (INTERVAL) owner; if (XTYPE (owner) == Lisp_Buffer) XBUFFER (owner)->intervals = parent; else if (XTYPE (owner) == Lisp_String) XSTRING (owner)->intervals = parent; else abort (); return; } parent = i->parent; if (AM_LEFT_CHILD (i)) { parent->left = delete_node (i); if (! NULL_INTERVAL_P (parent->left)) parent->left->parent = parent; } else { parent->right = delete_node (i); if (! NULL_INTERVAL_P (parent->right)) parent->right->parent = parent; } } /* Find the interval in TREE corresponding to the character position FROM and delete as much as possible of AMOUNT from that interval, starting after the relative position of FROM within it. Return the amount actually deleted, and if the interval was zeroed-out, delete that interval node from the tree. Do this by recursing down TREE to the interval in question, and deleting the appropriate amount of text. */ static int interval_deletion_adjustment (tree, from, amount) register INTERVAL tree; register int from, amount; { register int relative_position = from; if (NULL_INTERVAL_P (tree)) return 0; /* Left branch */ if (relative_position <= LEFT_TOTAL_LENGTH (tree)) { int subtract = interval_deletion_adjustment (tree->left, relative_position, amount); tree->total_length -= subtract; return subtract; } /* Right branch */ else if (relative_position > (TOTAL_LENGTH (tree) - RIGHT_TOTAL_LENGTH (tree))) { int subtract; relative_position -= (tree->total_length - RIGHT_TOTAL_LENGTH (tree)); subtract = interval_deletion_adjustment (tree->right, relative_position, amount); tree->total_length -= subtract; return subtract; } /* Here -- this node */ else { /* If this is a zero-length, marker interval, then we must skip it. */ if (relative_position == LEFT_TOTAL_LENGTH (tree) + 1) { /* This means we're deleting from the beginning of this interval. */ register int my_amount = LENGTH (tree); if (amount < my_amount) { tree->total_length -= amount; return amount; } else { tree->total_length -= my_amount; if (LENGTH (tree) != 0) abort (); /* Paranoia */ delete_interval (tree); return my_amount; } } else /* Deleting starting in the middle. */ { register int my_amount = ((tree->total_length - RIGHT_TOTAL_LENGTH (tree)) - relative_position + 1); if (amount <= my_amount) { tree->total_length -= amount; return amount; } else { tree->total_length -= my_amount; return my_amount; } } } /* Never reach here */ abort (); } /* Effect the adjustments neccessary to the interval tree of BUFFER to correspond to the deletion of LENGTH characters from that buffer text. The deletion is effected at position START (relative to the buffer). */ static void adjust_intervals_for_deletion (buffer, start, length) struct buffer *buffer; int start, length; { register int left_to_delete = length; register INTERVAL tree = buffer->intervals; register int deleted; if (NULL_INTERVAL_P (tree)) return; if (length == TOTAL_LENGTH (tree)) { buffer->intervals = NULL_INTERVAL; return; } if (ONLY_INTERVAL_P (tree)) { tree->total_length -= length; return; } if (start > TOTAL_LENGTH (tree)) start = TOTAL_LENGTH (tree); while (left_to_delete > 0) { left_to_delete -= interval_deletion_adjustment (tree, start, left_to_delete); tree = buffer->intervals; if (left_to_delete == tree->total_length) { buffer->intervals = NULL_INTERVAL; return; } } } /* Make the adjustments neccessary to the interval tree of BUFFER to represent an addition or deletion of LENGTH characters starting at position START. Addition or deletion is indicated by the sign of LENGTH. */ INLINE void offset_intervals (buffer, start, length) struct buffer *buffer; int start, length; { if (NULL_INTERVAL_P (buffer->intervals) || length == 0) return; if (length > 0) adjust_intervals_for_insertion (buffer->intervals, start, length); else adjust_intervals_for_deletion (buffer, start, -length); } /* Merge interval I with its lexicographic successor. The resulting interval is returned, and has the properties of the original successor. The properties of I are lost. I is removed from the interval tree. IMPORTANT: The caller must verify that this is not the last (rightmost) interval. */ INTERVAL merge_interval_right (i) register INTERVAL i; { register int absorb = LENGTH (i); register INTERVAL successor; /* Zero out this interval. */ i->total_length -= absorb; /* Find the succeeding interval. */ if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb as we descend. */ { successor = i->right; while (! NULL_LEFT_CHILD (successor)) { successor->total_length += absorb; successor = successor->left; } successor->total_length += absorb; delete_interval (i); return successor; } successor = i; while (! NULL_PARENT (successor)) /* It's above us. Subtract as we ascend. */ { if (AM_LEFT_CHILD (successor)) { successor = successor->parent; delete_interval (i); return successor; } successor = successor->parent; successor->total_length -= absorb; } /* This must be the rightmost or last