view leim/quail/latin-ltx.el @ 55188:d7ad0d2e368a

*** empty log message ***
author Eli Zaretskii <eliz@gnu.org>
date Tue, 27 Apr 2004 13:07:16 +0000
parents c9e0e2c95a16
children 244e2370cf57
line wrap: on
line source

;;; latin-ltx.el --- Quail package for TeX-style input -*-coding: iso-2022-7bit;-*-

;; Copyright (C) 2001 Electrotechnical Laboratory, JAPAN.
;; Licensed to the Free Software Foundation.
;; Copyright (C) 2001  Free Software Foundation, Inc.

;; Author: TAKAHASHI Naoto <ntakahas@m17n.org>
;;         Dave Love <fx@gnu.org>
;; Keywords: multilingual, input, Greek, i18n

;; This file is part of GNU Emacs.

;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING.  If not, write to the
;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.

;;; Commentary:

;;; Code:

(require 'quail)

(quail-define-package
 "TeX" "UTF-8" "\\" t
 "LaTeX-like input method for many characters.
These characters are from the charsets used by the `utf-8' coding
system, including many technical ones.  Examples:
 \\'a -> ,Aa(B  \\`{a} -> ,A`(B
 \\pi -> $,1'@(B  \\int -> $,1xK(B  ^1 -> ,A9(B"

 nil t t nil nil nil nil nil nil nil t)

(quail-define-rules
 ("!`" ?,A!(B)
 ("{\\pounds}" ?,A#(B) ("\\pounds" ?,A#(B)
 ("{\\S}" ?,A'(B) ("\\S" ?,A'(B)
 ("\\\"{}" ?,A((B)
 ("{\\copyright}" ?,A)(B) ("\\copyright" ?,A)(B)
 ("$^a$" ?,A*(B)
 ("\\={}" ?,A/(B)
 ("$\\pm$" ?,A1(B) ("\\pm" ?,A1(B)
 ("$^2$" ?,A2(B)
 ("$^3$" ?,A3(B)
 ("\\'{}" ?,A4(B)
 ("{\\P}" ?,A6(B) ("\\P" ?,A6(B)
 ;; Fixme: Yudit has the equivalent of ("\\cdot" ?$,1z%(B), for U+22C5, DOT
 ;; OPERATOR, whereas ,A7(B is MIDDLE DOT.  JadeTeX translates both to
 ;; \cdot.
 ("$\\cdot$" ?,A7(B) ("\\cdot" ?,A7(B)
 ("\\c{}" ?,A8(B)
 ("$^1$" ?,A9(B)
 ("$^o$" ?,A:(B)
 ("?`" ?,A?(B)

 ("\\`{A}" ?,A@(B)  ("\\`A" ?,A@(B)
 ("\\'{A}" ?,AA(B)  ("\\'A" ?,AA(B)
 ("\\^{A}" ?,AB(B)  ("\\^A" ?,AB(B)
 ("\\~{A}" ?,AC(B)  ("\\~A" ?,AC(B)
 ("\\\"{A}" ?,AD(B)  ("\\\"A" ?,AD(B)
 ("\\\k{A}" ?$,1 $(B)
 ("{\\AA}" ?,AE(B) ("\\AA" ?,AE(B)
 ("{\\AE}" ?,AF(B) ("\\AE" ?,AF(B)
 ("\\c{C}" ?,AG(B)  ("\\cC" ?,AG(B)
 ("\\`{E}" ?,AH(B)  ("\\`E" ?,AH(B)
 ("\\'{E}" ?,AI(B)  ("\\'E" ?,AI(B)
 ("\\^{E}" ?,AJ(B)  ("\\^E" ?,AJ(B)
 ("\\\"{E}" ?,AK(B)  ("\\\"E" ?,AK(B)
 ("\\\k{E}" ?$,1 8(B)
 ("\\`{I}" ?,AL(B)  ("\\`I" ?,AL(B)
 ("\\'{I}" ?,AM(B)  ("\\'I" ?,AM(B)
 ("\\^{I}" ?,AN(B)  ("\\^I" ?,AN(B)
 ("\\\"{I}" ?,AO(B)  ("\\\"I" ?,AO(B)
 ("\\\k{I}" ?$,1 N(B)

 ("\\~{N}" ?,AQ(B)  ("\\~N" ?,AQ(B)
 ("\\`{O}" ?,AR(B)  ("\\`O" ?,AR(B)
 ("\\'{O}" ?,AS(B)  ("\\'O" ?,AS(B)
 ("\\^{O}" ?,AT(B)  ("\\^O" ?,AT(B)
 ("\\~{O}" ?,AU(B)  ("\\~O" ?,AU(B)
 ("\\\"{O}" ?,AV(B)  ("\\\"O" ?,AV(B)
 ("\\\k{O}" ?$,1"J(B)
 ("$\\times$" ?,AW(B) ("\\times" ?,AW(B)
 ("{\\O}" ?,AX(B) ("\\O" ?,AX(B)
 ("\\`{U}" ?,AY(B) ("\\`U" ?,AY(B)
 ("\\'{U}" ?,AZ(B) ("\\'U" ?,AZ(B)
 ("\\^{U}" ?,A[(B) ("\\^U" ?,A[(B)
 ("\\\"{U}" ?,A\(B) ("\\\"U" ?,A\(B)
 ("\\\k{U}" ?$,1!2(B)
 ("\\'{Y}" ?,A](B) ("\\'Y" ?,A](B)
 ("{\\ss}" ?,A_(B) ("\\ss" ?,A_(B)

 ("\\`{a}" ?,A`(B) ("\\`a" ?,A`(B)
 ("\\'{a}" ?,Aa(B) ("\\'a" ?,Aa(B)
 ("\\^{a}" ?,Ab(B) ("\\^a" ?,Ab(B)
 ("\\~{a}" ?,Ac(B) ("\\~a" ?,Ac(B)
 ("\\\"{a}" ?,Ad(B) ("\\\"a" ?,Ad(B)
 ("\\\k{a}" ?$,1 %(B)
 ("{\\aa}" ?,Ae(B) ("\\aa" ?,Ae(B)
 ("{\\ae}" ?,Af(B) ("\\ae" ?,Af(B)
 ("\\c{c}" ?,Ag(B) ("\\cc" ?,Ag(B)
 ("\\`{e}" ?,Ah(B) ("\\`e" ?,Ah(B)
 ("\\'{e}" ?,Ai(B) ("\\'e" ?,Ai(B)
 ("\\^{e}" ?,Aj(B) ("\\^e" ?,Aj(B)
 ("\\\"{e}" ?,Ak(B) ("\\\"e" ?,Ak(B)
 ("\\\k{e}" ?$,1 9(B)
 ("\\`{\\i}" ?,Al(B)  ("\\`i" ?,Al(B)
 ("\\'{\\i}" ?,Am(B)  ("\\'i" ?,Am(B)
 ("\\^{\\i}" ?,An(B) ("\\^i" ?,An(B)
 ("\\\"{\\i}" ?,Ao(B) ("\\\"i" ?,Ao(B)
 ("\\\k{i}" ?$,1 O(B)

