Mercurial > emacs
view lisp/calc/calc-math.el @ 96781:f6dee8e9b0f2
(eshell-quote-backslash): Restrict previous change to XEmacs, since it
does nothing for Emacs.
author | Glenn Morris <rgm@gnu.org> |
---|---|
date | Fri, 18 Jul 2008 06:55:53 +0000 |
parents | 6c9af2bfcfee |
children | a9dc0e7c3f2b |
line wrap: on
line source
;;; calc-math.el --- mathematical functions for Calc ;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004, ;; 2005, 2006, 2007, 2008 Free Software Foundation, Inc. ;; Author: David Gillespie <daveg@synaptics.com> ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com> ;; This file is part of GNU Emacs. ;; GNU Emacs is free software: you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation, either version 3 of the License, or ;; (at your option) any later version. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. ;;; Commentary: ;;; Code: ;; This file is autoloaded from calc-ext.el. (require 'calc-ext) (require 'calc-macs) ;;; Find out how many 9s in 9.9999... will give distinct Emacs floats, ;;; then back off by one. (defvar math-emacs-precision (let* ((n 1) (x 9) (xx (+ x (* 9 (expt 10 (- n)))))) (while (/= x xx) (progn (setq n (1+ n)) (setq x xx) (setq xx (+ x (* 9 (expt 10 (- n))))))) (1- n)) "The number of digits in an Emacs float.") ;;; Find the largest power of 10 which is an Emacs float, ;;; then back off by one so that any float d.dddd...eN ;;; is an Emacs float, for acceptable d.dddd.... (defvar math-largest-emacs-expt (let ((x 1) (pow 1e2)) ;; The following loop is for efficiency; it should stop when ;; 10^(2x) is too large. This could be indicated by a range ;; error when computing 10^(2x) or an infinite value for 10^(2x). (while (and pow (< pow 1.0e+INF)) (setq x (* 2 x)) (setq pow (condition-case nil (expt 10.0 (* 2 x)) (error nil)))) ;; The following loop should stop when 10^(x+1) is too large. (setq pow (condition-case nil (expt 10.0 (1+ x)) (error nil))) (while (and pow (< pow 1.0e+INF)) (setq x (1+ x)) (setq pow (condition-case nil (expt 10.0 (1+ x)) (error nil)))) (1- x)) "The largest exponent which Calc will convert to an Emacs float.") (defvar math-smallest-emacs-expt (let ((x -1)) (while (condition-case nil (> (expt 10.0 x) 0.0) (error nil)) (setq x (* 2 x))) (setq x (/ x 2)) (while (condition-case nil (> (expt 10.0 x) 0.0) (error nil)) (setq x (1- x))) (+ x 2)) "The smallest exponent which Calc will convert to an Emacs float.") (defun math-use-emacs-fn (fn x) "Use the native Emacs function FN to evaluate the Calc number X. If this can't be done, return NIL." (and (<= calc-internal-prec math-emacs-precision) (math-realp x) (let* ((fx (math-float x)) (xpon (+ (nth 2 x) (1- (math-numdigs (nth 1 x)))))) (and (<= math-smallest-emacs-expt xpon) (<= xpon math-largest-emacs-expt) (condition-case nil (math-read-number (number-to-string (funcall fn (string-to-number (math-format-number (math-float x)))))) (error nil)))))) (defun calc-sqrt (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-inverse) (calc-unary-op "^2" 'calcFunc-sqr arg) (calc-unary-op "sqrt" 'calcFunc-sqrt arg)))) (defun calc-isqrt (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-inverse) (calc-unary-op "^2" 'calcFunc-sqr arg) (calc-unary-op "isqt" 'calcFunc-isqrt arg)))) (defun calc-hypot (arg) (interactive "P") (calc-slow-wrapper (calc-binary-op "hypt" 'calcFunc-hypot arg))) (defun calc-ln (arg) (interactive "P") (calc-invert-func) (calc-exp arg)) (defun calc-log10 (arg) (interactive "P") (calc-hyperbolic-func) (calc-ln arg)) (defun calc-log (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-inverse) (calc-binary-op "alog" 'calcFunc-alog arg) (calc-binary-op "log" 'calcFunc-log arg)))) (defun calc-ilog (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-inverse) (calc-binary-op "alog" 'calcFunc-alog arg) (calc-binary-op "ilog" 'calcFunc-ilog arg)))) (defun calc-lnp1 (arg) (interactive "P") (calc-invert-func) (calc-expm1 arg)) (defun calc-exp (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-hyperbolic) (if (calc-is-inverse) (calc-unary-op "lg10" 'calcFunc-log10 arg) (calc-unary-op "10^" 'calcFunc-exp10 arg)) (if (calc-is-inverse) (calc-unary-op "ln" 'calcFunc-ln arg) (calc-unary-op "exp" 'calcFunc-exp arg))))) (defun calc-expm1 (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-inverse) (calc-unary-op "ln+1" 'calcFunc-lnp1 arg) (calc-unary-op "ex-1" 'calcFunc-expm1 arg)))) (defun calc-pi () (interactive) (calc-slow-wrapper (if (calc-is-inverse) (if (calc-is-hyperbolic) (if calc-symbolic-mode (calc-pop-push-record 0 "phi" '(var phi var-phi)) (calc-pop-push-record 0 "phi" (math-phi))) (if calc-symbolic-mode (calc-pop-push-record 0 "gmma" '(var gamma var-gamma)) (calc-pop-push-record 0 "gmma" (math-gamma-const)))) (if (calc-is-hyperbolic) (if calc-symbolic-mode (calc-pop-push-record 0 "e" '(var e var-e)) (calc-pop-push-record 0 "e" (math-e))) (if calc-symbolic-mode (calc-pop-push-record 0 "pi" '(var pi var-pi)) (calc-pop-push-record 0 "pi" (math-pi))))))) (defun calc-sin (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-hyperbolic) (if (calc-is-inverse) (calc-unary-op "asnh" 'calcFunc-arcsinh arg) (calc-unary-op "sinh" 'calcFunc-sinh arg)) (if (calc-is-inverse) (calc-unary-op "asin" 'calcFunc-arcsin arg) (calc-unary-op "sin" 'calcFunc-sin arg))))) (defun calc-arcsin (arg) (interactive "P") (calc-invert-func) (calc-sin arg)) (defun calc-sinh (arg) (interactive "P") (calc-hyperbolic-func) (calc-sin arg)) (defun calc-arcsinh (arg) (interactive "P") (calc-invert-func) (calc-hyperbolic-func) (calc-sin arg)) (defun calc-sec (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-hyperbolic) (calc-unary-op "sech" 'calcFunc-sech arg) (calc-unary-op "sec" 'calcFunc-sec arg)))) (defun calc-sech (arg) (interactive "P") (calc-hyperbolic-func) (calc-sec arg)) (defun calc-cos (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-hyperbolic) (if (calc-is-inverse) (calc-unary-op "acsh" 'calcFunc-arccosh arg) (calc-unary-op "cosh" 'calcFunc-cosh arg)) (if (calc-is-inverse) (calc-unary-op "acos" 'calcFunc-arccos arg) (calc-unary-op "cos" 'calcFunc-cos arg))))) (defun calc-arccos (arg) (interactive "P") (calc-invert-func) (calc-cos arg)) (defun calc-cosh (arg) (interactive "P") (calc-hyperbolic-func) (calc-cos arg)) (defun calc-arccosh (arg) (interactive "P") (calc-invert-func) (calc-hyperbolic-func) (calc-cos arg)) (defun calc-csc (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-hyperbolic) (calc-unary-op "csch" 'calcFunc-csch arg) (calc-unary-op "csc" 'calcFunc-csc arg)))) (defun calc-csch (arg) (interactive "P") (calc-hyperbolic-func) (calc-csc arg)) (defun calc-sincos () (interactive) (calc-slow-wrapper (if (calc-is-inverse) (calc-enter-result 1 "asnc" (list 'calcFunc-arcsincos (calc-top-n 1))) (calc-enter-result 1 "sncs" (list 'calcFunc-sincos (calc-top-n 1)))))) (defun calc-tan (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-hyperbolic) (if (calc-is-inverse) (calc-unary-op "atnh" 'calcFunc-arctanh arg) (calc-unary-op "tanh" 'calcFunc-tanh arg)) (if (calc-is-inverse) (calc-unary-op "atan" 'calcFunc-arctan arg) (calc-unary-op "tan" 'calcFunc-tan arg))))) (defun calc-arctan (arg) (interactive "P") (calc-invert-func) (calc-tan arg)) (defun calc-tanh (arg) (interactive "P") (calc-hyperbolic-func) (calc-tan arg)) (defun calc-arctanh (arg) (interactive "P") (calc-invert-func) (calc-hyperbolic-func) (calc-tan arg)) (defun calc-cot (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-hyperbolic) (calc-unary-op "coth" 'calcFunc-coth arg) (calc-unary-op "cot" 'calcFunc-cot arg)))) (defun calc-coth (arg) (interactive "P") (calc-hyperbolic-func) (calc-cot arg)) (defun calc-arctan2 () (interactive) (calc-slow-wrapper (calc-enter-result 2 "atn2" (cons 'calcFunc-arctan2 (calc-top-list-n 2))))) (defun calc-conj (arg) (interactive "P") (calc-wrapper (calc-unary-op "conj" 'calcFunc-conj arg))) (defun calc-imaginary () (interactive) (calc-slow-wrapper (calc-pop-push-record 1 "i*" (math-imaginary (calc-top-n 1))))) (defun calc-to-degrees (arg) (interactive "P") (calc-wrapper (calc-unary-op ">deg" 'calcFunc-deg arg))) (defun calc-to-radians (arg) (interactive "P") (calc-wrapper (calc-unary-op ">rad" 'calcFunc-rad arg))) (defun calc-degrees-mode (arg) (interactive "p") (cond ((= arg 1) (calc-wrapper (calc-change-mode 'calc-angle-mode 'deg) (message "Angles measured in degrees"))) ((= arg 2) (calc-radians-mode)) ((= arg 3) (calc-hms-mode)) (t (error "Prefix argument out of range")))) (defun calc-radians-mode () (interactive) (calc-wrapper (calc-change-mode 'calc-angle-mode 'rad) (message "Angles measured in radians"))) ;;; Compute the integer square-root floor(sqrt(A)). A > 0. [I I] [Public] ;;; This method takes advantage of the fact that Newton's method starting ;;; with an overestimate always works, even using truncating integer division! (defun math-isqrt (a) (cond ((Math-zerop a) a) ((not (math-natnump a)) (math-reject-arg a 'natnump)) ((integerp a) (math-isqrt-small a)) (t (math-normalize (cons 'bigpos (cdr (math-isqrt-bignum (cdr a)))))))) (defun calcFunc-isqrt (a) (if (math-realp a) (math-isqrt (math-floor a)) (math-floor (math-sqrt a)))) ;;; This returns (flag . result) where the flag is t if A is a perfect square. (defun math-isqrt-bignum (a) ; [P.l L] (let ((len (length a))) (if (= (% len 2) 0) (let* ((top (nthcdr (- len 2) a))) (math-isqrt-bignum-iter a (math-scale-bignum-digit-size (math-bignum-big (1+ (math-isqrt-small (+ (* (nth 1 top) math-bignum-digit-size) (car top))))) (1- (/ len 2))))) (let* ((top (nth (1- len) a))) (math-isqrt-bignum-iter a (math-scale-bignum-digit-size (list (1+ (math-isqrt-small top))) (/ len 2))))))) (defun math-isqrt-bignum-iter (a guess) ; [l L l] (math-working "isqrt" (cons 'bigpos guess)) (let* ((q (math-div-bignum a guess)) (s (math-add-bignum (car q) guess)) (g2 (math-div2-bignum s)) (comp (math-compare-bignum g2 guess))) (if (< comp 0) (math-isqrt-bignum-iter a g2) (cons (and (= comp 0) (math-zerop-bignum (cdr q)) (= (% (car s) 2) 0)) guess)))) (defun math-zerop-bignum (a) (and (eq (car a) 0) (progn (while (eq (car (setq a (cdr a))) 0)) (null a)))) (defun math-scale-bignum-digit-size (a n) ; [L L S] (while (> n 0) (setq a (cons 0 a) n (1- n))) a) (defun math-isqrt-small (a) ; A > 0. [S S] (let ((g (cond ((>= a 1000000) 10000) ((>= a 10000) 1000) ((>= a 100) 100) (t 10))) g2) (while (< (setq g2 (/ (+ g (/ a g)) 2)) g) (setq g g2)) g)) ;;; Compute the square root of a number. ;;; [T N] if possible, else [F N] if possible, else [C N]. [Public] (defun math-sqrt (a) (or (and (Math-zerop a) a) (and (math-known-nonposp a) (math-imaginary (math-sqrt (math-neg a)))) (and (integerp a) (let ((sqrt (math-isqrt-small a))) (if (= (* sqrt sqrt) a) sqrt (if calc-symbolic-mode (list 'calcFunc-sqrt a) (math-sqrt-float (math-float a) (math-float sqrt)))))) (and (eq (car-safe a) 'bigpos) (let* ((res (math-isqrt-bignum (cdr a))) (sqrt (math-normalize (cons 'bigpos (cdr res))))) (if (car res) sqrt (if calc-symbolic-mode (list 'calcFunc-sqrt a) (math-sqrt-float (math-float a) (math-float sqrt)))))) (and (eq (car-safe a) 'frac) (let* ((num-res (math-isqrt-bignum (cdr (Math-bignum-test (nth 1 a))))) (num-sqrt (math-normalize (cons 'bigpos (cdr num-res)))) (den-res (math-isqrt-bignum (cdr (Math-bignum-test (nth 2 a))))) (den-sqrt (math-normalize (cons 'bigpos (cdr den-res))))) (if (and (car num-res) (car den-res)) (list 'frac num-sqrt den-sqrt) (if calc-symbolic-mode (if (or (car num-res) (car den-res)) (math-div (if (car num-res) num-sqrt (list 'calcFunc-sqrt (nth 1 a))) (if (car den-res) den-sqrt (list 'calcFunc-sqrt (nth 2 a)))) (list 'calcFunc-sqrt a)) (math-sqrt-float (math-float a) (math-div (math-float num-sqrt) den-sqrt)))))) (and (eq (car-safe a) 'float) (if calc-symbolic-mode (if (= (% (nth 2 a) 2) 0) (let ((res (math-isqrt-bignum (cdr (Math-bignum-test (nth 1 a)))))) (if (car res) (math-make-float (math-normalize (cons 'bigpos (cdr res))) (/ (nth 2 a) 2)) (signal 'inexact-result nil))) (signal 'inexact-result nil)) (math-sqrt-float a))) (and (eq (car-safe a) 'cplx) (math-with-extra-prec 2 (let* ((d (math-abs a)) (imag (math-sqrt (math-mul (math-sub d (nth 1 a)) '(float 5 -1))))) (list 'cplx (math-sqrt (math-mul (math-add d (nth 1 a)) '(float 5 -1))) (if (math-negp (nth 2 a)) (math-neg imag) imag))))) (and (eq (car-safe a) 'polar) (list 'polar (math-sqrt (nth 1 a)) (math-mul (nth 2 a) '(float 5 -1)))) (and (eq (car-safe a) 'sdev) (let ((sqrt (math-sqrt (nth 1 a)))) (math-make-sdev sqrt (math-div (nth 2 a) (math-mul sqrt 2))))) (and (eq (car-safe a) 'intv) (not (math-negp (nth 2 a))) (math-make-intv (nth 1 a) (math-sqrt (nth 2 a)) (math-sqrt (nth 3 a)))) (and (eq (car-safe a) '*) (or (math-known-nonnegp (nth 1 a)) (math-known-nonnegp (nth 2 a))) (math-mul (math-sqrt (nth 1 a)) (math-sqrt (nth 2 a)))) (and (eq (car-safe a) '/) (or (and (math-known-nonnegp (nth 2 a)) (math-div (math-sqrt (nth 1 a)) (math-sqrt (nth 2 a)))) (and (math-known-nonnegp (nth 1 a)) (not (math-equal-int (nth 1 a) 1)) (math-mul (math-sqrt (nth 1 a)) (math-sqrt (math-div 1 (nth 2 a))))))) (and (eq (car-safe a) '^) (math-known-evenp (nth 2 a)) (math-known-realp (nth 1 a)) (math-abs (math-pow (nth 1 a) (math-div (nth 2 a) 2)))) (let ((inf (math-infinitep a))) (and inf (math-mul (math-sqrt (math-infinite-dir a inf)) inf))) (progn (calc-record-why 'numberp a) (list 'calcFunc-sqrt a)))) (defalias 'calcFunc-sqrt 'math-sqrt) (defun math-infinite-dir (a &optional inf) (or inf (setq inf (math-infinitep a))) (math-normalize (math-expr-subst a inf 1))) (defun math-sqrt-float (a &optional guess) ; [F F F] (if calc-symbolic-mode (signal 'inexact-result nil) (math-with-extra-prec 1 (math-sqrt-raw a guess)))) (defun math-sqrt-raw (a &optional guess) ; [F F F] (if (not (Math-posp a)) (math-sqrt a) (cond ((math-use-emacs-fn 'sqrt a)) (t (if (null guess) (let ((ldiff (- (math-numdigs (nth 1 a)) 6))) (or (= (% (+ (nth 2 a) ldiff) 2) 0) (setq ldiff (1+ ldiff))) (setq guess (math-make-float (math-isqrt-small (math-scale-int (nth 1 a) (- ldiff))) (/ (+ (nth 2 a) ldiff) 2))))) (math-sqrt-float-iter a guess))))) (defun math-sqrt-float-iter (a guess) ; [F F F] (math-working "sqrt" guess) (let ((g2 (math-mul-float (math-add-float guess (math-div-float a guess)) '(float 5 -1)))) (if (math-nearly-equal-float g2 guess) g2 (math-sqrt-float-iter a g2)))) ;;; True if A and B differ only in the last digit of precision. [P F F] (defun math-nearly-equal-float (a b) (let ((ediff (- (nth 2 a) (nth 2 b)))) (cond ((= ediff 0) ;; Expanded out for speed (setq ediff (math-add (Math-integer-neg (nth 1 a)) (nth 1 b))) (or (eq ediff 0) (and (not (consp ediff)) (< ediff 10) (> ediff -10) (= (math-numdigs (nth 1 a)) calc-internal-prec)))) ((= ediff 1) (setq ediff (math-add (Math-integer-neg (nth 1 b)) (math-scale-int (nth 1 a) 1))) (and (not (consp ediff)) (< ediff 10) (> ediff -10) (= (math-numdigs (nth 1 b)) calc-internal-prec))) ((= ediff -1) (setq ediff (math-add (Math-integer-neg (nth 1 a)) (math-scale-int (nth 1 b) 1))) (and (not (consp ediff)) (< ediff 10) (> ediff -10) (= (math-numdigs (nth 1 a)) calc-internal-prec)))))) (defun math-nearly-equal (a b) ; [P N N] [Public] (setq a (math-float a)) (setq b (math-float b)) (if (eq (car a) 'polar) (setq a (math-complex a))) (if (eq (car b) 'polar) (setq b (math-complex b))) (if (eq (car a) 'cplx) (if (eq (car b) 'cplx) (and (or (math-nearly-equal-float (nth 1 a) (nth 1 b)) (and (math-nearly-zerop-float (nth 1 a) (nth 2 a)) (math-nearly-zerop-float (nth 1 b) (nth 2 b)))) (or (math-nearly-equal-float (nth 2 a) (nth 2 b)) (and (math-nearly-zerop-float (nth 2 a) (nth 1 a)) (math-nearly-zerop-float (nth 2 b) (nth 1 b))))) (and (math-nearly-equal-float (nth 1 a) b) (math-nearly-zerop-float (nth 2 a) b))) (if (eq (car b) 'cplx) (and (math-nearly-equal-float a (nth 1 b)) (math-nearly-zerop-float a (nth 2 b))) (math-nearly-equal-float a b)))) ;;; True if A is nearly zero compared to B. [P F F] (defun math-nearly-zerop-float (a b) (or (eq (nth 1 a) 0) (<= (+ (math-numdigs (nth 1 a)) (nth 2 a)) (1+ (- (+ (math-numdigs (nth 1 b)) (nth 2 b)) calc-internal-prec))))) (defun math-nearly-zerop (a b) ; [P N R] [Public] (setq a (math-float a)) (setq b (math-float b)) (if (eq (car a) 'cplx) (and (math-nearly-zerop-float (nth 1 a) b) (math-nearly-zerop-float (nth 2 a) b)) (if (eq (car a) 'polar) (math-nearly-zerop-float (nth 1 a) b) (math-nearly-zerop-float a b)))) ;;; This implementation could be improved, accuracy-wise. (defun math-hypot (a b) (cond ((Math-zerop a) (math-abs b)) ((Math-zerop b) (math-abs a)) ((not (Math-scalarp a)) (if (math-infinitep a) (if (math-infinitep b) (if (equal a b) a '(var nan var-nan)) a) (calc-record-why 'scalarp a) (list 'calcFunc-hypot a b))) ((not (Math-scalarp b)) (if (math-infinitep b) b (calc-record-why 'scalarp b) (list 'calcFunc-hypot a b))) ((and (Math-numberp a) (Math-numberp b)) (math-with-extra-prec 1 (math-sqrt (math-add (calcFunc-abssqr a) (calcFunc-abssqr b))))) ((eq (car-safe a) 'hms) (if (eq (car-safe b) 'hms) ; this helps sdev's of hms forms (math-to-hms (math-hypot (math-from-hms a 'deg) (math-from-hms b 'deg))) (math-to-hms (math-hypot (math-from-hms a 'deg) b)))) ((eq (car-safe b) 'hms) (math-to-hms (math-hypot a (math-from-hms b 'deg)))) (t nil))) (defalias 'calcFunc-hypot 'math-hypot) (defun calcFunc-sqr (x) (math-pow x 2)) (defun math-nth-root (a n) (cond ((= n 2) (math-sqrt a)) ((Math-zerop a) a) ((Math-negp a) nil) ((Math-integerp a) (let ((root (math-nth-root-integer a n))) (if (car root) (cdr root) (and (not calc-symbolic-mode) (math-nth-root-float (math-float a) n (math-float (cdr root))))))) ((eq (car-safe a) 'frac) (let* ((num-root (math-nth-root-integer (nth 1 a) n)) (den-root (math-nth-root-integer (nth 2 a) n))) (if (and (car num-root) (car den-root)) (list 'frac (cdr num-root) (cdr den-root)) (and (not calc-symbolic-mode) (math-nth-root-float (math-float a) n (math-div-float (math-float (cdr num-root)) (math-float (cdr den-root)))))))) ((eq (car-safe a) 'float) (and (not calc-symbolic-mode) (math-nth-root-float a n))) ((eq (car-safe a) 'polar) (let ((root (math-nth-root (nth 1 a) n))) (and root (list 'polar root (math-div (nth 2 a) n))))) (t nil))) ;; The variables math-nrf-n, math-nrf-nf and math-nrf-nfm1 are local ;; to math-nth-root-float, but are used by math-nth-root-float-iter, ;; which is called by math-nth-root-float. (defvar math-nrf-n) (defvar math-nrf-nf) (defvar math-nrf-nfm1) (defun math-nth-root-float (a math-nrf-n &optional guess) (math-inexact-result) (math-with-extra-prec 1 (let ((math-nrf-nf (math-float math-nrf-n)) (math-nrf-nfm1 (math-float (1- math-nrf-n)))) (math-nth-root-float-iter a (or guess (math-make-float 1 (/ (+ (math-numdigs (nth 1 a)) (nth 2 a) (/ math-nrf-n 2)) math-nrf-n))))))) (defun math-nth-root-float-iter (a guess) (math-working "root" guess) (let ((g2 (math-div-float (math-add-float (math-mul math-nrf-nfm1 guess) (math-div-float a (math-ipow guess (1- math-nrf-n)))) math-nrf-nf))) (if (math-nearly-equal-float g2 guess) g2 (math-nth-root-float-iter a g2)))) ;; The variable math-nri-n is local to math-nth-root-integer, but ;; is used by math-nth-root-int-iter, which is called by ;; math-nth-root-int. (defvar math-nri-n) (defun math-nth-root-integer (a math-nri-n &optional guess) ; [I I S] (math-nth-root-int-iter a (or guess (math-scale-int 1 (/ (+ (math-numdigs a) (1- math-nri-n)) math-nri-n))))) (defun math-nth-root-int-iter (a guess) (math-working "root" guess) (let* ((q (math-idivmod a (math-ipow guess (1- math-nri-n)))) (s (math-add (car q) (math-mul (1- math-nri-n) guess))) (g2 (math-idivmod s math-nri-n))) (if (Math-natnum-lessp (car g2) guess) (math-nth-root-int-iter a (car g2)) (cons (and (equal (car g2) guess) (eq (cdr q) 0) (eq (cdr g2) 0)) guess)))) (defun calcFunc-nroot (x n) (calcFunc-pow x (if (integerp n) (math-make-frac 1 n) (math-div 1 n)))) ;;;; Transcendental functions. ;;; All of these functions are defined on the complex plane. ;;; (Branch cuts, etc. follow Steele's Common Lisp book.) ;;; Most functions increase calc-internal-prec by 2 digits, then round ;;; down afterward. "-raw" functions use the current precision, require ;;; their arguments to be in float (or complex float) format, and always ;;; work in radians (where applicable). (defun math-to-radians (a) ; [N N] (cond ((eq (car-safe a) 'hms) (math-from-hms a 'rad)) ((memq calc-angle-mode '(deg hms)) (math-mul a (math-pi-over-180))) (t a))) (defun math-from-radians (a) ; [N N] (cond ((eq calc-angle-mode 'deg) (if (math-constp a) (math-div a (math-pi-over-180)) (list 'calcFunc-deg a))) ((eq calc-angle-mode 'hms) (math-to-hms a 'rad)) (t a))) (defun math-to-radians-2 (a) ; [N N] (cond ((eq (car-safe a) 'hms) (math-from-hms a 'rad)) ((memq calc-angle-mode '(deg hms)) (if calc-symbolic-mode (math-div (math-mul a '(var pi var-pi)) 180) (math-mul a (math-pi-over-180)))) (t a))) (defun math-from-radians-2 (a) ; [N N] (cond ((memq calc-angle-mode '(deg hms)) (if calc-symbolic-mode (math-div (math-mul 180 a) '(var pi var-pi)) (math-div a (math-pi-over-180)))) (t a))) ;;; Sine, cosine, and tangent. (defun calcFunc-sin (x) ; [N N] [Public] (cond ((and (integerp x) (if (eq calc-angle-mode 'deg) (= (% x 90) 0) (= x 0))) (aref [0 1 0 -1] (math-mod (/ x 90) 4))) ((Math-scalarp x) (math-with-extra-prec 2 (math-sin-raw (math-to-radians (math-float x))))) ((eq (car x) 'sdev) (if (math-constp x) (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float (nth 1 x)))) (xs (math-to-radians (math-float (nth 2 x)))) (sc (math-sin-cos-raw xx))) (math-make-sdev (car sc) (math-mul xs (cdr sc))))) (math-make-sdev (calcFunc-sin (nth 1 x)) (math-mul (nth 2 x) (calcFunc-cos (nth 1 x)))))) ((and (eq (car x) 'intv) (math-intv-constp x)) (calcFunc-cos (math-sub x (math-quarter-circle nil)))) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'scalarp x) (list 'calcFunc-sin x)))) (defun calcFunc-cos (x) ; [N N] [Public] (cond ((and (integerp x) (if (eq calc-angle-mode 'deg) (= (% x 90) 0) (= x 0))) (aref [1 0 -1 0] (math-mod (/ x 90) 4))) ((Math-scalarp x) (math-with-extra-prec 2 (math-cos-raw (math-to-radians (math-float x))))) ((eq (car x) 'sdev) (if (math-constp x) (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float (nth 1 x)))) (xs (math-to-radians (math-float (nth 2 x)))) (sc (math-sin-cos-raw xx))) (math-make-sdev (cdr sc) (math-mul xs (car sc))))) (math-make-sdev (calcFunc-cos (nth 1 x)) (math-mul (nth 2 x) (calcFunc-sin (nth 1 x)))))) ((and (eq (car x) 'intv) (math-intv-constp x)) (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float x))) (na (math-floor (math-div (nth 2 xx) (math-pi)))) (nb (math-floor (math-div (nth 3 xx) (math-pi)))) (span (math-sub nb na))) (if (memq span '(0 1)) (let ((int (math-sort-intv (nth 1 