Mercurial > emacs
view src/intervals.c @ 1157:a4a446feb297
Initial revision
author | Joseph Arceneaux <jla@gnu.org> |
---|---|
date | Thu, 17 Sep 1992 02:26:53 +0000 |
parents | |
children | adfaeccad01d |
line wrap: on
line source
/* Code for doing intervals. Copyright (C) 1991, 1992 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* NOTES: Have to ensure that we can't put symbol nil on a plist, or some functions may work incorrectly. An idea: Have the owner of the tree keep count of splits and/or insertion lengths (in intervals), and balance after every N. Need to call *_left_hook when buffer is killed. Scan for zero-length, or 0-length to see notes about handling zero length interval-markers. There are comments around about freeing intervals. It might be faster to explicitly free them (put them on the free list) than to GC them. */ #include "config.h" #include "lisp.h" #include "intervals.h" #include "buffer.h" #include "screen.h" /* Factor for weight-balancing interval trees. */ Lisp_Object interval_balance_threshold; /* Utility functions for intervals. */ /* Create the root interval of some object, a buffer or string. */ INTERVAL create_root_interval (parent) Lisp_Object parent; { INTERVAL new = make_interval (); if (XTYPE (parent) == Lisp_Buffer) { new->total_length = BUF_Z (XBUFFER (parent)) - 1; XBUFFER (parent)->intervals = new; } else if (XTYPE (parent) == Lisp_String) { new->total_length = XSTRING (parent)->size; XSTRING (parent)->intervals = new; } new->parent = (INTERVAL) parent; new->position = 1; return new; } /* Make the interval TARGET have exactly the properties of SOURCE */ void copy_properties (source, target) register INTERVAL source, target; { if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target)) return; COPY_INTERVAL_CACHE (source, target); target->plist = Fcopy_sequence (source->plist); } /* Merge the properties of interval SOURCE into the properties of interval TARGET. */ static void merge_properties (source, target) register INTERVAL source, target; { register Lisp_Object o, sym, val; if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target)) return; MERGE_INTERVAL_CACHE (source, target); o = source->plist; while (! EQ (o, Qnil)) { sym = Fcar (o); val = Fmemq (sym, target->plist); if (NILP (val)) { o = Fcdr (o); val = Fcar (o); target->plist = Fcons (sym, Fcons (val, target->plist)); o = Fcdr (o); } else o = Fcdr (Fcdr (o)); } } /* Return 1 if the two intervals have the same properties, 0 otherwise. */ int intervals_equal (i0, i1) INTERVAL i0, i1; { register Lisp_Object i0_cdr, i0_sym, i1_val; register i1_len; if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1)) return 1; i1_len = XFASTINT (Flength (i1->plist)); if (i1_len & 0x1) /* Paranoia -- plists are always even */ abort (); i1_len /= 2; i0_cdr = i0->plist; while (!NILP (i0_cdr)) { /* Lengths of the two plists were unequal */ if (i1_len == 0) return 0; i0_sym = Fcar (i0_cdr); i1_val = Fmemq (i0_sym, i1->plist); /* i0 has something i1 doesn't */ if (EQ (i1_val, Qnil)) return 0; /* i0 and i1 both have sym, but it has different values in each */ i0_cdr = Fcdr (i0_cdr); if (! Fequal (i1_val, Fcar (i0_cdr))) return 0; i0_cdr = Fcdr (i0_cdr); i1_len--; } /* Lengths of the two plists were unequal */ if (i1_len > 0) return 0; return 1; } static int icount; static int idepth; static int zero_length; static int depth; /* Traverse an interval tree TREE, performing FUNCTION on each node. Perhaps we should pass the depth as an argument. */ void traverse_intervals (tree, position, function) INTERVAL tree; int position; void (* function) (); { if (NULL_INTERVAL_P (tree)) return; depth++; traverse_intervals (tree->left, position, function); position += LEFT_TOTAL_LENGTH (tree); tree->position = position; (*function) (tree); position += LENGTH (tree); traverse_intervals (tree->right, position, function); depth--; } #if 0 /* These functions are temporary, for debugging purposes only. */ INTERVAL search_interval, found_interval; void check_for_interval (i) register INTERVAL i; { if (i == search_interval) { found_interval = i; icount++; } } INTERVAL search_for_interval (i, tree) register INTERVAL i, tree; { icount = 0; search_interval = i; found_interval = NULL_INTERVAL; traverse_intervals (tree, 1, &check_for_interval); return found_interval; } static void inc_interval_count (i) INTERVAL i; { icount++; if (LENGTH (i) == 0) zero_length++; if (depth > idepth) idepth = depth; } int count_intervals (i) register INTERVAL i; { icount = 0; idepth = 0; zero_length = 0; traverse_intervals (i, 1, &inc_interval_count); return icount; } static INTERVAL root_interval (interval) INTERVAL interval; { register INTERVAL i = interval; while (! ROOT_INTERVAL_P (i)) i = i->parent; return i; } #endif /* Assuming that a left child exists, perform the following operation: A B / \ / \ B => A / \ / \ c c */ static INTERVAL rotate_right (interval) INTERVAL interval; { INTERVAL i; INTERVAL B = interval->left; int len = LENGTH (interval); /* Deal with any Parent of A; make it point to B. */ if (! ROOT_INTERVAL_P (interval)) if (AM_LEFT_CHILD (interval)) interval->parent->left = interval->left; else interval->parent->right = interval->left; interval->left->parent = interval->parent; /* B gets the same length as A, since it get A's position in the tree. */ interval->left->total_length = interval->total_length; /* B becomes the parent of A. */ i = interval->left->right; interval->left->right = interval; interval->parent = interval->left; /* A gets c as left child. */ interval->left = i; if (! NULL_INTERVAL_P (i)) i->parent = interval; interval->total_length = (len + LEFT_TOTAL_LENGTH (interval) + RIGHT_TOTAL_LENGTH (interval)); return B; } /* Assuming that a right child exists, perform the following operation: A B / \ / \ B => A / \ / \ c c */ static INTERVAL rotate_left (interval) INTERVAL interval; { INTERVAL i; INTERVAL B = interval->right; int len = LENGTH (interval); /* Deal with the parent of A. */ if (! ROOT_INTERVAL_P (interval)) if (AM_LEFT_CHILD (interval)) interval->parent->left = interval->right; else interval->parent->right = interval->right; interval->right->parent = interval->parent; /* B must have the same total length of A. */ interval->right->total_length = interval->total_length; /* Make B the parent of A */ i = interval->right->left; interval->right->left = interval; interval->parent = interval->right; /* Make A point to c */ interval->right = i; if (! NULL_INTERVAL_P (i)) i->parent = interval; interval->total_length = (len + LEFT_TOTAL_LENGTH (interval) + RIGHT_TOTAL_LENGTH (interval)); return B; } /* Split an interval into two. The second (RIGHT) half is returned as the new interval. The size and position of the interval being split are stored within it, having been found by find_interval (). The properties are reset; it is up to the caller to do the right thing. Note that this does not change the position of INTERVAL; if it is a root, it is still a root after this operation. */ INTERVAL split_interval_right (interval, relative_position) INTERVAL interval; int relative_position; { INTERVAL new = make_interval (); int position = interval->position; int new_length = LENGTH (interval) - relative_position + 1; new->position = position + relative_position - 1; new->parent = interval; #if 0 copy_properties (interval, new); #endif if (LEAF_INTERVAL_P (interval) || NULL_RIGHT_CHILD (interval)) { interval->right = new; new->total_length = new_length; return new; } /* Insert the new node between INTERVAL and its right child. */ new->right = interval->right; interval->right->parent = new; interval->right = new; new->total_length = new_length + new->right->total_length; return new; } /* Split an interval into two. The first (LEFT) half is returned as the new interval. The size and position of the interval being split are stored within it, having been found by find_interval (). The properties are reset; it is up to the caller to do the right thing. Note that this does not change the position of INTERVAL in the tree; if it is a root, it is still a root after this operation. */ INTERVAL split_interval_left (interval, relative_position) INTERVAL interval; int