 ("\\~{n}" ?,Aq(B) ("\\~n" ?,Aq(B)
 ("\\`{o}" ?,Ar(B) ("\\`o" ?,Ar(B)
 ("\\'{o}" ?,As(B) ("\\'o" ?,As(B)
 ("\\^{o}" ?,At(B) ("\\^o" ?,At(B)
 ("\\~{o}" ?,Au(B) ("\\~o" ?,Au(B)
 ("\\\"{o}" ?,Av(B) ("\\\"o" ?,Av(B)
 ("\\\k{o}" ?$,1"K(B)
 ("$\\div$" ?,Aw(B) ("\\div" ?,Aw(B)
 ("{\\o}" ?,Ax(B) ("\\o" ?,Ax(B)
 ("\\`{u}" ?,Ay(B) ("\\`u" ?,Ay(B)
 ("\\'{u}" ?,Az(B) ("\\'u" ?,Az(B)
 ("\\^{u}" ?,A{(B) ("\\^u" ?,A{(B)
 ("\\\"{u}" ?,A|(B) ("\\\"u" ?,A|(B)
 ("\\\k{u}" ?$,1!3(B)
 ("\\'{y}" ?,A}(B) ("\\'y" ?,A}(B)
 ("\\\"{y}" ?,A(B) ("\\\"y" ?,A(B)

 ("\\={A}" ?$,1  (B) ("\\=A" ?$,1  (B)
 ("\\={a}" ?$,1 !(B) ("\\=a" ?$,1 !(B)
 ("\\u{A}" ?$,1 "(B) ("\\uA" ?$,1 "(B)
 ("\\u{a}" ?$,1 #(B) ("\\ua" ?$,1 #(B)
 ("\\'{C}" ?$,1 &(B) ("\\'C" ?$,1 &(B)
 ("\\'{c}" ?$,1 '(B) ("\\'c" ?$,1 '(B)
 ("\\^{C}" ?$,1 ((B) ("\\^C" ?$,1 ((B)
 ("\\^{c}" ?$,1 )(B) ("\\^c" ?$,1 )(B)
 ("\\.{C}" ?$,1 *(B) ("\\.C" ?$,1 *(B)
 ("\\.{c}" ?$,1 +(B) ("\\.c" ?$,1 +(B)
 ("\\v{C}" ?$,1 ,(B) ("\\vC" ?$,1 ,(B)
 ("\\v{c}" ?$,1 -(B) ("\\vc" ?$,1 -(B)
 ("\\v{D}" ?$,1 .(B) ("\\vD" ?$,1 .(B)
 ("\\v{d}" ?$,1 /(B) ("\\vd" ?$,1 /(B)

 ("\\={E}" ?$,1 2(B) ("\\=E" ?$,1 2(B)
 ("\\={e}" ?$,1 3(B) ("\\=e" ?$,1 3(B)
 ("\\u{E}" ?$,1 4(B) ("\\uE" ?$,1 4(B)
 ("\\u{e}" ?$,1 5(B) ("\\ue" ?$,1 5(B)
 ("\\.{E}" ?$,1 6(B) ("\\.E" ?$,1 6(B)
 ("\\e{e}" ?$,1 7(B) ("\\ee" ?$,1 7(B)
 ("\\v{E}" ?$,1 :(B) ("\\vE" ?$,1 :(B)
 ("\\v{e}" ?$,1 ;(B) ("\\ve" ?$,1 ;(B)
 ("\\^{G}" ?$,1 <(B) ("\\^G" ?$,1 <(B)
 ("\\^{g}" ?$,1 =(B) ("\\^g" ?$,1 =(B)
 ("\\u{G}" ?$,1 >(B) ("\\uG" ?$,1 >(B)
 ("\\u{g}" ?$,1 ?(B) ("\\ug" ?$,1 ?(B)

 ("\\.{G}" ?$,1 @(B) ("\\.G" ?$,1 @(B)
 ("\\.{g}" ?$,1 A(B) ("\\.g" ?$,1 A(B)
 ("\\c{G}" ?$,1 B(B) ("\\cG" ?$,1 B(B)
 ("\\c{g}" ?$,1 C(B) ("\\cg" ?$,1 C(B)
 ("\\^{H}" ?$,1 D(B) ("\\^H" ?$,1 D(B)
 ("\\^{h}" ?$,1 E(B) ("\\^h" ?$,1 E(B)
 ("\\~{I}" ?$,1 H(B) ("\\~I" ?$,1 H(B)
 ("\\~{\\i}" ?$,1 I(B) ("\\~i" ?$,1 I(B)
 ("\\={I}" ?$,1 J(B) ("\\=I" ?$,1 J(B)
 ("\\={\\i}" ?$,1 K(B) ("\\=i" ?$,1 K(B)
 ("\\u{I}" ?$,1 L(B) ("\\uI" ?$,1 L(B)
 ("\\u{\\i}" ?$,1 M(B) ("\\ui" ?$,1 M(B)

 ("\\.{I}" ?$,1 P(B) ("\\.I" ?$,1 P(B)
 ("{\\i}" ?$,1 Q(B) ("\\i" ?$,1 Q(B)
 ("\\^{J}" ?$,1 T(B) ("\\^J" ?$,1 T(B)
 ("\\^{\\j}" ?$,1 U(B) ("\\^j" ?$,1 U(B)
 ("\\c{K}" ?$,1 V(B) ("\\cK" ?$,1 V(B)
 ("\\c{k}" ?$,1 W(B) ("\\ck" ?$,1 W(B)
 ("\\'{L}" ?$,1 Y(B) ("\\'L" ?$,1 Y(B)
 ("\\'{l}" ?$,1 Z(B) ("\\'l" ?$,1 Z(B)
 ("\\c{L}" ?$,1 [(B) ("\\cL" ?$,1 [(B)
 ("\\c{l}" ?$,1 \(B) ("\\cl" ?$,1 \(B)

 ("{\\L}" ?$,1 a(B) ("\\L" ?$,1 a(B)
 ("{\\l}" ?$,1 b(B) ("\\l" ?$,1 b(B)
 ("\\'{N}" ?$,1 c(B) ("\\'N" ?$,1 c(B)
 ("\\'{n}" ?$,1 d(B) ("\\'n" ?$,1 d(B)
 ("\\c{N}" ?$,1 e(B) ("\\cN" ?$,1 e(B)
 ("\\c{n}" ?$,1 f(B) ("\\cn" ?$,1 f(B)
 ("\\v{N}" ?$,1 g(B) ("\\vN" ?$,1 g(B)
 ("\\v{n}" ?$,1 h(B) ("\\vn" ?$,1 h(B)
 ("\\={O}" ?$,1 l(B) ("\\=O" ?$,1 l(B)
 ("\\={o}" ?$,1 m(B) ("\\=o" ?$,1 m(B)
 ("\\u{O}" ?$,1 n(B) ("\\uO" ?$,1 n(B)
 ("\\u{o}" ?$,1 o(B) ("\\uo" ?$,1 o(B)