x) (math-cos-raw (nth 2 xx)) (math-cos-raw (nth 3 xx))))) (if (eq span 1) (if (math-evenp na) (math-make-intv (logior (nth 1 x) 2) -1 (nth 3 int)) (math-make-intv (logior (nth 1 x) 1) (nth 2 int) 1)) int)) (list 'intv 3 -1 1))))) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'scalarp x) (list 'calcFunc-cos x)))) (defun calcFunc-sincos (x) ; [V N] [Public] (if (Math-scalarp x) (math-with-extra-prec 2 (let ((sc (math-sin-cos-raw (math-to-radians (math-float x))))) (list 'vec (cdr sc) (car sc)))) ; the vector [cos, sin] (list 'vec (calcFunc-sin x) (calcFunc-cos x)))) (defun calcFunc-tan (x) ; [N N] [Public] (cond ((and (integerp x) (if (eq calc-angle-mode 'deg) (= (% x 180) 0) (= x 0))) 0) ((Math-scalarp x) (math-with-extra-prec 2 (math-tan-raw (math-to-radians (math-float x))))) ((eq (car x) 'sdev) (if (math-constp x) (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float (nth 1 x)))) (xs (math-to-radians (math-float (nth 2 x)))) (sc (math-sin-cos-raw xx))) (if (and (math-zerop (cdr sc)) (not calc-infinite-mode)) (progn (calc-record-why "*Division by zero") (list 'calcFunc-tan x)) (math-make-sdev (math-div-float (car sc) (cdr sc)) (math-div-float xs (math-sqr (cdr sc))))))) (math-make-sdev (calcFunc-tan (nth 1 x)) (math-div (nth 2 x) (math-sqr (calcFunc-cos (nth 1 x))))))) ((and (eq (car x) 'intv) (math-intv-constp x)) (or (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float x))) (na (math-floor (math-div (math-sub (nth 2 xx) (math-pi-over-2)) (math-pi)))) (nb (math-floor (math-div (math-sub (nth 3 xx) (math-pi-over-2)) (math-pi))))) (and (equal na nb) (math-sort-intv (nth 1 x) (math-tan-raw (nth 2 xx)) (math-tan-raw (nth 3 xx)))))) '(intv 3 (neg (var inf var-inf)) (var inf var-inf)))) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'scalarp x) (list 'calcFunc-tan x)))) (defun calcFunc-sec (x) (cond ((and (integerp x) (eq calc-angle-mode 'deg) (= (% x 180) 0)) (if (= (% x 360) 0) 1 -1)) ((and (integerp x) (eq calc-angle-mode 'rad) (= x 0)) 1) ((Math-scalarp x) (math-with-extra-prec 2 (math-sec-raw (math-to-radians (math-float x))))) ((eq (car x) 'sdev) (if (math-constp x) (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float (nth 1 x)))) (xs (math-to-radians (math-float (nth 2 x)))) (sc (math-sin-cos-raw xx))) (if (and (math-zerop (cdr sc)) (not calc-infinite-mode)) (progn (calc-record-why "*Division by zero") (list 'calcFunc-sec x)) (math-make-sdev (math-div-float '(float 1 0) (cdr sc)) (math-div-float (math-mul xs (car sc)) (math-sqr (cdr sc))))))) (math-make-sdev (calcFunc-sec (nth 1 x)) (math-div (math-mul (nth 2 x) (calcFunc-sin (nth 1 x))) (math-sqr (calcFunc-cos (nth 1 x))))))) ((and (eq (car x) 'intv) (math-intv-constp x)) (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float x))) (na (math-floor (math-div (math-sub (nth 2 xx) (math-pi-over-2)) (math-pi)))) (nb (math-floor (math-div (math-sub (nth 3 xx) (math-pi-over-2)) (math-pi)))) (naa (math-floor (math-div (nth 2 xx) (math-pi-over-2)))) (nbb (math-floor (math-div (nth 3 xx) (math-pi-over-2)))) (span (math-sub nbb naa))) (if (not (equal na nb)) '(intv 3 (neg (var inf var-inf)) (var inf var-inf)) (let ((int (math-sort-intv (nth 1 x) (math-sec-raw (nth 2 xx)) (math-sec-raw (nth 3 xx))))) (if (eq span 1) (if (math-evenp (math-div (math-add naa 1) 2)) (math-make-intv (logior (nth 1 int) 2) 1 (nth 3 int)) (math-make-intv (logior (nth 1 int) 1) (nth 2 int) -1)) int)))))) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'scalarp x) (list 'calcFunc-sec x)))) (defun calcFunc-csc (x) (cond ((and (integerp x) (eq calc-angle-mode 'deg) (= (% (- x 90) 180) 0)) (if (= (% (- x 90) 360) 0) 1 -1)) ((Math-scalarp x) (math-with-extra-prec 2 (math-csc-raw (math-to-radians (math-float x))))) ((eq (car x) 'sdev) (if (math-constp x) (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float (nth 1 x)))) (xs (math-to-radians (math-float (nth 2 x)))) (sc (math-sin-cos-raw xx))) (if (and (math-zerop (car sc)) (not calc-infinite-mode)) (progn (calc-record-why "*Division by zero") (list 'calcFunc-csc x)) (math-make-sdev (math-div-float '(float 1 0) (car sc)) (math-div-float (math-mul xs (cdr sc)) (math-sqr (car sc))))))) (math-make-sdev (calcFunc-csc (nth 1 x)) (math-div (math-mul (nth 2 x) (calcFunc-cos (nth 1 x))) (math-sqr (calcFunc-sin (nth 1 x))))))) ((and (eq (car x) 'intv) (math-intv-constp x)) (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float x))) (na (math-floor (math-div (nth 2 xx) (math-pi)))) (nb (math-floor (math-div (nth 3 xx) (math-pi)))) (naa (math-floor (math-div (nth 2 xx) (math-pi-over-2)))) (nbb (math-floor (math-div (nth 3 xx) (math-pi-over-2)))) (span (math-sub nbb naa))) (if (not (equal na nb)) '(intv 3 (neg (var inf var-inf)) (var inf var-inf)) (let ((int (math-sort-intv (nth 1 x) (math-csc-raw (nth 2 xx)) (math-csc-raw (nth 3 xx))))) (if (eq span 1) (if (math-evenp (math-div naa 2)) (math-make-intv (logior (nth 1 int) 2) 1 (nth 3 int)) (math-make-intv (logior (nth 1 int) 1) (nth 2 int) -1)) int)))))) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'scalarp x) (list 'calcFunc-csc x)))) (defun calcFunc-cot (x) ; [N N] [Public] (cond ((and (integerp x) (if (eq calc-angle-mode 'deg) (= (% (- x 90) 180) 0) (= x 0))) 0) ((Math-scalarp x) (math-with-extra-prec 2 (math-cot-raw (math-to-radians (math-float x))))) ((eq (car x) 'sdev) (if (math-constp x) (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float (nth 1 x)))) (xs (math-to-radians (math-float (nth 2 x)))) (sc (math-sin-cos-raw xx))) (if (and (math-zerop (car sc)) (not calc-infinite-mode)) (progn (calc-record-why "*Division by zero") (list 'calcFunc-cot x)) (math-make-sdev (math-div-float (cdr sc) (car sc)) (math-div-float xs (math-sqr (car sc))))))) (math-make-sdev (calcFunc-cot (nth 1 x)) (math-div (nth 2 x) (math-sqr (calcFunc-sin (nth 1 x))))))) ((and (eq (car x) 'intv) (math-intv-constp x)) (or (math-with-extra-prec 2 (let* ((xx (math-to-radians (math-float x))) (na (math-floor (math-div (nth 2 xx) (math-pi)))) (nb (math-floor (math-div (nth 3 xx) (math-pi))))) (and (equal na nb) (math-sort-intv (nth 1 x) (math-cot-raw (nth 2 xx)) (math-cot-raw (nth 3 xx)))))) '(intv 3 (neg (var inf var-inf)) (var inf var-inf)))) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'scalarp x) (list 'calcFunc-cot x)))) (defun math-sin-raw (x &optional orgx) ; [N N] (cond ((eq (car x) 'cplx) (let* ((expx (math-exp-raw (nth 2 x))) (expmx (math-div-float '(float 1 0) expx)) (sc (math-sin-cos-raw (nth 1 x)))) (list 'cplx (math-mul-float (car sc) (math-mul-float (math-add-float expx expmx) '(float 5 -1))) (math-mul-float (cdr sc) (math-mul-float (math-sub-float expx expmx) '(float 5 -1)))))) ((eq (car x) 'polar) (math-polar (math-sin-raw (math-complex x)))) ((Math-integer-negp (nth 1 x)) (math-neg-float (math-sin-raw (math-neg-float x) (if orgx orgx x)))) ((math-lessp-float '(float 7 0) x) ; avoid inf loops due to roundoff (math-sin-raw (math-mod x (math-two-pi)) (if orgx orgx x))) (t (math-sin-raw-2 x (if orgx orgx x))))) (defun math-cos-raw (x) ; [N N] (if (eq (car-safe x) 'polar) (math-polar (math-cos-raw (math-complex x))) (math-sin-raw (math-sub (math-pi-over-2) x) x))) (defun math-sec-raw (x) ; [N N] (cond ((eq (car x) 'cplx) (let* ((x (math-mul x '(float 1 0))) (expx (math-exp-raw (nth 2 x))) (expmx (math-div-float '(float 1 0) expx)) (sh (math-mul-float (math-sub-float expx expmx) '(float 5 -1))) (ch (math-mul-float (math-add-float expx expmx) '(float 5 -1))) (sc (math-sin-cos-raw (nth 1 x))) (d (math-add-float (math-mul-float (math-sqr (car sc)) (math-sqr sh)) (math-mul-float (math-sqr (cdr sc)) (math-sqr ch))))) (and (not (eq (nth 1 d) 0)) (list 'cplx (math-div-float (math-mul-float (cdr sc) ch) d) (math-div-float (math-mul-float (car sc) sh) d))))) ((eq (car x) 'polar) (math-polar (math-sec-raw (math-complex x)))) (t (let ((cs (math-cos-raw x))) (if (eq cs 0) (math-div 1 0) (math-div-float '(float 1 0) cs)))))) (defun math-csc-raw (x) ; [N N] (cond ((eq (car x) 'cplx) (let* ((x (math-mul x '(float 1 0))) (expx (math-exp-raw (nth 2 x))) (expmx (math-div-float '(float 1 0) expx)) (sh (math-mul-float (math-sub-float expx expmx) '(float 5 -1))) (ch (math-mul-float (math-add-float expx expmx) '(float 5 -1))) (sc (math-sin-cos-raw (nth 1 x))) (d (math-add-float (math-mul-float (math-sqr (car sc)) (math-sqr ch)) (math-mul-float (math-sqr (cdr sc)) (math-sqr sh))))) (and (not (eq (nth 1 d) 0)) (list 'cplx (math-div-float (math-mul-float (car sc) ch) d) (math-div-float (math-mul-float (cdr sc) sh) d))))) ((eq (car x) 'polar) (math-polar (math-csc-raw (math-complex x)))) (t (let ((sn (math-sin-raw x))) (if (eq sn 0) (math-div 1 0) (math-div-float '(float 1 0) sn)))))) (defun math-cot-raw (x) ; [N N] (cond ((eq (car x) 'cplx) (let* ((x (math-mul x '(float 1 0))) (expx (math-exp-raw (nth 2 x))) (expmx (math-div-float '(float 1 0) expx)) (sh (math-mul-float (math-sub-float expx expmx) '(float 5 -1))) (ch (math-mul-float (math-add-float expx expmx) '(float 5 -1))) (sc (math-sin-cos-raw (nth 1 x))) (d (math-add-float (math-sqr (car sc)) (math-sqr sh)))) (and (not (eq (nth 1 d) 0)) (list 'cplx (math-div-float (math-mul-float (car sc) (cdr sc)) d) (math-neg (math-div-float (math-mul-float sh ch) d)))))) ((eq (car x) 'polar) (math-polar (math-cot-raw (math-complex x)))) (t (let ((sc (math-sin-cos-raw x))) (if (eq (nth 1 (car sc)) 0) (math-div (cdr sc) 0) (math-div-float (cdr sc) (car sc))))))) ;;; This could use a smarter method: Reduce x as in math-sin-raw, then ;;; compute either sin(x) or cos(x), whichever is smaller, and compute ;;; the other using the identity sin(x)^2 + cos(x)^2 = 1. (defun math-sin-cos-raw (x) ; [F.F F] (result is (sin x . cos x)) (cons (math-sin-raw x) (math-cos-raw x))) (defun math-tan-raw (x) ; [N N] (cond ((eq (car x) 'cplx) (let* ((x (math-mul x '(float 2 0))) (expx (math-exp-raw (nth 2 x))) (expmx (math-div-float '(float 1 0) expx)) (sc (math-sin-cos-raw (nth 1 x))) (d (math-add-float (cdr sc) (math-mul-float (math-add-float expx expmx) '(float 5 -1))))) (and (not (eq (nth 1 d) 0)) (list 'cplx (math-div-float (car sc) d) (math-div-float (math-mul-float (math-sub-float expx expmx) '(float 5 -1)) d))))) ((eq (car x) 'polar) (math-polar (math-tan-raw (math-complex x)))) (t (let ((sc (math-sin-cos-raw x))) (if (eq (nth 1 (cdr sc)) 0) (math-div (car sc) 0) (math-div-float (car sc) (cdr sc))))))) (defun math-sin-raw-2 (x orgx) ; This avoids poss of inf recursion. [F F] (let ((xmpo2 (math-sub-float (math-pi-over-2) x))) (cond ((Math-integer-negp (nth 1 xmpo2)) (math-neg-float (math-sin-raw-2 (math-sub-float x (math-pi)) orgx))) ((math-lessp-float (math-pi-over-4) x) (math-cos-raw-2 xmpo2 orgx)) ((math-lessp-float x (math-neg (math-pi-over-4))) (math-neg (math-cos-raw-2 (math-add (math-pi-over-2) x) orgx))) ((math-with-extra-prec -1 (math-nearly-zerop-float x orgx)) '(float 0 0)) ((math-use-emacs-fn 'sin x)) (calc-symbolic-mode (signal 'inexact-result nil)) (t (math-sin-series x 6 4 x (math-neg-float (math-sqr-float x))))))) (defun math-cos-raw-2 (x orgx) ; [F F] (cond ((math-with-extra-prec -1 (math-nearly-zerop-float x orgx)) '(float 1 0)) ((math-use-emacs-fn 'cos x)) (calc-symbolic-mode (signal 'inexact-result nil)) (t (let ((xnegsqr (math-neg-float (math-sqr-float x)))) (math-sin-series (math-add-float '(float 1 0) (math-mul-float xnegsqr '(float 5 -1))) 24 5 xnegsqr xnegsqr))))) (defun math-sin-series (sum nfac n x xnegsqr) (math-working "sin" sum) (let* ((nextx (math-mul-float x xnegsqr)) (nextsum (math-add-float sum (math-div-float nextx (math-float nfac))))) (if (math-nearly-equal-float sum nextsum) sum (math-sin-series nextsum (math-mul nfac (* n (1+ n))) (+ n 2) nextx xnegsqr)))) ;;; Inverse sine, cosine, tangent. (defun calcFunc-arcsin (x) ; [N N] [Public] (cond ((eq x 0) 0) ((and (eq x 1) (eq calc-angle-mode 'deg)) 90) ((and (eq x -1) (eq calc-angle-mode 'deg)) -90) (calc-symbolic-mode (signal 'inexact-result nil)) ((Math-numberp x) (math-with-extra-prec 2 (math-from-radians (math-arcsin-raw (math-float x))))) ((eq (car x) 'sdev) (math-make-sdev (calcFunc-arcsin (nth 1 x)) (math-from-radians (math-div (nth 2 x) (math-sqrt (math-sub 1 (math-sqr (nth 1 x)))))))) ((eq (car x) 'intv) (math-sort-intv (nth 1 x) (calcFunc-arcsin (nth 2 x)) (calcFunc-arcsin (nth 3 x)))) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'numberp x) (list 'calcFunc-arcsin x)))) (defun calcFunc-arccos (x) ; [N N] [Public] (cond ((eq x 1) 0) ((and (eq x 0) (eq calc-angle-mode 'deg)) 90) ((and (eq x -1) (eq calc-angle-mode 'deg)) 180) (calc-symbolic-mode (signal 'inexact-result nil)) ((Math-numberp x) (math-with-extra-prec 2 (math-from-radians (math-arccos-raw (math-float x))))) ((eq (car x) 'sdev) (math-make-sdev (calcFunc-arccos (nth 1 x)) (math-from-radians (math-div (nth 2 x) (math-sqrt (math-sub 1 (math-sqr (nth 1 x)))))))) ((eq (car x) 'intv) (math-sort-intv (nth 1 x) (calcFunc-arccos (nth 2 x)) (calcFunc-arccos (nth 3 x)))) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'numberp x) (list 'calcFunc-arccos x)))) (defun calcFunc-arctan (x) ; [N N] [Public] (cond ((eq x 0) 0) ((and (eq x 1) (eq calc-angle-mode 'deg)) 45) ((and (eq x -1) (eq calc-angle-mode 'deg)) -45) ((Math-numberp x) (math-with-extra-prec 2 (math-from-radians (math-arctan-raw (math-float x))))) ((eq (car x) 'sdev) (math-make-sdev (calcFunc-arctan (nth 1 x)) (math-from-radians (math-div (nth 2 x) (math-add 1 (math-sqr (nth 1 x))))))) ((eq (car x) 'intv) (math-sort-intv (nth 1 x) (calcFunc-arctan (nth 2 x)) (calcFunc-arctan (nth 3 x)))) ((equal x '(var inf var-inf)) (math-quarter-circle t)) ((equal x '(neg (var inf var-inf))) (math-neg (math-quarter-circle t))) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'numberp x) (list 'calcFunc-arctan x)))) (defun math-arcsin-raw (x) ; [N N] (let ((a (math-sqrt-raw (math-sub '(float 1 0) (math-sqr x))))) (if (or (memq (car x) '(cplx polar)) (memq (car a) '(cplx polar))) (math-with-extra-prec 2 ; use extra precision for difficult case (math-mul '(cplx 0 -1) (math-ln-raw (math-add (math-mul '(cplx 0 1) x) a)))) (math-arctan2-raw x a)))) (defun math-arccos-raw (x) ; [N N] (math-sub (math-pi-over-2) (math-arcsin-raw x))) (defun math-arctan-raw (x) ; [N N] (cond ((memq (car x) '(cplx polar)) (math-with-extra-prec 2 ; extra-extra (math-div (math-sub (math-ln-raw (math-add 1 (math-mul '(cplx 0 1) x))) (math-ln-raw (math-add 1 (math-mul '(cplx 0 -1) x)))) '(cplx 0 2)))) ((Math-integer-negp (nth 1 x)) (math-neg-float (math-arctan-raw (math-neg-float x)))) ((math-zerop x) x) ((math-use-emacs-fn 'atan x)) (calc-symbolic-mode (signal 'inexact-result nil)) ((math-equal-int x 1) (math-pi-over-4)) ((math-equal-int x -1) (math-neg (math-pi-over-4))) ((math-lessp-float '(float 414214 -6) x) ; if x > sqrt(2) - 1, reduce (if (math-lessp-float '(float 1 0) x) (math-sub-float (math-mul-float (math-pi) '(float 5 -1)) (math-arctan-raw (math-div-float '(float 1 0) x))) (math-sub-float (math-mul-float (math-pi) '(float 25 -2)) (math-arctan-raw (math-div-float (math-sub-float '(float 1 0) x) (math-add-float '(float 1 0) x)))))) (t (math-arctan-series x 3 x (math-neg-float (math-sqr-float x)))))) (defun math-arctan-series (sum