# HG changeset patch # User Glenn Morris # Date 1189053251 0 # Node ID c34c42ee75972d21c206f6542ccf3d4bd7c3080f # Parent b9cf03698128ba4a74739b8d93e5279ab394d534 Move to ../doc/emacs/, misc/ diff -r b9cf03698128 -r c34c42ee7597 man/calc.texi --- a/man/calc.texi Thu Sep 06 04:34:05 2007 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,36190 +0,0 @@ -\input texinfo @c -*-texinfo-*- -@comment %**start of header (This is for running Texinfo on a region.) -@c smallbook -@setfilename ../info/calc -@c [title] -@settitle GNU Emacs Calc 2.1 Manual -@setchapternewpage odd -@comment %**end of header (This is for running Texinfo on a region.) - -@c The following macros are used for conditional output for single lines. -@c @texline foo -@c `foo' will appear only in TeX output -@c @infoline foo -@c `foo' will appear only in non-TeX output - -@c @expr{expr} will typeset an expression; -@c $x$ in TeX, @samp{x} otherwise. - -@iftex -@macro texline -@end macro -@alias infoline=comment -@alias expr=math -@alias tfn=code -@alias mathit=expr -@macro cpi{} -@math{@pi{}} -@end macro -@macro cpiover{den} -@math{@pi/\den\} -@end macro -@end iftex - -@ifnottex -@alias texline=comment -@macro infoline{stuff} -\stuff\ -@end macro -@alias expr=samp -@alias tfn=t -@alias mathit=i -@macro cpi{} -@expr{pi} -@end macro -@macro cpiover{den} -@expr{pi/\den\} -@end macro -@end ifnottex - - -@tex -% Suggested by Karl Berry -\gdef\!{\mskip-\thinmuskip} -@end tex - -@c Fix some other things specifically for this manual. -@iftex -@finalout -@mathcode`@:=`@: @c Make Calc fractions come out right in math mode -@tex -\gdef\coloneq{\mathrel{\mathord:\mathord=}} - -\gdef\beforedisplay{\vskip-10pt} -\gdef\afterdisplay{\vskip-5pt} -\gdef\beforedisplayh{\vskip-25pt} -\gdef\afterdisplayh{\vskip-10pt} -@end tex -@newdimen@kyvpos @kyvpos=0pt -@newdimen@kyhpos @kyhpos=0pt -@newcount@calcclubpenalty @calcclubpenalty=1000 -@ignore -@newcount@calcpageno -@newtoks@calcoldeverypar @calcoldeverypar=@everypar -@everypar={@calceverypar@the@calcoldeverypar} -@ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi -@ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi -@catcode`@\=0 \catcode`\@=11 -\r@ggedbottomtrue -\catcode`\@=0 @catcode`@\=@active -@end ignore -@end iftex - -@copying -This file documents Calc, the GNU Emacs calculator. - -Copyright @copyright{} 1990, 1991, 2001, 2002, 2003, 2004, -2005, 2006, 2007 Free Software Foundation, Inc. - -@quotation -Permission is granted to copy, distribute and/or modify this document -under the terms of the GNU Free Documentation License, Version 1.2 or -any later version published by the Free Software Foundation; with the -Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the -Front-Cover texts being ``A GNU Manual,'' and with the Back-Cover -Texts as in (a) below. A copy of the license is included in the section -entitled ``GNU Free Documentation License.'' - -(a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify -this GNU Manual, like GNU software. Copies published by the Free -Software Foundation raise funds for GNU development.'' -@end quotation -@end copying - -@dircategory Emacs -@direntry -* Calc: (calc). Advanced desk calculator and mathematical tool. -@end direntry - -@titlepage -@sp 6 -@center @titlefont{Calc Manual} -@sp 4 -@center GNU Emacs Calc Version 2.1 -@c [volume] -@sp 5 -@center Dave Gillespie -@center daveg@@synaptics.com -@page - -@vskip 0pt plus 1filll -Copyright @copyright{} 1990, 1991, 2001, 2002, 2003, 2004, - 2005, 2006, 2007 Free Software Foundation, Inc. -@insertcopying -@end titlepage - - -@summarycontents - -@c [end] - -@contents - -@c [begin] -@ifnottex -@node Top, Getting Started, (dir), (dir) -@chapter The GNU Emacs Calculator - -@noindent -@dfn{Calc} is an advanced desk calculator and mathematical tool -written by Dave Gillespie that runs as part of the GNU Emacs environment. - -This manual, also written (mostly) by Dave Gillespie, is divided into -three major parts: ``Getting Started,'' the ``Calc Tutorial,'' and the -``Calc Reference.'' The Tutorial introduces all the major aspects of -Calculator use in an easy, hands-on way. The remainder of the manual is -a complete reference to the features of the Calculator. -@end ifnottex - -@ifinfo -For help in the Emacs Info system (which you are using to read this -file), type @kbd{?}. (You can also type @kbd{h} to run through a -longer Info tutorial.) -@end ifinfo - -@menu -* Getting Started:: General description and overview. -@ifinfo -* Interactive Tutorial:: -@end ifinfo -* Tutorial:: A step-by-step introduction for beginners. - -* Introduction:: Introduction to the Calc reference manual. -* Data Types:: Types of objects manipulated by Calc. -* Stack and Trail:: Manipulating the stack and trail buffers. -* Mode Settings:: Adjusting display format and other modes. -* Arithmetic:: Basic arithmetic functions. -* Scientific Functions:: Transcendentals and other scientific functions. -* Matrix Functions:: Operations on vectors and matrices. -* Algebra:: Manipulating expressions algebraically. -* Units:: Operations on numbers with units. -* Store and Recall:: Storing and recalling variables. -* Graphics:: Commands for making graphs of data. -* Kill and Yank:: Moving data into and out of Calc. -* Keypad Mode:: Operating Calc from a keypad. -* Embedded Mode:: Working with formulas embedded in a file. -* Programming:: Calc as a programmable calculator. - -* Copying:: How you can copy and share Calc. -* GNU Free Documentation License:: The license for this documentation. -* Customizing Calc:: Customizing Calc. -* Reporting Bugs:: How to report bugs and make suggestions. - -* Summary:: Summary of Calc commands and functions. - -* Key Index:: The standard Calc key sequences. -* Command Index:: The interactive Calc commands. -* Function Index:: Functions (in algebraic formulas). -* Concept Index:: General concepts. -* Variable Index:: Variables used by Calc (both user and internal). -* Lisp Function Index:: Internal Lisp math functions. -@end menu - -@ifinfo -@node Getting Started, Interactive Tutorial, Top, Top -@end ifinfo -@ifnotinfo -@node Getting Started, Tutorial, Top, Top -@end ifnotinfo -@chapter Getting Started -@noindent -This chapter provides a general overview of Calc, the GNU Emacs -Calculator: What it is, how to start it and how to exit from it, -and what are the various ways that it can be used. - -@menu -* What is Calc:: -* About This Manual:: -* Notations Used in This Manual:: -* Demonstration of Calc:: -* Using Calc:: -* History and Acknowledgements:: -@end menu - -@node What is Calc, About This Manual, Getting Started, Getting Started -@section What is Calc? - -@noindent -@dfn{Calc} is an advanced calculator and mathematical tool that runs as -part of the GNU Emacs environment. Very roughly based on the HP-28/48 -series of calculators, its many features include: - -@itemize @bullet -@item -Choice of algebraic or RPN (stack-based) entry of calculations. - -@item -Arbitrary precision integers and floating-point numbers. - -@item -Arithmetic on rational numbers, complex numbers (rectangular and polar), -error forms with standard deviations, open and closed intervals, vectors -and matrices, dates and times, infinities, sets, quantities with units, -and algebraic formulas. - -@item -Mathematical operations such as logarithms and trigonometric functions. - -@item -Programmer's features (bitwise operations, non-decimal numbers). - -@item -Financial functions such as future value and internal rate of return. - -@item -Number theoretical features such as prime factorization and arithmetic -modulo @var{m} for any @var{m}. - -@item -Algebraic manipulation features, including symbolic calculus. - -@item -Moving data to and from regular editing buffers. - -@item -Embedded mode for manipulating Calc formulas and data directly -inside any editing buffer. - -@item -Graphics using GNUPLOT, a versatile (and free) plotting program. - -@item -Easy programming using keyboard macros, algebraic formulas, -algebraic rewrite rules, or extended Emacs Lisp. -@end itemize - -Calc tries to include a little something for everyone; as a result it is -large and might be intimidating to the first-time user. If you plan to -use Calc only as a traditional desk calculator, all you really need to -read is the ``Getting Started'' chapter of this manual and possibly the -first few sections of the tutorial. As you become more comfortable with -the program you can learn its additional features. Calc does not -have the scope and depth of a fully-functional symbolic math package, -but Calc has the advantages of convenience, portability, and freedom. - -@node About This Manual, Notations Used in This Manual, What is Calc, Getting Started -@section About This Manual - -@noindent -This document serves as a complete description of the GNU Emacs -Calculator. It works both as an introduction for novices, and as -a reference for experienced users. While it helps to have some -experience with GNU Emacs in order to get the most out of Calc, -this manual ought to be readable even if you don't know or use Emacs -regularly. - -The manual is divided into three major parts:@: the ``Getting -Started'' chapter you are reading now, the Calc tutorial (chapter 2), -and the Calc reference manual (the remaining chapters and appendices). -@c [when-split] -@c This manual has been printed in two volumes, the @dfn{Tutorial} and the -@c @dfn{Reference}. Both volumes include a copy of the ``Getting Started'' -@c chapter. - -If you are in a hurry to use Calc, there is a brief ``demonstration'' -below which illustrates the major features of Calc in just a couple of -pages. If you don't have time to go through the full tutorial, this -will show you everything you need to know to begin. -@xref{Demonstration of Calc}. - -The tutorial chapter walks you through the various parts of Calc -with lots of hands-on examples and explanations. If you are new -to Calc and you have some time, try going through at least the -beginning of the tutorial. The tutorial includes about 70 exercises -with answers. These exercises give you some guided practice with -Calc, as well as pointing out some interesting and unusual ways -to use its features. - -The reference section discusses Calc in complete depth. You can read -the reference from start to finish if you want to learn every aspect -of Calc. Or, you can look in the table of contents or the Concept -Index to find the parts of the manual that discuss the things you -need to know. - -@cindex Marginal notes -Every Calc keyboard command is listed in the Calc Summary, and also -in the Key Index. Algebraic functions, @kbd{M-x} commands, and -variables also have their own indices. -@texline Each -@infoline In the printed manual, each -paragraph that is referenced in the Key or Function Index is marked -in the margin with its index entry. - -@c [fix-ref Help Commands] -You can access this manual on-line at any time within Calc by -pressing the @kbd{h i} key sequence. Outside of the Calc window, -you can press @kbd{C-x * i} to read the manual on-line. Also, you -can jump directly to the Tutorial by pressing @kbd{h t} or @kbd{C-x * t}, -or to the Summary by pressing @kbd{h s} or @kbd{C-x * s}. Within Calc, -you can also go to the part of the manual describing any Calc key, -function, or variable using @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v}, -respectively. @xref{Help Commands}. - -@ifnottex -The Calc manual can be printed, but because the manual is so large, you -should only make a printed copy if you really need it. To print the -manual, you will need the @TeX{} typesetting program (this is a free -program by Donald Knuth at Stanford University) as well as the -@file{texindex} program and @file{texinfo.tex} file, both of which can -be obtained from the FSF as part of the @code{texinfo} package. -To print the Calc manual in one huge tome, you will need the -source code to this manual, @file{calc.texi}, available as part of the -Emacs source. Once you have this file, type @kbd{texi2dvi calc.texi}. -Alternatively, change to the @file{man} subdirectory of the Emacs -source distribution, and type @kbd{make calc.dvi}. (Don't worry if you -get some ``overfull box'' warnings while @TeX{} runs.) -The result will be a device-independent output file called -@file{calc.dvi}, which you must print in whatever way is right -for your system. On many systems, the command is - -@example -lpr -d calc.dvi -@end example - -@noindent -or - -@example -dvips calc.dvi -@end example -@end ifnottex -@c Printed copies of this manual are also available from the Free Software -@c Foundation. - -@node Notations Used in This Manual, Demonstration of Calc, About This Manual, Getting Started -@section Notations Used in This Manual - -@noindent -This section describes the various notations that are used -throughout the Calc manual. - -In keystroke sequences, uppercase letters mean you must hold down -the shift key while typing the letter. Keys pressed with Control -held down are shown as @kbd{C-x}. Keys pressed with Meta held down -are shown as @kbd{M-x}. Other notations are @key{RET} for the -Return key, @key{SPC} for the space bar, @key{TAB} for the Tab key, -@key{DEL} for the Delete key, and @key{LFD} for the Line-Feed key. -The @key{DEL} key is called Backspace on some keyboards, it is -whatever key you would use to correct a simple typing error when -regularly using Emacs. - -(If you don't have the @key{LFD} or @key{TAB} keys on your keyboard, -the @kbd{C-j} and @kbd{C-i} keys are equivalent to them, respectively. -If you don't have a Meta key, look for Alt or Extend Char. You can -also press @key{ESC} or @kbd{C-[} first to get the same effect, so -that @kbd{M-x}, @kbd{@key{ESC} x}, and @kbd{C-[ x} are all equivalent.) - -Sometimes the @key{RET} key is not shown when it is ``obvious'' -that you must press @key{RET} to proceed. For example, the @key{RET} -is usually omitted in key sequences like @kbd{M-x calc-keypad @key{RET}}. - -Commands are generally shown like this: @kbd{p} (@code{calc-precision}) -or @kbd{C-x * k} (@code{calc-keypad}). This means that the command is -normally used by pressing the @kbd{p} key or @kbd{C-x * k} key sequence, -but it also has the full-name equivalent shown, e.g., @kbd{M-x calc-precision}. - -Commands that correspond to functions in algebraic notation -are written: @kbd{C} (@code{calc-cos}) [@code{cos}]. This means -the @kbd{C} key is equivalent to @kbd{M-x calc-cos}, and that -the corresponding function in an algebraic-style formula would -be @samp{cos(@var{x})}. - -A few commands don't have key equivalents: @code{calc-sincos} -[@code{sincos}]. - -@node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started -@section A Demonstration of Calc - -@noindent -@cindex Demonstration of Calc -This section will show some typical small problems being solved with -Calc. The focus is more on demonstration than explanation, but -everything you see here will be covered more thoroughly in the -Tutorial. - -To begin, start Emacs if necessary (usually the command @code{emacs} -does this), and type @kbd{C-x * c} to start the -Calculator. (You can also use @kbd{M-x calc} if this doesn't work. -@xref{Starting Calc}, for various ways of starting the Calculator.) - -Be sure to type all the sample input exactly, especially noting the -difference between lower-case and upper-case letters. Remember, -@key{RET}, @key{TAB}, @key{DEL}, and @key{SPC} are the Return, Tab, -Delete, and Space keys. - -@strong{RPN calculation.} In RPN, you type the input number(s) first, -then the command to operate on the numbers. - -@noindent -Type @kbd{2 @key{RET} 3 + Q} to compute -@texline @math{\sqrt{2+3} = 2.2360679775}. -@infoline the square root of 2+3, which is 2.2360679775. - -@noindent -Type @kbd{P 2 ^} to compute -@texline @math{\pi^2 = 9.86960440109}. -@infoline the value of `pi' squared, 9.86960440109. - -@noindent -Type @key{TAB} to exchange the order of these two results. - -@noindent -Type @kbd{- I H S} to subtract these results and compute the Inverse -Hyperbolic sine of the difference, 2.72996136574. - -@noindent -Type @key{DEL} to erase this result. - -@strong{Algebraic calculation.} You can also enter calculations using -conventional ``algebraic'' notation. To enter an algebraic formula, -use the apostrophe key. - -@noindent -Type @kbd{' sqrt(2+3) @key{RET}} to compute -@texline @math{\sqrt{2+3}}. -@infoline the square root of 2+3. - -@noindent -Type @kbd{' pi^2 @key{RET}} to enter -@texline @math{\pi^2}. -@infoline `pi' squared. -To evaluate this symbolic formula as a number, type @kbd{=}. - -@noindent -Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent -result from the most-recent and compute the Inverse Hyperbolic sine. - -@strong{Keypad mode.} If you are using the X window system, press -@w{@kbd{C-x * k}} to get Keypad mode. (If you don't use X, skip to -the next section.) - -@noindent -Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT} -``buttons'' using your left mouse button. - -@noindent -Click on @key{PI}, @key{2}, and @tfn{y^x}. - -@noindent -Click on @key{INV}, then @key{ENTER} to swap the two results. - -@noindent -Click on @key{-}, @key{INV}, @key{HYP}, and @key{SIN}. - -@noindent -Click on @key{<-} to erase the result, then click @key{OFF} to turn -the Keypad Calculator off. - -@strong{Grabbing data.