 ("\\H{O}" ?$,1 p(B) ("\\HO" ?$,1 p(B)
 ("\\U{o}" ?$,1 q(B) ("\\Uo" ?$,1 q(B)
 ("{\\OE}" ?$,1 r(B) ("\\OE" ?$,1 r(B)
 ("{\\oe}" ?$,1 s(B) ("\\oe" ?$,1 s(B)
 ("\\'{R}" ?$,1 t(B) ("\\'R" ?$,1 t(B)
 ("\\'{r}" ?$,1 u(B) ("\\'r" ?$,1 u(B)
 ("\\c{R}" ?$,1 v(B) ("\\cR" ?$,1 v(B)
 ("\\c{r}" ?$,1 w(B) ("\\cr" ?$,1 w(B)
 ("\\v{R}" ?$,1 x(B) ("\\vR" ?$,1 x(B)
 ("\\v{r}" ?$,1 y(B) ("\\vr" ?$,1 y(B)
 ("\\'{S}" ?$,1 z(B) ("\\'S" ?$,1 z(B)
 ("\\'{s}" ?$,1 {(B) ("\\'s" ?$,1 {(B)
 ("\\^{S}" ?$,1 |(B) ("\\^S" ?$,1 |(B)
 ("\\^{s}" ?$,1 }(B) ("\\^s" ?$,1 }(B)
 ("\\c{S}" ?$,1 ~(B) ("\\cS" ?$,1 ~(B)
 ("\\c{s}" ?$,1 (B) ("\\cs" ?$,1 (B)

 ("\\v{S}" ?$,1! (B) ("\\vS" ?$,1! (B)
 ("\\v{s}" ?$,1!!(B) ("\\vs" ?$,1!!(B)
 ("\\c{T}" ?$,1!"(B) ("\\cT" ?$,1!"(B)
 ("\\c{t}" ?$,1!#(B) ("\\ct" ?$,1!#(B)
 ("\\v{T}" ?$,1!$(B) ("\\vT" ?$,1!$(B)
 ("\\v{t}" ?$,1!%(B) ("\\vt" ?$,1!%(B)
 ("\\~{U}" ?$,1!((B) ("\\~U" ?$,1!((B)
 ("\\~{u}" ?$,1!)(B) ("\\~u" ?$,1!)(B)
 ("\\={U}" ?$,1!*(B) ("\\=U" ?$,1!*(B)
 ("\\={u}" ?$,1!+(B) ("\\=u" ?$,1!+(B)
 ("\\u{U}" ?$,1!,(B) ("\\uU" ?$,1!,(B)
 ("\\u{u}" ?$,1!-(B) ("\\uu" ?$,1!-(B)

 ("\\H{U}" ?$,1!0(B) ("\\HU" ?$,1!0(B)
 ("\\H{u}" ?$,1!1(B) ("\\Hu" ?$,1!1(B)
 ("\\^{W}" ?$,1!4(B) ("\\^W" ?$,1!4(B)
 ("\\^{w}" ?$,1!5(B) ("\\^w" ?$,1!5(B)
 ("\\^{Y}" ?$,1!6(B) ("\\^Y" ?$,1!6(B)
 ("\\^{y}" ?$,1!7(B) ("\\^y" ?$,1!7(B)
 ("\\\"{Y}" ?$,1!8(B) ("\\\"Y" ?$,1!8(B)
 ("\\'{Z}" ?$,1!9(B) ("\\'Z" ?$,1!9(B)
 ("\\'{z}" ?$,1!:(B) ("\\'z" ?$,1!:(B)
 ("\\.{Z}" ?$,1!;(B) ("\\.Z" ?$,1!;(B)
 ("\\.{z}" ?$,1!<(B) ("\\.z" ?$,1!<(B)
 ("\\v{Z}" ?$,1!=(B) ("\\vZ" ?$,1!=(B)
 ("\\v{z}" ?$,1!>(B) ("\\vz" ?$,1!>(B)

 ("\\v{A}" ?$,1"-(B) ("\\vA" ?$,1"-(B)
 ("\\v{a}" ?$,1".(B) ("\\va" ?$,1".(B)
 ("\\v{I}" ?$,1"/(B) ("\\vI" ?$,1"/(B)
 ("\\v{\\i}" ?$,1"0(B) ("\\vi" ?$,1"0(B)
 ("\\v{O}" ?$,1"1(B) ("\\vO" ?$,1"1(B)
 ("\\v{o}" ?$,1"2(B) ("\\vo" ?$,1"2(B)
 ("\\v{U}" ?$,1"3(B) ("\\vU" ?$,1"3(B)
 ("\\v{u}" ?$,1"4(B) ("\\vu" ?$,1"4(B)

 ("\\={\\AE}" ?$,1"B(B) ("\\=\\AE" ?$,1"B(B)
 ("\\={\\ae}" ?$,1"C(B) ("\\=\\ae" ?$,1"C(B)
 ("\\v{G}" ?$,1"F(B) ("\\vG" ?$,1"F(B)
 ("\\v{g}" ?$,1"G(B) ("\\vg" ?$,1"G(B)
 ("\\v{K}" ?$,1"H(B) ("\\vK" ?$,1"H(B)
 ("\\v{k}" ?k) ("\\vk" ?k)

 ("\\v{\\j}" ?$,1"P(B) ("\\vj" ?$,1"P(B)
 ("\\'{G}" ?$,1"T(B) ("\\'G" ?$,1"T(B)
 ("\\'{g}" ?$,1"U(B) ("\\'g" ?$,1"U(B)
 ("\\`{N}" ?$,1"X(B) ("\\`N" ?$,1"X(B)
 ("\\`{n}" ?$,1"Y(B) ("\\`n" ?$,1"Y(B)
 ("\\'{\\AE}" ?$,1"\(B) ("\\'\\AE" ?$,1"\(B)
 ("\\'{\\ae}" ?$,1"](B) ("\\'\\ae" ?$,1"](B)
 ("\\'{\\O}" ?$,1"^(B) ("\\'\\O" ?$,1"^(B)
 ("\\'{\\o}" ?$,1"_(B) ("\\'\\o" ?$,1"_(B)