n x xnegsqr) (math-working "arctan" sum) (let* ((nextx (math-mul-float x xnegsqr)) (nextsum (math-add-float sum (math-div-float nextx (math-float n))))) (if (math-nearly-equal-float sum nextsum) sum (math-arctan-series nextsum (+ n 2) nextx xnegsqr)))) (defun calcFunc-arctan2 (y x) ; [F R R] [Public] (if (Math-anglep y) (if (Math-anglep x) (math-with-extra-prec 2 (math-from-radians (math-arctan2-raw (math-float y) (math-float x)))) (calc-record-why 'anglep x) (list 'calcFunc-arctan2 y x)) (if (and (or (math-infinitep x) (math-anglep x)) (or (math-infinitep y) (math-anglep y))) (progn (if (math-posp x) (setq x 1) (if (math-negp x) (setq x -1) (or (math-zerop x) (setq x nil)))) (if (math-posp y) (setq y 1) (if (math-negp y) (setq y -1) (or (math-zerop y) (setq y nil)))) (if (and y x) (calcFunc-arctan2 y x) '(var nan var-nan))) (calc-record-why 'anglep y) (list 'calcFunc-arctan2 y x)))) (defun math-arctan2-raw (y x) ; [F R R] (cond ((math-zerop y) (if (math-negp x) (math-pi) (if (or (math-floatp x) (math-floatp y)) '(float 0 0) 0))) ((math-zerop x) (if (math-posp y) (math-pi-over-2) (math-neg (math-pi-over-2)))) ((math-posp x) (math-arctan-raw (math-div-float y x))) ((math-posp y) (math-add-float (math-arctan-raw (math-div-float y x)) (math-pi))) (t (math-sub-float (math-arctan-raw (math-div-float y x)) (math-pi))))) (defun calcFunc-arcsincos (x) ; [V N] [Public] (if (and (Math-vectorp x) (= (length x) 3)) (calcFunc-arctan2 (nth 2 x) (nth 1 x)) (math-reject-arg x "*Two-element vector expected"))) ;;; Exponential function. (defun calcFunc-exp (x) ; [N N] [Public] (cond ((eq x 0) 1) ((and (memq x '(1 -1)) calc-symbolic-mode) (if (eq x 1) '(var e var-e) (math-div 1 '(var e var-e)))) ((Math-numberp x) (math-with-extra-prec 2 (math-exp-raw (math-float x)))) ((eq (car-safe x) 'sdev) (let ((ex (calcFunc-exp (nth 1 x)))) (math-make-sdev ex (math-mul (nth 2 x) ex)))) ((eq (car-safe x) 'intv) (math-make-intv (nth 1 x) (calcFunc-exp (nth 2 x)) (calcFunc-exp (nth 3 x)))) ((equal x '(var inf var-inf)) x) ((equal x '(neg (var inf var-inf))) 0) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'numberp x) (list 'calcFunc-exp x)))) (defun calcFunc-expm1 (x) ; [N N] [Public] (cond ((eq x 0) 0) ((math-zerop x) '(float 0 0)) (calc-symbolic-mode (signal 'inexact-result nil)) ((Math-numberp x) (math-with-extra-prec 2 (let ((x (math-float x))) (if (and (eq (car x) 'float) (math-lessp-float x '(float 1 0)) (math-lessp-float '(float -1 0) x)) (math-exp-minus-1-raw x) (math-add (math-exp-raw x) -1))))) ((eq (car-safe x) 'sdev) (if (math-constp x) (let ((ex (calcFunc-expm1 (nth 1 x)))) (math-make-sdev ex (math-mul (nth 2 x) (math-add ex 1)))) (math-make-sdev (calcFunc-expm1 (nth 1 x)) (math-mul (nth 2 x) (calcFunc-exp (nth 1 x)))))) ((eq (car-safe x) 'intv) (math-make-intv (nth 1 x) (calcFunc-expm1 (nth 2 x)) (calcFunc-expm1 (nth 3 x)))) ((equal x '(var inf var-inf)) x) ((equal x '(neg (var inf var-inf))) -1) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'numberp x) (list 'calcFunc-expm1 x)))) (defun calcFunc-exp10 (x) ; [N N] [Public] (if (eq x 0) 1 (math-pow '(float 1 1) x))) (defun math-exp-raw (x) ; [N N] (cond ((math-zerop x) '(float 1 0)) (calc-symbolic-mode (signal 'inexact-result nil)) ((eq (car x) 'cplx) (let ((expx (math-exp-raw (nth 1 x))) (sc (math-sin-cos-raw (nth 2 x)))) (list 'cplx (math-mul-float expx (cdr sc)) (math-mul-float expx (car sc))))) ((eq (car x) 'polar) (let ((xc (math-complex x))) (list 'polar (math-exp-raw (nth 1 xc)) (math-from-radians (nth 2 xc))))) ((math-use-emacs-fn 'exp x)) ((or (math-lessp-float '(float 5 -1) x) (math-lessp-float x '(float -5 -1))) (if (math-lessp-float '(float 921035 1) x) (math-overflow) (if (math-lessp-float x '(float -921035 1)) (math-underflow))) (let* ((two-x (math-mul-float x '(float 2 0))) (hint (math-scale-int (nth 1 two-x) (nth 2 two-x))) (hfrac (math-sub-float x (math-mul-float (math-float hint) '(float 5 -1))))) (math-mul-float (math-ipow (math-sqrt-e) hint) (math-add-float '(float 1 0) (math-exp-minus-1-raw hfrac))))) (t (math-add-float '(float 1 0) (math-exp-minus-1-raw x))))) (defun math-exp-minus-1-raw (x) ; [F F] (math-exp-series x 2 3 x x)) (defun math-exp-series (sum nfac n xpow x) (math-working "exp" sum) (let* ((nextx (math-mul-float xpow x)) (nextsum (math-add-float sum (math-div-float nextx (math-float nfac))))) (if (math-nearly-equal-float sum nextsum) sum (math-exp-series nextsum (math-mul nfac n) (1+ n) nextx x)))) ;;; Logarithms. (defun calcFunc-ln (x) ; [N N] [Public] (cond ((math-zerop x) (if calc-infinite-mode '(neg (var inf var-inf)) (math-reject-arg x "*Logarithm of zero"))) ((eq x 1) 0) ((Math-numberp x) (math-with-extra-prec 2 (math-ln-raw (math-float x)))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-ln (nth 1 x)) (math-div (nth 2 x) (nth 1 x)))) ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x)) (Math-zerop (nth 2 x)) (not (math-intv-constp x)))) (let ((calc-infinite-mode t)) (math-make-intv (nth 1 x) (calcFunc-ln (nth 2 x)) (calcFunc-ln (nth 3 x))))) ((equal x '(var e var-e)) 1) ((and (eq (car-safe x) '^) (equal (nth 1 x) '(var e var-e)) (math-known-realp (nth 2 x))) (nth 2 x)) ((math-infinitep x) (if (equal x '(var nan var-nan)) x '(var inf var-inf))) (t (calc-record-why 'numberp x) (list 'calcFunc-ln x)))) (defun calcFunc-log10 (x) ; [N N] [Public] (cond ((math-equal-int x 1) (if (math-floatp x) '(float 0 0) 0)) ((and (Math-integerp x) (math-posp x) (let ((res (math-integer-log x 10))) (and (car res) (setq x (cdr res))))) x) ((and (eq (car-safe x) 'frac) (eq (nth 1 x) 1) (let ((res (math-integer-log (nth 2 x) 10))) (and (car res) (setq x (- (cdr res)))))) x) ((math-zerop x) (if calc-infinite-mode '(neg (var inf var-inf)) (math-reject-arg x "*Logarithm of zero"))) (calc-symbolic-mode (signal 'inexact-result nil)) ((Math-numberp x) (math-with-extra-prec 2 (let ((xf (math-float x))) (if (eq (nth 1 xf) 0) (math-reject-arg x "*Logarithm of zero")) (if (Math-integer-posp (nth 1 xf)) (if (eq (nth 1 xf) 1) ; log10(1*10^n) = n (math-float (nth 2 xf)) (let ((xdigs (1- (math-numdigs (nth 1 xf))))) (math-add-float (math-div-float (math-ln-raw-2 (list 'float (nth 1 xf) (- xdigs))) (math-ln-10)) (math-float (+ (nth 2 xf) xdigs))))) (math-div (calcFunc-ln xf) (math-ln-10)))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-log10 (nth 1 x)) (math-div (nth 2 x) (math-mul (nth 1 x) (math-ln-10))))) ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x)) (not (math-intv-constp x)))) (math-make-intv (nth 1 x) (calcFunc-log10 (nth 2 x)) (calcFunc-log10 (nth 3 x)))) ((math-infinitep x) (if (equal x '(var nan var-nan)) x '(var inf var-inf))) (t (calc-record-why 'numberp x) (list 'calcFunc-log10 x)))) (defun calcFunc-log (x &optional b) ; [N N N] [Public] (cond ((or (null b) (equal b '(var e var-e))) (math-normalize (list 'calcFunc-ln x))) ((or (eq b 10) (equal b '(float 1 1))) (math-normalize (list 'calcFunc-log10 x))) ((math-zerop x) (if calc-infinite-mode (math-div (calcFunc-ln x) (calcFunc-ln b)) (math-reject-arg x "*Logarithm of zero"))) ((math-zerop b) (if calc-infinite-mode (math-div (calcFunc-ln x) (calcFunc-ln b)) (math-reject-arg b "*Logarithm of zero"))) ((math-equal-int b 1) (if calc-infinite-mode (math-div (calcFunc-ln x) 0) (math-reject-arg b "*Logarithm base one"))) ((math-equal-int x 1) (if (math-floatp b) '(float 0 0) 0)) ((and (Math-ratp x) (Math-ratp b) (math-posp x) (math-posp b) (let* ((sign 1) (inv nil) (xx (if (Math-lessp 1 x) x (setq sign -1) (math-div 1 x))) (bb (if (Math-lessp 1 b) b (setq sign (- sign)) (math-div 1 b))) (res (if (Math-lessp xx