relative_position; { INTERVAL new = make_interval (); int position = interval->position; int new_length = relative_position - 1; #if 0 copy_properties (interval, new); #endif new->position = interval->position; interval->position = interval->position + relative_position - 1; new->parent = interval; if (NULL_LEFT_CHILD (interval)) { interval->left = new; new->total_length = new_length; return new; } /* Insert the new node between INTERVAL and its left child. */ new->left = interval->left; new->left->parent = new; interval->left = new; new->total_length = LENGTH (new) + LEFT_TOTAL_LENGTH (new); return new; } /* Find the interval containing POSITION in TREE. POSITION is relative to the start of TREE. */ INTERVAL find_interval (tree, position) register INTERVAL tree; register int position; { register int relative_position = position; if (NULL_INTERVAL_P (tree)) return NULL_INTERVAL; if (position > TOTAL_LENGTH (tree)) abort (); /* Paranoia */ #if 0 position = TOTAL_LENGTH (tree); #endif while (1) { if (relative_position <= LEFT_TOTAL_LENGTH (tree)) { tree = tree->left; } else if (relative_position > (TOTAL_LENGTH (tree) - RIGHT_TOTAL_LENGTH (tree))) { relative_position -= (TOTAL_LENGTH (tree) - RIGHT_TOTAL_LENGTH (tree)); tree = tree->right; } else { tree->position = LEFT_TOTAL_LENGTH (tree) + position - relative_position + 1; return tree; } } } /* Find the succeeding interval (lexicographically) to INTERVAL. Sets the `position' field based on that of INTERVAL. Note that those values are only correct if they were also correct in INTERVAL. */ INTERVAL next_interval (interval) register INTERVAL interval; { register INTERVAL i = interval; register int next_position; if (NULL_INTERVAL_P (i)) return NULL_INTERVAL; next_position = interval->position + LENGTH (interval); if (! NULL_RIGHT_CHILD (i)) { i = i->right; while (! NULL_LEFT_CHILD (i)) i = i->left; i->position = next_position; return i; } while (! NULL_PARENT (i)) { if (AM_LEFT_CHILD (i)) { i = i->parent; i->position = next_position; return i; } i = i->parent; } return NULL_INTERVAL; } /* Find the preceding interval (lexicographically) to INTERVAL. Sets the `position' field based on that of INTERVAL. Note that those values are only correct if they were also correct in INTERVAL. */ INTERVAL previous_interval (interval) register INTERVAL interval; { register INTERVAL i; register position_of_previous; if (NULL_INTERVAL_P (interval)) return NULL_INTERVAL; if (! NULL_LEFT_CHILD (interval)) { i = interval->left; while (! NULL_RIGHT_CHILD (i)) i = i->right; i->position = interval->position - LENGTH (i); return i; } i = interval; while (! NULL_PARENT (i)) { if (AM_RIGHT_CHILD (i)) { i = i->parent; i->position = interval->position - LENGTH (i); return i; } i = i->parent; } return NULL_INTERVAL; } /* Traverse a path down the interval tree TREE to the interval containing POSITION, adjusting all nodes on the path for an addition of LENGTH characters. Insertion between two intervals (i.e., point == i->position, where i is second interval) means text goes into second interval. Modifications are needed to handle the hungry bits -- after simply finding the interval at position (don't add length going down), if it's the beginning of the interval, get the previous interval and check the hugry bits of both. Then add the length going back up to the root. */ static INTERVAL adjust_intervals_for_insertion (tree, position, length) INTERVAL tree; int position, length; { register int relative_position; register INTERVAL this; if (TOTAL_LENGTH (tree) == 0) /* Paranoia */ abort (); /* If inserting at point-max of a buffer, that position will be out of range */ if (position > TOTAL_LENGTH (tree)) position = TOTAL_LENGTH (tree); relative_position = position; this = tree; while (1) { if (relative_position <= LEFT_TOTAL_LENGTH (this)) { this->total_length += length; this = this->left; } else if (relative_position > (TOTAL_LENGTH (this) - RIGHT_TOTAL_LENGTH (this))) { relative_position -= (TOTAL_LENGTH (this) - RIGHT_TOTAL_LENGTH (this)); this->total_length += length; this = this->right; } else { /* If we are to use zero-length intervals as buffer pointers, then this code will have to change. */ this->total_length += length; this->position = LEFT_TOTAL_LENGTH (this) + position - relative_position + 1; return tree; } } } /* Merge interval I with its lexicographic successor. Note that this does not deal with the properties, or delete I. */ INTERVAL merge_interval_right (i) register INTERVAL i; { register int absorb = LENGTH (i); /* Zero out this interval. */ i->total_length -= absorb; /* Find the succeeding interval. */ if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb as we descend. */ { i = i->right; while (! NULL_LEFT_CHILD (i)) { i->total_length += absorb; i = i->left; } i->total_length += absorb; return i; } while (! NULL_PARENT (i)) /* It's above us. Subtract as we ascend. */ { if (AM_LEFT_CHILD (i)) { i = i->parent; return i; } i = i->parent; i->total_length -= absorb; } return NULL_INTERVAL; } /* Merge interval I with its lexicographic predecessor. Note that this does not deal with the properties, or delete I.*/ INTERVAL merge_interval_left (i) register INTERVAL i; { register int absorb = LENGTH (i); /* Zero out this interval. */ i->total_length -= absorb; /* Find the preceding interval. */ if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down, adding ABSORB as we go. */ { i = i->left; while (! NULL_RIGHT_CHILD (i)) { i->total_length += absorb; i = i->right; } i->total_length += absorb; return i; } while (! NULL_PARENT (i)) /* It's above us. Go up, subtracting ABSORB. */ { if (AM_RIGHT_CHILD (i)) { i = i->parent; return i; } i = i->parent; i->total_length -= absorb; } return NULL_INTERVAL; } /* Delete an interval node from its btree by merging its subtrees into one subtree which is returned. Caller is responsible for storing the resulting subtree into its parent. */ static INTERVAL delete_node (i) register INTERVAL i; { register INTERVAL migrate, this; register int migrate_amt; if (NULL_INTERVAL_P (i->left)) return i->right; if (NULL_INTERVAL_P (i->right)) return i->left; migrate = i->left; migrate_amt = i->left->total_length; this = i->right; this->total_length += migrate_amt; while (! NULL_INTERVAL_P (this->left)) { this = this->left; this->total_length += migrate_amt; } this->left = migrate; migrate->parent = this; return i->right; } /* Delete interval I from its tree by calling `delete_node' and properly connecting the resultant subtree. I is presumed to be empty; that is, no adjustments are made for the length of I. */ void delete_interval (i) register INTERVAL i; { register INTERVAL parent; int amt = LENGTH (i); if (amt > 0) /* Only used on zero-length intervals now. */ abort (); if (ROOT_INTERVAL_P (i)) { Lisp_Object owner = (Lisp_Object) i->parent; parent = delete_node (i); if (! NULL_INTERVAL_P (parent)) parent->parent = (INTERVAL) owner; if (XTYPE (owner) == Lisp_Buffer) XBUFFER (owner)->intervals = parent; else if (XTYPE (owner) == Lisp_String) XSTRING (owner)->intervals = parent; else abort (); return; } parent = i->parent; if (AM_LEFT_CHILD (i)) { parent->left = delete_node (i); if (! NULL_INTERVAL_P (parent->left)) parent->left->parent = parent; } else { parent->right = delete_node (i); if (! NULL_INTERVAL_P (parent->right)) parent->right->parent = parent; } } /* Recurse down to the interval containing FROM. Then delete as much as possible (up to AMOUNT) from that interval, adjusting parental intervals on the way up. If an interval is zeroed out, then it is deleted. Returns the amount deleted. */ static int interval_deletion_adjustment (tree, from, amount) register INTERVAL tree; register int from, amount; { register int relative_position = from; if (NULL_INTERVAL_P (tree)) return 0; /* Left branch */ if (relative_position <= LEFT_TOTAL_LENGTH (tree)) { int subtract = interval_deletion_adjustment (tree->left, relative_position, amount); tree->total_length -= subtract; return subtract; } /* Right branch */ else if (relative_position > (TOTAL_LENGTH (tree) - RIGHT_TOTAL_LENGTH (tree))) { int subtract; relative_position -= (tree->total_length - RIGHT_TOTAL_LENGTH (tree)); subtract = interval_deletion_adjustment (tree->right, relative_position, amount); tree->total_length -= subtract; return subtract; } /* Here -- this node */ else { /* If this is a zero-length, marker interval, then we must skip it. */ if (relative_position == LEFT_TOTAL_LENGTH (tree) + 1) { /* This means we're deleting from the beginning of this interval. */ register int my_amount = LENGTH (tree); if (amount < my_amount) { tree->total_length -= amount; return amount; } else { tree->total_length -= my_amount; if (LENGTH (tree) != 0) abort (); /* Paranoia */ delete_interval (tree); return my_amount; } } else /* Deleting starting in the middle. */ { register int my_amount = ((tree->total_length - RIGHT_TOTAL_LENGTH (tree)) - relative_position + 1); if (amount <= my_amount) { tree->total_length -= amount; return amount; } else { tree->total_length -= my_amount; return my_amount; } } } abort (); } static void adjust_intervals_for_deletion (buffer, start, length) struct buffer *buffer; int start, length; { register int left_to_delete = length; register INTERVAL tree = buffer->intervals; register int deleted; if (NULL_INTERVAL_P (tree)) return; if (length == TOTAL_LENGTH (tree)) { buffer->intervals = NULL_INTERVAL; return; } if (ONLY_INTERVAL_P (tree)) { tree->total_length -= length; return; } if (start > TOTAL_LENGTH (tree)) start = TOTAL_LENGTH (tree); while (left_to_delete > 0) { left_to_delete -= interval_deletion_adjustment (tree, start, left_to_delete); tree = buffer->intervals; if (left_to_delete == tree->total_length) { buffer->intervals = NULL_INTERVAL; return; } } } /* Note that all intervals in OBJECT after START have slid by LENGTH. */ INLINE void offset_intervals (buffer, start, length) struct buffer *buffer; int start, length; { if (NULL_INTERVAL_P (buffer->intervals) || length == 0) return; if (length > 0) adjust_intervals_for_insertion (buffer->intervals, start, length); else adjust_intervals_for_deletion (buffer, start, -length); } static INTERVAL reproduce_tree (source, parent) INTERVAL source, parent; { register INTERVAL t = make_interval (); bcopy (source, t, INTERVAL_SIZE); copy_properties (source, t); t->parent = parent; if (! NULL_LEFT_CHILD (source)) t->left = reproduce_tree (source->left, t); if (! NULL_RIGHT_CHILD (source)) t->right = reproduce_tree (source->right, t); return t; } static INTERVAL make_new_interval (intervals, start, length) INTERVAL intervals; int start, length; { INTERVAL slot; slot = find_interval (intervals, start); if (start + length > slot->position + LENGTH (slot)) error ("Interval would overlap"); if (start == slot->position && length == LENGTH (slot)) return slot; if (slot->position == start) { /* New right node. */ split_interval_right (slot, length + 1); return slot; } if (slot->position + LENGTH (slot) == start + length) { /* New left node. */ split_interval_left (slot, LENGTH (slot) - length + 1); return slot; } /* Convert interval SLOT into three intervals. */ split_interval_left (slot, start - slot->position + 1); split_interval_right (slot, length + 1); return slot; } void map_intervals (source, destination, position) INTERVAL source, destination; int position; { register INTERVAL i, t; if (NULL_INTERVAL_P (source)) return; i = find_interval (destination, position); if (NULL_INTERVAL_P (i)) return; t = find_interval (source, 1); while (! NULL_INTERVAL_P (t)) { i = make_new_interval (destination, position, LENGTH (t)); position += LENGTH (t); copy_properties (t, i); t = next_interval (t); } } /* Insert the intervals of NEW_TREE into BUFFER at POSITION. This is used in insdel.c when inserting Lisp_Strings into the buffer. The text corresponding to NEW_TREE is already in the buffer when this is called. The intervals of new tree are those belonging to the string being inserted; a copy is not made. If the inserted text had no intervals associated, this function simply returns -- offset_intervals should handle placing the text in the correct interval, depending on the hungry bits. If the inserted text had properties (intervals), then there are two cases -- either insertion happened in the middle of some interval, or between two intervals. If the text goes into the middle of an interval, then new intervals are created in the middle with only the properties of the new text, *unless* the macro MERGE_INSERTIONS is true, in which case the new text has the union of its properties and those of the text into which it was inserted. If the text goes between two intervals, then if neither interval had its appropriate hungry property set (front_hungry, rear_hungry), the new text has only its properties. If one of the hungry properties is set, then the new text "sticks" to that region and its properties depend on merging as above. If both the preceding and succeding intervals to the new text are "hungry", then the new text retains only its properties, as if neither hungry property were set. Perhaps we should consider merging all three sets of properties onto the new text... */ void graft_intervals_into_buffer (new_tree, position, b) INTERVAL new_tree; int position; struct buffer *b; { register INTERVAL under, over, this; register INTERVAL tree = b->intervals; /* If the new text has no properties, it becomes part of whatever interval it was inserted into. */ if (NULL_INTERVAL_P (new_tree)) return; /* Paranoia -- the text has already been added, so this buffer should be of non-zero length. */ if (TOTAL_LENGTH (tree) == 0) abort (); if (NULL_INTERVAL_P (tree)) { /* The inserted text constitutes the whole buffer, so simply copy over the interval structure. */ if (BUF_Z (b) == TOTAL_LENGTH (new_tree)) { b->intervals = reproduce_tree (new_tree, tree->parent); /* Explicitly free the old tree here. */ return; } /* Create an interval tree in which to place a copy of the intervals of the inserted string. */ { Lisp_Object buffer; XSET (buffer, Lisp_Buffer, b); create_root_interval (buffer); } } else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (new_tree)) /* If the buffer contains only the new string, but there was already some interval tree there, then it may be some zero length intervals. Eventually, do something clever about inserting properly. For now, just waste the old intervals. */ { b->intervals = reproduce_tree (new_tree, tree->parent); /* Explicitly free the old tree here. */ return; } this = under = find_interval (tree, position); if (NULL_INTERVAL_P (under)) /* Paranoia */ abort (); over = find_interval (new_tree, 1); /* Insertion between intervals */ if (position == under->position) { /* First interval -- none precede it. */ if (position == 1) { if (! under->front_hungry) /* The inserted string keeps its own properties. */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (over, this); over = next_interval (over); } else /* This string sticks to under */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (under, this); if (MERGE_INSERTIONS (under)) merge_properties (over, this); over = next_interval (over); } } else { INTERVAL prev = previous_interval (under); if (NULL_INTERVAL_P (prev)) abort (); if (prev->rear_hungry) { if (under->front_hungry) /* The intervals go inbetween as the two hungry properties cancel each other. Should we change this policy? */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (over, this); over = next_interval (over); } else /* The intervals stick to prev */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (prev, this); if (MERGE_INSERTIONS (prev)) merge_properties (over, this); over = next_interval (over); } } else { if (under->front_hungry) /* The intervals stick to under */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (under, this); if (MERGE_INSERTIONS (under)) merge_properties (over, this); over = next_interval (over); } else /* The intervals go inbetween */ while (! NULL_INTERVAL_P (over)) { position = LENGTH (over) + 1; this = split_interval_left (this, position); copy_properties (over, this); over = next_interval (over); } } } b->intervals = balance_intervals (b->intervals); return; } /* Here for insertion in the middle of an interval. */ if (TOTAL_LENGTH (new_tree) < LENGTH (this)) { INTERVAL end_unchanged = split_interval_right (this, TOTAL_LENGTH (new_tree) + 1); copy_properties (under, end_unchanged); } position = position - tree->position + 1; while (! NULL_INTERVAL_P (over)) { this = split_interval_right (under, position); copy_properties (over, this); if (MERGE_INSERTIONS (under)) merge_properties (under, this); position = LENGTH (over) + 1; over = next_interval (over); } b->intervals = balance_intervals (b->intervals); return; } /* Intervals can have properties which are hooks to call. Look for the property HOOK on interval I, and if found, call its value as a function.