Mercurial > emacs
view lisp/calc/calc-cplx.el @ 69667:70b77a111e8a
*** empty log message ***
author | Kim F. Storm <storm@cua.dk> |
---|---|
date | Sat, 25 Mar 2006 00:54:48 +0000 |
parents | 6bf177f8065b |
children | 7a3f13e2dd57 c5406394f567 |
line wrap: on
line source
;;; calc-cplx.el --- Complex number functions for Calc ;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004, ;; 2005, 2006 Free Software Foundation, Inc. ;; Author: David Gillespie <daveg@synaptics.com> ;; Maintainer: Jay Belanger <belanger@truman.edu> ;; This file is part of GNU Emacs. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY. No author or distributor ;; accepts responsibility to anyone for the consequences of using it ;; or for whether it serves any particular purpose or works at all, ;; unless he says so in writing. Refer to the GNU Emacs General Public ;; License for full details. ;; Everyone is granted permission to copy, modify and redistribute ;; GNU Emacs, but only under the conditions described in the ;; GNU Emacs General Public License. A copy of this license is ;; supposed to have been given to you along with GNU Emacs so you ;; can know your rights and responsibilities. It should be in a ;; file named COPYING. Among other things, the copyright notice ;; and this notice must be preserved on all copies. ;;; Commentary: ;;; Code: ;; This file is autoloaded from calc-ext.el. (require 'calc-ext) (require 'calc-macs) (defun calc-argument (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "arg" 'calcFunc-arg arg))) (defun calc-re (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "re" 'calcFunc-re arg))) (defun calc-im (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "im" 'calcFunc-im arg))) (defun calc-polar () (interactive) (calc-slow-wrapper (let ((arg (calc-top-n 1))) (if (or (calc-is-inverse) (eq (car-safe arg) 'polar)) (calc-enter-result 1 "p-r" (list 'calcFunc-rect arg)) (calc-enter-result 1 "r-p" (list 'calcFunc-polar arg)))))) (defun calc-complex-notation () (interactive) (calc-wrapper (calc-change-mode 'calc-complex-format nil t) (message "Displaying complex numbers in (X,Y) format"))) (defun calc-i-notation () (interactive) (calc-wrapper (calc-change-mode 'calc-complex-format 'i t) (message "Displaying complex numbers in X+Yi format"))) (defun calc-j-notation () (interactive) (calc-wrapper (calc-change-mode 'calc-complex-format 'j t) (message "Displaying complex numbers in X+Yj format"))) (defun calc-polar-mode (n) (interactive "P") (calc-wrapper (if (if n (> (prefix-numeric-value n) 0) (eq calc-complex-mode 'cplx)) (progn (calc-change-mode 'calc-complex-mode 'polar) (message "Preferred complex form is polar")) (calc-change-mode 'calc-complex-mode 'cplx) (message "Preferred complex form is rectangular")))) ;;;; Complex numbers. (defun math-normalize-polar (a) (let ((r (math-normalize (nth 1 a))) (th (math-normalize (nth 2 a)))) (cond ((math-zerop r) '(polar 0 0)) ((or (math-zerop th)) r) ((and (not (eq calc-angle-mode 'rad)) (or (equal th '(float 18 1)) (equal th 180))) (math-neg r)) ((math-negp r) (math-neg (list 'polar (math-neg r) th))) (t (list 'polar r th))))) ;;; Coerce A to be complex (rectangular form). [c N] (defun math-complex (a) (cond ((eq (car-safe a) 'cplx) a) ((eq (car-safe a) 'polar) (if (math-zerop (nth 1 a)) (nth 1 a) (let ((sc (calcFunc-sincos (nth 2 a)))) (list 'cplx (math-mul (nth 1 a) (nth 1 sc)) (math-mul (nth 1 a) (nth 2 sc)))))) (t (list 'cplx a 0)))) ;;; Coerce A to be complex (polar form). [c N] (defun math-polar (a) (cond ((eq (car-safe a) 'polar) a) ((math-zerop a) '(polar 0 0)) (t (list 'polar (math-abs a) (calcFunc-arg a))))) ;;; Multiply A by the imaginary constant i. [N N] [Public] (defun math-imaginary (a) (if (and (or (Math-objvecp a) (math-infinitep a)) (not calc-symbolic-mode)) (math-mul a (if (or (eq (car-safe a) 'polar) (and (not (eq (car-safe a) 'cplx)) (eq calc-complex-mode 'polar))) (list 'polar 1 (math-quarter-circle nil)) '(cplx 0 1))) (math-mul a '(var i var-i)))) (defun math-want-polar (a b) (cond ((eq (car-safe a) 'polar) (if (eq (car-safe b) 'cplx) (eq calc-complex-mode 'polar) t)) ((eq (car-safe a) 'cplx) (if (eq (car-safe b) 'polar) (eq calc-complex-mode 'polar) nil)) ((eq (car-safe b) 'polar) t) ((eq (car-safe b) 'cplx) nil) (t (eq calc-complex-mode 'polar)))) ;;; Force A to be in the (-pi,pi] or (-180,180] range. (defun math-fix-circular (a &optional dir) ; [R R] (cond ((eq (car-safe a) 'hms) (cond ((and (Math-lessp 180 (nth 1 a)) (not (eq dir 1))) (math-fix-circular (math-add a '(float -36 1)) -1)) ((or (Math-lessp -180 (nth 1 a)) (eq dir -1)) a) (t (math-fix-circular (math-add a '(float 36 1)) 1)))) ((eq calc-angle-mode 'rad) (cond ((and (Math-lessp (math-pi) a) (not (eq dir 1))) (math-fix-circular (math-sub a (math-two-pi)) -1)) ((or (Math-lessp (math-neg (math-pi)) a) (eq dir -1)) a) (t (math-fix-circular (math-add a (math-two-pi)) 1)))) (t (cond ((and (Math-lessp '(float 18 1) a) (not (eq dir 1))) (math-fix-circular (math-add a '(float -36 1)) -1)) ((or (Math-lessp '(float -18 1) a) (eq dir -1)) a) (t (math-fix-circular (math-add a '(float 36 1)) 1)))))) ;;;; Complex numbers. (defun calcFunc-polar (a) ; [C N] [Public] (cond ((Math-vectorp a) (math-map-vec 'calcFunc-polar a)) ((Math-realp a) a) ((Math-numberp a) (math-normalize (math-polar a))) (t (list 'calcFunc-polar a)))) (defun calcFunc-rect (a) ; [N N] [Public] (cond ((Math-vectorp a) (math-map-vec 'calcFunc-rect a)) ((Math-realp a) a) ((Math-numberp a) (math-normalize (math-complex a))) (t (list 'calcFunc-rect a)))) ;;; Compute the complex conjugate of A. [O O] [Public] (defun calcFunc-conj (a) (let (aa bb) (cond ((Math-realp a) a) ((eq (car a) 'cplx) (list 'cplx (nth 1 a) (math-neg (nth 2 a)))) ((eq (car a) 'polar) (list 'polar (nth 1 a) (math-neg (nth 2 a)))) ((eq (car a) 'vec) (math-map-vec 'calcFunc-conj a)) ((eq (car a) 'calcFunc-conj) (nth 1 a)) ((math-known-realp a) a) ((and (equal a '(var i var-i)) (math-imaginary-i)) (math-neg a)) ((and (memq (car a) '(+ - * /)) (progn (setq aa (calcFunc-conj (nth 1 a)) bb (calcFunc-conj (nth 2 a))) (or (not (eq (car-safe aa) 'calcFunc-conj)) (not (eq (car-safe bb) 'calcFunc-conj))))) (if (eq (car a) '+) (math-add aa bb) (if (eq (car a) '-) (math-sub aa bb) (if (eq (car a) '*) (math-mul aa bb) (math-div aa bb))))) ((eq (car a) 'neg) (math-neg (calcFunc-conj (nth 1 a)))) ((let ((inf (math-infinitep a))) (and inf (math-mul (calcFunc-conj (math-infinite-dir a inf)) inf)))) (t (calc-record-why 'numberp a) (list 'calcFunc-conj a))))) ;;; Compute the complex argument of A. [F N] [Public] (defun calcFunc-arg (a) (cond ((Math-anglep a) (if (math-negp a) (math-half-circle nil) 0)) ((eq (car-safe a) 'cplx) (calcFunc-arctan2 (nth 2 a) (nth 1 a))) ((eq (car-safe a) 'polar) (nth 2 a)) ((eq (car a) 'vec) (math-map-vec 'calcFunc-arg a)) ((and (equal a '(var i var-i)) (math-imaginary-i)) (math-quarter-circle t)) ((and (equal a '(neg (var i var-i))) (math-imaginary-i)) (math-neg (math-quarter-circle t))) ((let ((signs (math-possible-signs a))) (or (and (memq signs '(2 4 6)) 0) (and (eq signs 1) (math-half-circle nil))))) ((math-infinitep a) (if (or (equal a '(var uinf var-uinf)) (equal a '(var nan var-nan))) '(var nan var-nan) (calcFunc-arg (math-infinite-dir a)))) (t (calc-record-why 'numvecp a) (list 'calcFunc-arg a)))) (defun math-imaginary-i () (let ((val (calc-var-value 'var-i))) (or (eq (car-safe val) 'special-const) (equal val '(cplx 0 1)) (and (eq (car-safe val) 'polar) (eq (nth 1 val) 0) (Math-equal (nth 1 val) (math-quarter-circle nil)))))) ;;; Extract the real or complex part of a complex number. [R N] [Public] ;;; Also extracts the real part of a modulo form. (defun calcFunc-re (a) (let (aa bb) (cond ((Math-realp a) a) ((memq (car a) '(mod cplx)) (nth 1 a)) ((eq (car a) 'polar) (math-mul (nth 1 a) (calcFunc-cos (nth 2 a)))) ((eq (car a) 'vec) (math-map-vec 'calcFunc-re a)) ((math-known-realp a) a) ((eq (car a) 'calcFunc-conj) (calcFunc-re (nth 1 a))) ((and (equal a '(var i var-i)) (math-imaginary-i)) 0) ((and (memq (car a) '(+ - *)) (progn (setq aa (calcFunc-re (nth 1 a)) bb (calcFunc-re (nth 2 a))) (or (not (eq (car-safe aa) 'calcFunc-re)) (not (eq (car-safe bb) 'calcFunc-re))))) (if (eq (car a) '+) (math-add aa bb) (if (eq (car a) '-) (math-sub aa bb) (math-sub (math-mul aa bb) (math-mul (calcFunc-im (nth 1 a)) (calcFunc-im (nth 2 a))))))) ((and (eq (car a) '/) (math-known-realp (nth 2 a))) (math-div (calcFunc-re (nth 1 a)) (nth 2 a))) ((eq (car a) 'neg) (math-neg (calcFunc-re (nth 1 a)))) (t (calc-record-why 'numberp a) (list 'calcFunc-re a))))) (defun calcFunc-im (a) (let (aa bb) (cond ((Math-realp a) (if (math-floatp a) '(float 0 0) 0)) ((eq (car a) 'cplx) (nth 2 a)) ((eq (car a) 'polar) (math-mul (nth 1 a) (calcFunc-sin (nth 2 a)))) ((eq (car a) 'vec) (math-map-vec 'calcFunc-im a)) ((math-known-realp a) 0) ((eq (car a) 'calcFunc-conj) (math-neg (calcFunc-im (nth 1 a)))) ((and (equal a '(var i var-i)) (math-imaginary-i)) 1) ((and (memq (car a) '(+ - *)) (progn (setq aa (calcFunc-im (nth 1 a)) bb (calcFunc-im (nth 2 a))) (or (not (eq (car-safe aa) 'calcFunc-im)) (not (eq (car-safe bb) 'calcFunc-im))))) (if (eq (car a) '+) (math-add aa bb) (if (eq (car a) '-) (math-sub aa bb) (math-add (math-mul (calcFunc-re (nth 1 a)) bb) (math-mul aa (calcFunc-re (nth 2 a))))))) ((and (eq (car a) '/) (math-known-realp (nth 2 a))) (math-div (calcFunc-im (nth 1 a)) (nth 2 a))) ((eq (car a) 'neg) (math-neg (calcFunc-im (nth 1 a)))) (t (calc-record-why 'numberp a) (list 'calcFunc-im a))))) (provide 'calc-cplx) ;;; arch-tag: de73a331-941c-4507-ae76-46c76adc70dd ;;; calc-cplx.el ends here