 ("\\v{H}" ?$,1"~(B) ("\\vH" ?$,1"~(B)
 ("\\v{h}" ?$,1"(B) ("\\vh" ?$,1"(B)
 ("\\.{A}" ?$,1#&(B) ("\\.A" ?$,1#&(B)
 ("\\.{a}" ?$,1#'(B) ("\\.a" ?$,1#'(B)
 ("\\c{E}" ?$,1#((B) ("\\cE" ?$,1#((B)
 ("\\c{e}" ?$,1#)(B) ("\\ce" ?$,1#)(B)
 ("\\.{O}" ?$,1#.(B) ("\\.O" ?$,1#.(B)
 ("\\.{o}" ?$,1#/(B) ("\\.o" ?$,1#/(B)
 ("\\={Y}" ?$,1#2(B) ("\\=Y" ?$,1#2(B)
 ("\\={y}" ?$,1#3(B) ("\\=y" ?$,1#3(B)

 ("\\v{}" ?$,1$g(B)
 ("\\u{}" ?$,1$x(B)
 ("\\.{}" ?$,1$y(B)
 ("\\~{}" ?$,1$|(B)
 ("\\H{}" ?$,1$}(B)

 ("\\'" ?$,1%A(B)
 ("\\'K" ?$,1mp(B)
 ("\\'M" ?$,1m~(B)
 ("\\'P" ?$,1n4(B)
 ("\\'W" ?$,1nb(B)
 ("\\'k" ?$,1mq(B)
 ("\\'m" ?$,1m(B)
 ("\\'p" ?$,1n5(B)
 ("\\'w" ?$,1nc(B)
 ("\\," ?$,1rf(B)
 ("\\." ?$,1%G(B)
 ("\\.B" ?$,1mB(B)
 ("\\.D" ?$,1mJ(B)
 ("\\.F" ?$,1m^(B)
 ("\\.H" ?$,1mb(B)
 ("\\.M" ?$,1n (B)
 ("\\.N" ?$,1n$(B)
 ("\\.P" ?$,1n6(B)
 ("\\.R" ?$,1n8(B)
 ("\\.S" ?$,1n@(B)
 ("\\.T" ?$,1nJ(B)
 ("\\.W" ?$,1nf(B)
 ("\\.X" ?$,1nj(B)
 ("\\.Y" ?$,1nn(B)
 ("\\.b" ?$,1mC(B)
 ("\\.d" ?$,1mK(B)
 ("\\.e" ?$,1 7(B)
 ("\\.f" ?$,1m_(B)
 ("\\.h" ?$,1mc(B)
 ("\\.m" ?$,1n!(B)
 ("\\.n" ?$,1n%(B)
 ("\\.p" ?$,1n7(B)
 ("\\.r" ?$,1n9(B)
 ("\\.s" ?$,1nA(B)
 ("\\.t" ?$,1nK(B)
 ("\\.w" ?$,1ng(B)
 ("\\.x" ?$,1nk(B)
 ("\\.y" ?$,1no(B)
 ("\\/" ?$,1rl(B)
 ("\\:" ?$,1re(B)
 ("\\;" ?$,1rd(B)
 ("\\=" ?$,1%D(B)
 ("\\=G" ?$,1m`(B)
 ("\\=g" ?$,1ma(B)

 ("^(" ?$,1s}(B)
 ("^)" ?$,1s~(B)
 ("^+" ?$,1sz(B)
 ("^-" ?$,1s{(B)
 ("^0" ?$,1sp(B)
 ("^1" ?,A9(B)
 ("^2" ?,A2(B)
 ("^3" ?,A3(B)
 ("^4" ?$,1st(B)
 ("^5" ?$,1su(B)
 ("^6" ?$,1sv(B)
 ("^7" ?$,1sw(B)
 ("^8" ?$,1sx(B)
 ("^9" ?$,1sy(B)
 ("^=" ?$,1s|(B)
 ("^\\gamma" ?$,1% (B)
 ("^h" ?$,1$P(B)
 ("^j" ?$,1$R(B)
 ("^l" ?$,1%!(B)
 ("^n" ?$,1s(B)
 ("^o" ?,A:(B)
 ("^r" ?$,1$S(B)
 ("^s" ?$,1%"(B)
 ("^w" ?$,1$W(B)
 ("^x" ?$,1%#(B)
 ("^y" ?$,1$X(B)
 ("^{SM}" ?$,1u`(B)
 ("^{TEL}" ?$,1ua(B)
 ("^{TM}" ?$,1ub(B)
 ("_(" ?$,1t-(B)
 ("_)" ?$,1t.(B)
 ("_+" ?$,1t*(B)
 ("_-" ?$,1t+(B)
 ("_0" ?$,1t (B)
 ("_1" ?$,1t!(B)
 ("_2" ?$,1t"(B)
 ("_3" ?$,1t#(B)
 ("_4" ?$,1t$(B)
 ("_5" ?$,1t%(B)
 ("_6" ?$,1t&(B)
 ("_7" ?$,1t'(B)
 ("_8" ?$,1t((B)
 ("_9" ?$,1t)(B)
 ("_=" ?$,1t,(B)

 ("\\~" ?$,1%C(B)
 ("\\~E" ?$,1o<(B)
 ("\\~V" ?$,1n\(B)
 ("\\~Y" ?$,1ox(B)
 ("\\~e" ?$,1o=(B)
 ("\\~v" ?$,1n](B)
 ("\\~y" ?$,1oy(B)

 ("\\\"" ?$,1%H(B)
 ("\\\"H" ?$,1mf(B)
 ("\\\"W" ?$,1nd(B)
 ("\\\"X" ?$,1nl(B)
 ("\\\"h" ?$,1mg(B)
 ("\\\"t" ?$,1nw(B)
 ("\\\"w" ?$,1ne(B)
 ("\\\"x" ?$,1nm(B)
 ("\\^" ?$,1%B(B)
 ("\\^Z" ?$,1np(B)
 ("\\^z" ?$,1nq(B)
 ("\\`" ?$,1%@(B)
 ("\\`W" ?$,1n`(B)
 ("\\`Y" ?$,1or(B)
 ("\\`w" ?$,1na(B)
 ("\\`y" ?$,1os(B)
 ("\\b" ?$,1%q(B)
 ("\\c" ?$,1%g(B)
 ("\\c{D}" ?$,1mP(B)
 ("\\c{H}" ?$,1mh(B)
 ("\\c{d}" ?$,1mQ(B)
 ("\\c{h}" ?$,1mi(B)
 ("\\d" ?$,1%c(B)
 ("\\d{A}" ?$,1o (B)
 ("\\d{B}" ?$,1mD(B)
 ("\\d{D}" ?$,1mL(B)
 ("\\d{E}" ?$,1o8(B)
 ("\\d{H}" ?$,1md(B)
 ("\\d{I}" ?$,1oJ(B)
 ("\\d{K}" ?$,1mr(B)
 ("\\d{L}" ?$,1mv(B)
 ("\\d{M}" ?$,1n"(B)
 ("\\d{N}" ?$,1n&(B)
 ("\\d{O}" ?$,1oL(B)
 ("\\d{R}" ?$,1n:(B)
 ("\\d{S}" ?$,1nB(B)
 ("\\d{T}" ?$,1nL(B)
 ("\\d{U}" ?$,1od(B)
 ("\\d{V}" ?$,1n^(B)
 ("\\d{W}" ?$,1nh(B)
 ("\\d{Y}" ?$,1ot(B)
 ("\\d{Z}" ?$,1nr(B)
 ("\\d{a}" ?$,1o!(B)
 ("\\d{b}" ?$,1mE(B)
 ("\\d{d}" ?$,1mM(B)
 ("\\d{e}" ?$,1o9(B)
 ("\\d{h}" ?$,1me(B)
 ("\\d{i}" ?$,1oK(B)
 ("\\d{k}" ?$,1ms(B)
 ("\\d{l}" ?$,1mw(B)
 ("\\d{m}" ?$,1n#(B)
 ("\\d{n}" ?$,1n'(B)
 ("\\d{o}" ?$,1oM(B)
 ("\\d{r}" ?$,1n;(B)
 ("\\d{s}" ?$,1nC(B)
 ("\\d{t}" ?$,1nM(B)
 ("\\d{u}" ?$,1oe(B)
 ("\\d{v}" ?$,1n_(B)
 ("\\d{w}" ?$,1ni(B)
 ("\\d{y}" ?$,1ou(B)
 ("\\d{z}" ?$,1ns(B)
 ("\\rq" ?$,1ry(B)
 ("\\u" ?$,1%F(B)
 ("\\v" ?$,1%L(B)
 ("\\v{L}" ?$,1 ](B)
 ("\\v{i}" ?$,1"0(B)
 ("\\v{j}" ?$,1"P(B)
 ("\\v{l}" ?$,1 ^(B)
 ("\\yen" ?,A%(B)