bb) (setq inv (math-integer-log bb xx)) (math-integer-log xx bb)))) (and (car res) (setq x (if inv (math-div 1 (* sign (cdr res))) (* sign (cdr res))))))) x) (calc-symbolic-mode (signal 'inexact-result nil)) ((and (Math-numberp x) (Math-numberp b)) (math-with-extra-prec 2 (math-div (math-ln-raw (math-float x)) (math-log-base-raw b)))) ((and (eq (car-safe x) 'sdev) (Math-numberp b)) (math-make-sdev (calcFunc-log (nth 1 x) b) (math-div (nth 2 x) (math-mul (nth 1 x) (math-log-base-raw b))))) ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x)) (not (math-intv-constp x))) (math-realp b)) (math-make-intv (nth 1 x) (calcFunc-log (nth 2 x) b) (calcFunc-log (nth 3 x) b))) ((or (eq (car-safe x) 'intv) (eq (car-safe b) 'intv)) (math-div (calcFunc-ln x) (calcFunc-ln b))) ((or (math-infinitep x) (math-infinitep b)) (math-div (calcFunc-ln x) (calcFunc-ln b))) (t (if (Math-numberp b) (calc-record-why 'numberp x) (calc-record-why 'numberp b)) (list 'calcFunc-log x b)))) (defun calcFunc-alog (x &optional b) (cond ((or (null b) (equal b '(var e var-e))) (math-normalize (list 'calcFunc-exp x))) (t (math-pow b x)))) (defun calcFunc-ilog (x b) (if (and (math-natnump x) (not (eq x 0)) (math-natnump b) (not (eq b 0))) (if (eq b 1) (math-reject-arg x "*Logarithm base one") (if (Math-natnum-lessp x b) 0 (cdr (math-integer-log x b)))) (math-floor (calcFunc-log x b)))) (defun math-integer-log (x b) (let ((pows (list b)) (pow (math-sqr b)) next sum n) (while (not (Math-lessp x pow)) (setq pows (cons pow pows) pow (math-sqr pow))) (setq n (lsh 1 (1- (length pows))) sum n pow (car pows)) (while (and (setq pows (cdr pows)) (Math-lessp pow x)) (setq n (/ n 2) next (math-mul pow (car pows))) (or (Math-lessp x next) (setq pow next sum (+ sum n)))) (cons (equal pow x) sum))) (defvar math-log-base-cache nil) (defun math-log-base-raw (b) ; [N N] (if (not (and (equal (car math-log-base-cache) b) (eq (nth 1 math-log-base-cache) calc-internal-prec))) (setq math-log-base-cache (list b calc-internal-prec (math-ln-raw (math-float b))))) (nth 2 math-log-base-cache)) (defun calcFunc-lnp1 (x) ; [N N] [Public] (cond ((Math-equal-int x -1) (if calc-infinite-mode '(neg (var inf var-inf)) (math-reject-arg x "*Logarithm of zero"))) ((eq x 0) 0) ((math-zerop x) '(float 0 0)) (calc-symbolic-mode (signal 'inexact-result nil)) ((Math-numberp x) (math-with-extra-prec 2 (let ((x (math-float x))) (if (and (eq (car x) 'float) (math-lessp-float x '(float 5 -1)) (math-lessp-float '(float -5 -1) x)) (math-ln-plus-1-raw x) (math-ln-raw (math-add-float x '(float 1 0))))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-lnp1 (nth 1 x)) (math-div (nth 2 x) (math-add (nth 1 x) 1)))) ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x)) (not (math-intv-constp x)))) (math-make-intv (nth 1 x) (calcFunc-lnp1 (nth 2 x)) (calcFunc-lnp1 (nth 3 x)))) ((math-infinitep x) (if (equal x '(var nan var-nan)) x '(var inf var-inf))) (t (calc-record-why 'numberp x) (list 'calcFunc-lnp1 x)))) (defun math-ln-raw (x) ; [N N] --- must be float format! (cond ((eq (car-safe x) 'cplx) (list 'cplx (math-mul-float (math-ln-raw (math-add-float (math-sqr-float (nth 1 x)) (math-sqr-float (nth 2 x)))) '(float 5 -1)) (math-arctan2-raw (nth 2 x) (nth 1 x)))) ((eq (car x) 'polar) (math-polar (list 'cplx (math-ln-raw (nth 1 x)) (math-to-radians (nth 2 x))))) ((Math-equal-int x 1) '(float 0 0)) (calc-symbolic-mode (signal 'inexact-result nil)) ((math-posp (nth 1 x)) ; positive and real (cond ((math-use-emacs-fn 'log x)) (t (let ((xdigs (1- (math-numdigs (nth 1 x))))) (math-add-float (math-ln-raw-2 (list 'float (nth 1 x) (- xdigs))) (math-mul-float (math-float (+ (nth 2 x) xdigs)) (math-ln-10))))))) ((math-zerop x) (math-reject-arg x "*Logarithm of zero")) ((eq calc-complex-mode 'polar) ; negative and real (math-polar (list 'cplx ; negative and real (math-ln-raw (math-neg-float x)) (math-pi)))) (t (list 'cplx ; negative and real (math-ln-raw (math-neg-float x)) (math-pi))))) (defun math-ln-raw-2 (x) ; [F F] (cond ((math-lessp-float '(float 14 -1) x) (math-add-float (math-ln-raw-2 (math-mul-float x '(float 5 -1))) (math-ln-2))) (t ; now .7 < x <= 1.4 (math-ln-raw-3 (math-div-float (math-sub-float x '(float 1 0)) (math-add-float x '(float 1 0))))))) (defun math-ln-raw-3 (x) ; [F F] (math-mul-float (math-ln-raw-series x 3 x (math-sqr-float x)) '(float 2 0))) ;;; Compute ln((1+x)/(1-x)) (defun math-ln-raw-series (sum n x xsqr) (math-working "log" sum) (let* ((nextx (math-mul-float x xsqr)) (nextsum (math-add-float sum (math-div-float nextx (math-float n))))) (if (math-nearly-equal-float sum nextsum) sum (math-ln-raw-series nextsum (+ n 2) nextx xsqr)))) (defun math-ln-plus-1-raw (x) (math-lnp1-series x 2 x (math-neg x))) (defun math-lnp1-series (sum n xpow x) (math-working "lnp1" sum) (let* ((nextx (math-mul-float xpow x)) (nextsum (math-add-float sum (math-div-float nextx (math-float n))))) (if (math-nearly-equal-float sum nextsum) sum (math-lnp1-series nextsum (1+ n) nextx x)))) (defconst math-approx-ln-10 (math-read-number-simple "2.302585092994045684018") "An approximation for ln(10).") (math-defcache math-ln-10 math-approx-ln-10 (math-ln-raw-2 '(float 1 1))) (defconst math-approx-ln-2 (math-read-number-simple "0.693147180559945309417") "An approximation for ln(2).") (math-defcache math-ln-2 math-approx-ln-2 (math-ln-raw-3 (math-float '(frac 1 3)))) ;;; Hyperbolic functions. (defun calcFunc-sinh (x) ; [N N] [Public] (cond ((eq x 0) 0) (math-expand-formulas (math-normalize (list '/ (list '- (list 'calcFunc-exp x) (list 'calcFunc-exp (list 'neg x))) 2))) ((Math-numberp x) (if calc-symbolic-mode (signal 'inexact-result nil)) (math-with-extra-prec 2 (let ((expx (math-exp-raw (math-float x)))) (math-mul (math-add expx (math-div -1 expx)) '(float 5 -1))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-sinh (nth 1 x)) (math-mul (nth 2 x) (calcFunc-cosh (nth 1 x))))) ((eq (car x) 'intv) (math-sort-intv (nth 1 x) (calcFunc-sinh (nth 2 x)) (calcFunc-sinh (nth 3 x)))) ((or (equal x '(var inf var-inf)) (equal x '(neg (var inf var-inf))) (equal x '(var nan var-nan))) x) (t (calc-record-why 'numberp x) (list 'calcFunc-sinh x)))) (put 'calcFunc-sinh 'math-expandable t) (defun calcFunc-cosh (x) ; [N N] [Public] (cond ((eq x 0) 1) (math-expand-formulas (math-normalize (list '/ (list '+ (list 'calcFunc-exp x) (list 'calcFunc-exp (list 'neg x))) 2))) ((Math-numberp x) (if calc-symbolic-mode (signal 'inexact-result nil)) (math-with-extra-prec 2 (let ((expx (math-exp-raw (math-float x)))) (math-mul (math-add expx (math-div 1 expx)) '(float 5 -1))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-cosh (nth 1 x)) (math-mul (nth 2 x) (calcFunc-sinh (nth 1 x))))) ((and (eq (car x) 'intv) (math-intv-constp x)) (setq x (math-abs x)) (math-sort-intv (nth 1 x) (calcFunc-cosh (nth 2 x)) (calcFunc-cosh (nth 3 x)))) ((or (equal x '(var inf var-inf)) (equal x '(neg (var inf var-inf))) (equal x '(var nan var-nan))) (math-abs x)) (t (calc-record-why 'numberp x) (list 'calcFunc-cosh x)))) (put 'calcFunc-cosh 'math-expandable t) (defun calcFunc-tanh (x) ; [N N] [Public] (cond ((eq x 0) 0) (math-expand-formulas (math-normalize (let ((expx (list 'calcFunc-exp x)) (expmx (list 'calcFunc-exp (list 'neg x)))) (math-normalize (list '/ (list '- expx expmx) (list '+ expx expmx)))))) ((Math-numberp x) (if calc-symbolic-mode (signal 'inexact-result nil)) (math-with-extra-prec 2 (let* ((expx (calcFunc-exp (math-float x))) (expmx (math-div 1 expx))) (math-div (math-sub expx expmx) (math-add expx expmx))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-tanh (nth 