} Type @kbd{C-x * x} if necessary to exit Calc. -Now select the following numbers as an Emacs region: ``Mark'' the -front of the list by typing @kbd{C-@key{SPC}} or @kbd{C-@@} there, -then move to the other end of the list. (Either get this list from -the on-line copy of this manual, accessed by @w{@kbd{C-x * i}}, or just -type these numbers into a scratch file.) Now type @kbd{C-x * g} to -``grab'' these numbers into Calc. - -@example -@group -1.23 1.97 -1.6 2 -1.19 1.08 -@end group -@end example - -@noindent -The result @samp{[1.23, 1.97, 1.6, 2, 1.19, 1.08]} is a Calc ``vector.'' -Type @w{@kbd{V R +}} to compute the sum of these numbers. - -@noindent -Type @kbd{U} to Undo this command, then type @kbd{V R *} to compute -the product of the numbers. - -@noindent -You can also grab data as a rectangular matrix. Place the cursor on -the upper-leftmost @samp{1} and set the mark, then move to just after -the lower-right @samp{8} and press @kbd{C-x * r}. - -@noindent -Type @kbd{v t} to transpose this -@texline @math{3\times2} -@infoline 3x2 -matrix into a -@texline @math{2\times3} -@infoline 2x3 -matrix. Type @w{@kbd{v u}} to unpack the rows into two separate -vectors. Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums -of the two original columns. (There is also a special -grab-and-sum-columns command, @kbd{C-x * :}.) - -@strong{Units conversion.} Units are entered algebraically. -Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour. -Type @w{@kbd{u c km/hr @key{RET}}}. Type @w{@kbd{u c m/s @key{RET}}}. - -@strong{Date arithmetic.} Type @kbd{t N} to get the current date and -time. Type @kbd{90 +} to find the date 90 days from now. Type -@kbd{' <25 dec 87> @key{RET}} to enter a date, then @kbd{- 7 /} to see how -many weeks have passed since then. - -@strong{Algebra.} Algebraic entries can also include formulas -or equations involving variables. Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET}} -to enter a pair of equations involving three variables. -(Note the leading apostrophe in this example; also, note that the space -between @samp{x y} is required.) Type @w{@kbd{a S x,y @key{RET}}} to solve -these equations for the variables @expr{x} and @expr{y}. - -@noindent -Type @kbd{d B} to view the solutions in more readable notation. -Type @w{@kbd{d C}} to view them in C language notation, @kbd{d T} -to view them in the notation for the @TeX{} typesetting system, -and @kbd{d L} to view them in the notation for the La@TeX{} typesetting -system. Type @kbd{d N} to return to normal notation. - -@noindent -Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas. -(That's a letter @kbd{l}, not a numeral @kbd{1}.) - -@ifnotinfo -@strong{Help functions.} You can read about any command in the on-line -manual. Type @kbd{C-x * c} to return to Calc after each of these -commands: @kbd{h k t N} to read about the @kbd{t N} command, -@kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and -@kbd{h s} to read the Calc summary. -@end ifnotinfo -@ifinfo -@strong{Help functions.} You can read about any command in the on-line -manual. Remember to type the letter @kbd{l}, then @kbd{C-x * c}, to -return here after each of these commands: @w{@kbd{h k t N}} to read -about the @w{@kbd{t N}} command, @kbd{h f sqrt @key{RET}} to read about the -@code{sqrt} function, and @kbd{h s} to read the Calc summary. -@end ifinfo - -Press @key{DEL} repeatedly to remove any leftover results from the stack. -To exit from Calc, press @kbd{q} or @kbd{C-x * c} again. - -@node Using Calc, History and Acknowledgements, Demonstration of Calc, Getting Started -@section Using Calc - -@noindent -Calc has several user interfaces that are specialized for -different kinds of tasks. As well as Calc's standard interface, -there are Quick mode, Keypad mode, and Embedded mode. - -@menu -* Starting Calc:: -* The Standard Interface:: -* Quick Mode Overview:: -* Keypad Mode Overview:: -* Standalone Operation:: -* Embedded Mode Overview:: -* Other C-x * Commands:: -@end menu - -@node Starting Calc, The Standard Interface, Using Calc, Using Calc -@subsection Starting Calc - -@noindent -On most systems, you can type @kbd{C-x *} to start the Calculator. -The key sequence @kbd{C-x *} is bound to the command @code{calc-dispatch}, -which can be rebound if convenient (@pxref{Customizing Calc}). - -When you press @kbd{C-x *}, Emacs waits for you to press a second key to -complete the command. In this case, you will follow @kbd{C-x *} with a -letter (upper- or lower-case, it doesn't matter for @kbd{C-x *}) that says -which Calc interface you want to use. - -To get Calc's standard interface, type @kbd{C-x * c}. To get -Keypad mode, type @kbd{C-x * k}. Type @kbd{C-x * ?} to get a brief -list of the available options, and type a second @kbd{?} to get -a complete list. - -To ease typing, @kbd{C-x * *} also works to start Calc. It starts the -same interface (either @kbd{C-x * c} or @w{@kbd{C-x * k}}) that you last -used, selecting the @kbd{C-x * c} interface by default. - -If @kbd{C-x *} doesn't work for you, you can always type explicit -commands like @kbd{M-x calc} (for the standard user interface) or -@w{@kbd{M-x calc-keypad}} (for Keypad mode). First type @kbd{M-x} -(that's Meta with the letter @kbd{x}), then, at the prompt, -type the full command (like @kbd{calc-keypad}) and press Return. - -The same commands (like @kbd{C-x * c} or @kbd{C-x * *}) that start -the Calculator also turn it off if it is already on. - -@node The Standard Interface, Quick Mode Overview, Starting Calc, Using Calc -@subsection The Standard Calc Interface - -@noindent -@cindex Standard user interface -Calc's standard interface acts like a traditional RPN calculator, -operated by the normal Emacs keyboard. When you type @kbd{C-x * c} -to start the Calculator, the Emacs screen splits into two windows -with the file you were editing on top and Calc on the bottom. - -@smallexample -@group - -... ---**-Emacs: myfile (Fundamental)----All---------------------- ---- Emacs Calculator Mode --- |Emacs Calculator Trail -2: 17.3 | 17.3 -1: -5 | 3 - . | 2 - | 4 - | * 8 - | ->-5 - | ---%%-Calc: 12 Deg (Calculator)----All----- --%%-Emacs: *Calc Trail* -@end group -@end smallexample - -In this figure, the mode-line for @file{myfile} has moved up and the -``Calculator'' window has appeared below it. As you can see, Calc -actually makes two windows side-by-side. The lefthand one is -called the @dfn{stack window} and the righthand one is called the -@dfn{trail window.} The stack holds the numbers involved in the -calculation you are currently performing. The trail holds a complete -record of all calculations you have done. In a desk calculator with -a printer, the trail corresponds to the paper tape that records what -you do. - -In this case, the trail shows that four numbers (17.3, 3, 2, and 4) -were first entered into the Calculator, then the 2 and 4 were -multiplied to get 8, then the 3 and 8 were subtracted to get @mathit{-5}. -(The @samp{>} symbol shows that this was the most recent calculation.) -The net result is the two numbers 17.3 and @mathit{-5} sitting on the stack. - -Most Calculator commands deal explicitly with the stack only, but -there is a set of commands that allow you to search back through -the trail and retrieve any previous result. - -Calc commands use the digits, letters, and punctuation keys. -Shifted (i.e., upper-case) letters are different from lowercase -letters. Some letters are @dfn{prefix} keys that begin two-letter -commands. For example, @kbd{e} means ``enter exponent'' and shifted -@kbd{E} means @expr{e^x}. With the @kbd{d} (``display modes'') prefix -the letter ``e'' takes on very different meanings: @kbd{d e} means -``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.'' - -There is nothing stopping you from switching out of the Calc -window and back into your editing window, say by using the Emacs -@w{@kbd{C-x o}} (@code{other-window}) command. When the cursor is -inside a regular window, Emacs acts just like normal. When the -cursor is in the Calc stack or trail windows, keys are interpreted -as Calc commands. - -When you quit by pressing @kbd{C-x * c} a second time, the Calculator -windows go away but the actual Stack and Trail are not gone, just -hidden. When you press @kbd{C-x * c} once again you will get the -same stack and trail contents you had when you last used the -Calculator. - -The Calculator does not remember its state between Emacs sessions. -Thus if you quit Emacs and start it again, @kbd{C-x * c} will give you -a fresh stack and trail. There is a command (@kbd{m m}) that lets -you save your favorite mode settings between sessions, though. -One of the things it saves is which user interface (standard or -Keypad) you last used; otherwise, a freshly started Emacs will -always treat @kbd{C-x * *} the same as @kbd{C-x * c}. - -The @kbd{q} key is another equivalent way to turn the Calculator off. - -If you type @kbd{C-x * b} first and then @kbd{C-x * c}, you get a -full-screen version of Calc (@code{full-calc}) in which the stack and -trail windows are still side-by-side but are now as tall as the whole -Emacs screen. When you press @kbd{q} or @kbd{C-x * c} again to quit, -the file you were editing before reappears. The @kbd{C-x * b} key -switches back and forth between ``big'' full-screen mode and the -normal partial-screen mode. - -Finally, @kbd{C-x * o} (@code{calc-other-window}) is like @kbd{C-x * c} -except that the Calc window is not selected. The buffer you were -editing before remains selected instead. @kbd{C-x * o} is a handy -way to switch out of Calc momentarily to edit your file; type -@kbd{C-x * c} to switch back into Calc when you are done. - -@node Quick Mode Overview, Keypad Mode Overview, The Standard Interface, Using Calc -@subsection Quick Mode (Overview) - -@noindent -@dfn{Quick mode} is a quick way to use Calc when you don't need the -full complexity of the stack and trail. To use it, type @kbd{C-x * q} -(@code{quick-calc}) in any regular editing buffer. - -Quick mode is very simple: It prompts you to type any formula in -standard algebraic notation (like @samp{4 - 2/3}) and then displays -the result at the bottom of the Emacs screen (@mathit{3.33333333333} -in this case). You are then back in the same editing buffer you -were in before, ready to continue editing or to type @kbd{C-x * q} -again to do another quick calculation. The result of the calculation -will also be in the Emacs ``kill ring'' so that a @kbd{C-y} command -at this point will yank the result into your editing buffer. - -Calc mode settings affect Quick mode, too, though you will have to -go into regular Calc (with @kbd{C-x * c}) to change the mode settings. - -@c [fix-ref Quick Calculator mode] -@xref{Quick Calculator}, for further information. - -@node Keypad Mode Overview, Standalone Operation, Quick Mode Overview, Using Calc -@subsection Keypad Mode (Overview) - -@noindent -@dfn{Keypad mode} is a mouse-based interface to the Calculator. -It is designed for use with terminals that support a mouse. If you -don't have a mouse, you will have to operate Keypad mode with your -arrow keys (which is probably more trouble than it's worth). - -Type @kbd{C-x * k} to turn Keypad mode on or off. Once again you -get two new windows, this time on the righthand side of the screen -instead of at the bottom. The upper window is the familiar Calc -Stack; the lower window is a picture of a typical calculator keypad. - -@tex -\dimen0=\pagetotal% -\advance \dimen0 by 24\baselineskip% -\ifdim \dimen0>\pagegoal \vfill\eject \fi% -\medskip -@end tex -@smallexample -@group -|--- Emacs Calculator Mode --- -|2: 17.3 -|1: -5 -| . -|--%%-Calc: 12 Deg (Calcul -|----+-----Calc 2.1------+----1 -|FLR |CEIL|RND |TRNC|CLN2|FLT | -|----+----+----+----+----+----| -| LN |EXP | |ABS |IDIV|MOD | -|----+----+----+----+----+----| -|SIN |COS |TAN |SQRT|y^x |1/x | -|----+----+----+----+----+----| -| ENTER |+/- |EEX |UNDO| <- | -|-----+---+-+--+--+-+---++----| -| INV | 7 | 8 | 9 | / | -|-----+-----+-----+-----+-----| -| HYP | 4 | 5 | 6 | * | -|-----+-----+-----+-----+-----| -|EXEC | 1 | 2 | 3 | - | -|-----+-----+-----+-----+-----| -| OFF | 0 | . | PI | + | -|-----+-----+-----+-----+-----+ -@end group -@end smallexample - -Keypad mode is much easier for beginners to learn, because there -is no need to memorize lots of obscure key sequences. But not all -commands in regular Calc are available on the Keypad. You can -always switch the cursor into the Calc stack window to use -standard Calc commands if you need. Serious Calc users, though, -often find they prefer the standard interface over Keypad mode. - -To operate the Calculator, just click on the ``buttons'' of the -keypad using your left mouse button. To enter the two numbers -shown here you would click @w{@kbd{1 7 .@: 3 ENTER 5 +/- ENTER}}; to -add them together you would then click @kbd{+} (to get 12.3 on -the stack). - -If you click the right mouse button, the top three rows of the -keypad change to show other sets of commands, such as advanced -math functions, vector operations, and operations on binary -numbers. - -Because Keypad mode doesn't use the regular keyboard, Calc leaves -the cursor in your original editing buffer. You can type in -this buffer in the usual way while also clicking on the Calculator -keypad. One advantage of Keypad mode is that you don't need an -explicit command to switch between editing and calculating. - -If you press @kbd{C-x * b} first, you get a full-screen Keypad mode -(@code{full-calc-keypad}) with three windows: The keypad in the lower -left, the stack in the lower right, and the trail on top. - -@c [fix-ref Keypad Mode] -@xref{Keypad Mode}, for further information. - -@node Standalone Operation, Embedded Mode Overview, Keypad Mode Overview, Using Calc -@subsection Standalone Operation - -@noindent -@cindex Standalone Operation -If you are not in Emacs at the moment but you wish to use Calc, -you must start Emacs first. If all you want is to run Calc, you -can give the commands: - -@example -emacs -f full-calc -@end example - -@noindent -or - -@example -emacs -f full-calc-keypad -@end example - -@noindent -which run a full-screen Calculator (as if by @kbd{C-x * b C-x * c}) or -a full-screen X-based Calculator (as if by @kbd{C-x * b C-x * k}). -In standalone operation, quitting the Calculator (by pressing -@kbd{q} or clicking on the keypad @key{EXIT} button) quits Emacs -itself. - -@node Embedded Mode Overview, Other C-x * Commands, Standalone Operation, Using Calc -@subsection Embedded Mode (Overview) - -@noindent -@dfn{Embedded mode} is a way to use Calc directly from inside an -editing buffer. Suppose you have a formula written as part of a -document like this: - -@smallexample -@group -The derivative of - - ln(ln(x)) - -is -@end group -@end smallexample - -@noindent -and you wish to have Calc compute and format the derivative for -you and store this derivative in the buffer automatically. To -do this with Embedded mode, first copy the formula down to where -you want the result to be: - -@smallexample -@group -The derivative of - - ln(ln(x)) - -is - - ln(ln(x)) -@end group -@end smallexample - -Now, move the cursor onto this new formula and press @kbd{C-x * e}. -Calc will read the formula (using the surrounding blank lines to -tell how much text to read), then push this formula (invisibly) -onto the Calc stack. The cursor will stay on the formula in the -editing buffer, but the buffer's mode line will change to look -like the Calc mode line (with mode indicators like @samp{12 Deg} -and so on). Even though you are still in your editing buffer, -the keyboard now acts like the Calc keyboard, and any new result -you get is copied from the stack back into the buffer. To take -the derivative, you would type @kbd{a d x @key{RET}}. - -@smallexample -@group -The derivative of - - ln(ln(x)) - -is - -1 / ln(x) x -@end group -@end smallexample - -To make this look nicer, you might want to press @kbd{d =} to center -the formula, and even @kbd{d B} to use Big display mode. - -@smallexample -@group -The derivative of - - ln(ln(x)) - -is -% [calc-mode: justify: center] -% [calc-mode: language: big] - - 1 - ------- - ln(x) x -@end group -@end smallexample - -Calc has added annotations to the file to help it remember the modes -that were used for this formula. They are formatted like comments -in the @TeX{} typesetting language, just in case you are using @TeX{} or -La@TeX{}. (In this example @TeX{} is not being used, so you might want -to move these comments up to the top of the file or otherwise put them -out of the way.) - -As an extra flourish, we can add an equation number using a -righthand label: Type @kbd{d @} (1) @key{RET}}. - -@smallexample -@group -% [calc-mode: justify: center] -% [calc-mode: language: big] -% [calc-mode: right-label: " (1)"] - - 1 - ------- (1) - ln(x) x -@end group -@end smallexample - -To leave Embedded mode, type @kbd{C-x * e} again. The mode line -and keyboard will revert to the way they were before. - -The related command @kbd{C-x * w} operates on a single word, which -generally means a single number, inside text. It uses any -non-numeric characters rather than blank lines to delimit the -formula it reads. Here's an example of its use: - -@smallexample -A slope of one-third corresponds to an angle of 1 degrees. -@end smallexample - -Place the cursor on the @samp{1}, then type @kbd{C-x * w} to enable -Embedded mode on that number. Now type @kbd{3 /} (to get one-third), -and @kbd{I T} (the Inverse Tangent converts a slope into an angle), -then @w{@kbd{C-x * w}} again to exit Embedded mode. - -@smallexample -A slope of one-third corresponds to an angle of 18.4349488229 degrees. -@end smallexample - -@c [fix-ref Embedded Mode] -@xref{Embedded Mode}, for full details. - -@node Other C-x * Commands, , Embedded Mode Overview, Using Calc -@subsection Other @kbd{C-x *} Commands - -@noindent -Two more Calc-related commands are @kbd{C-x * g} and @kbd{C-x * r}, -which ``grab'' data from a selected region of a buffer into the -Calculator. The region is defined in the usual Emacs way, by -a ``mark'' placed at one end of the region, and the Emacs -cursor or ``point'' placed at the other. - -The @kbd{C-x * g} command reads the region in the usual left-to-right, -top-to-bottom