 ("\\Box" ?$,2!a(B)
 ("\\Bumpeq" ?$,1xn(B)
 ("\\Cap" ?$,1z2(B)
 ("\\Cup" ?$,1z3(B)
 ("\\Delta" ?$,1&t(B)
 ("\\Diamond" ?$,2"'(B)
 ("\\Downarrow" ?$,1wS(B)
 ("\\Gamma" ?$,1&s(B)
 ("\\H" ?$,1%K(B)
 ("\\H{o}" ?$,1 q(B)
 ("\\Im" ?$,1uQ(B)
 ("\\Join" ?$,1z((B)
 ("\\Lambda" ?$,1&{(B)
 ("\\Leftarrow" ?$,1wP(B)
 ("\\Leftrightarrow" ?$,1wT(B)
 ("\\Ll" ?$,1z8(B)
 ("\\Lleftarrow" ?$,1wZ(B)
 ("\\Longleftarrow" ?$,1wP(B)
 ("\\Longleftrightarrow" ?$,1wT(B)
 ("\\Longrightarrow" ?$,1wR(B)
 ("\\Lsh" ?$,1w0(B)
 ("\\Omega" ?$,1')(B)
 ("\\Phi" ?$,1'&(B)
 ("\\Pi" ?$,1' (B)
 ("\\Psi" ?$,1'((B)
 ("\\Re" ?$,1u\(B)
 ("\\Rightarrow" ?$,1wR(B)
 ("\\Rrightarrow" ?$,1w[(B)
 ("\\Rsh" ?$,1w1(B)
 ("\\Sigma" ?$,1'#(B)
 ("\\Subset" ?$,1z0(B)
 ("\\Supset" ?$,1z1(B)
 ("\\Theta" ?$,1&x(B)
 ("\\Uparrow" ?$,1wQ(B)
 ("\\Updownarrow" ?$,1wU(B)
 ("\\Upsilon" ?$,1'%(B)
 ("\\Vdash" ?$,1yi(B)
 ("\\Vert" ?$,1rv(B)
 ("\\Vvdash" ?$,1yj(B)
 ("\\Xi" ?$,1&~(B)
 ("\\aleph" ?$,1,p(B)
 ("\\alpha" ?$,1'1(B)
 ("\\amalg" ?$,1x0(B)
 ("\\angle" ?$,1x@(B)
 ("\\approx" ?$,1xh(B)
 ("\\approxeq" ?$,1xj(B)
 ("\\ast" ?$,1x7(B)
 ("\\asymp" ?$,1xm(B)
 ("\\backcong" ?$,1xl(B)
 ("\\backepsilon" ?$,1x-(B)
 ("\\backprime" ?$,1s5(B)
 ("\\backsim" ?$,1x](B)
 ("\\backsimeq" ?$,1z-(B)
 ("\\backslash" ?\\)
 ("\\barwedge" ?$,1y|(B)
 ("\\because" ?$,1xU(B)
 ("\\beta" ?$,1'2(B)
 ("\\beth" ?$,1,q(B)
 ("\\between" ?$,1y,(B)
 ("\\bigcap" ?$,1z"(B)
 ("\\bigcirc" ?$,2"O(B)
 ("\\bigcup" ?$,1z#(B)
 ("\\bigstar" ?$,2"e(B)
 ("\\bigtriangledown" ?$,2!}(B)
 ("\\bigtriangleup" ?$,2!s(B)
 ("\\bigvee" ?$,1z!(B)
 ("\\bigwedge" ?$,1z (B)
 ("\\blacklozenge" ?$,2%f(B)
 ("\\blacksquare" ?$,2!j(B)
 ("\\blacktriangle" ?$,2!t(B)
 ("\\blacktriangledown" ?$,2!~(B)
 ("\\blacktriangleleft" ?$,2""(B)
 ("\\blacktriangleright" ?$,2!x(B)
 ("\\bot" ?$,1ye(B)
 ("\\bowtie" ?$,1z((B)
 ("\\boxminus" ?$,1y_(B)
 ("\\boxplus" ?$,1y^(B)
 ("\\boxtimes" ?$,1y`(B)
 ("\\bullet" ?$,1s"(B)
 ("\\bumpeq" ?$,1xo(B)
 ("\\cap" ?$,1xI(B)
 ("\\cdots" ?$,1zO(B)
 ("\\centerdot" ?,A7(B)
 ("\\checkmark" ?$,2%S(B)
 ("\\chi" ?$,1'G(B)
 ("\\circ" ?$,2"+(B)
 ("\\circeq" ?$,1xw(B)
 ("\\circlearrowleft" ?$,1w:(B)
 ("\\circlearrowright" ?$,1w;(B)
 ("\\circledR" ?,A.(B)
 ("\\circledS" ?$,1H(B)
 ("\\circledast" ?$,1y[(B)
 ("\\circledcirc" ?$,1yZ(B)
 ("\\circleddash" ?$,1y](B)
 ("\\clubsuit" ?$,2#c(B)
 ("\\colon" ?:)
 ("\\coloneq" ?$,1xt(B)
 ("\\complement" ?$,1x!(B)
 ("\\cong" ?$,1xe(B)
 ("\\coprod" ?$,1x0(B)
 ("\\cup" ?$,1xJ(B)
 ("\\curlyeqprec" ?$,1z>(B)
 ("\\curlyeqsucc" ?$,1z?(B)
 ("\\curlypreceq" ?$,1y<(B)
 ("\\curlyvee" ?$,1z.(B)
 ("\\curlywedge" ?$,1z/(B)
 ("\\curvearrowleft" ?$,1w6(B)
 ("\\curvearrowright" ?$,1w7(B)

