;;; float.el --- floating point arithmetic package.;; Copyright (C) 1986 Free Software Foundation, Inc.;; Author: Bill Rosenblatt;; Maintainer: FSF;; Keywords: extensions;; This file is part of GNU Emacs.;; GNU Emacs is free software; you can redistribute it and/or modify;; it under the terms of the GNU General Public License as published by;; the Free Software Foundation; either version 2, or (at your option);; any later version.;; GNU Emacs is distributed in the hope that it will be useful,;; but WITHOUT ANY WARRANTY; without even the implied warranty of;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the;; GNU General Public License for more details.;; You should have received a copy of the GNU General Public License;; along with GNU Emacs; see the file COPYING. If not, write to the;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,;; Boston, MA 02111-1307, USA.;;; Commentary:;; Floating point numbers are represented by dot-pairs (mant . exp);; where mant is the 24-bit signed integral mantissa and exp is the;; base 2 exponent.;;;; Emacs LISP supports a 24-bit signed integer data type, which has a;; range of -(2**23) to +(2**23)-1, or -8388608 to 8388607 decimal.;; This gives six significant decimal digit accuracy. Exponents can;; be anything in the range -(2**23) to +(2**23)-1.;;;; User interface:;; function f converts from integer to floating point;; function string-to-float converts from string to floating point;; function fint converts a floating point to integer (with truncation);; function float-to-string converts from floating point to string;; ;; Caveats:;; - Exponents outside of the range of +/-100 or so will cause certain ;; functions (especially conversion routines) to take forever.;; - Very little checking is done for fixed point overflow/underflow.;; - No checking is done for over/underflow of the exponent;; (hardly necessary when exponent can be 2**23).;; ;;;; Bill Rosenblatt;; June 20, 1986;;;;; Code:;; fundamental implementation constants(defconst exp-base 2 "Base of exponent in this floating point representation.")(defconst mantissa-bits 24 "Number of significant bits in this floating point representation.")(defconst decimal-digits 6 "Number of decimal digits expected to be accurate.")(defconst expt-digits 2 "Maximum permitted digits in a scientific notation exponent.");; other constants(defconst maxbit (1- mantissa-bits) "Number of highest bit")(defconst mantissa-maxval (1- (ash 1 maxbit)) "Maximum permissible value of mantissa")(defconst mantissa-minval (ash 1 maxbit) "Minimum permissible value of mantissa")(defconst floating-point-regexp "^[ \t]*\\(-?\\)\\([0-9]*\\)\\\(\\.\\([0-9]*\\)\\|\\)\\\(\\(\\([Ee]\\)\\(-?\\)\\([0-9][0-9]*\\)\\)\\|\\)[ \t]*$" "Regular expression to match floating point numbers. Extract matches:1 - minus sign2 - integer part4 - fractional part8 - minus sign for power of ten9 - power of ten")(defconst high-bit-mask (ash 1 maxbit) "Masks all bits except the high-order (sign) bit.")(defconst second-bit-mask (ash 1 (1- maxbit)) "Masks all bits except the highest-order magnitude bit");; various useful floating point constants(setq _f0 '(0 . 