interval and cannot be merged right. The caller should have known. */ abort (); } /* Merge interval I with its lexicographic predecessor. The resulting interval is returned, and has the properties of the original predecessor. The properties of I are lost. Interval node I is removed from the tree. IMPORTANT: The caller must verify that this is not the first (leftmost) interval. */ INTERVAL merge_interval_left (i) register INTERVAL i; { register int absorb = LENGTH (i); register INTERVAL predecessor; /* Zero out this interval. */ i->total_length -= absorb; /* Find the preceding interval. */ if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down, adding ABSORB as we go. */ { predecessor = i->left; while (! NULL_RIGHT_CHILD (predecessor)) { predecessor->total_length += absorb; predecessor = predecessor->right; } predecessor->total_length += absorb; delete_interval (i); return predecessor; } predecessor = i; while (! NULL_PARENT (predecessor)) /* It's above us. Go up, subtracting ABSORB. */ { if (AM_RIGHT_CHILD (predecessor)) { predecessor = predecessor->parent; delete_interval (i); return predecessor; } predecessor = predecessor->parent; predecessor->total_length -= absorb; } /* This must be the leftmost or first interval and cannot be merged left. The caller should have known. */ abort (); } /* Make an exact copy of interval tree SOURCE which descends from PARENT. This is done by recursing through SOURCE, copying the current interval and its properties, and then adjusting the pointers of the copy. */ static INTERVAL reproduce_tree (source, parent) INTERVAL source, parent; { register INTERVAL t = make_interval (); bcopy (source, t, INTERVAL_SIZE); copy_properties (source, t); t->parent = parent; if (! NULL_LEFT_CHILD (source)) t->left = reproduce_tree (source->left, t); if (! NULL_RIGHT_CHILD (source)) t->right = reproduce_tree (source->right, t); return t; } /* Make a new interval of length LENGTH starting at START in the group of intervals INTERVALS, which is actually an interval tree. Returns the new interval. Generate an error if the new positions would overlap an existing interval. */ static INTERVAL make_new_interval (intervals, start, length) INTERVAL intervals; int start, length; { INTERVAL slot; slot = find_interval (intervals, start); if (start + length > slot->position + LENGTH (slot)) error ("Interval would overlap"); if (start == slot->position && length == LENGTH (slot)) return slot; if (slot->position == start) { /* New right node. */ split_interval_right (slot, length + 1); return slot; } if (slot->position + LENGTH (slot) == start + length) { /* New left node. */ split_interval_left (slot, LENGTH (slot) - length + 1); return slot; } /* Convert interval SLOT into three intervals. */ split_interval_left (slot, start - slot->position + 1); split_interval_right (slot, length + 1); return slot; } /* Insert the intervals of SOURCE into BUFFER at POSITION. This is used in insdel.c when inserting Lisp_Strings into the buffer. The text corresponding to SOURCE is already in the buffer when this is called. The intervals of new tree are those belonging to the string being inserted; a copy is not made. If the inserted text had no intervals associated, this function simply returns -- offset_intervals should handle placing the text in the correct interval, depending on the sticky bits. If the inserted text had properties (intervals), then there are two cases -- either insertion happened in the middle of some interval, or between two intervals. If the text goes into the middle of an interval, then new intervals are created in the middle with only the properties of the new text, *unless* the macro MERGE_INSERTIONS is true, in which case the new text has the union of its properties and those of the text into which it was inserted. If the text goes between two intervals, then if neither interval had its appropriate sticky property set (front_sticky, rear_sticky), the new text has only its properties. If one of the sticky properties is set, then the new text "sticks" to that region and its properties depend on merging as above. If both the preceding and succeding intervals to the new text are "sticky", then the new text retains only its properties, as if neither sticky property were set. Perhaps we should consider merging all three sets of properties onto the new text... */ void graft_intervals_into_buffer (source, position, buffer) INTERVAL source; int position; struct buffer *buffer; { register INTERVAL under, over, this; register INTERVAL tree = buffer->intervals; /* If the new text has no properties, it becomes part of whatever interval it was inserted into. */ if (NULL_INTERVAL_P (source)) return; /* Paranoia -- the text has already been added, so this buffer should be of non-zero length. */ if (TOTAL_LENGTH (tree) == 0) abort (); if (NULL_INTERVAL_P (tree)) { /* The inserted text constitutes the