Mercurial > emacs
view lisp/calc/calc-bin.el @ 67816:d195eef388b8
(bibtex-strings, bibtex-reference-keys):
Don't use the `args' argument of lazy-completion-table.
author | Stefan Monnier <monnier@iro.umontreal.ca> |
---|---|
date | Mon, 26 Dec 2005 15:54:21 +0000 |
parents | 1db49616ce05 |
children | 6bf177f8065b 187d6a1f84f7 |
line wrap: on
line source
;;; calc-bin.el --- binary functions for Calc ;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004, ;; 2005 Free Software Foundation, Inc. ;; Author: David Gillespie <daveg@synaptics.com> ;; Maintainer: Jay Belanger <belanger@truman.edu> ;; This file is part of GNU Emacs. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY. No author or distributor ;; accepts responsibility to anyone for the consequences of using it ;; or for whether it serves any particular purpose or works at all, ;; unless he says so in writing. Refer to the GNU Emacs General Public ;; License for full details. ;; Everyone is granted permission to copy, modify and redistribute ;; GNU Emacs, but only under the conditions described in the ;; GNU Emacs General Public License. A copy of this license is ;; supposed to have been given to you along with GNU Emacs so you ;; can know your rights and responsibilities. It should be in a ;; file named COPYING. Among other things, the copyright notice ;; and this notice must be preserved on all copies. ;;; Commentary: ;;; Code: ;; This file is autoloaded from calc-ext.el. (require 'calc-ext) (require 'calc-macs) ;;; b-prefix binary commands. (defun calc-and (n) (interactive "P") (calc-slow-wrapper (calc-enter-result 2 "and" (append '(calcFunc-and) (calc-top-list-n 2) (and n (list (prefix-numeric-value n))))))) (defun calc-or (n) (interactive "P") (calc-slow-wrapper (calc-enter-result 2 "or" (append '(calcFunc-or) (calc-top-list-n 2) (and n (list (prefix-numeric-value n))))))) (defun calc-xor (n) (interactive "P") (calc-slow-wrapper (calc-enter-result 2 "xor" (append '(calcFunc-xor) (calc-top-list-n 2) (and n (list (prefix-numeric-value n))))))) (defun calc-diff (n) (interactive "P") (calc-slow-wrapper (calc-enter-result 2 "diff" (append '(calcFunc-diff) (calc-top-list-n 2) (and n (list (prefix-numeric-value n))))))) (defun calc-not (n) (interactive "P") (calc-slow-wrapper (calc-enter-result 1 "not" (append '(calcFunc-not) (calc-top-list-n 1) (and n (list (prefix-numeric-value n))))))) (defun calc-lshift-binary (n) (interactive "P") (calc-slow-wrapper (let ((hyp (if (calc-is-hyperbolic) 2 1))) (calc-enter-result hyp "lsh" (append '(calcFunc-lsh) (calc-top-list-n hyp) (and n (list (prefix-numeric-value n)))))))) (defun calc-rshift-binary (n) (interactive "P") (calc-slow-wrapper (let ((hyp (if (calc-is-hyperbolic) 2 1))) (calc-enter-result hyp "rsh" (append '(calcFunc-rsh) (calc-top-list-n hyp) (and n (list (prefix-numeric-value n)))))))) (defun calc-lshift-arith (n) (interactive "P") (calc-slow-wrapper (let ((hyp (if (calc-is-hyperbolic) 2 1))) (calc-enter-result hyp "ash" (append '(calcFunc-ash) (calc-top-list-n hyp) (and n (list (prefix-numeric-value n)))))))) (defun calc-rshift-arith (n) (interactive "P") (calc-slow-wrapper (let ((hyp (if (calc-is-hyperbolic) 2 1))) (calc-enter-result