1))(setq _f1/2 '(4194304 . -23))(setq _f1 '(4194304 . -22))(setq _f10 '(5242880 . -19));; support for decimal conversion routines(setq powers-of-10 (make-vector (1+ decimal-digits) _f1))(aset powers-of-10 1 _f10)(aset powers-of-10 2 '(6553600 . -16))(aset powers-of-10 3 '(8192000 . -13))(aset powers-of-10 4 '(5120000 . -9))(aset powers-of-10 5 '(6400000 . -6))(aset powers-of-10 6 '(8000000 . -3))(setq all-decimal-digs-minval (aref powers-of-10 (1- decimal-digits)) highest-power-of-10 (aref powers-of-10 decimal-digits))(defun fashl (fnum) ; floating-point arithmetic shift left (cons (ash (car fnum) 1) (1- (cdr fnum))))(defun fashr (fnum) ; floating point arithmetic shift right (cons (ash (car fnum) -1) (1+ (cdr fnum))))(defun normalize (fnum) (if (> (car fnum) 0) ; make sure next-to-highest bit is set (while (zerop (logand (car fnum) second-bit-mask)) (setq fnum (fashl fnum))) (if (< (car fnum) 0) ; make sure highest bit is set (while (zerop (logand (car fnum) high-bit-mask)) (setq fnum (fashl fnum))) (setq fnum _f0))) ; "standard 0" fnum)(defun abs (n) ; integer absolute value (if (>= n 0) n (- n)))(defun fabs (fnum) ; re-normalize after taking abs value (normalize (cons (abs (car fnum)) (cdr fnum))))(defun xor (a b) ; logical exclusive or (and (or a b) (not (and a b))))(defun same-sign (a b) ; two f-p numbers have same sign? (not (xor (natnump (car a)) (natnump (car b)))))(defun extract-match (str i) ; used after string-match (condition-case () (substring str (match-beginning i) (match-end i)) (error "")));; support for the multiplication function(setq halfword-bits (/ mantissa-bits 2) ; bits in a halfword masklo (1- (ash 1 halfword-bits)) ; isolate the lower halfword maskhi (lognot masklo) ; isolate the upper halfword round-limit (ash 1 (/ halfword-bits 2)))(defun hihalf (n) ; return high halfword, shifted down (ash (logand n maskhi) (- halfword-bits)))(defun lohalf (n) ; return low halfword (logand n masklo));; Visible functions;; Arithmetic functions(defun f+ (a1 a2) "Returns the sum of two floating point numbers." (let ((f1 (fmax a1 a2)) (f2 (fmin a1 a2))) (if (same-sign a1 a2) (setq f1 (fashr f1) ; shift right to avoid overflow f2 (fashr f2))) (normalize (cons (+ (car f1) (ash (car f2) (- (cdr f2) (cdr f1)))) (cdr f1)))))(defun f- (a1 &optional a2) ; unary or binary minus "Returns the difference of two floating point numbers." (if a2 (f+ a1 (f- a2)) (normalize (cons (- (car a1)) (cdr a1)))))(defun f* (a1 a2) ; multiply in halfword chunks "Returns the product of two floating point numbers." (let* ((i1 (car (fabs a1))) (i2 (car (fabs a2))) (sign (not (same-sign a1 a2))) (prodlo (+ (hihalf (* (lohalf i1) (lohalf i2))) (lohalf (* (hihalf i1) (lohalf i2))) (lohalf (* (lohalf i1) (hihalf i2))))) (prodhi (+ (* (hihalf i1) (hihalf i2)) (hihalf (* (hihalf i1) (lohalf i2))) (hihalf (* (lohalf i1) (hihalf i2))) (hihalf prodlo)))) (if (> (lohalf prodlo) round-limit) (setq prodhi (1+ prodhi))) ; round off truncated bits (normalize (cons (if sign (- prodhi) prodhi) (+ (cdr (fabs a1)) (cdr (fabs a2)) mantissa-bits)))))(defun f/ (a1 a2) ; SLOW subtract-and-shift algorithm "Returns the quotient of two floating point numbers." (if (zerop (car a2)) ; if divide by 0 (signal 'arith-error (list "attempt to divide by zero" a1 a2)) (let ((bits (1- maxbit)) (quotient 0) (dividend (car (fabs a1))) (divisor (car (fabs a2))) (sign (not (same-sign a1 a2)))) (while (natnump bits) (if (< (- dividend divisor) 0) (setq quotient (ash quotient 1)) (setq quotient (1+ (ash quotient 1)) dividend (- dividend divisor))) (setq dividend (ash dividend 1) bits (1- bits))) (normalize (cons (if sign (- quotient) quotient) (- (cdr (fabs a1)) (cdr (fabs a2)) (1- maxbit)))))))(defun f% (a1 a2) "Returns the remainder of first floating point number divided by second." (f- a1 (f* (ftrunc (f/ a1 a2)) a2)));; Comparison