*/ void run_hooks (i, hook) INTERVAL i; Lisp_Object hook; { register Lisp_Object tail = i->plist; register Lisp_Object sym, val; while (! NILP (tail)) { sym = Fcar (tail); if (EQ (sym, hook)) { Lisp_Object begin, end; XFASTINT (begin) = i->position; XFASTINT (end) = i->position + LENGTH (i) - 1; val = Fcar (Fcdr (tail)); call2 (val, begin, end); return; } tail = Fcdr (Fcdr (tail)); } } /* Set point in BUFFER to POSITION. If the target position is in an invisible interval which is not displayed with a special glyph, skip intervals until we find one. Point may be at the first position of an invisible interval, if it is displayed with a special glyph. This is the only place `PT' is an lvalue in all of emacs. */ void set_point (position, buffer) register int position; register struct buffer *buffer; { register INTERVAL to, from, target; register int iposition = position; int buffer_point; register Lisp_Object obj; int backwards = (position < BUF_PT (buffer)) ? 1 : 0; if (position == buffer->text.pt) return; if (NULL_INTERVAL_P (buffer->intervals)) { buffer->text.pt = position; return; } /* Perhaps we should just change `position' to the limit. */ if (position > BUF_Z (buffer) || position < BUF_BEG (buffer)) abort (); /* Position Z is really one past the last char in the buffer. */ if (position == BUF_Z (buffer)) iposition = position - 1; to = find_interval (buffer->intervals, iposition); buffer_point =(BUF_PT (buffer) == BUF_Z (buffer) ? BUF_Z (buffer) - 1 : BUF_PT (buffer)); from = find_interval (buffer->intervals, buffer_point); if (NULL_INTERVAL_P (to) || NULL_INTERVAL_P (from)) abort (); /* Paranoia */ /* Moving within an interval */ if (to == from && INTERVAL_VISIBLE_P (to)) { buffer->text.pt = position; return; } /* Here for the case of moving into another interval. */ target = to; while (! INTERVAL_VISIBLE_P (to) && ! DISPLAY_INVISIBLE_GLYPH (to) && ! NULL_INTERVAL_P (to)) to = (backwards ? previous_interval (to) : next_interval (to)); if (NULL_INTERVAL_P (to)) return; /* Here we know we are actually moving to another interval. */ if (INTERVAL_VISIBLE_P (to)) { /* If we skipped some intervals, go to the closest point in the interval we've stopped at. */ if (to != target) buffer->text.pt = (backwards ? to->position + LENGTH (to) - 1 : to->position); else buffer->text.pt = position; } else buffer->text.pt = to->position; /* We should run point-left and point-entered hooks here, iff the two intervals are not equivalent. */ } /* Check for read-only intervals. Call the modification hooks if any. Check for the range START up to (but not including) TO. First all intervals of the region are checked that they are modifiable, then all the modification hooks are called in lexicographic order. */ void verify_interval_modification (buf, start, end) struct buffer *buf; int start, end; { register INTERVAL intervals = buf->intervals; register INTERVAL i; register Lisp_Object hooks = Qnil; if (NULL_INTERVAL_P (intervals)) return; if (start > end) { int temp = start; start = end; end = temp; } if (start == BUF_Z (buf)) { if (BUF_Z (buf) == 1) abort (); i = find_interval (intervals, start - 1); if (! END_HUNGRY_P (i)) return; } else i = find_interval (intervals, start); do { register Lisp_Object mod_hook; if (! INTERVAL_WRITABLE_P (i)) error ("Attempt to write in a protected interval"); mod_hook = Fget (Qmodification, i->plist); if (! EQ (mod_hook, Qnil)) hooks = Fcons (mod_hook, hooks); i = next_interval (i); } while (! NULL_INTERVAL_P (i) && i->position <= end); hooks = Fnreverse (hooks); while (! EQ (hooks, Qnil)) call2 (Fcar (hooks), i->position, i->position + LENGTH (i) - 1); } /* Balance an interval node if the amount of text in its left and right subtrees differs by more than the percentage specified by `interval-balance-threshold'. */ static INTERVAL balance_an_interval (i) INTERVAL i; { register int total_children_size = (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i)); register int threshold = (XFASTINT (interval_balance_threshold) * (total_children_size / 100)); if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i) && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold) return rotate_right (i); if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i) && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold) return rotate_right (i); #if 0 if (LEFT_TOTAL_LENGTH (i) > (RIGHT_TOTAL_LENGTH (i) + XINT (interval_balance_threshold))) return rotate_right (i); if (RIGHT_TOTAL_LENGTH (i) > (LEFT_TOTAL_LENGTH (i) + XINT (interval_balance_threshold))) return rotate_left (i); #endif return i; } /* Balance the interval tree TREE. Balancing is by weight (the amount of text). */ INTERVAL balance_intervals (tree) register INTERVAL tree; { register INTERVAL new_tree; if (NULL_INTERVAL_P (tree)) return NULL_INTERVAL; new_tree = tree; do { tree = new_tree; new_tree = balance_an_interval (new_tree); } while (new_tree != tree); return new_tree; } /* Produce an interval tree reflecting the interval structure in TREE from START to START + LENGTH. */ static INTERVAL copy_intervals (tree, start, length) INTERVAL tree; int start, length; { register INTERVAL i, new, t; register int got; if (NULL_INTERVAL_P (tree) || length <= 0) return NULL_INTERVAL; i = find_interval (tree, start); if (NULL_INTERVAL_P (i) || LENGTH (i) == 0) abort (); /* If there is only one interval and it's the default, return nil. */ if ((start - i->position + 1 + length) < LENGTH (i) && DEFAULT_INTERVAL_P (i)) return NULL_INTERVAL; new = make_interval (); new->position = 1; got = (LENGTH (i) - (start - i->position)); new->total_length = got; copy_properties (i, new); t = new; while (got < length) { i = next_interval (i); t->right = make_interval (); t->right->parent = t; t->right->position = t->position + got - 1; t = t->right; t->total_length = length - got; copy_properties (i, t); got += LENGTH (i); } if (got > length) t->total_length -= (got - length); return balance_intervals (new); } /* Give buffer SINK the properties of buffer SOURCE from POSITION to END. The properties are attached to SINK starting at position AT. No range checking is done. */ void insert_interval_copy (source, position, end, sink, at) struct buffer *source, *sink; register int position, end, at; { INTERVAL interval_copy = copy_intervals (source->intervals, position, end - position); graft_intervals_into_buffer (interval_copy, at, sink); } /* Give STRING the properties of BUFFER from POSITION to LENGTH. */ void copy_intervals_to_string (string, buffer, position, length) Lisp_Object string, buffer; int position, length; { INTERVAL interval_copy = copy_intervals (XBUFFER (buffer)->intervals, position, length); if (NULL_INTERVAL_P (interval_copy)) return; interval_copy->parent = (INTERVAL) string; XSTRING (string)->intervals = interval_copy; } INTERVAL make_string_interval (string, start, length) struct Lisp_String *string; int start, length; { if (start < 1 || start > string->size) error ("Interval index out of range"); if (length < 1 || length > string->size - start + 1) error ("Interval won't fit"); if (length == 0) return NULL_INTERVAL; return make_new_interval (string->intervals, start, length); } /* Create an interval of length LENGTH in buffer BUF at position START. */ INTERVAL make_buffer_interval (buf, start, length) struct buffer *buf; int start, length; { if (start < BUF_BEG (buf) || start > BUF_Z (buf)) error ("Interval index out of range"); if (length < 1 || length > BUF_Z (buf) - start) error ("Interval won't fit"); if (length == 0) return NULL_INTERVAL; return make_new_interval (buf->intervals, start, length); }