 ("\\dag" ?$,1s (B)
 ("\\dagger" ?$,1s (B)
 ("\\daleth" ?$,1,s(B)
 ("\\dashv" ?$,1yc(B)
 ("\\ddag" ?$,1s!(B)
 ("\\ddagger" ?$,1s!(B)
 ("\\ddots" ?$,1zQ(B)
 ("\\delta" ?$,1'4(B)
 ("\\diamond" ?$,1z$(B)
 ("\\diamondsuit" ?$,2#b(B)
 ("\\digamma" ?$,1'\(B)
 ("\\divideontimes" ?$,1z'(B)
 ("\\doteq" ?$,1xp(B)
 ("\\doteqdot" ?$,1xq(B)
 ("\\dotplus" ?$,1x4(B)
 ("\\dotsquare" ?$,1ya(B)
 ("\\downarrow" ?$,1vs(B)
 ("\\downdownarrows" ?$,1wJ(B)
 ("\\downleftharpoon" ?$,1wC(B)
 ("\\downrightharpoon" ?$,1wB(B)
 ("\\ell" ?$,1uS(B)
 ("\\emptyset" ?$,1x%(B)
 ("\\epsilon" ?$,1'5(B)
 ("\\eqcirc" ?$,1xv(B)
 ("\\eqcolon" ?$,1xu(B)
 ("\\eqslantgtr" ?$,1z=(B)
 ("\\eqslantless" ?$,1z<(B)
 ("\\equiv" ?$,1y!(B)
 ("\\eta" ?$,1'7(B)
 ("\\euro" ?$,1tL(B)
 ("\\exists" ?$,1x#(B)
 ("\\fallingdotseq" ?$,1xr(B)
 ("\\flat" ?$,2#m(B)
 ("\\forall" ?$,1x (B)
 ("\\frac1" ?$,1v?(B)
 ("\\frac12" ?,A=(B)
 ("\\frac13" ?$,1v3(B)
 ("\\frac14" ?,A<(B)
 ("\\frac15" ?$,1v5(B)
 ("\\frac16" ?$,1v9(B)
 ("\\frac18" ?$,1v;(B)
 ("\\frac23" ?$,1v4(B)
 ("\\frac25" ?$,1v6(B)
 ("\\frac34" ?,A>(B)
 ("\\frac35" ?$,1v7(B)
 ("\\frac38" ?$,1v<(B)
 ("\\frac45" ?$,1v8(B)
 ("\\frac56" ?$,1v:(B)
 ("\\frac58" ?$,1v=(B)
 ("\\frac78" ?$,1v>(B)
 ("\\frown" ?$,1{"(B)
 ("\\gamma" ?$,1'3(B)
 ("\\ge" ?$,1y%(B)
 ("\\geq" ?$,1y%(B)
 ("\\geqq" ?$,1y'(B)
 ("\\geqslant" ?$,1y%(B)
 ("\\gets" ?$,1vp(B)
 ("\\gg" ?$,1y+(B)
 ("\\ggg" ?$,1z9(B)
 ("\\gimel" ?$,1,r(B)
 ("\\gnapprox" ?$,1zG(B)
 ("\\gneq" ?$,1y)(B)
 ("\\gneqq" ?$,1y)(B)
 ("\\gnsim" ?$,1zG(B)
 ("\\gtrapprox" ?$,1y3(B)
 ("\\gtrdot" ?$,1z7(B)
 ("\\gtreqless" ?$,1z;(B)
 ("\\gtreqqless" ?$,1z;(B)
 ("\\gtrless" ?$,1y7(B)
 ("\\gtrsim" ?$,1y3(B)
 ("\\gvertneqq" ?$,1y)(B)
 ("\\hbar" ?$,1uO(B)
 ("\\heartsuit" ?$,2#e(B)
 ("\\hookleftarrow" ?$,1w)(B)
 ("\\hookrightarrow" ?$,1w*(B)
 ("\\iff" ?$,1wT(B)
 ("\\imath" ?$,1 Q(B)
 ("\\in" ?$,1x((B)
 ("\\infty" ?$,1x>(B)
 ("\\int" ?$,1xK(B)
 ("\\intercal" ?$,1yz(B)
 ("\\iota" ?$,1'9(B)
 ("\\kappa" ?$,1':(B)
 ("\\lambda" ?$,1';(B)
 ("\\langle" ?$,1{)(B)
 ("\\lbrace" ?{)
 ("\\lbrack" ?[)
 ("\\lceil" ?$,1zh(B)
 ("\\ldots" ?$,1s&(B)
 ("\\le" ?$,1y$(B)
 ("\\leadsto" ?$,1v}(B)
 ("\\leftarrow" ?$,1vp(B)
 ("\\leftarrowtail" ?$,1w"(B)
 ("\\leftharpoondown" ?$,1w=(B)
 ("\\leftharpoonup" ?$,1w<(B)
 ("\\leftleftarrows" ?$,1wG(B)
 ("\\leftparengtr" ?$,1{)(B)
 ("\\leftrightarrow" ?$,1vt(B)
 ("\\leftrightarrows" ?$,1wF(B)
 ("\\leftrightharpoons" ?$,1wK(B)
 ("\\leftrightsquigarrow" ?$,1w-(B)
 ("\\leftthreetimes" ?$,1z+(B)
 ("\\leq" ?$,1y$(B)
 ("\\leqq" ?$,1y&(B)
 ("\\leqslant" ?$,1y$(B)
 ("\\lessapprox" ?$,1y2(B)
 ("\\lessdot" ?$,1z6(B)
 ("\\lesseqgtr" ?$,1z:(B)
 ("\\lesseqqgtr" ?$,1z:(B)
 ("\\lessgtr" ?$,1y6(B)
 ("\\lesssim" ?$,1y2(B)
 ("\\lfloor" ?$,1zj(B)
 ("\\lhd" ?$,2"!(B)
 ("\\rhd" ?$,2!w(B)
 ("\\ll" ?$,1y*(B)
 ("\\llcorner" ?$,1z~(B)
 ("\\lnapprox" ?$,1zF(B)
 ("\\lneq" ?$,1y((B)
 ("\\lneqq" ?$,1y((B)
 ("\\lnsim" ?$,1zF(B)
 ("\\longleftarrow" ?$,1vp(B)
 ("\\longleftrightarrow" ?$,1vt(B)
 ("\\longmapsto" ?$,1w&(B)
 ("\\longrightarrow" ?$,1vr(B)
 ("\\looparrowleft" ?$,1w+(B)
 ("\\looparrowright" ?$,1w,(B)
 ("\\lozenge" ?$,2%g(B)
 ("\\lq" ?$,1rx(B)
 ("\\lrcorner" ?$,1z(B)
 ("\\ltimes" ?$,1z)(B)
 ("\\lvertneqq" ?$,1y((B)
 ("\\maltese" ?$,2%`(B)
 ("\\mapsto" ?$,1w&(B)
 ("\\measuredangle" ?$,1xA(B)
 ("\\mho" ?$,1ug(B)
 ("\\mid" ?$,1xC(B)
 ("\\models" ?$,1yg(B)
 ("\\mp" ?$,1x3(B)
 ("\\multimap" ?$,1yx(B)
 ("\\nLeftarrow" ?$,1wM(B)
 ("\\nLeftrightarrow" ?$,1wN(B)
 ("\\nRightarrow" ?$,1wO(B)
 ("\\nVDash" ?$,1yo(B)
 ("\\nVdash" ?$,1yn(B)
 ("\\nabla" ?$,1x'(B)
 ("\\napprox" ?$,1xi(B)
 ("\\natural" ?$,2#n(B)
 ("\\ncong" ?$,1xg(B)
 ("\\ne" ?$,1y (B)
 ("\\nearrow" ?$,1vw(B)
 ("\\neg" ?,A,(B)
 ("\\neq" ?$,1y (B)
 ("\\nequiv" ?$,1y"(B)
 ("\\newline" ?$,1s((B)
 ("\\nexists" ?$,1x$(B)
 ("\\ngeq" ?$,1y1(B)
 ("\\ngeqq" ?$,1y1(B)
 ("\\ngeqslant" ?$,1y1(B)
 ("\\ngtr" ?$,1y/(B)
 ("\\ni" ?$,1x+(B)
 ("\\nleftarrow" ?$,1vz(B)
 ("\\nleftrightarrow" ?$,1w.(B)
 ("\\nleq" ?$,1y0(B)
 ("\\nleqq" ?$,1y0(B)
 ("\\nleqslant" ?$,1y0(B)