order. The result is packaged into a Calc vector -of numbers and placed on the stack. Calc (in its standard -user interface) is then started. Type @kbd{v u} if you want -to unpack this vector into separate numbers on the stack. Also, -@kbd{C-u C-x * g} interprets the region as a single number or -formula. - -The @kbd{C-x * r} command reads a rectangle, with the point and -mark defining opposite corners of the rectangle. The result -is a matrix of numbers on the Calculator stack. - -Complementary to these is @kbd{C-x * y}, which ``yanks'' the -value at the top of the Calc stack back into an editing buffer. -If you type @w{@kbd{C-x * y}} while in such a buffer, the value is -yanked at the current position. If you type @kbd{C-x * y} while -in the Calc buffer, Calc makes an educated guess as to which -editing buffer you want to use. The Calc window does not have -to be visible in order to use this command, as long as there -is something on the Calc stack. - -Here, for reference, is the complete list of @kbd{C-x *} commands. -The shift, control, and meta keys are ignored for the keystroke -following @kbd{C-x *}. - -@noindent -Commands for turning Calc on and off: - -@table @kbd -@item * -Turn Calc on or off, employing the same user interface as last time. - -@item =, +, -, /, \, &, # -Alternatives for @kbd{*}. - -@item C -Turn Calc on or off using its standard bottom-of-the-screen -interface. If Calc is already turned on but the cursor is not -in the Calc window, move the cursor into the window. - -@item O -Same as @kbd{C}, but don't select the new Calc window. If -Calc is already turned on and the cursor is in the Calc window, -move it out of that window. - -@item B -Control whether @kbd{C-x * c} and @kbd{C-x * k} use the full screen. - -@item Q -Use Quick mode for a single short calculation. - -@item K -Turn Calc Keypad mode on or off. - -@item E -Turn Calc Embedded mode on or off at the current formula. - -@item J -Turn Calc Embedded mode on or off, select the interesting part. - -@item W -Turn Calc Embedded mode on or off at the current word (number). - -@item Z -Turn Calc on in a user-defined way, as defined by a @kbd{Z I} command. - -@item X -Quit Calc; turn off standard, Keypad, or Embedded mode if on. -(This is like @kbd{q} or @key{OFF} inside of Calc.) -@end table -@iftex -@sp 2 -@end iftex - -@noindent -Commands for moving data into and out of the Calculator: - -@table @kbd -@item G -Grab the region into the Calculator as a vector. - -@item R -Grab the rectangular region into the Calculator as a matrix. - -@item : -Grab the rectangular region and compute the sums of its columns. - -@item _ -Grab the rectangular region and compute the sums of its rows. - -@item Y -Yank a value from the Calculator into the current editing buffer. -@end table -@iftex -@sp 2 -@end iftex - -@noindent -Commands for use with Embedded mode: - -@table @kbd -@item A -``Activate'' the current buffer. Locate all formulas that -contain @samp{:=} or @samp{=>} symbols and record their locations -so that they can be updated automatically as variables are changed. - -@item D -Duplicate the current formula immediately below and select -the duplicate. - -@item F -Insert a new formula at the current point. - -@item N -Move the cursor to the next active formula in the buffer. - -@item P -Move the cursor to the previous active formula in the buffer. - -@item U -Update (i.e., as if by the @kbd{=} key) the formula at the current point. - -@item ` -Edit (as if by @code{calc-edit}) the formula at the current point. -@end table -@iftex -@sp 2 -@end iftex - -@noindent -Miscellaneous commands: - -@table @kbd -@item I -Run the Emacs Info system to read the Calc manual. -(This is the same as @kbd{h i} inside of Calc.) - -@item T -Run the Emacs Info system to read the Calc Tutorial. - -@item S -Run the Emacs Info system to read the Calc Summary. - -@item L -Load Calc entirely into memory. (Normally the various parts -are loaded only as they are needed.) - -@item M -Read a region of written keystroke names (like @kbd{C-n a b c @key{RET}}) -and record them as the current keyboard macro. - -@item 0 -(This is the ``zero'' digit key.) Reset the Calculator to -its initial state: Empty stack, and initial mode settings. -@end table - -@node History and Acknowledgements, , Using Calc, Getting Started -@section History and Acknowledgements - -@noindent -Calc was originally started as a two-week project to occupy a lull -in the author's schedule. Basically, a friend asked if I remembered -the value of -@texline @math{2^{32}}. -@infoline @expr{2^32}. -I didn't offhand, but I said, ``that's easy, just call up an -@code{xcalc}.'' @code{Xcalc} duly reported that the answer to our -question was @samp{4.294967e+09}---with no way to see the full ten -digits even though we knew they were there in the program's memory! I -was so annoyed, I vowed to write a calculator of my own, once and for -all. - -I chose Emacs Lisp, a) because I had always been curious about it -and b) because, being only a text editor extension language after -all, Emacs Lisp would surely reach its limits long before the project -got too far out of hand. - -To make a long story short, Emacs Lisp turned out to be a distressingly -solid implementation of Lisp, and the humble task of calculating -turned out to be more open-ended than one might have expected. - -Emacs Lisp didn't have built-in floating point math (now it does), so -this had to be -simulated in software. In fact, Emacs integers will only comfortably -fit six decimal digits or so---not enough for a decent calculator. So -I had to write my own high-precision integer code as well, and once I had -this I figured that arbitrary-size integers were just as easy as large -integers. Arbitrary floating-point precision was the logical next step. -Also, since the large integer arithmetic was there anyway it seemed only -fair to give the user direct access to it, which in turn made it practical -to support fractions as well as floats. All these features inspired me -to look around for other data types that might be worth having. - -Around this time, my friend Rick Koshi showed me his nifty new HP-28 -calculator. It allowed the user to manipulate formulas as well as -numerical quantities, and it could also operate on matrices. I -decided that these would be good for Calc to have, too. And once -things had gone this far, I figured I might as well take a look at -serious algebra systems for further ideas. Since these systems did -far more than I could ever hope to implement, I decided to focus on -rewrite rules and other programming features so that users could -implement what they needed for themselves. - -Rick complained that matrices were hard to read, so I put in code to -format them in a 2D style. Once these routines were in place, Big mode -was obligatory. Gee, what other language modes would be useful? - -Scott Hemphill and Allen Knutson, two friends with a strong mathematical -bent, contributed ideas and algorithms for a number of Calc features -including modulo forms, primality testing, and float-to-fraction conversion. - -Units were added at the eager insistence of Mass Sivilotti. Later, -Ulrich Mueller at CERN and Przemek Klosowski at NIST provided invaluable -expert assistance with the units table. As far as I can remember, the -idea of using algebraic formulas and variables to represent units dates -back to an ancient article in Byte magazine about muMath, an early -algebra system for microcomputers. - -Many people have contributed to Calc by reporting bugs and suggesting -features, large and small. A few deserve special mention: Tim Peters, -who helped develop the ideas that led to the selection commands, rewrite -rules, and many other algebra features; -@texline Fran\c{c}ois -@infoline Francois -Pinard, who contributed an early prototype of the Calc Summary appendix -as well as providing valuable suggestions in many other areas of Calc; -Carl Witty, whose eagle eyes discovered many typographical and factual -errors in the Calc manual; Tim Kay, who drove the development of -Embedded mode; Ove Ewerlid, who made many suggestions relating to the -algebra commands and contributed some code for polynomial operations; -Randal Schwartz, who suggested the @code{calc-eval} function; Robert -J. Chassell, who suggested the Calc Tutorial and exercises; and Juha -Sarlin, who first worked out how to split Calc into quickly-loading -parts. Bob Weiner helped immensely with the Lucid Emacs port. - -@cindex Bibliography -@cindex Knuth, Art of Computer Programming -@cindex Numerical Recipes -@c Should these be expanded into more complete references? -Among the books used in the development of Calc were Knuth's @emph{Art -of Computer Programming} (especially volume II, @emph{Seminumerical -Algorithms}); @emph{Numerical Recipes} by Press, Flannery, Teukolsky, -and Vetterling; Bevington's @emph{Data Reduction and Error Analysis -for the Physical Sciences}; @emph{Concrete Mathematics} by Graham, -Knuth, and Patashnik; Steele's @emph{Common Lisp, the Language}; the -@emph{CRC Standard Math Tables} (William H. Beyer, ed.); and -Abramowitz and Stegun's venerable @emph{Handbook of Mathematical -Functions}. Also, of course, Calc could not have been written without -the excellent @emph{GNU Emacs Lisp Reference Manual}, by Bil Lewis and -Dan LaLiberte. - -Final thanks go to Richard Stallman, without whose fine implementations -of the Emacs editor, language, and environment, Calc would have been -finished in two weeks. - -@c [tutorial] - -@ifinfo -@c This node is accessed by the `C-x * t' command. -@node Interactive Tutorial, Tutorial, Getting Started, Top -@chapter Tutorial - -@noindent -Some brief instructions on using the Emacs Info system for this tutorial: - -Press the space bar and Delete keys to go forward and backward in a -section by screenfuls (or use the regular Emacs scrolling commands -for this). - -Press @kbd{n} or @kbd{p} to go to the Next or Previous section. -If the section has a @dfn{menu}, press a digit key like @kbd{1} -or @kbd{2} to go to a sub-section from the menu. Press @kbd{u} to -go back up from a sub-section to the menu it is part of. - -Exercises in the tutorial all have cross-references to the -appropriate page of the ``answers'' section. Press @kbd{f}, then -the exercise number, to see the answer to an exercise. After -you have followed a cross-reference, you can press the letter -@kbd{l} to return to where you were before. - -You can press @kbd{?} at any time for a brief summary of Info commands. - -Press @kbd{1} now to enter the first section of the Tutorial. - -@menu -* Tutorial:: -@end menu - -@node Tutorial, Introduction, Interactive Tutorial, Top -@end ifinfo -@ifnotinfo -@node Tutorial, Introduction, Getting Started, Top -@end ifnotinfo -@chapter Tutorial - -@noindent -This chapter explains how to use Calc and its many features, in -a step-by-step, tutorial way. You are encouraged to run Calc and -work along with the examples as you read (@pxref{Starting Calc}). -If you are already familiar with advanced calculators, you may wish -@c [not-split] -to skip on to the rest of this manual. -@c [when-split] -@c to skip on to volume II of this manual, the @dfn{Calc Reference}. - -@c [fix-ref Embedded Mode] -This tutorial describes the standard user interface of Calc only. -The Quick mode and Keypad mode interfaces are fairly -self-explanatory. @xref{Embedded Mode}, for a description of -the Embedded mode interface. - -The easiest way to read this tutorial on-line is to have two windows on -your Emacs screen, one with Calc and one with the Info system. (If you -have a printed copy of the manual you can use that instead.) Press -@kbd{C-x * c} to turn Calc on or to switch into the Calc window, and -press @kbd{C-x * i} to start the Info system or to switch into its window. - -This tutorial is designed to be done in sequence. But the rest of this -manual does not assume you have gone through the tutorial. The tutorial -does not cover everything in the Calculator, but it touches on most -general areas. - -@ifnottex -You may wish to print out a copy of the Calc Summary and keep notes on -it as you learn Calc. @xref{About This Manual}, to see how to make a -printed summary. @xref{Summary}. -@end ifnottex -@iftex -The Calc Summary at the end of the reference manual includes some blank -space for your own use. You may wish to keep notes there as you learn -Calc. -@end iftex - -@menu -* Basic Tutorial:: -* Arithmetic Tutorial:: -* Vector/Matrix Tutorial:: -* Types Tutorial:: -* Algebra Tutorial:: -* Programming Tutorial:: - -* Answers to Exercises:: -@end menu - -@node Basic Tutorial, Arithmetic Tutorial, Tutorial, Tutorial -@section Basic Tutorial - -@noindent -In this section, we learn how RPN and algebraic-style calculations -work, how to undo and redo an operation done by mistake, and how -to control various modes of the Calculator. - -@menu -* RPN Tutorial:: Basic operations with the stack. -* Algebraic Tutorial:: Algebraic entry; variables. -* Undo Tutorial:: If you make a mistake: Undo and the trail. -* Modes Tutorial:: Common mode-setting commands. -@end menu - -@node RPN Tutorial, Algebraic Tutorial, Basic Tutorial, Basic Tutorial -@subsection RPN Calculations and the Stack - -@cindex RPN notation -@ifnottex -@noindent -Calc normally uses RPN notation. You may be familiar with the RPN -system from Hewlett-Packard calculators, FORTH, or PostScript. -(Reverse Polish Notation, RPN, is named after the Polish mathematician -Jan Lukasiewicz.) -@end ifnottex -@tex -\noindent -Calc normally uses RPN notation. You may be familiar with the RPN -system from Hewlett-Packard calculators, FORTH, or PostScript. -(Reverse Polish Notation, RPN, is named after the Polish mathematician -Jan \L ukasiewicz.) -@end tex - -The central component of an RPN calculator is the @dfn{stack}. A -calculator stack is like a stack of dishes. New dishes (numbers) are -added at the top of the stack, and numbers are normally only removed -from the top of the stack. - -@cindex Operators -@cindex Operands -In an operation like @expr{2+3}, the 2 and 3 are called the @dfn{operands} -and the @expr{+} is the @dfn{operator}. In an RPN calculator you always -enter the operands first, then the operator. Each time you type a -number, Calc adds or @dfn{pushes} it onto the top of the Stack. -When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate -number of operands from the stack and pushes back the result. - -Thus we could add the numbers 2 and 3 in an RPN calculator by typing: -@kbd{2 @key{RET} 3 @key{RET} +}. (The @key{RET} key, Return, corresponds to -the @key{ENTER} key on traditional RPN calculators.) Try this now if -you wish; type @kbd{C-x * c} to switch into the Calc window (you can type -@kbd{C-x * c} again or @kbd{C-x * o} to switch back to the Tutorial window). -The first four keystrokes ``push'' the numbers 2 and 3 onto the stack. -The @kbd{+} key ``pops'' the top two numbers from the stack, adds them, -and pushes the result (5) back onto the stack. Here's how the stack -will look at various points throughout the calculation: - -@smallexample -@group - . 1: 2 2: 2 1: 5 . - . 1: 3 . - . - - C-x * c 2 @key{RET} 3 @key{RET} + @key{DEL} -@end group -@end smallexample - -The @samp{.} symbol is a marker that represents the top of the stack. -Note that the ``top'' of the stack is really shown at the bottom of -the Stack window. This may seem backwards, but it turns out to be -less distracting in regular use. - -@cindex Stack levels -@cindex Levels of stack -The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level -numbers}. Old RPN calculators always had four stack levels called -@expr{x}, @expr{y}, @expr{z}, and @expr{t}. Calc's stack can grow -as large as you like, so it uses numbers instead of letters. Some -stack-manipulation commands accept a numeric argument that says -which stack level to work on. Normal commands like @kbd{+} always -work on the top few levels of the stack. - -@c [fix-ref Truncating the Stack] -The Stack buffer is just an Emacs buffer, and you can move around in -it using the regular Emacs motion commands. But no matter where the -cursor is, even if you have scrolled the @samp{.} marker out of -view, most Calc commands always move the cursor back down to level 1 -before doing anything. It is possible to move the @samp{.} marker -upwards through the stack, temporarily ``hiding'' some numbers from -commands like @kbd{+}. This is called @dfn{stack truncation} and -we will not cover it in this tutorial; @pxref{Truncating the Stack}, -if you are interested. - -You don't really need the second @key{RET} in @kbd{2 @key{RET} 3 -@key{RET} +}. That's because if you type any operator name or -other non-numeric key when you are entering a number, the Calculator -automatically enters that number and then does the requested command. -Thus @kbd{2 @key{RET} 3 +} will work just as well. - -Examples in this tutorial will often omit @key{RET} even when the -stack displays shown would only happen if you did press @key{RET}: - -@smallexample -@group -1: 2 2: 2 1: 5 - . 1: 3 . - . - - 2 @key{RET} 3 + -@end group -@end smallexample - -@noindent -Here, after pressing @kbd{3} the stack would really show @samp{1: 2} -with @samp{Calc:@: 3} in the minibuffer. In these situations, you can -press the optional @key{RET} to see the stack as the figure shows. - -(@bullet{}) @strong{Exercise 1.} (This tutorial will include exercises -at various points. Try them if you wish. Answers to all the exercises -are located at the end of the Tutorial chapter. Each exercise will -include a cross-reference to its particular answer. If you are -reading with the Emacs Info system, press @kbd{f} and the -exercise number to go to the answer, then the letter @kbd{l} to -return to where you were.) - -@noindent -Here's the first exercise: What will the keystrokes @kbd{1 @key{RET} 2 -@key{RET} 3 @key{RET} 4 + * -} compute? (@samp{*} is the symbol for -multiplication.) Figure it out by hand, then try it with Calc to see -if you're right. @xref{RPN Answer 1, 1}. (@bullet{}) - -(@bullet{}) @strong{Exercise 2.