whole buffer, so simply copy over the interval structure. */ if (BUF_Z (buffer) == TOTAL_LENGTH (source)) { buffer->intervals = reproduce_tree (source, tree->parent); /* Explicitly free the old tree here. */ return; } /* Create an interval tree in which to place a copy of the intervals of the inserted string. */ { Lisp_Object buf; XSET (buf, Lisp_Buffer, buffer); create_root_interval (buffer); } } else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source)) /* If the buffer contains only the new string, but there was already some interval tree there, then it may be some zero length intervals. Eventually, do something clever about inserting properly. For now, just waste the old intervals. */ { buffer->intervals = reproduce_tree (source, tree->parent); /* Explicitly free the old tree here. */ return; } this = under = find_interval (tree, position); if (NULL_INTERVAL_P (under)) /* Paranoia */ abort (); over = find_interval (source, 1); /* Insertion between intervals */ if (position == under->position) { /* First interval -- none precede it. */ if (position == 1) { if (! FRONT_STICKY (under)) /* The inserted string keeps its own properties. */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (over, this); over = next_interval (over); } else /* This string "sticks" to the first interval, `under', which means it gets those properties. */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (under, this); if (MERGE_INSERTIONS (under)) merge_properties (over, this); over = next_interval (over); } } else { INTERVAL prev = previous_interval (under); if (NULL_INTERVAL_P (prev)) abort (); if (END_STICKY (prev)) { if (FRONT_STICKY (under)) /* The intervals go inbetween as the two sticky properties cancel each other. Should we change this policy? */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (over, this); over = next_interval (over); } else /* The intervals stick to prev */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (prev, this); if (MERGE_INSERTIONS (prev)) merge_properties (over, this); over = next_interval (over); } } else { if (FRONT_STICKY (under)) /* The inserted text "sticks" to the interval `under', which means it gets those properties. */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (under, this); if (MERGE_INSERTIONS (under)) merge_properties (over, this); over = next_interval (over); } else /* The intervals go inbetween */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (over, this); over = next_interval (over); } } } buffer->intervals = balance_intervals (buffer->intervals); return; } /* Here for insertion in the middle of an interval. */ if (TOTAL_LENGTH (source) < LENGTH (this)) { INTERVAL end_unchanged = split_interval_right (this, TOTAL_LENGTH (source) + 1); copy_properties (under, end_unchanged); } position = position - tree->position + 1; while (! NULL_INTERVAL_P (over)) { this = split_interval_right (under, position); copy_properties (over, this); if (MERGE_INSERTIONS (under)) merge_properties (under, this); position = LENGTH (over) + 1; over = next_interval (over); } buffer->intervals = balance_intervals (buffer->intervals); return; } /* Set point in BUFFER to POSITION. If the target position is in an invisible interval which is not displayed with a special glyph, skip intervals until we find one. Point may be at the first position of an invisible interval, if it is displayed with a special glyph. */ void set_point (position, buffer) register int position; register struct buffer *buffer; { register INTERVAL to, from, target; register int iposition = position; int buffer_point; register Lisp_Object obj; int backwards = (position < BUF_PT (buffer)) ? 1 : 0; int old_position = buffer->text.pt; if (position == buffer->text.pt) return; if (NULL_INTERVAL_P (buffer->intervals)) { buffer->text.pt = position; return; } /* Perhaps we should just change `position' to the limit. */ if (position > BUF_Z (buffer) || position < BUF_BEG (buffer)) abort (); /* Position Z is really one past the last char in the buffer. */ if (position == BUF_Z (buffer)) iposition = position - 1; to = find_interval (buffer->intervals, iposition); buffer_point =(BUF_PT (buffer) == BUF_Z (buffer) ? BUF_Z (buffer) - 1 : BUF_PT (buffer)); /* We could cache this and save time. */ from = find_interval (buffer->intervals, buffer_point); if (NULL_INTERVAL_P (to) || NULL_INTERVAL_P (from)) abort (); /* Paranoia */ /* Moving within an interval */ if (to == from && INTERVAL_VISIBLE_P (to)) { buffer->text.pt = position; return; } /* Here for the case of moving into another interval. */ target = to; while (! INTERVAL_VISIBLE_P (to) && ! DISPLAY_INVISIBLE_GLYPH (to) && ! NULL_INTERVAL_P (to)) to = (backwards ? previous_interval (to) : next_interval (to)); if (NULL_INTERVAL_P (to)) return; /* Here we know we are actually moving to another interval. */ if (INTERVAL_VISIBLE_P (to)) { /* If we skipped some