hyp "rash" (append '(calcFunc-rash) (calc-top-list-n hyp) (and n (list (prefix-numeric-value n)))))))) (defun calc-rotate-binary (n) (interactive "P") (calc-slow-wrapper (let ((hyp (if (calc-is-hyperbolic) 2 1))) (calc-enter-result hyp "rot" (append '(calcFunc-rot) (calc-top-list-n hyp) (and n (list (prefix-numeric-value n)))))))) (defun calc-clip (n) (interactive "P") (calc-slow-wrapper (calc-enter-result 1 "clip" (append '(calcFunc-clip) (calc-top-list-n 1) (and n (list (prefix-numeric-value n))))))) (defun calc-word-size (n) (interactive "P") (calc-wrapper (or n (setq n (read-string (format "Binary word size: (default %d) " calc-word-size)))) (setq n (if (stringp n) (if (equal n "") calc-word-size (if (string-match "\\`[-+]?[0-9]+\\'" n) (string-to-number n) (error "Expected an integer"))) (prefix-numeric-value n))) (or (= n calc-word-size) (if (> (math-abs n) 100) (calc-change-mode 'calc-word-size n calc-leading-zeros) (calc-change-mode '(calc-word-size calc-previous-modulo) (list n (math-power-of-2 (math-abs n))) calc-leading-zeros))) (if (< n 0) (message "Binary word size is %d bits (2's complement)" (- n)) (message "Binary word size is %d bits" n)))) ;;; d-prefix mode commands. (defun calc-radix (n) (interactive "NDisplay radix (2-36): ") (calc-wrapper (if (and (>= n 2) (<= n 36)) (progn (calc-change-mode 'calc-number-radix n t) ;; also change global value so minibuffer sees it (setq-default calc-number-radix calc-number-radix)) (setq n calc-number-radix)) (message "Number radix is %d" n))) (defun calc-decimal-radix () (interactive) (calc-radix 10)) (defun calc-binary-radix () (interactive) (calc-radix 2)) (defun calc-octal-radix () (interactive) (calc-radix 8)) (defun calc-hex-radix () (interactive) (calc-radix 16)) (defun calc-leading-zeros (n) (interactive "P") (calc-wrapper (if (calc-change-mode 'calc-leading-zeros n t t) (message "Zero-padding integers to %d digits (assuming radix %d)" (let* ((calc-internal-prec 6)) (math-compute-max-digits (math-abs calc-word-size) calc-number-radix)) calc-number-radix) (message "Omitting leading zeros on integers")))) (defvar math-power-of-2-cache (list 1 2 4 8 16 32 64 128 256 512 1024)) (defvar math-big-power-of-2-cache nil) (defun math-power-of-2 (n) ; [I I] [Public] (if (and (natnump n) (<= n 100)) (or (nth n math-power-of-2-cache) (let* ((i (length math-power-of-2-cache)) (val (nth (1- i) math-power-of-2-cache))) (while (<= i n) (setq val (math-mul val 2) math-power-of-2-cache (nconc math-power-of-2-cache (list val)) i (1+ i))) val)) (let ((found (assq n math-big-power-of-2-cache))) (if found (cdr found) (let ((po2 (math-ipow 2 n))) (setq math-big-power-of-2-cache (cons (cons n po2) math-big-power-of-2-cache)) po2))))) (defun math-integer-log2 (n) ; [I I] [Public] (let ((i 0) (p math-power-of-2-cache) val) (while (and p (Math-natnum-lessp (setq val (car p)) n)) (setq p (cdr p) i (1+ i))) (if p (and (equal val n) i) (while (Math-natnum-lessp (prog1 (setq val (math-mul val 2)) (setq math-power-of-2-cache (nconc math-power-of-2-cache (list val)))) n) (setq i (1+ i))) (and (equal val n) i)))) ;;; Bitwise operations. (defun calcFunc-and (a b &optional w) ; [I I I] [Public] (cond ((Math-messy-integerp w) (calcFunc-and a b (math-trunc w))) ((and w (not (integerp w))) (math-reject-arg w 'fixnump)) ((and (integerp a) (integerp b)) (math-clip (logand a b) w)) ((or (eq (car-safe a) 'mod) (eq (car-safe b) 'mod)) (math-binary-modulo-args 'calcFunc-and a b w)) ((not (Math-num-integerp a)) (math-reject-arg a 'integerp)) ((not (Math-num-integerp b)) (math-reject-arg b 'integerp)) (t (math-clip (cons 'bigpos (math-and-bignum (math-binary-arg a w) (math-binary-arg b w))) w)))) (defun math-binary-arg (a w) (if (not (Math-integerp a)) (setq a (math-trunc a))) (if (Math-integer-negp a) (math-not-bignum (cdr (math-bignum-test (math-sub -1 a))) (math-abs (if w (math-trunc w) calc-word-size))) (cdr (Math-bignum-test a)))) (defun math-binary-modulo-args (f a b w) (let (mod) (if (eq (car-safe a) 'mod) (progn (setq mod (nth 2 a) a (nth 1 a)) (if (eq (car-safe b) 'mod) (if (equal mod (nth 2 b)) (setq b (nth 1 b)) (math-reject-arg b "*Inconsistent modulos")))) (setq mod (nth 2 b) b (nth 1 b))) (if (Math-messy-integerp mod) (setq mod (math-trunc mod)) (or (Math-integerp mod) (math-reject-arg mod 'integerp))) (let ((bits (math-integer-log2 mod))) (if bits (if w (if (/= w bits) (calc-record-why "*Warning: Modulo inconsistent with word size")) (setq w bits)) (calc-record-why "*Warning: Modulo is not a power of 2")) (math-make-mod (if b (funcall f a b w) (funcall f a w)) mod)))) (defun math-and-bignum (a b) ; [l l l] (and a b (let ((qa (math-div-bignum-digit a 512)) (qb (math-div-bignum-digit b 512))) (math-mul-bignum-digit (math-and-bignum (math-norm-bignum (car qa)) (math-norm-bignum (car qb))) 512 (logand (cdr qa) (cdr qb)))))) (defun calcFunc-or (a b &optional w) ; [I I I] [Public] (cond ((Math-messy-integerp w) (calcFunc-or a b (math-trunc w))) ((and w (not (integerp w))) (math-reject-arg w 'fixnump)) ((and (integerp a) (integerp b)) (math-clip (logior a b) w)) ((or (eq (car-safe a) 'mod) (eq (car-safe b) 'mod)) (math-binary-modulo-args 'calcFunc-or a b w)) ((not (Math-num-integerp a)) (math-reject-arg a 'integerp)) ((not (Math-num-integerp b)) (math-reject-arg b 'integerp)) (t (math-clip (cons 'bigpos (math-or-bignum (math-binary-arg a w) (math-binary-arg b w))) w)))) (defun math-or-bignum (a b) ; [l l l] (and (or a b) (let ((qa (math-div-bignum-digit a 512)) (qb (math-div-bignum-digit b 512))) (math-mul-bignum-digit (math-or-bignum (math-norm-bignum (car qa)) (math-norm-bignum (car qb))) 512 (logior (cdr qa) (cdr qb)))))) (defun calcFunc-xor (a b &optional w) ; [I I I] [Public] (cond ((Math-messy-integerp w) (calcFunc-xor a b (math-trunc w))) ((and w (not (integerp w))) (math-reject-arg w 'fixnump)) ((and (integerp a) (integerp b)) (math-clip (logxor a b) w)) ((or (eq (car-safe a) 'mod) (eq (car-safe b) 'mod)) (math-binary-modulo-args 'calcFunc-xor a b w)) ((not (Math-num-integerp a)) (math-reject-arg a 'integerp)) ((not (Math-num-integerp b)) (math-reject-arg b 'integerp)) (t (math-clip (cons 'bigpos (math-xor-bignum (math-binary-arg a w) (math-binary-arg b w))) w)))) (defun math-xor-bignum (a b) ; [l l l] (and (or a b) (let ((qa (math-div-bignum-digit a 512)) (qb (math-div-bignum-digit b 512))) (math-mul-bignum-digit (math-xor-bignum (math-norm-bignum (car qa)) (math-norm-bignum (car qb))) 512 (logxor (cdr qa) (cdr qb)))))) (defun calcFunc-diff (a b &optional w) ; [I I I] [Public] (cond ((Math-messy-integerp w) (calcFunc-diff a b (math-trunc w))) ((and w (not (integerp w))) (math-reject-arg w 'fixnump)) ((and (integerp a) (integerp b)) (math-clip (logand a (lognot b)) w)) ((or (eq (car-safe a) 'mod) (eq (car-safe b) 'mod)) (math-binary-modulo-args 'calcFunc-diff a b w)) ((not (Math-num-integerp a)) (math-reject-arg a 'integerp)) ((not (Math-num-integerp b)) (math-reject-arg b 'integerp)) (t (math-clip (cons 'bigpos (math-diff-bignum (math-binary-arg a w) (math-binary-arg b w))) w)))) (defun math-diff-bignum (a b) ; [l l l] (and a (let ((qa (math-div-bignum-digit a 512)) (qb (math-div-bignum-digit b 512))) (math-mul-bignum-digit (math-diff-bignum (math-norm-bignum (car qa)) (math-norm-bignum (car qb))) 512 (logand (cdr qa) (lognot (cdr qb))))))) (defun calcFunc-not (a &optional w) ; [I I] [Public] (cond ((Math-messy-integerp w) (calcFunc-not a (math-trunc w))) ((eq (car-safe a) 'mod) (math-binary-modulo-args 'calcFunc-not a nil w)) ((and w (not (integerp w))) (math-reject-arg w 'fixnump)) ((not (Math-num-integerp a)) (math-reject-arg a 'integerp)) ((< (or w (setq w calc-word-size)) 0) (math-clip (calcFunc-not a (- w)) w)) (t (math-normalize (cons 'bigpos (math-not-bignum (math-binary-arg a w) w)))))) (defun math-not-bignum (a w) ; [l l] (let ((q (math-div-bignum-digit a 512))) (if (<= w 9) (list (logand (lognot (cdr q)) (1- (lsh 1 w)))) (math-mul-bignum-digit (math-not-bignum (math-norm-bignum (car q)) (- w 9)) 512 (logxor (cdr q) 511))))) (defun calcFunc-lsh (a &optional n w) ; [I I] [Public] (setq a (math-trunc a) n (if n (math-trunc n) 1)) (if (eq (car-safe a) 'mod) (math-binary-modulo-args 'calcFunc-lsh a n w) (setq w (if w (math-trunc w) calc-word-size)) (or (integerp w) (math-reject-arg w 'fixnump)) (or (Math-integerp a) (math-reject-arg a 'integerp)) (or (Math-integerp n) (math-reject-arg n 'integerp)) (if (< w 0) (math-clip (calcFunc-lsh a n (- w)) w) (if (Math-integer-negp a) (setq a (math-clip a w))) (cond ((or (Math-lessp n (- w)) (Math-lessp w n)) 0) ((< n 0) (math-quotient (math-clip a w) (math-power-of-2 (- n)))) (t (math-clip (math-mul a (math-power-of-2 n)) w)))))) (defun calcFunc-rsh (a &optional n w) ; [I I] [Public] (calcFunc-lsh a (math-neg (or n 1)) w)) (defun calcFunc-ash (a &optional n w) ; [I I] [Public] (if (or (null n) (not (Math-negp n))) (calcFunc-lsh a n w) (setq a (math-trunc a) n (if n (math-trunc n) 1)) (if (eq (car-safe a) 'mod) (math-binary-modulo-args 'calcFunc-ash a n w) (setq w (if w (math-trunc w) calc-word-size)) (or (integerp w) (math-reject-arg w 'fixnump)) (or (Math-integerp a) (math-reject-arg a 'integerp)) (or (Math-integerp n) (math-reject-arg n 'integerp)) (if (< w 0) (math-clip (calcFunc-ash a n (- w)) w) (if (Math-integer-negp a) (setq a (math-clip a w))) (let ((two-to-sizem1 (math-power-of-2 (1- w))) (sh (calcFunc-lsh a n w))) (cond ((Math-natnum-lessp a two-to-sizem1) sh) ((Math-lessp n (- 1 w)) (math-add (math-mul two-to-sizem1 2) -1)) (t (let ((two-to-n (math-power-of-2 (- n)))) (math-add (calcFunc-lsh (math-add two-to-n -1) (+ w