} Compute -@texline @math{(2\times4) + (7\times9.4) + {5\over4}} -@infoline @expr{2*4 + 7*9.5 + 5/4} -using the stack. @xref{RPN Answer 2, 2}. (@bullet{}) - -The @key{DEL} key is called Backspace on some keyboards. It is -whatever key you would use to correct a simple typing error when -regularly using Emacs. The @key{DEL} key pops and throws away the -top value on the stack. (You can still get that value back from -the Trail if you should need it later on.) There are many places -in this tutorial where we assume you have used @key{DEL} to erase the -results of the previous example at the beginning of a new example. -In the few places where it is really important to use @key{DEL} to -clear away old results, the text will remind you to do so. - -(It won't hurt to let things accumulate on the stack, except that -whenever you give a display-mode-changing command Calc will have to -spend a long time reformatting such a large stack.) - -Since the @kbd{-} key is also an operator (it subtracts the top two -stack elements), how does one enter a negative number? Calc uses -the @kbd{_} (underscore) key to act like the minus sign in a number. -So, typing @kbd{-5 @key{RET}} won't work because the @kbd{-} key -will try to do a subtraction, but @kbd{_5 @key{RET}} works just fine. - -You can also press @kbd{n}, which means ``change sign.'' It changes -the number at the top of the stack (or the number being entered) -from positive to negative or vice-versa: @kbd{5 n @key{RET}}. - -@cindex Duplicating a stack entry -If you press @key{RET} when you're not entering a number, the effect -is to duplicate the top number on the stack. Consider this calculation: - -@smallexample -@group -1: 3 2: 3 1: 9 2: 9 1: 81 - . 1: 3 . 1: 9 . - . . - - 3 @key{RET} @key{RET} * @key{RET} * -@end group -@end smallexample - -@noindent -(Of course, an easier way to do this would be @kbd{3 @key{RET} 4 ^}, -to raise 3 to the fourth power.) - -The space-bar key (denoted @key{SPC} here) performs the same function -as @key{RET}; you could replace all three occurrences of @key{RET} in -the above example with @key{SPC} and the effect would be the same. - -@cindex Exchanging stack entries -Another stack manipulation key is @key{TAB}. This exchanges the top -two stack entries. Suppose you have computed @kbd{2 @key{RET} 3 +} -to get 5, and then you realize what you really wanted to compute -was @expr{20 / (2+3)}. - -@smallexample -@group -1: 5 2: 5 2: 20 1: 4 - . 1: 20 1: 5 . - . . - - 2 @key{RET} 3 + 20 @key{TAB} / -@end group -@end smallexample - -@noindent -Planning ahead, the calculation would have gone like this: - -@smallexample -@group -1: 20 2: 20 3: 20 2: 20 1: 4 - . 1: 2 2: 2 1: 5 . - . 1: 3 . - . - - 20 @key{RET} 2 @key{RET} 3 + / -@end group -@end smallexample - -A related stack command is @kbd{M-@key{TAB}} (hold @key{META} and type -@key{TAB}). It rotates the top three elements of the stack upward, -bringing the object in level 3 to the top. - -@smallexample -@group -1: 10 2: 10 3: 10 3: 20 3: 30 - . 1: 20 2: 20 2: 30 2: 10 - . 1: 30 1: 10 1: 20 - . . . - - 10 @key{RET} 20 @key{RET} 30 @key{RET} M-@key{TAB} M-@key{TAB} -@end group -@end smallexample - -(@bullet{}) @strong{Exercise 3.} Suppose the numbers 10, 20, and 30 are -on the stack. Figure out how to add one to the number in level 2 -without affecting the rest of the stack. Also figure out how to add -one to the number in level 3. @xref{RPN Answer 3, 3}. (@bullet{}) - -Operations like @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, and @kbd{^} pop two -arguments from the stack and push a result. Operations like @kbd{n} and -@kbd{Q} (square root) pop a single number and push the result. You can -think of them as simply operating on the top element of the stack. - -@smallexample -@group -1: 3 1: 9 2: 9 1: 25 1: 5 - . . 1: 16 . . - . - - 3 @key{RET} @key{RET} * 4 @key{RET} @key{RET} * + Q -@end group -@end smallexample - -@noindent -(Note that capital @kbd{Q} means to hold down the Shift key while -typing @kbd{q}. Remember, plain unshifted @kbd{q} is the Quit command.) - -@cindex Pythagorean Theorem -Here we've used the Pythagorean Theorem to determine the hypotenuse of a -right triangle. Calc actually has a built-in command for that called -@kbd{f h}, but let's suppose we can't remember the necessary keystrokes. -We can still enter it by its full name using @kbd{M-x} notation: - -@smallexample -@group -1: 3 2: 3 1: 5 - . 1: 4 . - . - - 3 @key{RET} 4 @key{RET} M-x calc-hypot -@end group -@end smallexample - -All Calculator commands begin with the word @samp{calc-}. Since it -gets tiring to type this, Calc provides an @kbd{x} key which is just -like the regular Emacs @kbd{M-x} key except that it types the @samp{calc-} -prefix for you: - -@smallexample -@group -1: 3 2: 3 1: 5 - . 1: 4 . - . - - 3 @key{RET} 4 @key{RET} x hypot -@end group -@end smallexample - -What happens if you take the square root of a negative number? - -@smallexample -@group -1: 4 1: -4 1: (0, 2) - . . . - - 4 @key{RET} n Q -@end group -@end smallexample - -@noindent -The notation @expr{(a, b)} represents a complex number. -Complex numbers are more traditionally written @expr{a + b i}; -Calc can display in this format, too, but for now we'll stick to the -@expr{(a, b)} notation. - -If you don't know how complex numbers work, you can safely ignore this -feature. Complex numbers only arise from operations that would be -errors in a calculator that didn't have complex numbers. (For example, -taking the square root or logarithm of a negative number produces a -complex result.) - -Complex numbers are entered in the notation shown. The @kbd{(} and -@kbd{,} and @kbd{)} keys manipulate ``incomplete complex numbers.'' - -@smallexample -@group -1: ( ... 2: ( ... 1: (2, ... 1: (2, ... 1: (2, 3) - . 1: 2 . 3 . - . . - - ( 2 , 3 ) -@end group -@end smallexample - -You can perform calculations while entering parts of incomplete objects. -However, an incomplete object cannot actually participate in a calculation: - -@smallexample -@group -1: ( ... 2: ( ... 3: ( ... 1: ( ... 1: ( ... - . 1: 2 2: 2 5 5 - . 1: 3 . . - . - (error) - ( 2 @key{RET} 3 + + -@end group -@end smallexample - -@noindent -Adding 5 to an incomplete object makes no sense, so the last command -produces an error message and leaves the stack the same. - -Incomplete objects can't participate in arithmetic, but they can be -moved around by the regular stack commands. - -@smallexample -@group -2: 2 3: 2 3: 3 1: ( ... 1: (2, 3) -1: 3 2: 3 2: ( ... 2 . - . 1: ( ... 1: 2 3 - . . . - -2 @key{RET} 3 @key{RET} ( M-@key{TAB} M-@key{TAB} ) -@end group -@end smallexample - -@noindent -Note that the @kbd{,} (comma) key did not have to be used here. -When you press @kbd{)} all the stack entries between the incomplete -entry and the top are collected, so there's never really a reason -to use the comma. It's up to you. - -(@bullet{}) @strong{Exercise 4.} To enter the complex number @expr{(2, 3)}, -your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}. What happened? -(Joe thought of a clever way to correct his mistake in only two -keystrokes, but it didn't quite work. Try it to find out why.) -@xref{RPN Answer 4, 4}. (@bullet{}) - -Vectors are entered the same way as complex numbers, but with square -brackets in place of parentheses. We'll meet vectors again later in -the tutorial. - -Any Emacs command can be given a @dfn{numeric prefix argument} by -typing a series of @key{META}-digits beforehand. If @key{META} is -awkward for you, you can instead type @kbd{C-u} followed by the -necessary digits. Numeric prefix arguments can be negative, as in -@kbd{M-- M-3 M-5} or @w{@kbd{C-u - 3 5}}. Calc commands use numeric -prefix arguments in a variety of ways. For example, a numeric prefix -on the @kbd{+} operator adds any number of stack entries at once: - -@smallexample -@group -1: 10 2: 10 3: 10 3: 10 1: 60 - . 1: 20 2: 20 2: 20 . - . 1: 30 1: 30 - . . - - 10 @key{RET} 20 @key{RET} 30 @key{RET} C-u 3 + -@end group -@end smallexample - -For stack manipulation commands like @key{RET}, a positive numeric -prefix argument operates on the top @var{n} stack entries at once. A -negative argument operates on the entry in level @var{n} only. An -argument of zero operates on the entire stack. In this example, we copy -the second-to-top element of the stack: - -@smallexample -@group -1: 10 2: 10 3: 10 3: 10 4: 10 - . 1: 20 2: 20 2: 20 3: 20 - . 1: 30 1: 30 2: 30 - . . 1: 20 - . - - 10 @key{RET} 20 @key{RET} 30 @key{RET} C-u -2 @key{RET} -@end group -@end smallexample - -@cindex Clearing the stack -@cindex Emptying the stack -Another common idiom is @kbd{M-0 @key{DEL}}, which clears the stack. -(The @kbd{M-0} numeric prefix tells @key{DEL} to operate on the -entire stack.) - -@node Algebraic Tutorial, Undo Tutorial, RPN Tutorial, Basic Tutorial -@subsection Algebraic-Style Calculations - -@noindent -If you are not used to RPN notation, you may prefer to operate the -Calculator in Algebraic mode, which is closer to the way -non-RPN calculators work. In Algebraic mode, you enter formulas -in traditional @expr{2+3} notation. - -@strong{Warning:} Note that @samp{/} has lower precedence than -@samp{*}, so that @samp{a/b*c} is interpreted as @samp{a/(b*c)}. See -below for details. - -You don't really need any special ``mode'' to enter algebraic formulas. -You can enter a formula at any time by pressing the apostrophe (@kbd{'}) -key. Answer the prompt with the desired formula, then press @key{RET}. -The formula is evaluated and the result is pushed onto the RPN stack. -If you don't want to think in RPN at all, you can enter your whole -computation as a formula, read the result from the stack, then press -@key{DEL} to delete it from the stack. - -Try pressing the apostrophe key, then @kbd{2+3+4}, then @key{RET}. -The result should be the number 9. - -Algebraic formulas use the operators @samp{+}, @samp{-}, @samp{*}, -@samp{/}, and @samp{^}. You can use parentheses to make the order -of evaluation clear. In the absence of parentheses, @samp{^} is -evaluated first, then @samp{*}, then @samp{/}, then finally -@samp{+} and @samp{-}. For example, the expression - -@example -2 + 3*4*5 / 6*7^8 - 9 -@end example - -@noindent -is equivalent to - -@example -2 + ((3*4*5) / (6*(7^8)) - 9 -@end example - -@noindent -or, in large mathematical notation, - -@ifnottex -@example -@group - 3 * 4 * 5 -2 + --------- - 9 - 8 - 6 * 7 -@end group -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$ -\afterdisplay -@end tex - -@noindent -The result of this expression will be the number @mathit{-6.99999826533}. - -Calc's order of evaluation is the same as for most computer languages, -except that @samp{*} binds more strongly than @samp{/}, as the above -example shows. As in normal mathematical notation, the @samp{*} symbol -can often be omitted: @samp{2 a} is the same as @samp{2*a}. - -Operators at the same level are evaluated from left to right, except -that @samp{^} is evaluated from right to left. Thus, @samp{2-3-4} is -equivalent to @samp{(2-3)-4} or @mathit{-5}, whereas @samp{2^3^4} is equivalent -to @samp{2^(3^4)} (a very large integer; try it!). - -If you tire of typing the apostrophe all the time, there is -Algebraic mode, where Calc automatically senses -when you are about to type an algebraic expression. To enter this -mode, press the two letters @w{@kbd{m a}}. (An @samp{Alg} indicator -should appear in the Calc window's mode line.) - -Press @kbd{m a}, then @kbd{2+3+4} with no apostrophe, then @key{RET}. - -In Algebraic mode, when you press any key that would normally begin -entering a number (such as a digit, a decimal point, or the @kbd{_} -key), or if you press @kbd{(} or @kbd{[}, Calc automatically begins -an algebraic entry. - -Functions which do not have operator symbols like @samp{+} and @samp{*} -must be entered in formulas using function-call notation. For example, -the function name corresponding to the square-root key @kbd{Q} is -@code{sqrt}. To compute a square root in a formula, you would use -the notation @samp{sqrt(@var{x})}. - -Press the apostrophe, then type @kbd{sqrt(5*2) - 3}. The result should -be @expr{0.16227766017}. - -Note that if the formula begins with a function name, you need to use -the apostrophe even if you are in Algebraic mode. If you type @kbd{arcsin} -out of the blue, the @kbd{a r} will be taken as an Algebraic Rewrite -command, and the @kbd{csin} will be taken as the name of the rewrite -rule to use! - -Some people prefer to enter complex numbers and vectors in algebraic -form because they find RPN entry with incomplete objects to be too -distracting, even though they otherwise use Calc as an RPN calculator. - -Still in Algebraic mode, type: - -@smallexample -@group -1: (2, 3) 2: (2, 3) 1: (8, -1) 2: (8, -1) 1: (9, -1) - . 1: (1, -2) . 1: 1 . - . . - - (2,3) @key{RET} (1,-2) @key{RET} * 1 @key{RET} + -@end group -@end smallexample - -Algebraic mode allows us to enter complex numbers without pressing -an apostrophe first, but it also means we need to press @key{RET} -after every entry, even for a simple number like @expr{1}. - -(You can type @kbd{C-u m a} to enable a special Incomplete Algebraic -mode in which the @kbd{(} and @kbd{[} keys use algebraic entry even -though regular numeric keys still use RPN numeric entry. There is also -Total Algebraic mode, started by typing @kbd{m t}, in which all -normal keys begin algebraic entry. You must then use the @key{META} key -to type Calc commands: @kbd{M-m t} to get back out of Total Algebraic -mode, @kbd{M-q} to quit, etc.) - -If you're still in Algebraic mode, press @kbd{m a} again to turn it off. - -Actual non-RPN calculators use a mixture of algebraic and RPN styles. -In general, operators of two numbers (like @kbd{+} and @kbd{*}) -use algebraic form, but operators of one number (like @kbd{n} and @kbd{Q}) -use RPN form. Also, a non-RPN calculator allows you to see the -intermediate results of a calculation as you go along. You can -accomplish this in Calc by performing your calculation as a series -of algebraic entries, using the @kbd{$} sign to tie them together. -In an algebraic formula, @kbd{$} represents the number on the top -of the stack. Here, we perform the calculation -@texline @math{\sqrt{2\times4+1}}, -@infoline @expr{sqrt(2*4+1)}, -which on a traditional calculator would be done by pressing -@kbd{2 * 4 + 1 =} and then the square-root key. - -@smallexample -@group -1: 8 1: 9 1: 3 - . . . - - ' 2*4 @key{RET} $+1 @key{RET} Q -@end group -@end smallexample - -@noindent -Notice that we didn't need to press an apostrophe for the @kbd{$+1}, -because the dollar sign always begins an algebraic entry. - -(@bullet{}) @strong{Exercise 1.} How could you get the same effect as -pressing @kbd{Q} but using an algebraic entry instead? How about -if the @kbd{Q} key on your keyboard were broken? -@xref{Algebraic Answer 1, 1}. (@bullet{}) - -The notations @kbd{$$}, @kbd{$$$}, and so on stand for higher stack -entries. For example, @kbd{' $$+$ @key{RET}} is just like typing @kbd{+}. - -Algebraic formulas can include @dfn{variables}. To store in a -variable, press @kbd{s s}, then type the variable name, then press -@key{RET}. (There are actually two flavors of store command: -@kbd{s s} stores a number in a variable but also leaves the number -on the stack, while @w{@kbd{s t}} removes a number from the stack and -stores it in the variable.) A variable name should consist of one -or more letters or digits, beginning with a letter. - -@smallexample -@group -1: 17 . 1: a + a^2 1: 306 - . . . - - 17 s t a @key{RET} ' a+a^2 @key{RET} = -@end group -@end smallexample - -@noindent -The @kbd{=} key @dfn{evaluates} a formula by replacing all its -variables by the values that were stored in them. - -For RPN calculations, you can recall a variable's value on the -stack either by entering its name as a formula and pressing @kbd{=}, -or by using the @kbd{s r} command. - -@smallexample -@group -1: 17 2: 17 3: 17 2: 17 1: 306 - . 1: 17 2: 17 1: 289 . - . 1: 2 . - . - - s r a @key{RET} ' a @key{RET} = 2 ^ + -@end group -@end smallexample - -If you press a single digit for a variable name (as in @kbd{s t 3}, you -get one of ten @dfn{quick variables} @code{q0} through @code{q9}. -They are ``quick'' simply because you don't have to type the letter -@code{q} or the @key{RET} after their names. In fact, you can type -simply @kbd{s 3} as a shorthand for @kbd{s s 3}, and likewise for -@kbd{t 3} and @w{@kbd{r 3}}. - -Any variables in an algebraic formula for which you have not stored -values are left alone, even when you evaluate the formula. - -@smallexample -@group -1: 2 a + 2 b 1: 34 + 2 b - . . - - ' 2a+2b @key{RET} = -@end group -@end smallexample - -Calls to function names which are undefined in Calc are also left -alone, as are calls for which the value is undefined. - -@smallexample -@group -1: 2 + log10(0) + log10(x) + log10(5, 6) + foo(3) - . - - ' log10(100) + log10(0) + log10(x) + log10(5,6) + foo(3) @key{RET} -@end group -@end smallexample - -@noindent -In this example, the first call to @code{log10} works, but the other -calls are not evaluated. In the second call, the logarithm is -undefined for that value of the argument; in the third, the argument -is symbolic, and in the fourth, there are too many arguments. In the -fifth case, there is no function called @code{foo}. You will see a -``Wrong number of arguments'' message referring to @samp{log10(5,6)}. -Press the @kbd{w} (``why'') key to see any other messages that may -have arisen from the last calculation. In this case you will get -``logarithm of zero,'' then ``number expected: @code{x}''. Calc -automatically displays the first message only if the message is -sufficiently important; for example, Calc considers ``wrong number -of arguments'' and ``logarithm of zero'' to be important enough to -report automatically, while a message like ``number expected: @code{x}'' -will only show up if you explicitly press the @kbd{w} key. - -(@bullet{}) @strong{Exercise 2.