functions(defun f= (a1 a2) "Returns t if two floating point numbers are equal, nil otherwise." (equal a1 a2))(defun f> (a1 a2) "Returns t if first floating point number is greater than second,nil otherwise." (cond ((and (natnump (car a1)) (< (car a2) 0)) t) ; a1 nonnegative, a2 negative ((and (> (car a1) 0) (<= (car a2) 0)) t) ; a1 positive, a2 nonpositive ((and (<= (car a1) 0) (natnump (car a2))) nil) ; a1 nonpos, a2 nonneg ((/= (cdr a1) (cdr a2)) ; same signs. exponents differ (> (cdr a1) (cdr a2))) ; compare the mantissas. (t (> (car a1) (car a2))))) ; same exponents.(defun f>= (a1 a2) "Returns t if first floating point number is greater than or equal to second, nil otherwise." (or (f> a1 a2) (f= a1 a2)))(defun f< (a1 a2) "Returns t if first floating point number is less than second,nil otherwise." (not (f>= a1 a2)))(defun f<= (a1 a2) "Returns t if first floating point number is less than or equal tosecond, nil otherwise." (not (f> a1 a2)))(defun f/= (a1 a2) "Returns t if first floating point number is not equal to second,nil otherwise." (not (f= a1 a2)))(defun fmin (a1 a2) "Returns the minimum of two floating point numbers." (if (f< a1 a2) a1 a2))(defun fmax (a1 a2) "Returns the maximum of two floating point numbers." (if (f> a1 a2) a1 a2))(defun fzerop (fnum) "Returns t if the floating point number is zero, nil otherwise." (= (car fnum) 0))(defun floatp (fnum) "Returns t if the arg is a floating point number, nil otherwise." (and (consp fnum) (integerp (car fnum)) (integerp (cdr fnum))));; Conversion routines(defun f (int) "Convert the integer argument to floating point, like a C cast operator." (normalize (cons int '0)))(defun int-to-hex-string (int) "Convert the integer argument to a C-style hexadecimal string." (let ((shiftval -20) (str "0x") (hex-chars "0123456789ABCDEF")) (while (<= shiftval 0) (setq str (concat str (char-to-string (aref hex-chars (logand (lsh int shiftval) 15)))) shiftval (+ shiftval 4))) str))(defun ftrunc (fnum) ; truncate fractional part "Truncate the fractional part of a floating point number." (cond ((natnump (cdr fnum)) ; it's all integer, return number as is fnum) ((<= (cdr fnum) (- maxbit)) ; it's all fractional, return 0 '(0 . 1)) (t ; otherwise mask out fractional bits (let ((mant (car fnum)) (exp (cdr fnum))) (normalize (cons (if (natnump mant) ; if negative, use absolute value (ash (ash mant exp) (- exp)) (- (ash (ash (- mant) exp) (- exp)))) exp))))))(defun fint (fnum) ; truncate and convert to integer "Convert the floating point number to integer, with truncation, like a C cast operator." (let* ((tf (ftrunc fnum)) (tint (car tf)) (texp (cdr tf))) (cond ((>= texp mantissa-bits) ; too high, return "maxint" mantissa-maxval) ((<= texp (- mantissa-bits)) ; too low, return "minint" mantissa-minval) (t ; in range (ash tint texp))))) ; shift so that exponent is 0(defun float-to-string (fnum &optional sci) "Convert the floating point number to a decimal string.Optional second argument non-nil means use scientific notation." (let* ((value (fabs fnum)) (sign (< (car fnum) 0)) (power 0) (result 0) (str "") (temp 0) (pow10 _f1)) (if (f= fnum _f0) "0" (if (f>= value _f1) ; find largest power of 10 <= value (progn ; value >= 1, power is positive (while (f<= (setq temp (f* pow10 highest-power-of-10)) value) (setq pow10 temp power (+ power decimal-digits))) (while (f<= (setq temp (f* pow10 _f10)) value) (setq pow10 temp power (1+ power)))) (progn ; value < 1, power is negative (while (f> (setq