n) w) sh))))))))) (defun calcFunc-rash (a &optional n w) ; [I I] [Public] (calcFunc-ash a (math-neg (or n 1)) w)) (defun calcFunc-rot (a &optional n w) ; [I I] [Public] (setq a (math-trunc a) n (if n (math-trunc n) 1)) (if (eq (car-safe a) 'mod) (math-binary-modulo-args 'calcFunc-rot a n w) (setq w (if w (math-trunc w) calc-word-size)) (or (integerp w) (math-reject-arg w 'fixnump)) (or (Math-integerp a) (math-reject-arg a 'integerp)) (or (Math-integerp n) (math-reject-arg n 'integerp)) (if (< w 0) (math-clip (calcFunc-rot a n (- w)) w) (if (Math-integer-negp a) (setq a (math-clip a w))) (cond ((or (Math-integer-negp n) (not (Math-natnum-lessp n w))) (calcFunc-rot a (math-mod n w) w)) (t (math-add (calcFunc-lsh a (- n w) w) (calcFunc-lsh a n w))))))) (defun math-clip (a &optional w) ; [I I] [Public] (cond ((Math-messy-integerp w) (math-clip a (math-trunc w))) ((eq (car-safe a) 'mod) (math-binary-modulo-args 'math-clip a nil w)) ((and w (not (integerp w))) (math-reject-arg w 'fixnump)) ((not (Math-num-integerp a)) (math-reject-arg a 'integerp)) ((< (or w (setq w calc-word-size)) 0) (setq a (math-clip a (- w))) (if (Math-natnum-lessp a (math-power-of-2 (- -1 w))) a (math-sub a (math-power-of-2 (- w))))) ((Math-negp a) (math-normalize (cons 'bigpos (math-binary-arg a w)))) ((and (integerp a) (< a 1000000)) (if (>= w 20) a (logand a (1- (lsh 1 w))))) (t (math-normalize (cons 'bigpos (math-clip-bignum (cdr (math-bignum-test (math-trunc a))) w)))))) (defalias 'calcFunc-clip 'math-clip) (defun math-clip-bignum (a w) ; [l l] (let ((q (math-div-bignum-digit a 512))) (if (<= w 9) (list (logand (cdr q) (1- (lsh 1 w)))) (math-mul-bignum-digit (math-clip-bignum (math-norm-bignum (car q)) (- w 9)) 512 (cdr q))))) (defvar math-max-digits-cache nil) (defun math-compute-max-digits (w r) (let* ((pair (+ (* r 100000) w)) (res (assq pair math-max-digits-cache))) (if res (cdr res) (let* ((calc-command-flags nil) (digs (math-ceiling (math-div w (math-real-log2 r))))) (setq math-max-digits-cache (cons (cons pair digs) math-max-digits-cache)) digs)))) (defvar math-log2-cache (list '(2 . 1) '(4 . 2) '(8 . 3) '(10 . (float 332193 -5)) '(16 . 4) '(32 . 5))) (defun math-real-log2 (x) ;;; calc-internal-prec must be 6 (let ((res (assq x math-log2-cache))) (if res (cdr res) (let* ((calc-symbolic-mode nil) (calc-display-working-message nil) (log (calcFunc-log x 2))) (setq math-log2-cache (cons (cons x log) math-log2-cache)) log)))) (defconst math-radix-digits ["0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"]) (defsubst math-format-radix-digit (a) ; [X D] (aref math-radix-digits a)) (defun math-format-radix (a) ; [X S] (if (< a calc-number-radix) (if (< a 0) (concat "-" (math-format-radix (- a))) (math-format-radix-digit a)) (let ((s "")) (while (> a 0) (setq s (concat (math-format-radix-digit (% a calc-number-radix)) s) a (/ a calc-number-radix))) s))) (defconst math-binary-digits ["000" "001" "010" "011" "100" "101" "110" "111"]) (defun math-format-binary (a) ; [X S] (if (< a 8) (if (< a 0) (concat "-" (math-format-binary (- a))) (math-format-radix a)) (let ((s "")) (while (> a 7) (setq s (concat (aref math-binary-digits (% a 8)) s) a (/ a 8))) (concat (math-format-radix