} Joe entered the formula @samp{2 x y}, -stored 5 in @code{x}, pressed @kbd{=}, and got the expected result, -@samp{10 y}. He then tried the same for the formula @samp{2 x (1+y)}, -expecting @samp{10 (1+y)}, but it didn't work. Why not? -@xref{Algebraic Answer 2, 2}. (@bullet{}) - -(@bullet{}) @strong{Exercise 3.} What result would you expect -@kbd{1 @key{RET} 0 /} to give? What if you then type @kbd{0 *}? -@xref{Algebraic Answer 3, 3}. (@bullet{}) - -One interesting way to work with variables is to use the -@dfn{evaluates-to} (@samp{=>}) operator. It works like this: -Enter a formula algebraically in the usual way, but follow -the formula with an @samp{=>} symbol. (There is also an @kbd{s =} -command which builds an @samp{=>} formula using the stack.) On -the stack, you will see two copies of the formula with an @samp{=>} -between them. The lefthand formula is exactly like you typed it; -the righthand formula has been evaluated as if by typing @kbd{=}. - -@smallexample -@group -2: 2 + 3 => 5 2: 2 + 3 => 5 -1: 2 a + 2 b => 34 + 2 b 1: 2 a + 2 b => 20 + 2 b - . . - -' 2+3 => @key{RET} ' 2a+2b @key{RET} s = 10 s t a @key{RET} -@end group -@end smallexample - -@noindent -Notice that the instant we stored a new value in @code{a}, all -@samp{=>} operators already on the stack that referred to @expr{a} -were updated to use the new value. With @samp{=>}, you can push a -set of formulas on the stack, then change the variables experimentally -to see the effects on the formulas' values. - -You can also ``unstore'' a variable when you are through with it: - -@smallexample -@group -2: 2 + 5 => 5 -1: 2 a + 2 b => 2 a + 2 b - . - - s u a @key{RET} -@end group -@end smallexample - -We will encounter formulas involving variables and functions again -when we discuss the algebra and calculus features of the Calculator. - -@node Undo Tutorial, Modes Tutorial, Algebraic Tutorial, Basic Tutorial -@subsection Undo and Redo - -@noindent -If you make a mistake, you can usually correct it by pressing shift-@kbd{U}, -the ``undo'' command. First, clear the stack (@kbd{M-0 @key{DEL}}) and exit -and restart Calc (@kbd{C-x * * C-x * *}) to make sure things start off -with a clean slate. Now: - -@smallexample -@group -1: 2 2: 2 1: 8 2: 2 1: 6 - . 1: 3 . 1: 3 . - . . - - 2 @key{RET} 3 ^ U * -@end group -@end smallexample - -You can undo any number of times. Calc keeps a complete record of -all you have done since you last opened the Calc window. After the -above example, you could type: - -@smallexample -@group -1: 6 2: 2 1: 2 . . - . 1: 3 . - . - (error) - U U U U -@end group -@end smallexample - -You can also type @kbd{D} to ``redo'' a command that you have undone -mistakenly. - -@smallexample -@group - . 1: 2 2: 2 1: 6 1: 6 - . 1: 3 . . - . - (error) - D D D D -@end group -@end smallexample - -@noindent -It was not possible to redo past the @expr{6}, since that was placed there -by something other than an undo command. - -@cindex Time travel -You can think of undo and redo as a sort of ``time machine.'' Press -@kbd{U} to go backward in time, @kbd{D} to go forward. If you go -backward and do something (like @kbd{*}) then, as any science fiction -reader knows, you have changed your future and you cannot go forward -again. Thus, the inability to redo past the @expr{6} even though there -was an earlier undo command. - -You can always recall an earlier result using the Trail. We've ignored -the trail so far, but it has been faithfully recording everything we -did since we loaded the Calculator. If the Trail is not displayed, -press @kbd{t d} now to turn it on. - -Let's try grabbing an earlier result. The @expr{8} we computed was -undone by a @kbd{U} command, and was lost even to Redo when we pressed -@kbd{*}, but it's still there in the trail. There should be a little -@samp{>} arrow (the @dfn{trail pointer}) resting on the last trail -entry. If there isn't, press @kbd{t ]} to reset the trail pointer. -Now, press @w{@kbd{t p}} to move the arrow onto the line containing -@expr{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the -stack. - -If you press @kbd{t ]} again, you will see that even our Yank command -went into the trail. - -Let's go further back in time. Earlier in the tutorial we computed -a huge integer using the formula @samp{2^3^4}. We don't remember -what it was, but the first digits were ``241''. Press @kbd{t r} -(which stands for trail-search-reverse), then type @kbd{241}. -The trail cursor will jump back to the next previous occurrence of -the string ``241'' in the trail. This is just a regular Emacs -incremental search; you can now press @kbd{C-s} or @kbd{C-r} to -continue the search forwards or backwards as you like. - -To finish the search, press @key{RET}. This halts the incremental -search and leaves the trail pointer at the thing we found. Now we -can type @kbd{t y} to yank that number onto the stack. If we hadn't -remembered the ``241'', we could simply have searched for @kbd{2^3^4}, -then pressed @kbd{@key{RET} t n} to halt and then move to the next item. - -You may have noticed that all the trail-related commands begin with -the letter @kbd{t}. (The store-and-recall commands, on the other hand, -all began with @kbd{s}.) Calc has so many commands that there aren't -enough keys for all of them, so various commands are grouped into -two-letter sequences where the first letter is called the @dfn{prefix} -key. If you type a prefix key by accident, you can press @kbd{C-g} -to cancel it. (In fact, you can press @kbd{C-g} to cancel almost -anything in Emacs.) To get help on a prefix key, press that key -followed by @kbd{?}. Some prefixes have several lines of help, -so you need to press @kbd{?} repeatedly to see them all. -You can also type @kbd{h h} to see all the help at once. - -Try pressing @kbd{t ?} now. You will see a line of the form, - -@smallexample -trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank: [MORE] t- -@end smallexample - -@noindent -The word ``trail'' indicates that the @kbd{t} prefix key contains -trail-related commands. Each entry on the line shows one command, -with a single capital letter showing which letter you press to get -that command. We have used @kbd{t n}, @kbd{t p}, @kbd{t ]}, and -@kbd{t y} so far. The @samp{[MORE]} means you can press @kbd{?} -again to see more @kbd{t}-prefix commands. Notice that the commands -are roughly divided (by semicolons) into related groups. - -When you are in the help display for a prefix key, the prefix is -still active. If you press another key, like @kbd{y} for example, -it will be interpreted as a @kbd{t y} command. If all you wanted -was to look at the help messages, press @kbd{C-g} afterwards to cancel -the prefix. - -One more way to correct an error is by editing the stack entries. -The actual Stack buffer is marked read-only and must not be edited -directly, but you can press @kbd{`} (the backquote or accent grave) -to edit a stack entry. - -Try entering @samp{3.141439} now. If this is supposed to represent -@cpi{}, it's got several errors. Press @kbd{`} to edit this number. -Now use the normal Emacs cursor motion and editing keys to change -the second 4 to a 5, and to transpose the 3 and the 9. When you -press @key{RET}, the number on the stack will be replaced by your -new number. This works for formulas, vectors, and all other types -of values you can put on the stack. The @kbd{`} key also works -during entry of a number or algebraic formula. - -@node Modes Tutorial, , Undo Tutorial, Basic Tutorial -@subsection Mode-Setting Commands - -@noindent -Calc has many types of @dfn{modes} that affect the way it interprets -your commands or the way it displays data. We have already seen one -mode, namely Algebraic mode. There are many others, too; we'll -try some of the most common ones here. - -Perhaps the most fundamental mode in Calc is the current @dfn{precision}. -Notice the @samp{12} on the Calc window's mode line: - -@smallexample ---%%-Calc: 12 Deg (Calculator)----All------ -@end smallexample - -@noindent -Most of the symbols there are Emacs things you don't need to worry -about, but the @samp{12} and the @samp{Deg} are mode indicators. -The @samp{12} means that calculations should always be carried to -12 significant figures. That is why, when we type @kbd{1 @key{RET} 7 /}, -we get @expr{0.142857142857} with exactly 12 digits, not counting -leading and trailing zeros. - -You can set the precision to anything you like by pressing @kbd{p}, -then entering a suitable number. Try pressing @kbd{p 30 @key{RET}}, -then doing @kbd{1 @key{RET} 7 /} again: - -@smallexample -@group -1: 0.142857142857 -2: 0.142857142857142857142857142857 - . -@end group -@end smallexample - -Although the precision can be set arbitrarily high, Calc always -has to have @emph{some} value for the current precision. After -all, the true value @expr{1/7} is an infinitely repeating decimal; -Calc has to stop somewhere. - -Of course, calculations are slower the more digits you request. -Press @w{@kbd{p 12}} now to set the precision back down to the default. - -Calculations always use the current precision. For example, even -though we have a 30-digit value for @expr{1/7} on the stack, if -we use it in a calculation in 12-digit mode it will be rounded -down to 12 digits before it is used. Try it; press @key{RET} to -duplicate the number, then @w{@kbd{1 +}}. Notice that the @key{RET} -key didn't round the number, because it doesn't do any calculation. -But the instant we pressed @kbd{+}, the number was rounded down. - -@smallexample -@group -1: 0.142857142857 -2: 0.142857142857142857142857142857 -3: 1.14285714286 - . -@end group -@end smallexample - -@noindent -In fact, since we added a digit on the left, we had to lose one -digit on the right from even the 12-digit value of @expr{1/7}. - -How did we get more than 12 digits when we computed @samp{2^3^4}? The -answer is that Calc makes a distinction between @dfn{integers} and -@dfn{floating-point} numbers, or @dfn{floats}. An integer is a number -that does not contain a decimal point. There is no such thing as an -``infinitely repeating fraction integer,'' so Calc doesn't have to limit -itself. If you asked for @samp{2^10000} (don't try this!), you would -have to wait a long time but you would eventually get an exact answer. -If you ask for @samp{2.^10000}, you will quickly get an answer which is -correct only to 12 places. The decimal point tells Calc that it should -use floating-point arithmetic to get the answer, not exact integer -arithmetic. - -You can use the @kbd{F} (@code{calc-floor}) command to convert a -floating-point value to an integer, and @kbd{c f} (@code{calc-float}) -to convert an integer to floating-point form. - -Let's try entering that last calculation: - -@smallexample -@group -1: 2. 2: 2. 1: 1.99506311689e3010 - . 1: 10000 . - . - - 2.0 @key{RET} 10000 @key{RET} ^ -@end group -@end smallexample - -@noindent -@cindex Scientific notation, entry of -Notice the letter @samp{e} in there. It represents ``times ten to the -power of,'' and is used by Calc automatically whenever writing the -number out fully would introduce more extra zeros than you probably -want to see. You can enter numbers in this notation, too. - -@smallexample -@group -1: 2. 2: 2. 1: 1.99506311678e3010 - . 1: 10000. . - . - - 2.0 @key{RET} 1e4 @key{RET} ^ -@end group -@end smallexample - -@cindex Round-off errors -@noindent -Hey, the answer is different! Look closely at the middle columns -of the two examples. In the first, the stack contained the -exact integer @expr{10000}, but in the second it contained -a floating-point value with a decimal point. When you raise a -number to an integer power, Calc uses repeated squaring and -multiplication to get the answer. When you use a floating-point -power, Calc uses logarithms and exponentials. As you can see, -a slight error crept in during one of these methods. Which -one should we trust? Let's raise the precision a bit and find -out: - -@smallexample -@group - . 1: 2. 2: 2. 1: 1.995063116880828e3010 - . 1: 10000. . - . - - p 16 @key{RET} 2. @key{RET} 1e4 ^ p 12 @key{RET} -@end group -@end smallexample - -@noindent -@cindex Guard digits -Presumably, it doesn't matter whether we do this higher-precision -calculation using an integer or floating-point power, since we -have added enough ``guard digits'' to trust the first 12 digits -no matter what. And the verdict is@dots{} Integer powers were more -accurate; in fact, the result was only off by one unit in the -last place. - -@cindex Guard digits -Calc does many of its internal calculations to a slightly higher -precision, but it doesn't always bump the precision up enough. -In each case, Calc added about two digits of precision during -its calculation and then rounded back down to 12 digits -afterward. In one case, it was enough; in the other, it -wasn't. If you really need @var{x} digits of precision, it -never hurts to do the calculation with a few extra guard digits. - -What if we want guard digits but don't want to look at them? -We can set the @dfn{float format}. Calc supports four major -formats for floating-point numbers, called @dfn{normal}, -@dfn{fixed-point}, @dfn{scientific notation}, and @dfn{engineering -notation}. You get them by pressing @w{@kbd{d n}}, @kbd{d f}, -@kbd{d s}, and @kbd{d e}, respectively. In each case, you can -supply a numeric prefix argument which says how many digits -should be displayed. As an example, let's put a few numbers -onto the stack and try some different display modes. First, -use @kbd{M-0 @key{DEL}} to clear the stack, then enter the four -numbers shown here: - -@smallexample -@group -4: 12345 4: 12345 4: 12345 4: 12345 4: 12345 -3: 12345. 3: 12300. 3: 1.2345e4 3: 1.23e4 3: 12345.000 -2: 123.45 2: 123. 2: 1.2345e2 2: 1.23e2 2: 123.450 -1: 12.345 1: 12.3 1: 1.2345e1 1: 1.23e1 1: 12.345 - . . . . . - - d n M-3 d n d s M-3 d s M-3 d f -@end group -@end smallexample - -@noindent -Notice that when we typed @kbd{M-3 d n}, the numbers were rounded down -to three significant digits, but then when we typed @kbd{d s} all -five significant figures reappeared. The float format does not -affect how numbers are stored, it only affects how they are -displayed. Only the current precision governs the actual rounding -of numbers in the Calculator's memory. - -Engineering notation, not shown here, is like scientific notation -except the exponent (the power-of-ten part) is always adjusted to be -a multiple of three (as in ``kilo,'' ``micro,'' etc.). As a result -there will be one, two, or three digits before the decimal point. - -Whenever you change a display-related mode, Calc redraws everything -in the stack. This may be slow if there are many things on the stack, -so Calc allows you to type shift-@kbd{H} before any mode command to -prevent it from updating the stack. Anything Calc displays after the -mode-changing command will appear in the new format. - -@smallexample -@group -4: 12345 4: 12345 4: 12345 4: 12345 4: 12345 -3: 12345.000 3: 12345.000 3: 12345.000 3: 1.2345e4 3: 12345. -2: 123.450 2: 123.450 2: 1.2345e1 2: 1.2345e1 2: 123.45 -1: 12.345 1: 1.2345e1 1: 1.2345e2 1: 1.2345e2 1: 12.345 - . . . . . - - H d s @key{DEL} U @key{TAB} d @key{SPC} d n -@end group -@end smallexample - -@noindent -Here the @kbd{H d s} command changes to scientific notation but without -updating the screen. Deleting the top stack entry and undoing it back -causes it to show up in the new format; swapping the top two stack -entries reformats both entries. The @kbd{d @key{SPC}} command refreshes the -whole stack. The @kbd{d n} command changes back to the normal float -format; since it doesn't have an @kbd{H} prefix, it also updates all -the stack entries to be in @kbd{d n} format. - -Notice that the integer @expr{12345} was not affected by any -of the float formats. Integers are integers, and are always -displayed exactly. - -@cindex Large numbers, readability -Large integers have their own problems. Let's look back at -the result of @kbd{2^3^4}. - -@example -2417851639229258349412352 -@end example - -@noindent -Quick---how many digits does this have? Try typing @kbd{d g}: - -@example -2,417,851,639,229,258,349,412,352 -@end example - -@noindent -Now how many digits does this have? It's much easier to tell! -We can actually group digits into clumps of any size. Some -people prefer @kbd{M-5 d g}: - -@example -24178,51639,22925,83494,12352 -@end example - -Let's see what happens to floating-point numbers when they are grouped. -First, type @kbd{p 25 @key{RET}} to make sure we have enough precision -to get ourselves into trouble. Now, type @kbd{1e13 /}: - -@example -24,17851,63922.9258349412352 -@end example - -@noindent -The integer part is grouped but the fractional part isn't. Now try -@kbd{M-- M-5 d g} (that's meta-minus-sign, meta-five): - -@example -24,17851,63922.92583,49412,352 -@end example - -If you find it hard to tell the decimal point from the commas, try -changing the grouping character to a space with @kbd{d , @key{SPC}}: - -@example -24 17851 63922.92583 49412 352 -@end example - -Type @kbd{d , ,} to restore the normal grouping character, then -@kbd{d g} again to turn grouping off. Also, press @kbd{p 12} to -restore the default precision. - -Press @kbd{U} enough times to get the original big integer back. -(Notice that @kbd{U} does not undo each mode-setting command; if -you want to undo a mode-setting command, you have to do it yourself.) -Now, type @kbd{d r 16 @key{RET}}: - -@example -16#200000000000000000000 -@end example - -@noindent -The number is now displayed in @dfn{hexadecimal}, or ``base-16'' form. -Suddenly it looks pretty simple; this should be no surprise, since we -got this number by computing a power of two, and 16 is a power of 2. -In fact, we can use @w{@kbd{d r 2 @key{RET}}} to see it in actual binary -form: - -@example -2#1000000000000000000000000000000000000000000000000000000 @dots{} -@end example - -@noindent -We don't have enough space here to show all the zeros! They won't -fit on a typical screen, either, so you will have to use horizontal -scrolling to see them all. Press @kbd{<} and @kbd{>} to scroll the -stack window left and right by half its width. Another way to view -something large is to press @kbd{`} (back-quote) to edit the top of -stack in a separate window. (Press @kbd{C-c C-c} when you are done.) - -You can enter non-decimal numbers using the @kbd{#} symbol, too. -Let's see what the hexadecimal number @samp{5FE} looks like in -binary. Type @kbd{16#5FE} (the letters can be typed in upper or -lower case; they will always appear in upper case). It will also -help to turn grouping on with @kbd{d g}: - -@example -2#101,1111,1110 -@end example - -Notice that @kbd{d g} groups by fours by default if the display radix -is binary or hexadecimal, but by threes if it is decimal, octal, or any -other radix. - -Now let's see that number in decimal; type @kbd{d r 10}: - -@example -1,534 -@end example - -Numbers are not @emph{stored} with any particular radix attached. They're -just numbers; they can be entered in any radix, and are always displayed -in whatever radix you've chosen with @kbd{d r}. The current radix applies -to integers, fractions, and floats. - -@cindex Roundoff errors, in non-decimal numbers -(@bullet{}) @strong{Exercise 1.