1 x)) (math-div (nth 2 x) (math-sqr (calcFunc-cosh (nth 1 x)))))) ((eq (car x) 'intv) (math-sort-intv (nth 1 x) (calcFunc-tanh (nth 2 x)) (calcFunc-tanh (nth 3 x)))) ((equal x '(var inf var-inf)) 1) ((equal x '(neg (var inf var-inf))) -1) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'numberp x) (list 'calcFunc-tanh x)))) (put 'calcFunc-tanh 'math-expandable t) (defun calcFunc-sech (x) ; [N N] [Public] (cond ((eq x 0) 1) (math-expand-formulas (math-normalize (list '/ 2 (list '+ (list 'calcFunc-exp x) (list 'calcFunc-exp (list 'neg x)))))) ((Math-numberp x) (if calc-symbolic-mode (signal 'inexact-result nil)) (math-with-extra-prec 2 (let ((expx (math-exp-raw (math-float x)))) (math-div '(float 2 0) (math-add expx (math-div 1 expx)))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-sech (nth 1 x)) (math-mul (nth 2 x) (math-mul (calcFunc-sech (nth 1 x)) (calcFunc-tanh (nth 1 x)))))) ((and (eq (car x) 'intv) (math-intv-constp x)) (setq x (math-abs x)) (math-sort-intv (nth 1 x) (calcFunc-sech (nth 2 x)) (calcFunc-sech (nth 3 x)))) ((or (equal x '(var inf var-inf)) (equal x '(neg (var inf var-inf)))) 0) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'numberp x) (list 'calcFunc-sech x)))) (put 'calcFunc-sech 'math-expandable t) (defun calcFunc-csch (x) ; [N N] [Public] (cond ((eq x 0) (math-div 1 0)) (math-expand-formulas (math-normalize (list '/ 2 (list '- (list 'calcFunc-exp x) (list 'calcFunc-exp (list 'neg x)))))) ((Math-numberp x) (if calc-symbolic-mode (signal 'inexact-result nil)) (math-with-extra-prec 2 (let ((expx (math-exp-raw (math-float x)))) (math-div '(float 2 0) (math-add expx (math-div -1 expx)))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-csch (nth 1 x)) (math-mul (nth 2 x) (math-mul (calcFunc-csch (nth 1 x)) (calcFunc-coth (nth 1 x)))))) ((eq (car x) 'intv) (if (and (Math-negp (nth 2 x)) (Math-posp (nth 3 x))) '(intv 3 (neg (var inf var-inf)) (var inf var-inf)) (math-sort-intv (nth 1 x) (calcFunc-csch (nth 2 x)) (calcFunc-csch (nth 3 x))))) ((or (equal x '(var inf var-inf)) (equal x '(neg (var inf var-inf)))) 0) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'numberp x) (list 'calcFunc-csch x)))) (put 'calcFunc-csch 'math-expandable t) (defun calcFunc-coth (x) ; [N N] [Public] (cond ((eq x 0) (math-div 1 0)) (math-expand-formulas (math-normalize (let ((expx (list 'calcFunc-exp x)) (expmx (list 'calcFunc-exp (list 'neg x)))) (math-normalize (list '/ (list '+ expx expmx) (list '- expx expmx)))))) ((Math-numberp x) (if calc-symbolic-mode (signal 'inexact-result nil)) (math-with-extra-prec 2 (let* ((expx (calcFunc-exp (math-float x))) (expmx (math-div 1 expx))) (math-div (math-add expx expmx) (math-sub expx expmx))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-coth (nth 1 x)) (math-div (nth 2 x) (math-sqr (calcFunc-sinh (nth 1 x)))))) ((eq (car x) 'intv) (if (and (Math-negp (nth 2 x)) (Math-posp (nth 3 x))) '(intv 3 (neg (var inf var-inf)) (var inf var-inf)) (math-sort-intv (nth 1 x) (calcFunc-coth (nth 2 x)) (calcFunc-coth (nth 3 x))))) ((equal x '(var inf var-inf)) 1) ((equal x '(neg (var inf var-inf))) -1) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'numberp x) (list 'calcFunc-coth x)))) (put 'calcFunc-coth 'math-expandable t) (defun calcFunc-arcsinh (x) ; [N N] [Public] (cond ((eq x 0) 0) (math-expand-formulas (math-normalize (list 'calcFunc-ln (list '+ x (list 'calcFunc-sqrt (list '+ (list '^ x 2) 1)))))) ((Math-numberp x) (if calc-symbolic-mode (signal 'inexact-result nil)) (math-with-extra-prec 2 (math-ln-raw (math-add x (math-sqrt-raw (math-add (math-sqr x) '(float 1 0))))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-arcsinh (nth 1 x)) (math-div (nth 2 x) (math-sqrt (math-add (math-sqr (nth 1 x)) 1))))) ((eq (car x) 'intv) (math-sort-intv (nth 1 x) (calcFunc-arcsinh (nth 2 x)) (calcFunc-arcsinh (nth 3 x)))) ((or (equal x '(var inf var-inf)) (equal x '(neg (var inf var-inf))) (equal x '(var nan var-nan))) x) (t (calc-record-why 'numberp x) (list 'calcFunc-arcsinh x)))) (put 'calcFunc-arcsinh 'math-expandable t) (defun calcFunc-arccosh (x) ; [N N] [Public] (cond ((eq x 1) 0) ((and (eq x -1) calc-symbolic-mode) '(var pi var-pi)) ((and (eq x 0) calc-symbolic-mode) (math-div (math-mul '(var pi var-pi) '(var i var-i)) 2)) (math-expand-formulas (math-normalize (list 'calcFunc-ln (list '+ x (list 'calcFunc-sqrt (list '- (list '^ x 2) 1)))))) ((Math-numberp x) (if calc-symbolic-mode (signal 'inexact-result nil)) (if (Math-equal-int x -1) (math-imaginary (math-pi)) (math-with-extra-prec 2 (if (or t ; need to do this even in the real case! (memq (car-safe x) '(cplx polar))) (let ((xp1 (math-add 1 x))) ; this gets the branch cuts right (math-ln-raw (math-add x (math-mul xp1 (math-sqrt-raw (math-div (math-sub x '(float 1 0)) xp1)))))) (math-ln-raw (math-add x (math-sqrt-raw (math-add (math-sqr x) '(float -1 0))))))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-arccosh (nth 1 x)) (math-div (nth 2 x) (math-sqrt (math-add (math-sqr (nth 1 x)) -1))))) ((eq (car x) 'intv) (math-sort-intv (nth 1 x) (calcFunc-arccosh (nth 2 x)) (calcFunc-arccosh (nth 3 x)))) ((or (equal x '(var inf var-inf)) (equal x '(neg (var inf var-inf))) (equal x '(var nan var-nan))) x) (t (calc-record-why 'numberp x) (list 'calcFunc-arccosh x)))) (put 'calcFunc-arccosh 'math-expandable t) (defun calcFunc-arctanh (x) ; [N N] [Public] (cond ((eq x 0) 0) ((and (Math-equal-int x 1) calc-infinite-mode) '(var inf var-inf)) ((and (Math-equal-int x -1) calc-infinite-mode) '(neg (var inf var-inf))) (math-expand-formulas (list '/ (list '- (list 'calcFunc-ln (list '+ 1 x)) (list 'calcFunc-ln (list '- 1 x))) 2)) ((Math-numberp x) (if calc-symbolic-mode (signal 'inexact-result nil)) (math-with-extra-prec 2 (if (or (memq (car-safe x) '(cplx polar)) (Math-lessp 1 x)) (math-mul (math-sub (math-ln-raw (math-add '(float 1 0) x)) (math-ln-raw (math-sub '(float 1 0) x))) '(float 5 -1)) (if (and (math-equal-int x 1) calc-infinite-mode) '(var inf var-inf) (if (and (math-equal-int x -1) calc-infinite-mode) '(neg (var inf var-inf)) (math-mul (math-ln-raw (math-div (math-add '(float 1 0) x) (math-sub 1 x))) '(float 5 -1))))))) ((eq (car-safe x) 'sdev) (math-make-sdev (calcFunc-arctanh (nth 1 x)) (math-div (nth 2 x) (math-sub 1 (math-sqr (nth 1 x)))))) ((eq (car x) 'intv) (math-sort-intv (nth 1 x) (calcFunc-arctanh (nth 2 x)) (calcFunc-arctanh (nth 3 x)))) ((equal x '(var nan var-nan)) x) (t (calc-record-why 'numberp x) (list 'calcFunc-arctanh x)))) (put 'calcFunc-arctanh 'math-expandable t) ;;; Convert A from HMS or degrees to radians. (defun calcFunc-rad (a) ; [R R] [Public] (cond ((or (Math-numberp a) (eq (car a) 'intv)) (math-with-extra-prec 2 (math-mul a (math-pi-over-180)))) ((eq (car a) 'hms) (math-from-hms a 'rad)) ((eq (car a) 'sdev) (math-make-sdev (calcFunc-rad (nth 1 a)) (calcFunc-rad (nth 2 a)))) (math-expand-formulas (math-div (math-mul a '(var pi var-pi)) 180)) ((math-infinitep a) a) (t (list 'calcFunc-rad a)))) (put 'calcFunc-rad 'math-expandable t) ;;; Convert A from HMS or radians to degrees. (defun calcFunc-deg (a) ; [R R] [Public] (cond ((or (Math-numberp a) (eq (car a) 'intv)) (math-with-extra-prec 2 (math-div a (math-pi-over-180)))) ((eq (car a) 'hms) (math-from-hms a 'deg)) ((eq (car a) 'sdev) (math-make-sdev (calcFunc-deg (nth 1 a)) (calcFunc-deg (nth 2 a)))) (math-expand-formulas (math-div (math-mul 180 a) '(var pi var-pi))) ((math-infinitep a) a) (t (list 'calcFunc-deg a)))) (put 'calcFunc-deg 'math-expandable t) (provide 'calc-math) ;; arch-tag: c7367e8e-d0b8-4f70-8577-2fb3f31dbb4c ;;; calc-math.el ends here