a) s)))) (defun math-format-bignum-radix (a) ; [X L] (cond ((null a) "0") ((and (null (cdr a)) (< (car a) calc-number-radix)) (math-format-radix-digit (car a))) (t (let ((q (math-div-bignum-digit a calc-number-radix))) (concat (math-format-bignum-radix (math-norm-bignum (car q))) (math-format-radix-digit (cdr q))))))) (defun math-format-bignum-binary (a) ; [X L] (cond ((null a) "0") ((null (cdr a)) (math-format-binary (car a))) (t (let ((q (math-div-bignum-digit a 512))) (concat (math-format-bignum-binary (math-norm-bignum (car q))) (aref math-binary-digits (/ (cdr q) 64)) (aref math-binary-digits (% (/ (cdr q) 8) 8)) (aref math-binary-digits (% (cdr q) 8))))))) (defun math-format-bignum-octal (a) ; [X L] (cond ((null a) "0") ((null (cdr a)) (math-format-radix (car a))) (t (let ((q (math-div-bignum-digit a 512))) (concat (math-format-bignum-octal (math-norm-bignum (car q))) (math-format-radix-digit (/ (cdr q) 64)) (math-format-radix-digit (% (/ (cdr q) 8) 8)) (math-format-radix-digit (% (cdr q) 8))))))) (defun math-format-bignum-hex (a) ; [X L] (cond ((null a) "0") ((null (cdr a)) (math-format-radix (car a))) (t (let ((q (math-div-bignum-digit a 256))) (concat (math-format-bignum-hex (math-norm-bignum (car q))) (math-format-radix-digit (/ (cdr q) 16)) (math-format-radix-digit (% (cdr q) 16))))))) ;;; Decompose into integer and fractional parts, without depending ;;; on calc-internal-prec. (defun math-float-parts (a need-frac) ; returns ( int frac fracdigs ) (if (>= (nth 2 a) 0) (list (math-scale-rounding (nth 1 a) (nth 2 a)) '(float 0 0) 0) (let* ((d (math-numdigs (nth 1 a))) (n (- (nth 2 a)))) (if need-frac (if (>= n d) (list 0 a n) (let ((qr (math-idivmod (nth 1 a) (math-scale-int 1 n)))) (list (car qr) (math-make-float (cdr qr) (- n)) n))) (list (math-scale-rounding (nth 1 a) (nth 2 a)) '(float 0 0) 0))))) (defun math-format-radix-float (a prec) (let ((fmt (car calc-float-format)) (figs (nth 1 calc-float-format)) (point calc-point-char) (str nil) pos) (if (eq fmt 'fix) (let* ((afigs (math-abs figs)) (fp (math-float-parts a (> afigs 0))) (calc-internal-prec (+ 3 (max (nth 2 fp) (math-convert-radix-digits afigs t)))) (int (car fp)) (frac (math-round (math-mul (math-normalize (nth 1 fp)) (math-radix-float-power afigs))))) (if (not (and (math-zerop frac) (math-zerop int) (< figs 0))) (let ((math-radix-explicit-format nil)) (let ((calc-group-digits nil)) (setq str (if (> afigs 0) (math-format-number frac) "")) (if (< (length str) afigs) (setq str (concat (make-string (- afigs (length str)) ?0) str)) (if (> (length str) afigs) (setq str (substring str 1) int (math-add int 1)))) (setq str (concat (math-format-number int) point str))) (when calc-group-digits (setq str (math-group-float str)))) (setq figs 0)))) (or str (let* ((prec calc-internal-prec) (afigs (if (> figs 0) figs (max 1 (+ figs (1- (math-convert-radix-digits (max prec (math-numdigs (nth 1 a))))))))) (calc-internal-prec (+ 3 (math-convert-radix-digits afigs t))) (explo -1) (vlo (math-radix-float-power explo)) (exphi 1) (vhi (math-radix-float-power exphi)) expmid vmid eadj) (setq a (math-normalize a)) (if (Math-zerop a) (setq explo 0) (if (math-lessp-float '(float 1 0) a) (while (not (math-lessp-float a vhi)) (setq explo exphi vlo vhi exphi (math-mul exphi 2) vhi (math-radix-float-power exphi))) (while (math-lessp-float a vlo) (setq exphi explo vhi vlo explo (math-mul explo 2) vlo (math-radix-float-power explo)))) (while (not (eq (math-sub exphi explo) 1)) (setq expmid (math-div2 (math-add explo exphi)) vmid (math-radix-float-power expmid)) (if (math-lessp-float a vmid) (setq exphi expmid vhi vmid) (setq explo expmid vlo vmid))) (setq a (math-div-float a vlo))) (let* ((sc (math-round (math-mul a (math-radix-float-power (1- afigs))))) (math-radix-explicit-format nil)) (let ((calc-group-digits nil)) (setq str (math-format-number sc)))) (if (> (length str) afigs) (setq str (substring str 0 -1) explo (1+ explo))) (if (and (eq fmt 'float) (math-lessp explo (+ (if (= figs 0) (1- (math-convert-radix-digits prec)) afigs) calc-display-sci-high 1)) (math-lessp calc-display-sci-low explo)) (let ((dpos (1+ explo))) (cond ((<= dpos 0) (setq str (concat "0" point (make-string (- dpos) ?0) str))) ((> dpos (length str)) (setq str (concat str (make-string (- dpos (length str)) ?0) point))) (t (setq str (concat (substring str 0 dpos) point (substring str dpos))))) (setq explo nil)) (setq eadj (if (eq fmt 'eng) (min (math-mod explo 3) (length str)) 0) str (concat (substring str 0 (1+ eadj)) point (substring str (1+ eadj))))) (setq pos (length str)) (while (eq (aref str (1- pos)) ?0) (setq pos (1- pos))) (and explo (eq (aref str (1- pos)) ?.) (setq pos (1- pos))) (setq str (substring str 0 pos)) (when calc-group-digits (setq str (math-group-float str))) (if explo (let ((estr (let ((calc-number-radix 10) (calc-group-digits nil)) (math-format-number (math-sub explo eadj))))) (setq str (if (or (memq calc-language '(math maple)) (> calc-number-radix 14)) (format "%s*%d.^%s" str calc-number-radix estr) (format "%se%s" str estr))))))) str)) (defvar math-radix-digits-cache nil) (defun math-convert-radix-digits (n &optional to-dec) (let ((key (cons n (cons to-dec calc-number-radix)))) (or (cdr (assoc key math-radix-digits-cache)) (let* ((calc-internal-prec 6) (log (math-div (math-real-log2 calc-number-radix) '(float 332193 -5)))) (cdr (car (setq math-radix-digits-cache (cons (cons key (math-ceiling (if to-dec (math-mul n log) (math-div n log)))) math-radix-digits-cache)))))))) (defvar math-radix-float-cache-tag nil) (defvar math-radix-float-cache) (defun math-radix-float-power (n) (if (eq n 0) '(float 1 0) (or (and (eq calc-number-radix (car math-radix-float-cache-tag)) (<= calc-internal-prec (cdr math-radix-float-cache-tag))) (setq math-radix-float-cache-tag (cons calc-number-radix calc-internal-prec) math-radix-float-cache nil)) (math-normalize (or (cdr (assoc n math-radix-float-cache)) (cdr (car (setq math-radix-float-cache (cons (cons n (let ((calc-internal-prec (cdr math-radix-float-cache-tag))) (if (math-negp n) (math-div-float '(float 1 0) (math-radix-float-power (math-neg n))) (math-mul-float (math-sqr-float (math-radix-float-power (math-div2 n))) (if (math-evenp n) '(float 1 0) (math-float calc-number-radix)))))) math-radix-float-cache)))))))) (provide 'calc-bin) ;;; arch-tag: f6dba7bc-53b2-41ae-919c-c266ab0ca8b3 ;;; calc-bin.el ends here