} Your friend Joe tried to enter one-third -as @samp{3#0.1} in @kbd{d r 3} mode with a precision of 12. He got -@samp{3#0.0222222...} (with 25 2's) in the display. When he multiplied -that by three, he got @samp{3#0.222222...} instead of the expected -@samp{3#1}. Next, Joe entered @samp{3#0.2} and, to his great relief, -saw @samp{3#0.2} on the screen. But when he typed @kbd{2 /}, he got -@samp{3#0.10000001} (some zeros omitted). What's going on here? -@xref{Modes Answer 1, 1}. (@bullet{}) - -@cindex Scientific notation, in non-decimal numbers -(@bullet{}) @strong{Exercise 2.} Scientific notation works in non-decimal -modes in the natural way (the exponent is a power of the radix instead of -a power of ten, although the exponent itself is always written in decimal). -Thus @samp{8#1.23e3 = 8#1230.0}. Suppose we have the hexadecimal number -@samp{f.e8f} times 16 to the 15th power: We write @samp{16#f.e8fe15}. -What is wrong with this picture? What could we write instead that would -work better? @xref{Modes Answer 2, 2}. (@bullet{}) - -The @kbd{m} prefix key has another set of modes, relating to the way -Calc interprets your inputs and does computations. Whereas @kbd{d}-prefix -modes generally affect the way things look, @kbd{m}-prefix modes affect -the way they are actually computed. - -The most popular @kbd{m}-prefix mode is the @dfn{angular mode}. Notice -the @samp{Deg} indicator in the mode line. This means that if you use -a command that interprets a number as an angle, it will assume the -angle is measured in degrees. For example, - -@smallexample -@group -1: 45 1: 0.707106781187 1: 0.500000000001 1: 0.5 - . . . . - - 45 S 2 ^ c 1 -@end group -@end smallexample - -@noindent -The shift-@kbd{S} command computes the sine of an angle. The sine -of 45 degrees is -@texline @math{\sqrt{2}/2}; -@infoline @expr{sqrt(2)/2}; -squaring this yields @expr{2/4 = 0.5}. However, there has been a slight -roundoff error because the representation of -@texline @math{\sqrt{2}/2} -@infoline @expr{sqrt(2)/2} -wasn't exact. The @kbd{c 1} command is a handy way to clean up numbers -in this case; it temporarily reduces the precision by one digit while it -re-rounds the number on the top of the stack. - -@cindex Roundoff errors, examples -(@bullet{}) @strong{Exercise 3.} Your friend Joe computed the sine -of 45 degrees as shown above, then, hoping to avoid an inexact -result, he increased the precision to 16 digits before squaring. -What happened? @xref{Modes Answer 3, 3}. (@bullet{}) - -To do this calculation in radians, we would type @kbd{m r} first. -(The indicator changes to @samp{Rad}.) 45 degrees corresponds to -@cpiover{4} radians. To get @cpi{}, press the @kbd{P} key. (Once -again, this is a shifted capital @kbd{P}. Remember, unshifted -@kbd{p} sets the precision.) - -@smallexample -@group -1: 3.14159265359 1: 0.785398163398 1: 0.707106781187 - . . . - - P 4 / m r S -@end group -@end smallexample - -Likewise, inverse trigonometric functions generate results in -either radians or degrees, depending on the current angular mode. - -@smallexample -@group -1: 0.707106781187 1: 0.785398163398 1: 45. - . . . - - .5 Q m r I S m d U I S -@end group -@end smallexample - -@noindent -Here we compute the Inverse Sine of -@texline @math{\sqrt{0.5}}, -@infoline @expr{sqrt(0.5)}, -first in radians, then in degrees. - -Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees -and vice-versa. - -@smallexample -@group -1: 45 1: 0.785398163397 1: 45. - . . . - - 45 c r c d -@end group -@end smallexample - -Another interesting mode is @dfn{Fraction mode}. Normally, -dividing two integers produces a floating-point result if the -quotient can't be expressed as an exact integer. Fraction mode -causes integer division to produce a fraction, i.e., a rational -number, instead. - -@smallexample -@group -2: 12 1: 1.33333333333 1: 4:3 -1: 9 . . - . - - 12 @key{RET} 9 / m f U / m f -@end group -@end smallexample - -@noindent -In the first case, we get an approximate floating-point result. -In the second case, we get an exact fractional result (four-thirds). - -You can enter a fraction at any time using @kbd{:} notation. -(Calc uses @kbd{:} instead of @kbd{/} as the fraction separator -because @kbd{/} is already used to divide the top two stack -elements.) Calculations involving fractions will always -produce exact fractional results; Fraction mode only says -what to do when dividing two integers. - -@cindex Fractions vs. floats -@cindex Floats vs. fractions -(@bullet{}) @strong{Exercise 4.} If fractional arithmetic is exact, -why would you ever use floating-point numbers instead? -@xref{Modes Answer 4, 4}. (@bullet{}) - -Typing @kbd{m f} doesn't change any existing values in the stack. -In the above example, we had to Undo the division and do it over -again when we changed to Fraction mode. But if you use the -evaluates-to operator you can get commands like @kbd{m f} to -recompute for you. - -@smallexample -@group -1: 12 / 9 => 1.33333333333 1: 12 / 9 => 1.333 1: 12 / 9 => 4:3 - . . . - - ' 12/9 => @key{RET} p 4 @key{RET} m f -@end group -@end smallexample - -@noindent -In this example, the righthand side of the @samp{=>} operator -on the stack is recomputed when we change the precision, then -again when we change to Fraction mode. All @samp{=>} expressions -on the stack are recomputed every time you change any mode that -might affect their values. - -@node Arithmetic Tutorial, Vector/Matrix Tutorial, Basic Tutorial, Tutorial -@section Arithmetic Tutorial - -@noindent -In this section, we explore the arithmetic and scientific functions -available in the Calculator. - -The standard arithmetic commands are @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, -and @kbd{^}. Each normally takes two numbers from the top of the stack -and pushes back a result. The @kbd{n} and @kbd{&} keys perform -change-sign and reciprocal operations, respectively. - -@smallexample -@group -1: 5 1: 0.2 1: 5. 1: -5. 1: 5. - . . . . . - - 5 & & n n -@end group -@end smallexample - -@cindex Binary operators -You can apply a ``binary operator'' like @kbd{+} across any number of -stack entries by giving it a numeric prefix. You can also apply it -pairwise to several stack elements along with the top one if you use -a negative prefix. - -@smallexample -@group -3: 2 1: 9 3: 2 4: 2 3: 12 -2: 3 . 2: 3 3: 3 2: 13 -1: 4 1: 4 2: 4 1: 14 - . . 1: 10 . - . - -2 @key{RET} 3 @key{RET} 4 M-3 + U 10 M-- M-3 + -@end group -@end smallexample - -@cindex Unary operators -You can apply a ``unary operator'' like @kbd{&} to the top @var{n} -stack entries with a numeric prefix, too. - -@smallexample -@group -3: 2 3: 0.5 3: 0.5 -2: 3 2: 0.333333333333 2: 3. -1: 4 1: 0.25 1: 4. - . . . - -2 @key{RET} 3 @key{RET} 4 M-3 & M-2 & -@end group -@end smallexample - -Notice that the results here are left in floating-point form. -We can convert them back to integers by pressing @kbd{F}, the -``floor'' function. This function rounds down to the next lower -integer. There is also @kbd{R}, which rounds to the nearest -integer. - -@smallexample -@group -7: 2. 7: 2 7: 2 -6: 2.4 6: 2 6: 2 -5: 2.5 5: 2 5: 3 -4: 2.6 4: 2 4: 3 -3: -2. 3: -2 3: -2 -2: -2.4 2: -3 2: -2 -1: -2.6 1: -3 1: -3 - . . . - - M-7 F U M-7 R -@end group -@end smallexample - -Since dividing-and-flooring (i.e., ``integer quotient'') is such a -common operation, Calc provides a special command for that purpose, the -backslash @kbd{\}. Another common arithmetic operator is @kbd{%}, which -computes the remainder that would arise from a @kbd{\} operation, i.e., -the ``modulo'' of two numbers. For example, - -@smallexample -@group -2: 1234 1: 12 2: 1234 1: 34 -1: 100 . 1: 100 . - . . - -1234 @key{RET} 100 \ U % -@end group -@end smallexample - -These commands actually work for any real numbers, not just integers. - -@smallexample -@group -2: 3.1415 1: 3 2: 3.1415 1: 0.1415 -1: 1 . 1: 1 . - . . - -3.1415 @key{RET} 1 \ U % -@end group -@end smallexample - -(@bullet{}) @strong{Exercise 1.} The @kbd{\} command would appear to be a -frill, since you could always do the same thing with @kbd{/ F}. Think -of a situation where this is not true---@kbd{/ F} would be inadequate. -Now think of a way you could get around the problem if Calc didn't -provide a @kbd{\} command. @xref{Arithmetic Answer 1, 1}. (@bullet{}) - -We've already seen the @kbd{Q} (square root) and @kbd{S} (sine) -commands. Other commands along those lines are @kbd{C} (cosine), -@kbd{T} (tangent), @kbd{E} (@expr{e^x}) and @kbd{L} (natural -logarithm). These can be modified by the @kbd{I} (inverse) and -@kbd{H} (hyperbolic) prefix keys. - -Let's compute the sine and cosine of an angle, and verify the -identity -@texline @math{\sin^2x + \cos^2x = 1}. -@infoline @expr{sin(x)^2 + cos(x)^2 = 1}. -We'll arbitrarily pick @mathit{-64} degrees as a good value for @expr{x}. -With the angular mode set to degrees (type @w{@kbd{m d}}), do: - -@smallexample -@group -2: -64 2: -64 2: -0.89879 2: -0.89879 1: 1. -1: -64 1: -0.89879 1: -64 1: 0.43837 . - . . . . - - 64 n @key{RET} @key{RET} S @key{TAB} C f h -@end group -@end smallexample - -@noindent -(For brevity, we're showing only five digits of the results here. -You can of course do these calculations to any precision you like.) - -Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum -of squares, command. - -Another identity is -@texline @math{\displaystyle\tan x = {\sin x \over \cos x}}. -@infoline @expr{tan(x) = sin(x) / cos(x)}. -@smallexample -@group - -2: -0.89879 1: -2.0503 1: -64. -1: 0.43837 . . - . - - U / I T -@end group -@end smallexample - -A physical interpretation of this calculation is that if you move -@expr{0.89879} units downward and @expr{0.43837} units to the right, -your direction of motion is @mathit{-64} degrees from horizontal. Suppose -we move in the opposite direction, up and to the left: - -@smallexample -@group -2: -0.89879 2: 0.89879 1: -2.0503 1: -64. -1: 0.43837 1: -0.43837 . . - . . - - U U M-2 n / I T -@end group -@end smallexample - -@noindent -How can the angle be the same? The answer is that the @kbd{/} operation -loses information about the signs of its inputs. Because the quotient -is negative, we know exactly one of the inputs was negative, but we -can't tell which one. There is an @kbd{f T} [@code{arctan2}] function which -computes the inverse tangent of the quotient of a pair of numbers. -Since you feed it the two original numbers, it has enough information -to give you a full 360-degree answer. - -@smallexample -@group -2: 0.89879 1: 116. 3: 116. 2: 116. 1: 180. -1: -0.43837 . 2: -0.89879 1: -64. . - . 1: 0.43837 . - . - - U U f T M-@key{RET} M-2 n f T - -@end group -@end smallexample - -@noindent -The resulting angles differ by 180 degrees; in other words, they -point in opposite directions, just as we would expect. - -The @key{META}-@key{RET} we used in the third step is the -``last-arguments'' command. It is sort of like Undo, except that it -restores the arguments of the last command to the stack without removing -the command's result. It is useful in situations like this one, -where we need to do several operations on the same inputs. We could -have accomplished the same thing by using @kbd{M-2 @key{RET}} to duplicate -the top two stack elements right after the @kbd{U U}, then a pair of -@kbd{M-@key{TAB}} commands to cycle the 116 up around the duplicates. - -A similar identity is supposed to hold for hyperbolic sines and cosines, -except that it is the @emph{difference} -@texline @math{\cosh^2x - \sinh^2x} -@infoline @expr{cosh(x)^2 - sinh(x)^2} -that always equals one. Let's try to verify this identity. - -@smallexample -@group -2: -64 2: -64 2: -64 2: 9.7192e54 2: 9.7192e54 -1: -64 1: -3.1175e27 1: 9.7192e54 1: -64 1: 9.7192e54 - . . . . . - - 64 n @key{RET} @key{RET} H C 2 ^ @key{TAB} H S 2 ^ -@end group -@end smallexample - -@noindent -@cindex Roundoff errors, examples -Something's obviously wrong, because when we subtract these numbers -the answer will clearly be zero! But if you think about it, if these -numbers @emph{did} differ by one, it would be in the 55th decimal -place. The difference we seek has been lost entirely to roundoff -error. - -We could verify this hypothesis by doing the actual calculation with, -say, 60 decimal places of precision. This will be slow, but not -enormously so. Try it if you wish; sure enough, the answer is -0.99999, reasonably close to 1. - -Of course, a more reasonable way to verify the identity is to use -a more reasonable value for @expr{x}! - -@cindex Common logarithm -Some Calculator commands use the Hyperbolic prefix for other purposes. -The logarithm and exponential functions, for example, work to the base -@expr{e} normally but use base-10 instead if you use the Hyperbolic -prefix. - -@smallexample -@group -1: 1000 1: 6.9077 1: 1000 1: 3 - . . . . - - 1000 L U H L -@end group -@end smallexample - -@noindent -First, we mistakenly compute a natural logarithm. Then we undo -and compute a common logarithm instead. - -The @kbd{B} key computes a general base-@var{b} logarithm for any -value of @var{b}. - -@smallexample -@group -2: 1000 1: 3 1: 1000. 2: 1000. 1: 6.9077 -1: 10 . . 1: 2.71828 . - . . - - 1000 @key{RET} 10 B H E H P B -@end group -@end smallexample - -@noindent -Here we first use @kbd{B} to compute the base-10 logarithm, then use -the ``hyperbolic'' exponential as a cheap hack to recover the number -1000, then use @kbd{B} again to compute the natural logarithm. Note -that @kbd{P} with the hyperbolic prefix pushes the constant @expr{e} -onto the stack. - -You may have noticed that both times we took the base-10 logarithm -of 1000, we got an exact integer result. Calc always tries to give -an exact rational result for calculations involving rational numbers -where possible. But when we used @kbd{H E}, the result was a -floating-point number for no apparent reason. In fact, if we had -computed @kbd{10 @key{RET} 3 ^} we @emph{would} have gotten an -exact integer 1000. But the @kbd{H E} command is rigged to generate -a floating-point result all of the time so that @kbd{1000 H E} will -not waste time computing a thousand-digit integer when all you -probably wanted was @samp{1e1000}. - -(@bullet{}) @strong{Exercise 2.} Find a pair of integer inputs to -the @kbd{B} command for which Calc could find an exact rational -result but doesn't. @xref{Arithmetic Answer 2, 2}. (@bullet{}) - -The Calculator also has a set of functions relating to combinatorics -and statistics. You may be familiar with the @dfn{factorial} function, -which computes the product of all the integers up to a given number. - -@smallexample -@group -1: 100 1: 93326215443... 1: 100. 1: 9.3326e157 - . . . . - - 100 ! U c f ! -@end group -@end smallexample - -@noindent -Recall, the @kbd{c f} command converts the integer or fraction at the -top of the stack to floating-point format. If you take the factorial -of a floating-point number, you get a floating-point result -accurate to the current precision. But if you give @kbd{!} an -exact integer, you get an exact integer result (158 digits long -in this case). - -If you take the factorial of a non-integer, Calc uses a generalized -factorial function defined in terms of Euler's Gamma function -@texline @math{\Gamma(n)} -@infoline @expr{gamma(n)} -(which is itself available as the @kbd{f g} command). - -@smallexample -@group -3: 4. 3: 24. 1: 5.5 1: 52.342777847 -2: 4.5 2: 52.3427777847 . . -1: 5. 1: 120. - . . - - M-3 ! M-0 @key{DEL} 5.5 f g -@end group -@end smallexample - -@noindent -Here we verify the identity -@texline @math{n! = \Gamma(n+1)}. -@infoline @expr{@var{n}!@: = gamma(@var{n}+1)}. - -The binomial coefficient @var{n}-choose-@var{m} -@texline or @math{\displaystyle {n \choose m}} -is defined by -@texline @math{\displaystyle {n! \over m! \, (n-m)!}} -@infoline @expr{n!@: / m!@: (n-m)!