Mercurial > emacs
view lisp/calc/calc-cplx.el @ 40819:668787248f9b
* dired.el (dired-move-to-filename-regexp):
Do not distinguish between ASCII letters and non-ASCII characters.
Don't allow comma except in the form "month day, year".
Don't allow space between month name and comma.
Clean up the code that checks for trailing period, comma, and space.
Remove now-obsolete comments, and add more commentary about
Japanese dates.
Always gobble up trailing spaces, instead of doing it only sometimes.
author | Paul Eggert <eggert@twinsun.com> |
---|---|
date | Wed, 07 Nov 2001 21:59:39 +0000 |
parents | 2fb9d407ae73 |
children | 73f364fd8aaa |
line wrap: on
line source
;; Calculator for GNU Emacs, part II [calc-cplx.el] ;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc. ;; Written by Dave Gillespie, daveg@synaptics.com. ;; This file is part of GNU Emacs. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY. No author or distributor ;; accepts responsibility to anyone for the consequences of using it ;; or for whether it serves any particular purpose or works at all, ;; unless he says so in writing. Refer to the GNU Emacs General Public ;; License for full details. ;; Everyone is granted permission to copy, modify and redistribute ;; GNU Emacs, but only under the conditions described in the ;; GNU Emacs General Public License. A copy of this license is ;; supposed to have been given to you along with GNU Emacs so you ;; can know your rights and responsibilities. It should be in a ;; file named COPYING. Among other things, the copyright notice ;; and this notice must be preserved on all copies. ;; This file is autoloaded from calc-ext.el. (require 'calc-ext) (require 'calc-macs) (defun calc-Need-calc-cplx () nil) (defun calc-argument (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "arg" 'calcFunc-arg arg)) ) (defun calc-re (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "re" 'calcFunc-re arg)) ) (defun calc-im (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "im" 'calcFunc-im arg)) ) (defun calc-polar () (interactive) (calc-slow-wrapper (let ((arg (calc-top-n 1))) (if (or (calc-is-inverse) (eq (car-safe arg) 'polar)) (calc-enter-result 1 "p-r" (list 'calcFunc-rect arg)) (calc-enter-result 1 "r-p" (list 'calcFunc-polar arg))))) ) (defun calc-complex-notation () (interactive) (calc-wrapper (calc-change-mode 'calc-complex-format nil t) (message "Displaying complex numbers in (X,Y) format.")) ) (defun calc-i-notation () (interactive) (calc-wrapper (calc-change-mode 'calc-complex-format 'i t) (message "Displaying complex numbers in X+Yi format.")) ) (defun calc-j-notation () (interactive) (calc-wrapper (calc-change-mode 'calc-complex-format 'j t) (message "Displaying complex numbers in X+Yj format.")) ) (defun calc-polar-mode (n) (interactive "P") (calc-wrapper (if (if n (> (prefix-numeric-value n) 0) (eq calc-complex-mode 'cplx)) (progn (calc-change-mode 'calc-complex-mode 'polar) (message "Preferred complex form is polar.")) (calc-change-mode 'calc-complex-mode 'cplx) (message "Preferred complex form is rectangular."))) ) ;;;; Complex numbers. (defun math-normalize-polar (a) (let ((r (math-normalize (nth 1 a))) (th (math-normalize (nth 2 a)))) (cond ((math-zerop r) '(polar 0 0)) ((or (math-zerop th)) r) ((and (not (eq calc-angle-mode 'rad)) (or (equal th '(float 18 1)) (equal th 180))) (math-neg r)) ((math-negp r) (math-neg (list 'polar (math-neg r) th))) (t (list 'polar r th)))) ) ;;; Coerce A to be complex (rectangular form). [c N] (defun math-complex (a) (cond ((eq (car-safe a) 'cplx) a) ((eq (car-safe a) 'polar) (if (math-zerop (nth 1 a)) (nth 1 a) (let ((sc (calcFunc-sincos (nth 2 a)))) (list 'cplx (math-mul (nth 1 a) (nth 1 sc)) (math-mul (nth 1 a) (nth 2 sc)))))) (t (list 'cplx a 0))) ) ;;; Coerce A to be complex (polar form). [c N] (defun math-polar (a) (cond ((eq (car-safe a) 'polar) a) ((math-zerop a) '(polar 0 0)) (t (list 'polar (math-abs a) (calcFunc-arg a)))) ) ;;; Multiply A by the imaginary constant i. [N N] [Public] (defun math-imaginary (a) (if (and (or (Math-objvecp a) (math-infinitep a)) (not calc-symbolic-mode)) (math-mul a (if (or (eq (car-safe a) 'polar) (and (not (eq (car-safe a) 'cplx)) (eq calc-complex-mode 'polar))) (list 'polar 1 (math-quarter-circle nil)) '(cplx 0 1))) (math-mul a '(var i var-i))) ) (defun math-want-polar (a b) (cond ((eq (car-safe a) 'polar) (if (eq (car-safe b) 'cplx) (eq calc-complex-mode 'polar) t)) ((eq (car-safe a) 'cplx) (if (eq (car-safe b) 'polar) (eq calc-complex-mode 'polar) nil)) ((eq (car-safe b) 'polar) t) ((eq (car-safe b) 'cplx) nil) (t (eq calc-complex-mode 'polar))) ) ;;; Force A to be in the (-pi,pi] or (-180,180] range. (defun math-fix-circular (a &optional dir) ; [R R] (cond ((eq (car-safe a) 'hms) (cond ((and (Math-lessp 180 (nth 1 a)) (not (eq dir 1))) (math-fix-circular (math-add a '(float -36 1)) -1)) ((or (Math-lessp -180 (nth 1 a)) (eq dir -1)) a) (t (math-fix-circular (math-add a '(float 36 1)) 1)))) ((eq calc-angle-mode 'rad) (cond ((and (Math-lessp (math-pi) a) (not (eq dir 1))) (math-fix-circular (math-sub a (math-two-pi)) -1)) ((or (Math-lessp (math-neg (math-pi)) a) (eq dir -1)) a) (t (math-fix-circular (math-add a (math-two-pi)) 1)))) (t (cond ((and (Math-lessp '(float 18 1) a) (not (eq dir 1))) (math-fix-circular (math-add a '(float -36 1)) -1)) ((or (Math-lessp '(float -18 1) a) (eq dir -1)) a) (t (math-fix-circular (math-add a '(float 36 1)) 1))))) ) ;;;; Complex numbers. (defun calcFunc-polar (a) ; [C N] [Public] (cond ((Math-vectorp a) (math-map-vec 'calcFunc-polar a)) ((Math-realp a) a) ((Math-numberp a) (math-normalize (math-polar a))) (t (list 'calcFunc-polar a))) ) (defun calcFunc-rect (a) ; [N N] [Public] (cond ((Math-vectorp a) (math-map-vec 'calcFunc-rect a)) ((Math-realp a) a) ((Math-numberp a) (math-normalize (math-complex a))) (t (list 'calcFunc-rect a))) ) ;;; Compute the complex conjugate of A. [O O] [Public] (defun calcFunc-conj (a) (let (aa bb) (cond ((Math-realp a) a) ((eq (car a) 'cplx) (list 'cplx (nth 1 a) (math-neg (nth 2 a)))) ((eq (car a) 'polar) (list 'polar (nth 1 a) (math-neg (nth 2 a)))) ((eq (car a) 'vec) (math-map-vec 'calcFunc-conj a)) ((eq (car a) 'calcFunc-conj) (nth 1 a)) ((math-known-realp a) a) ((and (equal a '(var i var-i)) (math-imaginary-i)) (math-neg a)) ((and (memq (car a) '(+ - * /)) (progn (setq aa (calcFunc-conj (nth 1 a)) bb (calcFunc-conj (nth 2 a))) (or (not (eq (car-safe aa) 'calcFunc-conj)) (not (eq (car-safe bb) 'calcFunc-conj))))) (if (eq (car a) '+) (math-add aa bb) (if (eq (car a) '-) (math-sub aa