 ("\\nless" ?$,1y.(B)
 ("\\nmid" ?$,1xD(B)
 ("\\not" ?$,1%x(B)
 ("\\notin" ?$,1x)(B)
 ("\\nparallel" ?$,1xF(B)
 ("\\nprec" ?$,1y@(B)
 ("\\npreceq" ?$,1z@(B)
 ("\\nrightarrow" ?$,1v{(B)
 ("\\nshortmid" ?$,1xD(B)
 ("\\nshortparallel" ?$,1xF(B)
 ("\\nsim" ?$,1xa(B)
 ("\\nsimeq" ?$,1xd(B)
 ("\\nsubset" ?$,1yD(B)
 ("\\nsubseteq" ?$,1yH(B)
 ("\\nsubseteqq" ?$,1yH(B)
 ("\\nsucc" ?$,1yA(B)
 ("\\nsucceq" ?$,1zA(B)
 ("\\nsupset" ?$,1yE(B)
 ("\\nsupseteq" ?$,1yI(B)
 ("\\nsupseteqq" ?$,1yI(B)
 ("\\ntriangleleft" ?$,1zJ(B)
 ("\\ntrianglelefteq" ?$,1zL(B)
 ("\\ntriangleright" ?$,1zK(B)
 ("\\ntrianglerighteq" ?$,1zM(B)
 ("\\nu" ?$,1'=(B)
 ("\\nvDash" ?$,1ym(B)
 ("\\nvdash" ?$,1yl(B)
 ("\\nwarrow" ?$,1vv(B)
 ("\\odot" ?$,1yY(B)
 ("\\oint" ?$,1xN(B)
 ("\\omega" ?$,1'I(B)
 ("\\ominus" ?$,1yV(B)
 ("\\oplus" ?$,1yU(B)
 ("\\oslash" ?$,1yX(B)
 ("\\otimes" ?$,1yW(B)
 ("\\par" ?$,1s)(B)
 ("\\parallel" ?$,1xE(B)
 ("\\partial" ?$,1x"(B)
 ("\\perp" ?$,1ye(B)
 ("\\phi" ?$,1'F(B)
 ("\\pi" ?$,1'@(B)
 ("\\pitchfork" ?$,1z4(B)
 ("\\prec" ?$,1y:(B)
 ("\\precapprox" ?$,1y>(B)
 ("\\preceq" ?$,1y<(B)
 ("\\precnapprox" ?$,1zH(B)
 ("\\precnsim" ?$,1zH(B)
 ("\\precsim" ?$,1y>(B)
 ("\\prime" ?$,1s2(B)
 ("\\prod" ?$,1x/(B)
 ("\\propto" ?$,1x=(B)
 ("\\psi" ?$,1'H(B)
 ("\\quad" ?$,1ra(B)
 ("\\rangle" ?$,1{*(B)
 ("\\rbrace" ?})
 ("\\rbrack" ?])
 ("\\rceil" ?$,1zi(B)
 ("\\rfloor" ?$,1zk(B)
 ("\\rightarrow" ?$,1vr(B)
 ("\\rightarrowtail" ?$,1w#(B)
 ("\\rightharpoondown" ?$,1wA(B)
 ("\\rightharpoonup" ?$,1w@(B)
 ("\\rightleftarrows" ?$,1wD(B)
 ("\\rightleftharpoons" ?$,1wL(B)
 ("\\rightparengtr" ?$,1{*(B)
 ("\\rightrightarrows" ?$,1wI(B)
 ("\\rightthreetimes" ?$,1z,(B)
 ("\\risingdotseq" ?$,1xs(B)
 ("\\rtimes" ?$,1z*(B)
 ("\\sbs" ?$,3q((B)
 ("\\searrow" ?$,1vx(B)
 ("\\setminus" ?$,1x6(B)
 ("\\sharp" ?$,2#o(B)
 ("\\shortmid" ?$,1xC(B)
 ("\\shortparallel" ?$,1xE(B)
 ("\\sigma" ?$,1'C(B)
 ("\\sim" ?$,1x\(B)
 ("\\simeq" ?$,1xc(B)
 ("\\smallamalg" ?$,1x0(B)
 ("\\smallsetminus" ?$,1x6(B)
 ("\\smallsmile" ?$,1{#(B)
 ("\\smile" ?$,1{#(B)
 ("\\spadesuit" ?$,2#`(B)
 ("\\sphericalangle" ?$,1xB(B)
 ("\\sqcap" ?$,1yS(B)
 ("\\sqcup" ?$,1yT(B)
 ("\\sqsubset" ?$,1yO(B)
 ("\\sqsubseteq" ?$,1yQ(B)
 ("\\sqsupset" ?$,1yP(B)
 ("\\sqsupseteq" ?$,1yR(B)
 ("\\square" ?$,2!a(B)
 ("\\squigarrowright" ?$,1w](B)
 ("\\star" ?$,1z&(B)
 ("\\straightphi" ?$,1'F(B)
 ("\\subset" ?$,1yB(B)
 ("\\subseteq" ?$,1yF(B)
 ("\\subseteqq" ?$,1yF(B)
 ("\\subsetneq" ?$,1yJ(B)
 ("\\subsetneqq" ?$,1yJ(B)
 ("\\succ" ?$,1y;(B)
 ("\\succapprox" ?$,1y?(B)
 ("\\succcurlyeq" ?$,1y=(B)
 ("\\succeq" ?$,1y=(B)
 ("\\succnapprox" ?$,1zI(B)
 ("\\succnsim" ?$,1zI(B)
 ("\\succsim" ?$,1y?(B)
 ("\\sum" ?$,1x1(B)
 ("\\supset" ?$,1yC(B)
 ("\\supseteq" ?$,1yG(B)
 ("\\supseteqq" ?$,1yG(B)
 ("\\supsetneq" ?$,1yK(B)
 ("\\supsetneqq" ?$,1yK(B)
 ("\\surd" ?$,1x:(B)
 ("\\swarrow" ?$,1vy(B)
 ("\\tau" ?$,1'D(B)
 ("\\therefore" ?$,1xT(B)
 ("\\theta" ?$,1'8(B)
 ("\\thickapprox" ?$,1xh(B)
 ("\\thicksim" ?$,1x\(B)
 ("\\to" ?$,1vr(B)
 ("\\top" ?$,1yd(B)
 ("\\triangle" ?$,2!u(B)
 ("\\triangledown" ?$,2!(B)
 ("\\triangleleft" ?$,2"#(B)
 ("\\trianglelefteq" ?$,1yt(B)
 ("\\triangleq" ?$,1x|(B)
 ("\\triangleright" ?$,2!y(B)
 ("\\trianglerighteq" ?$,1yu(B)
 ("\\twoheadleftarrow" ?$,1v~(B)
 ("\\twoheadrightarrow" ?$,1w (B)
 ("\\ulcorner" ?$,1z|(B)
 ("\\uparrow" ?$,1vq(B)
 ("\\updownarrow" ?$,1vu(B)
 ("\\upleftharpoon" ?$,1w?(B)
 ("\\uplus" ?$,1yN(B)
 ("\\uprightharpoon" ?$,1w>(B)
 ("\\upsilon" ?$,1'E(B)
 ("\\upuparrows" ?$,1wH(B)
 ("\\urcorner" ?$,1z}(B)
 ("\\u{i}" ?$,1 M(B)
 ("\\vDash" ?$,1yh(B)
 ("\\varkappa" ?$,1'p(B)
 ("\\varphi" ?$,1'U(B)
 ("\\varpi" ?$,1'V(B)
 ("\\varprime" ?$,1s2(B)
 ("\\varpropto" ?$,1x=(B)
 ("\\varrho" ?$,1'q(B)
 ("\\varsigma" ?$,1'B(B)
 ("\\vartheta" ?$,1'Q(B)
 ("\\vartriangleleft" ?$,1yr(B)
 ("\\vartriangleright" ?$,1ys(B)
 ("\\vdash" ?$,1yb(B)
 ("\\vdots" ?$,1zN(B)
 ("\\vee" ?$,1xH(B)
 ("\\veebar" ?$,1y{(B)
 ("\\vert" ?|)
 ("\\wedge" ?$,1xG(B)
 ("\\wp" ?$,1uX(B)
 ("\\wr" ?$,1x`(B)
 ("\\xi" ?$,1'>(B)
 ("\\zeta" ?$,1'6(B)