intervals, go to the closest point in the interval we've stopped at. */ if (to != target) buffer->text.pt = (backwards ? to->position + LENGTH (to) - 1 : to->position); else buffer->text.pt = position; } else buffer->text.pt = to->position; /* We run point-left and point-entered hooks here, iff the two intervals are not equivalent. These hooks take (old_point, new_point) as arguments. */ if (! intervals_equal (from, to)) { Lisp_Object val; val = Fget (Qpoint_left, from->plist); if (! NILP (val)) call2 (val, old_position, position); val = Fget (Qpoint_entered, to->plist); if (! NILP (val)) call2 (val, old_position, position); } } /* Set point temporarily, without checking any text properties. */ INLINE void temp_set_point (position, buffer) int position; struct buffer *buffer; { buffer->text.pt = position; } /* Check for read-only intervals and signal an error if we find one. Then check for any modification hooks in the range START up to (but not including) TO. Create a list of all these hooks in lexicographic order, eliminating consecutive extra copies of the same hook. Then call those hooks in order, with START and END - 1 as arguments. */ void verify_interval_modification (buf, start, end) struct buffer *buf; int start, end; { register INTERVAL intervals = buf->intervals; register INTERVAL i; Lisp_Object hooks = Qnil; register prev_mod_hook = Qnil; register Lisp_Object mod_hook; struct gcpro gcpro1; if (NULL_INTERVAL_P (intervals)) return; if (start > end) { int temp = start; start = end; end = temp; } if (start == BUF_Z (buf)) { /* This should not be getting called on empty buffers. */ if (BUF_Z (buf) == 1) abort (); i = find_interval (intervals, start - 1); if (! END_STICKY_P (i)) return; } else i = find_interval (intervals, start); do { if (! INTERVAL_WRITABLE_P (i)) error ("Attempt to modify read-only text"); mod_hook = Fget (Qmodification, i->plist); if (! NILP (mod_hook) && ! EQ (mod_hook, prev_mod_hook)) { hooks = Fcons (mod_hook, hooks); prev_mod_hook = mod_hook; } i = next_interval (i); } while (! NULL_INTERVAL_P (i) && i->position <= end); GCPRO1 (hooks); hooks = Fnreverse (hooks); while (! EQ (hooks, Qnil)) { call2 (Fcar (hooks), start, end - 1); hooks = Fcdr (hooks); } UNGCPRO; } /* Balance an interval node if the amount of text in its left and right subtrees differs by more than the percentage specified by `interval-balance-threshold'. */ static INTERVAL balance_an_interval (i) INTERVAL i; { register int total_children_size = (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i)); register int threshold = (XFASTINT (interval_balance_threshold) * (total_children_size / 100)); if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i) && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold) return rotate_right (i); if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i) && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold) return rotate_right (i); #if 0 if (LEFT_TOTAL_LENGTH (i) > (RIGHT_TOTAL_LENGTH (i) + XINT (interval_balance_threshold))) return rotate_right (i); if (RIGHT_TOTAL_LENGTH (i) > (LEFT_TOTAL_LENGTH (i) + XINT (interval_balance_threshold))) return rotate_left (i); #endif return i; } /* Balance the interval tree TREE. Balancing is by weight (the amount of text). */ INTERVAL balance_intervals (tree) register INTERVAL tree; { register INTERVAL new_tree; if (NULL_INTERVAL_P (tree)) return NULL_INTERVAL; new_tree = tree; do { tree = new_tree; new_tree = balance_an_interval (new_tree); } while (new_tree != tree); return new_tree; } /* Produce an interval tree reflecting the intervals in TREE from START to START + LENGTH. */ static INTERVAL copy_intervals (tree, start, length) INTERVAL tree; int start, length; { register INTERVAL i, new, t; register int got; if (NULL_INTERVAL_P (tree) || length <= 0) return NULL_INTERVAL; i = find_interval (tree, start); if (NULL_INTERVAL_P (i) || LENGTH (i) == 0) abort (); /* If there is only one interval and it's the default, return nil. */ if ((start - i->position + 1 + length) < LENGTH (i) && DEFAULT_INTERVAL_P (i)) return NULL_INTERVAL; new = make_interval (); new->position = 1; got = (LENGTH (i) - (start - i->position)); new->total_length = length; copy_properties (i, new); t = new; while (got < length) { i = next_interval (i); t = split_interval_right (t, got + 1); copy_properties (i, t); got += LENGTH (i); } if (got > length) t->total_length -= (got - length); return balance_intervals (new); } /* Give STRING the properties of BUFFER from POSITION to LENGTH. */ INLINE void copy_intervals_to_string (string, buffer, position, length) Lisp_Object string, buffer; int position, length; { INTERVAL interval_copy = copy_intervals (XBUFFER (buffer)->intervals, position, length); if (NULL_INTERVAL_P (interval_copy)) return; interval_copy->parent = (INTERVAL) string; XSTRING (string)->intervals = interval_copy; } #endif /* USE_TEXT_PROPERTIES */