bb) (if (eq (car a) '*) (math-mul aa bb) (math-div aa bb))))) ((eq (car a) 'neg) (math-neg (calcFunc-conj (nth 1 a)))) ((let ((inf (math-infinitep a))) (and inf (math-mul (calcFunc-conj (math-infinite-dir a inf)) inf)))) (t (calc-record-why 'numberp a) (list 'calcFunc-conj a)))) ) ;;; Compute the complex argument of A. [F N] [Public] (defun calcFunc-arg (a) (cond ((Math-anglep a) (if (math-negp a) (math-half-circle nil) 0)) ((eq (car-safe a) 'cplx) (calcFunc-arctan2 (nth 2 a) (nth 1 a))) ((eq (car-safe a) 'polar) (nth 2 a)) ((eq (car a) 'vec) (math-map-vec 'calcFunc-arg a)) ((and (equal a '(var i var-i)) (math-imaginary-i)) (math-quarter-circle t)) ((and (equal a '(neg (var i var-i))) (math-imaginary-i)) (math-neg (math-quarter-circle t))) ((let ((signs (math-possible-signs a))) (or (and (memq signs '(2 4 6)) 0) (and (eq signs 1) (math-half-circle nil))))) ((math-infinitep a) (if (or (equal a '(var uinf var-uinf)) (equal a '(var nan var-nan))) '(var nan var-nan) (calcFunc-arg (math-infinite-dir a)))) (t (calc-record-why 'numvecp a) (list 'calcFunc-arg a))) ) (defun math-imaginary-i () (let ((val (calc-var-value 'var-i))) (or (eq (car-safe val) 'special-const) (equal val '(cplx 0 1)) (and (eq (car-safe val) 'polar) (eq (nth 1 val) 0) (Math-equal (nth 1 val) (math-quarter-circle nil))))) ) ;;; Extract the real or complex part of a complex number. [R N] [Public] ;;; Also extracts the real part of a modulo form. (defun calcFunc-re (a) (let (aa bb) (cond ((Math-realp a) a) ((memq (car a) '(mod cplx)) (nth 1 a)) ((eq (car a) 'polar) (math-mul (nth 1 a) (calcFunc-cos (nth 2 a)))) ((eq (car a) 'vec) (math-map-vec 'calcFunc-re a)) ((math-known-realp a) a) ((eq (car a) 'calcFunc-conj) (calcFunc-re (nth 1 a))) ((and (equal a '(var i var-i)) (math-imaginary-i)) 0) ((and (memq (car a) '(+ - *)) (progn (setq aa (calcFunc-re (nth 1 a)) bb (calcFunc-re (nth 2 a))) (or (not (eq (car-safe aa) 'calcFunc-re)) (not (eq (car-safe bb) 'calcFunc-re))))) (if (eq (car a) '+) (math-add aa bb) (if (eq (car a) '-) (math-sub aa bb) (math-sub (math-mul aa bb) (math-mul (calcFunc-im (nth 1 a)) (calcFunc-im (nth 2 a))))))) ((and (eq (car a) '/) (math-known-realp (nth 2 a))) (math-div (calcFunc-re (nth 1 a)) (nth 2 a))) ((eq (car a) 'neg) (math-neg (calcFunc-re (nth 1 a)))) (t (calc-record-why 'numberp a) (list 'calcFunc-re a)))) ) (defun calcFunc-im (a) (let (aa bb) (cond ((Math-realp a) (if (math-floatp a) '(float 0 0) 0)) ((eq (car a) 'cplx) (nth 2 a)) ((eq (car a) 'polar) (math-mul (nth 1 a) (calcFunc-sin (nth 2 a)))) ((eq (car a) 'vec) (math-map-vec 'calcFunc-im a)) ((math-known-realp a) 0) ((eq (car a) 'calcFunc-conj) (math-neg (calcFunc-im (nth 1 a)))) ((and (equal a '(var i var-i)) (math-imaginary-i)) 1) ((and (memq (car a) '(+ - *)) (progn (setq aa (calcFunc-im (nth 1 a)) bb (calcFunc-im (nth 2 a))) (or (not (eq (car-safe aa) 'calcFunc-im)) (not (eq (car-safe bb) 'calcFunc-im))))) (if (eq (car a) '+) (math-add aa bb) (if (eq (car a) '-) (math-sub aa bb) (math-add (math-mul (calcFunc-re (nth 1 a)) bb) (math-mul aa (calcFunc-re (nth 2 a))))))) ((and (eq (car a) '/) (math-known-realp (nth 2 a))) (math-div (calcFunc-im (nth 1 a)) (nth 2 a))) ((eq (car a) 'neg) (math-neg (calcFunc-im (nth 1 a)))) (t (calc-record-why 'numberp a) (list 'calcFunc-im a)))) )