} -for all reals @expr{n} and @expr{m}. The intermediate results in this -formula can become quite large even if the final result is small; the -@kbd{k c} command computes a binomial coefficient in a way that avoids -large intermediate values. - -The @kbd{k} prefix key defines several common functions out of -combinatorics and number theory. Here we compute the binomial -coefficient 30-choose-20, then determine its prime factorization. - -@smallexample -@group -2: 30 1: 30045015 1: [3, 3, 5, 7, 11, 13, 23, 29] -1: 20 . . - . - - 30 @key{RET} 20 k c k f -@end group -@end smallexample - -@noindent -You can verify these prime factors by using @kbd{v u} to ``unpack'' -this vector into 8 separate stack entries, then @kbd{M-8 *} to -multiply them back together. The result is the original number, -30045015. - -@cindex Hash tables -Suppose a program you are writing needs a hash table with at least -10000 entries. It's best to use a prime number as the actual size -of a hash table. Calc can compute the next prime number after 10000: - -@smallexample -@group -1: 10000 1: 10007 1: 9973 - . . . - - 10000 k n I k n -@end group -@end smallexample - -@noindent -Just for kicks we've also computed the next prime @emph{less} than -10000. - -@c [fix-ref Financial Functions] -@xref{Financial Functions}, for a description of the Calculator -commands that deal with business and financial calculations (functions -like @code{pv}, @code{rate}, and @code{sln}). - -@c [fix-ref Binary Number Functions] -@xref{Binary Functions}, to read about the commands for operating -on binary numbers (like @code{and}, @code{xor}, and @code{lsh}). - -@node Vector/Matrix Tutorial, Types Tutorial, Arithmetic Tutorial, Tutorial -@section Vector/Matrix Tutorial - -@noindent -A @dfn{vector} is a list of numbers or other Calc data objects. -Calc provides a large set of commands that operate on vectors. Some -are familiar operations from vector analysis. Others simply treat -a vector as a list of objects. - -@menu -* Vector Analysis Tutorial:: -* Matrix Tutorial:: -* List Tutorial:: -@end menu - -@node Vector Analysis Tutorial, Matrix Tutorial, Vector/Matrix Tutorial, Vector/Matrix Tutorial -@subsection Vector Analysis - -@noindent -If you add two vectors, the result is a vector of the sums of the -elements, taken pairwise. - -@smallexample -@group -1: [1, 2, 3] 2: [1, 2, 3] 1: [8, 8, 3] - . 1: [7, 6, 0] . - . - - [1,2,3] s 1 [7 6 0] s 2 + -@end group -@end smallexample - -@noindent -Note that we can separate the vector elements with either commas or -spaces. This is true whether we are using incomplete vectors or -algebraic entry. The @kbd{s 1} and @kbd{s 2} commands save these -vectors so we can easily reuse them later. - -If you multiply two vectors, the result is the sum of the products -of the elements taken pairwise. This is called the @dfn{dot product} -of the vectors. - -@smallexample -@group -2: [1, 2, 3] 1: 19 -1: [7, 6, 0] . - . - - r 1 r 2 * -@end group -@end smallexample - -@cindex Dot product -The dot product of two vectors is equal to the product of their -lengths times the cosine of the angle between them. (Here the vector -is interpreted as a line from the origin @expr{(0,0,0)} to the -specified point in three-dimensional space.) The @kbd{A} -(absolute value) command can be used to compute the length of a -vector. - -@smallexample -@group -3: 19 3: 19 1: 0.550782 1: 56.579 -2: [1, 2, 3] 2: 3.741657 . . -1: [7, 6, 0] 1: 9.219544 - . . - - M-@key{RET} M-2 A * / I C -@end group -@end smallexample - -@noindent -First we recall the arguments to the dot product command, then -we compute the absolute values of the top two stack entries to -obtain the lengths of the vectors, then we divide the dot product -by the product of the lengths to get the cosine of the angle. -The inverse cosine finds that the angle between the vectors -is about 56 degrees. - -@cindex Cross product -@cindex Perpendicular vectors -The @dfn{cross product} of two vectors is a vector whose length -is the product of the lengths of the inputs times the sine of the -angle between them, and whose direction is perpendicular to both -input vectors. Unlike the dot product, the cross product is -defined only for three-dimensional vectors. Let's double-check -our computation of the angle using the cross product. - -@smallexample -@group -2: [1, 2, 3] 3: [-18, 21, -8] 1: [-0.52, 0.61, -0.23] 1: 56.579 -1: [7, 6, 0] 2: [1, 2, 3] . . - . 1: [7, 6, 0] - . - - r 1 r 2 V C s 3 M-@key{RET} M-2 A * / A I S -@end group -@end smallexample - -@noindent -First we recall the original vectors and compute their cross product, -which we also store for later reference. Now we divide the vector -by the product of the lengths of the original vectors. The length of -this vector should be the sine of the angle; sure enough, it is! - -@c [fix-ref General Mode Commands] -Vector-related commands generally begin with the @kbd{v} prefix key. -Some are uppercase letters and some are lowercase. To make it easier -to type these commands, the shift-@kbd{V} prefix key acts the same as -the @kbd{v} key. (@xref{General Mode Commands}, for a way to make all -prefix keys have this property.) - -If we take the dot product of two perpendicular vectors we expect -to get zero, since the cosine of 90 degrees is zero. Let's check -that the cross product is indeed perpendicular to both inputs: - -@smallexample -@group -2: [1, 2, 3] 1: 0 2: [7, 6, 0] 1: 0 -1: [-18, 21, -8] . 1: [-18, 21, -8] . - . . - - r 1 r 3 * @key{DEL} r 2 r 3 * -@end group -@end smallexample - -@cindex Normalizing a vector -@cindex Unit vectors -(@bullet{}) @strong{Exercise 1.} Given a vector on the top of the -stack, what keystrokes would you use to @dfn{normalize} the -vector, i.e., to reduce its length to one without changing its -direction? @xref{Vector Answer 1, 1}. (@bullet{}) - -(@bullet{}) @strong{Exercise 2.} Suppose a certain particle can be -at any of several positions along a ruler. You have a list of -those positions in the form of a vector, and another list of the -probabilities for the particle to be at the corresponding positions. -Find the average position of the particle. -@xref{Vector Answer 2, 2}. (@bullet{}) - -@node Matrix Tutorial, List Tutorial, Vector Analysis Tutorial, Vector/Matrix Tutorial -@subsection Matrices - -@noindent -A @dfn{matrix} is just a vector of vectors, all the same length. -This means you can enter a matrix using nested brackets. You can -also use the semicolon character to enter a matrix. We'll show -both methods here: - -@smallexample -@group -1: [ [ 1, 2, 3 ] 1: [ [ 1, 2, 3 ] - [ 4, 5, 6 ] ] [ 4, 5, 6 ] ] - . . - - [[1 2 3] [4 5 6]] ' [1 2 3; 4 5 6] @key{RET} -@end group -@end smallexample - -@noindent -We'll be using this matrix again, so type @kbd{s 4} to save it now. - -Note that semicolons work with incomplete vectors, but they work -better in algebraic entry. That's why we use the apostrophe in -the second example. - -When two matrices are multiplied, the lefthand matrix must have -the same number of columns as the righthand matrix has rows. -Row @expr{i}, column @expr{j} of the result is effectively the -dot product of row @expr{i} of the left matrix by column @expr{j} -of the right matrix. - -If we try to duplicate this matrix and multiply it by itself, -the dimensions are wrong and the multiplication cannot take place: - -@smallexample -@group -1: [ [ 1, 2, 3 ] * [ [ 1, 2, 3 ] - [ 4, 5, 6 ] ] [ 4, 5, 6 ] ] - . - - @key{RET} * -@end group -@end smallexample - -@noindent -Though rather hard to read, this is a formula which shows the product -of two matrices. The @samp{*} function, having invalid arguments, has -been left in symbolic form. - -We can multiply the matrices if we @dfn{transpose} one of them first. - -@smallexample -@group -2: [ [ 1, 2, 3 ] 1: [ [ 14, 32 ] 1: [ [ 17, 22, 27 ] - [ 4, 5, 6 ] ] [ 32, 77 ] ] [ 22, 29, 36 ] -1: [ [ 1, 4 ] . [ 27, 36, 45 ] ] - [ 2, 5 ] . - [ 3, 6 ] ] - . - - U v t * U @key{TAB} * -@end group -@end smallexample - -Matrix multiplication is not commutative; indeed, switching the -order of the operands can even change the dimensions of the result -matrix, as happened here! - -If you multiply a plain vector by a matrix, it is treated as a -single row or column depending on which side of the matrix it is -on. The result is a plain vector which should also be interpreted -as a row or column as appropriate. - -@smallexample -@group -2: [ [ 1, 2, 3 ] 1: [14, 32] - [ 4, 5, 6 ] ] . -1: [1, 2, 3] - . - - r 4 r 1 * -@end group -@end smallexample - -Multiplying in the other order wouldn't work because the number of -rows in the matrix is different from the number of elements in the -vector. - -(@bullet{}) @strong{Exercise 1.} Use @samp{*} to sum along the rows -of the above -@texline @math{2\times3} -@infoline 2x3 -matrix to get @expr{[6, 15]}. Now use @samp{*} to sum along the columns -to get @expr{[5, 7, 9]}. -@xref{Matrix Answer 1, 1}. (@bullet{}) - -@cindex Identity matrix -An @dfn{identity matrix} is a square matrix with ones along the -diagonal and zeros elsewhere. It has the property that multiplication -by an identity matrix, on the left or on the right, always produces -the original matrix. - -@smallexample -@group -1: [ [ 1, 2, 3 ] 2: [ [ 1, 2, 3 ] 1: [ [ 1, 2, 3 ] - [ 4, 5, 6 ] ] [ 4, 5, 6 ] ] [ 4, 5, 6 ] ] - . 1: [ [ 1, 0, 0 ] . - [ 0, 1, 0 ] - [ 0, 0, 1 ] ] - . - - r 4 v i 3 @key{RET} * -@end group -@end smallexample - -If a matrix is square, it is often possible to find its @dfn{inverse}, -that is, a matrix which, when multiplied by the original matrix, yields -an identity matrix. The @kbd{&} (reciprocal) key also computes the -inverse of a matrix. - -@smallexample -@group -1: [ [ 1, 2, 3 ] 1: [ [ -2.4, 1.2, -0.2 ] - [ 4, 5, 6 ] [ 2.8, -1.4, 0.4 ] - [ 7, 6, 0 ] ] [ -0.73333, 0.53333, -0.2 ] ] - . . - - r 4 r 2 | s 5 & -@end group -@end smallexample - -@noindent -The vertical bar @kbd{|} @dfn{concatenates} numbers, vectors, and -matrices together. Here we have used it to add a new row onto -our matrix to make it square. - -We can multiply these two matrices in either order to get an identity. - -@smallexample -@group -1: [ [ 1., 0., 0. ] 1: [ [ 1., 0., 0. ] - [ 0., 1., 0. ] [ 0., 1., 0. ] - [ 0., 0., 1. ] ] [ 0., 0., 1. ] ] - . . - - M-@key{RET} * U @key{TAB} * -@end group -@end smallexample - -@cindex Systems of linear equations -@cindex Linear equations, systems of -Matrix inverses are related to systems of linear equations in algebra. -Suppose we had the following set of equations: - -@ifnottex -@group -@example - a + 2b + 3c = 6 - 4a + 5b + 6c = 2 - 7a + 6b = 3 -@end example -@end group -@end ifnottex -@tex -\turnoffactive -\beforedisplayh -$$ \openup1\jot \tabskip=0pt plus1fil -\halign to\displaywidth{\tabskip=0pt - $\hfil#$&$\hfil{}#{}$& - $\hfil#$&$\hfil{}#{}$& - $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr - a&+&2b&+&3c&=6 \cr - 4a&+&5b&+&6c&=2 \cr - 7a&+&6b& & &=3 \cr} -$$ -\afterdisplayh -@end tex - -@noindent -This can be cast into the matrix equation, - -@ifnottex -@group -@example - [ [ 1, 2, 3 ] [ [ a ] [ [ 6 ] - [ 4, 5, 6 ] * [ b ] = [ 2 ] - [ 7, 6, 0 ] ] [ c ] ] [ 3 ] ] -@end example -@end group -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 } - \times - \pmatrix{ a \cr b \cr c } = \pmatrix{ 6 \cr 2 \cr 3 } -$$ -\afterdisplay -@end tex - -We can solve this system of equations by multiplying both sides by the -inverse of the matrix. Calc can do this all in one step: - -@smallexample -@group -2: [6, 2, 3] 1: [-12.6, 15.2, -3.93333] -1: [ [ 1, 2, 3 ] . - [ 4, 5, 6 ] - [ 7, 6, 0 ] ] - . - - [6,2,3] r 5 / -@end group -@end smallexample - -@noindent -The result is the @expr{[a, b, c]} vector that solves the equations. -(Dividing by a square matrix is equivalent to multiplying by its -inverse.) - -Let's verify this solution: - -@smallexample -@group -2: [ [ 1, 2, 3 ] 1: [6., 2., 3.] - [ 4, 5, 6 ] . - [ 7, 6, 0 ] ] -1: [-12.6, 15.2, -3.93333] - . - - r 5 @key{TAB} * -@end group -@end smallexample - -@noindent -Note that we had to be careful about the order in which we multiplied -the matrix and vector. If we multiplied in the other order, Calc would -assume the vector was a row vector in order to make the dimensions -come out right, and the answer would be incorrect. If you -don't feel safe letting Calc take either interpretation of your -vectors, use explicit -@texline @math{N\times1} -@infoline Nx1 -or -@texline @math{1\times N} -@infoline 1xN -matrices instead. In this case, you would enter the original column -vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}. - -(@bullet{}) @strong{Exercise 2.} Algebraic entry allows you to make -vectors and matrices that include variables. Solve the following -system of equations to get expressions for @expr{x} and @expr{y} -in terms of @expr{a} and @expr{b}. - -@ifnottex -@group -@example - x + a y = 6 - x + b y = 10 -@end example -@end group -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ \eqalign{ x &+ a y = 6 \cr - x &+ b y = 10} -$$ -\afterdisplay -@end tex - -@noindent -@xref{Matrix Answer 2, 2}. (@bullet{}) - -@cindex Least-squares for over-determined systems -@cindex Over-determined systems of equations -(@bullet{}) @strong{Exercise 3.} A system of equations is ``over-determined'' -if it has more equations than variables. It is often the case that -there are no values for the variables that will satisfy all the -equations at once, but it is still useful to find a set of values -which ``nearly'' satisfy all the equations. In terms of matrix equations, -you can't solve @expr{A X = B} directly because the matrix @expr{A} -is not square for an over-determined system. Matrix inversion works -only for square matrices. One common trick is to multiply both sides -on the left by the transpose of @expr{A}: -@ifnottex -@samp{trn(A)*A*X = trn(A)*B}. -@end ifnottex -@tex -\turnoffactive -$A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}. -@end tex -Now -@texline @math{A^T A} -@infoline @expr{trn(A)*A} -is a square matrix so a solution is possible. It turns out that the -@expr{X} vector you compute in this way will be a ``least-squares'' -solution, which can be regarded as the ``closest'' solution to the set -of equations. Use Calc to solve the following over-determined -system: - -@ifnottex -@group -@example - a + 2b + 3c = 6 - 4a + 5b + 6c = 2 - 7a + 6b = 3 - 2a + 4b + 6c = 11 -@end example -@end group -@end ifnottex -@tex -\turnoffactive -\beforedisplayh -$$ \openup1\jot \tabskip=0pt plus1fil -\halign to\displaywidth{\tabskip=0pt - $\hfil#$&$\hfil{}#{}$& - $\hfil#$&$\hfil{}#{}$& - $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr - a&+&2b&+&3c&=6 \cr - 4a&+&5b&+&6c&=2 \cr - 7a&+&6b& & &=3 \cr - 2a&+&4b&+&6c&=11 \cr} -$$ -\afterdisplayh -@end tex - -@noindent -@xref{Matrix Answer 3, 3}. (@bullet{}) - -@node List Tutorial, , Matrix Tutorial, Vector/Matrix Tutorial -@subsection Vectors as Lists - -@noindent -@cindex Lists -Although Calc has a number of features for manipulating vectors and -matrices as mathematical objects, you can also treat vectors as -simple lists of values. For example, we saw that the @kbd{k f} -command returns a vector which is a list of the prime factors of a -number. - -You can pack and unpack stack entries into vectors: - -@smallexample -@group -3: 10 1: [10, 20, 30] 3: 10 -2: 20 . 2: 20 -1: 30 1: 30 - . . - - M-3 v p v u -@end group -@end smallexample - -You can also build vectors out of consecutive integers, or out -of many copies of a given value: - -@smallexample -@group -1: [1, 2, 3, 4] 2: [1, 2, 3, 4] 2: [1, 2, 3, 4] - . 1: 17 1: [17, 17, 17, 17] - . . - - v x 4 @key{RET} 17 v b 4 @key{RET} -@end group -@end smallexample - -You can apply an operator to every element of a vector using the -@dfn{map} command. - -@smallexample -@group -1: [17, 34, 51, 68] 1: [289, 1156, 2601, 4624] 1: [17, 34, 51, 68] - . . . - - V M * 2 V M ^ V M Q -@end group -@end smallexample - -@noindent -In the first step, we multiply the vector of integers by the vector -of 17's elementwise. In the second step, we raise each element to -the power two. (The general rule is that both operands must be -vectors of the same length, or else one must be a vector and the -other a plain number.) In the final step, we take the square root -of each element. - -(@bullet{}) @strong{Exercise 1.} Compute a vector of powers of two -from -@texline @math{2^{-4}} -@infoline @expr{2^-4} -to @expr{2^4}. @xref{List Answer 1, 1}. (@bullet{}) - -You can also @dfn{reduce} a binary operator across a vector. -For example, reducing @samp{*} computes the product of all the -elements in the vector: - -@smallexample -@group -1: 123123 1: [3, 7, 11, 13, 41] 1: 123123 - . . . - - 123123 k f V R * -@end group -@end smallexample - -@noindent -In this example, we decompose 123123 into its prime factors, then -multiply those factors together again to yield the original number. - -We could compute a dot product ``by hand'' using mapping and -reduction: - -@smallexample -@group -2: [1, 2, 3] 1: [7, 12, 0] 1: 19 -1: [7, 6, 0] . . - . - - r 1 r 2 V M * V R + -@end group -@end smallexample - -@noindent -Recalling two vectors from the previous section, we compute the -sum of pairwise products of the elements to get the same answer -for the dot product as before. - -A slight variant of vector reduction is the @dfn{accumulate} operation, -@kbd{V U}. This produces a vector of the intermediate results from -a corresponding reduction. Here we compute a table of factorials: - -@smallexample -@group -1: [1, 2, 3, 4, 5, 6] 1: [1, 2, 6, 24, 120, 720] - . . - - v x 6 @key{RET} V U * -@end group -@end smallexample - -Calc allows vectors to grow as large as you like, although it gets -rather slow if vectors have more than about a hundred elements. -Actually, most of the time is spent formatting these large vectors -for display, not calculating on them. Try the following experiment -(if your computer is very fast you may need to substitute a larger -vector size). - -@smallexample -@group -1: [1, 2, 3, 4, ... 