 ("\\Bbb{N}" ?$,1uU(B)			; AMS commands for blackboard bold
 ("\\Bbb{P}" ?$,1uY(B)			; Also sometimes \mathbb.
 ("\\Bbb{R}" ?$,1u](B)
 ("\\Bbb{Z}" ?$,1ud(B)
 ("--" ?$,1rs(B)
 ("---" ?$,1rt(B)
 ("~" ?,A (B)				; nbsp
 ("\\mu" ?$,1'<(B)
 ("\\rho" ?$,1'A(B)
 ("\\mathscr{I}" ?$,1uP(B)			; moment of inertia
 ("\\Smiley" ?$,2#:(B)
 ("\\blacksmiley" ?$,2#;(B)
 ("\\Frowny" ?$,2#9(B)
 ("\\Letter" ?$,2%I(B)
 ("\\permil" ?$,1s0(B)
;;; Probably not useful enough:
;;;  ("\\Telefon" ?$,2"n(B)			; there are other possibilities
;;;  ("\\Radioactivity" ?$,2#"(B)
;;;  ("\Biohazard" ?$,2##(B)
;;;  ("\\Male" ?$,2#B(B)
;;;  ("\\Female" ?$,2#@(B)
;;;  ("\\Lightning" ?$,2"g(B)
;;;  ("\\Mercury" ?$,2#?(B)
;;;  ("\\Earth" ?$,2#A(B)
;;;  ("\\Jupiter" ?$,2#C(B)
;;;  ("\\Saturn" ?$,2#D(B)
;;;  ("\\Uranus" ?$,2#E(B)
;;;  ("\\Neptune" ?$,2#F(B)
;;;  ("\\Pluto" ?$,2#G(B)
;;;  ("\\Sun" ?$,2"i(B)
;;;  ("\\Writinghand" ?$,2%M(B)
;;;  ("\\\\Yinyang" ?$,2#/(B)
;;;  ("\\Heart" ?$,2#a(B)
 ("\\registered" ?,A.(B)
 ("\\currency" ?,A$(B)
 ("\\dh" ?,Ap(B)
 ("\\DH" ?,AP(B)
 ("\\th" ?,A~(B)
 ("\\TH" ?,A^(B)
 ("\\micro" ?,A5(B)
 ("\\lnot" ?,A,(B)
 ("\\ordfeminine" ?,A*(B)
 ("\\ordmasculine" ?,A:(B)
 ("\\lambdabar" ?$,1![(B)
 ("\\celsius" ?$,1uC(B)
 ;; by analogy with lq, rq:
 ("\\ldq" ?\$,1r|(B)
 ("\\rdq" ?\$,1r}(B)
 ("\\minus" ?$,1x2(B)
 ("\\defs" ?$,1xy(B)				; per fuzz/zed
;;  ("\\sqrt[3]" ?$,1x;(B)
 ("\\llbracket" ?\$,2=Z(B) 			; stmaryrd
 ("\\rrbracket" ?\$,2=[(B) 
;;  ("\\lbag" ?\$,2=Z(B) 			; fuzz
;;  ("\\rbag" ?\$,2=[(B) 
 ("\\ldata" ?\$,2=J(B) 			; fuzz/zed
 ("\\rdata" ?\$,2=K(B)
 )

;;; arch-tag: 3daae613-2c53-446e-a0a1-ee2e1ebed15f
;;; latin-ltx.el ends here