temp (f/ pow10 highest-power-of-10)) value) (setq pow10 temp power (- power decimal-digits))) (while (f> pow10 value) (setq pow10 (f/ pow10 _f10) power (1- power))))) ; get value in range 100000 to 999999 (setq value (f* (f/ value pow10) all-decimal-digs-minval) result (ftrunc value)) (let (int) (if (f> (f- value result) _f1/2) ; round up if remainder > 0.5 (setq int (1+ (fint result))) (setq int (fint result))) (setq str (int-to-string int)) (if (>= int 1000000) (setq power (1+ power)))) (if sci ; scientific notation (setq str (concat (substring str 0 1) "." (substring str 1) "E" (int-to-string power))) ; regular decimal string (cond ((>= power (1- decimal-digits)) ; large power, append zeroes (let ((zeroes (- power decimal-digits))) (while (natnump zeroes) (setq str (concat str "0") zeroes (1- zeroes))))) ; negative power, prepend decimal ((< power 0) ; point and zeroes (let ((zeroes (- (- power) 2))) (while (natnump zeroes) (setq str (concat "0" str) zeroes (1- zeroes))) (setq str (concat "0." str)))) (t ; in range, insert decimal point (setq str (concat (substring str 0 (1+ power)) "." (substring str (1+ power))))))) (if sign ; if negative, prepend minus sign (concat "-" str) str))));; string to float conversion.;; accepts scientific notation, but ignores anything after the first two;; digits of the exponent.(defun string-to-float (str) "Convert the string to a floating point number.Accepts a decimal string in scientific notation, with exponent precededby either E or e. Only the six most significant digits of the integerand fractional parts are used; only the first two digits of the exponentare used. Negative signs preceding both the decimal number and the exponentare recognized." (if (string-match floating-point-regexp str 0) (let (power) (f* ; calculate the mantissa (let* ((int-subst (extract-match str 2)) (fract-subst (extract-match str 4)) (digit-string (concat int-subst fract-subst)) (mant-sign (equal (extract-match str 1) "-")) (leading-0s 0) (round-up nil)) ; get rid of leading 0's (setq power (- (length int-subst) decimal-digits)) (while (and (< leading-0s (length digit-string)) (= (aref digit-string leading-0s) ?0)) (setq leading-0s (1+ leading-0s))) (setq power (- power leading-0s) digit-string (substring digit-string leading-0s)) ; if more than 6 digits, round off (if (> (length digit-string) decimal-digits) (setq round-up (>= (aref digit-string decimal-digits) ?5) digit-string (substring digit-string 0 decimal-digits)) (setq power (+ power (- decimal-digits (length digit-string))))) ; round up and add minus sign, if necessary (f (* (+ (string-to-int digit-string) (if round-up 1 0)) (if mant-sign -1 1)))) ; calculate the exponent (power of ten) (let* ((expt-subst (extract-match str 9)) (expt-sign (equal (extract-match str 8) "-")) (expt 0) (chunks 0) (tens 0) (exponent _f1) (func 'f*)) (setq expt (+ (* (string-to-int (substring expt-subst 0 (min expt-digits (length expt-subst)))) (if expt-sign -1 1)) power)) (if (< expt 0) ; if power of 10 negative (setq expt (- expt) ; take abs val of exponent func 'f/)) ; and set up to divide, not multiply (setq chunks (/ expt decimal-digits) tens (% expt decimal-digits)) ; divide or multiply by "chunks" of 10**6 (while (> chunks 0) (setq exponent (funcall func exponent highest-power-of-10) chunks (1- chunks))) ; divide or multiply by remaining power of ten (funcall func exponent (aref powers-of-10 tens))))) _f0)) ; if invalid, return 0(provide 'float);;; float.el ends here