1: [2, 3, 4, 5, ... - . . - - v x 500 @key{RET} 1 V M + -@end group -@end smallexample - -Now press @kbd{v .} (the letter @kbd{v}, then a period) and try the -experiment again. In @kbd{v .} mode, long vectors are displayed -``abbreviated'' like this: - -@smallexample -@group -1: [1, 2, 3, ..., 500] 1: [2, 3, 4, ..., 501] - . . - - v x 500 @key{RET} 1 V M + -@end group -@end smallexample - -@noindent -(where now the @samp{...} is actually part of the Calc display). -You will find both operations are now much faster. But notice that -even in @w{@kbd{v .}} mode, the full vectors are still shown in the Trail. -Type @w{@kbd{t .}} to cause the trail to abbreviate as well, and try the -experiment one more time. Operations on long vectors are now quite -fast! (But of course if you use @kbd{t .} you will lose the ability -to get old vectors back using the @kbd{t y} command.) - -An easy way to view a full vector when @kbd{v .} mode is active is -to press @kbd{`} (back-quote) to edit the vector; editing always works -with the full, unabbreviated value. - -@cindex Least-squares for fitting a straight line -@cindex Fitting data to a line -@cindex Line, fitting data to -@cindex Data, extracting from buffers -@cindex Columns of data, extracting -As a larger example, let's try to fit a straight line to some data, -using the method of least squares. (Calc has a built-in command for -least-squares curve fitting, but we'll do it by hand here just to -practice working with vectors.) Suppose we have the following list -of values in a file we have loaded into Emacs: - -@smallexample - x y - --- --- - 1.34 0.234 - 1.41 0.298 - 1.49 0.402 - 1.56 0.412 - 1.64 0.466 - 1.73 0.473 - 1.82 0.601 - 1.91 0.519 - 2.01 0.603 - 2.11 0.637 - 2.22 0.645 - 2.33 0.705 - 2.45 0.917 - 2.58 1.009 - 2.71 0.971 - 2.85 1.062 - 3.00 1.148 - 3.15 1.157 - 3.32 1.354 -@end smallexample - -@noindent -If you are reading this tutorial in printed form, you will find it -easiest to press @kbd{C-x * i} to enter the on-line Info version of -the manual and find this table there. (Press @kbd{g}, then type -@kbd{List Tutorial}, to jump straight to this section.) - -Position the cursor at the upper-left corner of this table, just -to the left of the @expr{1.34}. Press @kbd{C-@@} to set the mark. -(On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.) -Now position the cursor to the lower-right, just after the @expr{1.354}. -You have now defined this region as an Emacs ``rectangle.'' Still -in the Info buffer, type @kbd{C-x * r}. This command -(@code{calc-grab-rectangle}) will pop you back into the Calculator, with -the contents of the rectangle you specified in the form of a matrix. - -@smallexample -@group -1: [ [ 1.34, 0.234 ] - [ 1.41, 0.298 ] - @dots{} -@end group -@end smallexample - -@noindent -(You may wish to use @kbd{v .} mode to abbreviate the display of this -large matrix.) - -We want to treat this as a pair of lists. The first step is to -transpose this matrix into a pair of rows. Remember, a matrix is -just a vector of vectors. So we can unpack the matrix into a pair -of row vectors on the stack. - -@smallexample -@group -1: [ [ 1.34, 1.41, 1.49, ... ] 2: [1.34, 1.41, 1.49, ... ] - [ 0.234, 0.298, 0.402, ... ] ] 1: [0.234, 0.298, 0.402, ... ] - . . - - v t v u -@end group -@end smallexample - -@noindent -Let's store these in quick variables 1 and 2, respectively. - -@smallexample -@group -1: [1.34, 1.41, 1.49, ... ] . - . - - t 2 t 1 -@end group -@end smallexample - -@noindent -(Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the -stored value from the stack.) - -In a least squares fit, the slope @expr{m} is given by the formula - -@ifnottex -@example -m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2) -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ m = {N \sum x y - \sum x \sum y \over - N \sum x^2 - \left( \sum x \right)^2} $$ -\afterdisplay -@end tex - -@noindent -where -@texline @math{\sum x} -@infoline @expr{sum(x)} -represents the sum of all the values of @expr{x}. While there is an -actual @code{sum} function in Calc, it's easier to sum a vector using a -simple reduction. First, let's compute the four different sums that -this formula uses. - -@smallexample -@group -1: 41.63 1: 98.0003 - . . - - r 1 V R + t 3 r 1 2 V M ^ V R + t 4 - -@end group -@end smallexample -@noindent -@smallexample -@group -1: 13.613 1: 33.36554 - . . - - r 2 V R + t 5 r 1 r 2 V M * V R + t 6 -@end group -@end smallexample - -@ifnottex -@noindent -These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)}, -respectively. (We could have used @kbd{*} to compute @samp{sum(x^2)} and -@samp{sum(x y)}.) -@end ifnottex -@tex -\turnoffactive -These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$, -respectively. (We could have used \kbd{*} to compute $\sum x^2$ and -$\sum x y$.) -@end tex - -Finally, we also need @expr{N}, the number of data points. This is just -the length of either of our lists. - -@smallexample -@group -1: 19 - . - - r 1 v l t 7 -@end group -@end smallexample - -@noindent -(That's @kbd{v} followed by a lower-case @kbd{l}.) - -Now we grind through the formula: - -@smallexample -@group -1: 633.94526 2: 633.94526 1: 67.23607 - . 1: 566.70919 . - . - - r 7 r 6 * r 3 r 5 * - - -@end group -@end smallexample -@noindent -@smallexample -@group -2: 67.23607 3: 67.23607 2: 67.23607 1: 0.52141679 -1: 1862.0057 2: 1862.0057 1: 128.9488 . - . 1: 1733.0569 . - . - - r 7 r 4 * r 3 2 ^ - / t 8 -@end group -@end smallexample - -That gives us the slope @expr{m}. The y-intercept @expr{b} can now -be found with the simple formula, - -@ifnottex -@example -b = (sum(y) - m sum(x)) / N -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ b = {\sum y - m \sum x \over N} $$ -\afterdisplay -\vskip10pt -@end tex - -@smallexample -@group -1: 13.613 2: 13.613 1: -8.09358 1: -0.425978 - . 1: 21.70658 . . - . - - r 5 r 8 r 3 * - r 7 / t 9 -@end group -@end smallexample - -Let's ``plot'' this straight line approximation, -@texline @math{y \approx m x + b}, -@infoline @expr{m x + b}, -and compare it with the original data. - -@smallexample -@group -1: [0.699, 0.735, ... ] 1: [0.273, 0.309, ... ] - . . - - r 1 r 8 * r 9 + s 0 -@end group -@end smallexample - -@noindent -Notice that multiplying a vector by a constant, and adding a constant -to a vector, can be done without mapping commands since these are -common operations from vector algebra. As far as Calc is concerned, -we've just been doing geometry in 19-dimensional space! - -We can subtract this vector from our original @expr{y} vector to get -a feel for the error of our fit. Let's find the maximum error: - -@smallexample -@group -1: [0.0387, 0.0112, ... ] 1: [0.0387, 0.0112, ... ] 1: 0.0897 - . . . - - r 2 - V M A V R X -@end group -@end smallexample - -@noindent -First we compute a vector of differences, then we take the absolute -values of these differences, then we reduce the @code{max} function -across the vector. (The @code{max} function is on the two-key sequence -@kbd{f x}; because it is so common to use @code{max} in a vector -operation, the letters @kbd{X} and @kbd{N} are also accepted for -@code{max} and @code{min} in this context. In general, you answer -the @kbd{V M} or @kbd{V R} prompt with the actual key sequence that -invokes the function you want. You could have typed @kbd{V R f x} or -even @kbd{V R x max @key{RET}} if you had preferred.) - -If your system has the GNUPLOT program, you can see graphs of your -data and your straight line to see how well they match. (If you have -GNUPLOT 3.0 or higher, the following instructions will work regardless -of the kind of display you have. Some GNUPLOT 2.0, non-X-windows systems -may require additional steps to view the graphs.) - -Let's start by plotting the original data. Recall the ``@var{x}'' and ``@var{y}'' -vectors onto the stack and press @kbd{g f}. This ``fast'' graphing -command does everything you need to do for simple, straightforward -plotting of data. - -@smallexample -@group -2: [1.34, 1.41, 1.49, ... ] -1: [0.234, 0.298, 0.402, ... ] - . - - r 1 r 2 g f -@end group -@end smallexample - -If all goes well, you will shortly get a new window containing a graph -of the data. (If not, contact your GNUPLOT or Calc installer to find -out what went wrong.) In the X window system, this will be a separate -graphics window. For other kinds of displays, the default is to -display the graph in Emacs itself using rough character graphics. -Press @kbd{q} when you are done viewing the character graphics. - -Next, let's add the line we got from our least-squares fit. -@ifinfo -(If you are reading this tutorial on-line while running Calc, typing -@kbd{g a} may cause the tutorial to disappear from its window and be -replaced by a buffer named @samp{*Gnuplot Commands*}. The tutorial -will reappear when you terminate GNUPLOT by typing @kbd{g q}.) -@end ifinfo - -@smallexample -@group -2: [1.34, 1.41, 1.49, ... ] -1: [0.273, 0.309, 0.351, ... ] - . - - @key{DEL} r 0 g a g p -@end group -@end smallexample - -It's not very useful to get symbols to mark the data points on this -second curve; you can type @kbd{g S g p} to remove them. Type @kbd{g q} -when you are done to remove the X graphics window and terminate GNUPLOT. - -(@bullet{}) @strong{Exercise 2.} An earlier exercise showed how to do -least squares fitting to a general system of equations. Our 19 data -points are really 19 equations of the form @expr{y_i = m x_i + b} for -different pairs of @expr{(x_i,y_i)}. Use the matrix-transpose method -to solve for @expr{m} and @expr{b}, duplicating the above result. -@xref{List Answer 2, 2}. (@bullet{}) - -@cindex Geometric mean -(@bullet{}) @strong{Exercise 3.} If the input data do not form a -rectangle, you can use @w{@kbd{C-x * g}} (@code{calc-grab-region}) -to grab the data the way Emacs normally works with regions---it reads -left-to-right, top-to-bottom, treating line breaks the same as spaces. -Use this command to find the geometric mean of the following numbers. -(The geometric mean is the @var{n}th root of the product of @var{n} numbers.) - -@example -2.3 6 22 15.1 7 - 15 14 7.5 - 2.5 -@end example - -@noindent -The @kbd{C-x * g} command accepts numbers separated by spaces or commas, -with or without surrounding vector brackets. -@xref{List Answer 3, 3}. (@bullet{}) - -@ifnottex -As another example, a theorem about binomial coefficients tells -us that the alternating sum of binomial coefficients -@var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so -on up to @var{n}-choose-@var{n}, -always comes out to zero. Let's verify this -for @expr{n=6}. -@end ifnottex -@tex -As another example, a theorem about binomial coefficients tells -us that the alternating sum of binomial coefficients -${n \choose 0} - {n \choose 1} + {n \choose 2} - \cdots \pm {n \choose n}$ -always comes out to zero. Let's verify this -for \cite{n=6}. -@end tex - -@smallexample -@group -1: [1, 2, 3, 4, 5, 6, 7] 1: [0, 1, 2, 3, 4, 5, 6] - . . - - v x 7 @key{RET} 1 - - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [1, -6, 15, -20, 15, -6, 1] 1: 0 - . . - - V M ' (-1)^$ choose(6,$) @key{RET} V R + -@end group -@end smallexample - -The @kbd{V M '} command prompts you to enter any algebraic expression -to define the function to map over the vector. The symbol @samp{$} -inside this expression represents the argument to the function. -The Calculator applies this formula to each element of the vector, -substituting each element's value for the @samp{$} sign(s) in turn. - -To define a two-argument function, use @samp{$$} for the first -argument and @samp{$} for the second: @kbd{V M ' $$-$ @key{RET}} is -equivalent to @kbd{V M -}. This is analogous to regular algebraic -entry, where @samp{$$} would refer to the next-to-top stack entry -and @samp{$} would refer to the top stack entry, and @kbd{' $$-$ @key{RET}} -would act exactly like @kbd{-}. - -Notice that the @kbd{V M '} command has recorded two things in the -trail: The result, as usual, and also a funny-looking thing marked -@samp{oper} that represents the operator function you typed in. -The function is enclosed in @samp{< >} brackets, and the argument is -denoted by a @samp{#} sign. If there were several arguments, they -would be shown as @samp{#1}, @samp{#2}, and so on. (For example, -@kbd{V M ' $$-$} will put the function @samp{<#1 - #2>} on the -trail.) This object is a ``nameless function''; you can use nameless -@w{@samp{< >}} notation to answer the @kbd{V M '} prompt if you like. -Nameless function notation has the interesting, occasionally useful -property that a nameless function is not actually evaluated until -it is used. For example, @kbd{V M ' $+random(2.0)} evaluates -@samp{random(2.0)} once and adds that random number to all elements -of the vector, but @kbd{V M ' <#+random(2.0)>} evaluates the -@samp{random(2.0)} separately for each vector element. - -Another group of operators that are often useful with @kbd{V M} are -the relational operators: @kbd{a =}, for example, compares two numbers -and gives the result 1 if they are equal, or 0 if not. Similarly, -@w{@kbd{a <}} checks for one number being less than another. - -Other useful vector operations include @kbd{v v}, to reverse a -vector end-for-end; @kbd{V S}, to sort the elements of a vector -into increasing order; and @kbd{v r} and @w{@kbd{v c}}, to extract -one row or column of a matrix, or (in both cases) to extract one -element of a plain vector. With a negative argument, @kbd{v r} -and @kbd{v c} instead delete one row, column, or vector element. - -@cindex Divisor functions -(@bullet{}) @strong{Exercise 4.} The @expr{k}th @dfn{divisor function} -@tex -$\sigma_k(n)$ -@end tex -is the sum of the @expr{k}th powers of all the divisors of an -integer @expr{n}. Figure out a method for computing the divisor -function for reasonably small values of @expr{n}. As a test, -the 0th and 1st divisor functions of 30 are 8 and 72, respectively. -@xref{List Answer 4, 4}. (@bullet{}) - -@cindex Square-free numbers -@cindex Duplicate values in a list -(@bullet{}) @strong{Exercise 5.} The @kbd{k f} command produces a -list of prime factors for a number. Sometimes it is important to -know that a number is @dfn{square-free}, i.e., that no prime occurs -more than once in its list of prime factors. Find a sequence of -keystrokes to tell if a number is square-free; your method should -leave 1 on the stack if it is, or 0 if it isn't. -@xref{List Answer 5, 5}. (@bullet{}) - -@cindex Triangular lists -(@bullet{}) @strong{Exercise 6.} Build a list of lists that looks -like the following diagram. (You may wish to use the @kbd{v /} -command to enable multi-line display of vectors.) - -@smallexample -@group -1: [ [1], - [1, 2], - [1, 2, 3], - [1, 2, 3, 4], - [1, 2, 3, 4, 5], - [1, 2, 3, 4, 5, 6] ] -@end group -@end smallexample - -@noindent -@xref{List Answer 6, 6}. (@bullet{}) - -(@bullet{}) @strong{Exercise 7.} Build the following list of lists. - -@smallexample -@group -1: [ [0], - [1, 2], - [3, 4, 5], - [6, 7, 8, 9], - [10, 11, 12, 13, 14], - [15, 16, 17, 18, 19, 20] ] -@end group -@end smallexample - -@noindent -@xref{List Answer 7, 7}. (@bullet{}) - -@cindex Maximizing a function over a list of values -@c [fix-ref Numerical Solutions] -(@bullet{}) @strong{Exercise 8.} Compute a list of values of Bessel's -@texline @math{J_1(x)} -@infoline @expr{J1} -function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25. -Find the value of @expr{x} (from among the above set of values) for -which @samp{besJ(1,x)} is a maximum. Use an ``automatic'' method, -i.e., just reading along the list by hand to find the largest value -is not allowed! (There is an @kbd{a X} command which does this kind -of thing automatically; @pxref{Numerical Solutions}.) -@xref{List Answer 8, 8}. (@bullet{}) - -@cindex Digits, vectors of -(@bullet{}) @strong{Exercise 9.} You are given an integer in the range -@texline @math{0 \le N < 10^m} -@infoline @expr{0 <= N < 10^m} -for @expr{m=12} (i.e., an integer of less than -twelve digits). Convert this integer into a vector of @expr{m} -digits, each in the range from 0 to 9. In vector-of-digits notation, -add one to this integer to produce a vector of @expr{m+1} digits -(since there could be a carry out of the most significant digit). -Convert this vector back into a regular integer. A good integer -to try is 25129925999. @xref{List Answer 9, 9}. (@bullet{}) - -(@bullet{}) @strong{Exercise 10.} Your friend Joe tried to use -@kbd{V R a =} to test if all numbers in a list were equal. What -happened? How would you do this test? @xref{List Answer 10, 10}. (@bullet{}) - -(@bullet{}) @strong{Exercise 11.} The area of a circle of radius one -is @cpi{}. The area of the -@texline @math{2\times2} -@infoline 2x2 -square that encloses that circle is 4. So if we throw @var{n} darts at -random points in the square, about @cpiover{4} of them will land inside -the circle. This gives us an entertaining way to estimate the value of -@cpi{}. The @w{@kbd{k r}} -command picks a random number between zero and the value on the stack. -We could get a random floating-point number between @mathit{-1} and 1 by typing -@w{@kbd{2.0 k r 1 -}}. Build a vector of 100 random @expr{(x,y)} points in -this square, then use vector mapping and reduction to count how many -points lie inside the unit circle. Hint: Use the @kbd{v b} command. -@xref{List Answer 11, 11}. (@bullet{}) - -@cindex Matchstick problem -(@bullet{}) @strong{Exercise 12.} The @dfn{matchstick problem} provides -another way to calculate @cpi{}. Say you have an infinite field -of vertical lines with a spacing of one inch. Toss a one-inch matchstick -onto the field. The probability that the matchstick will land crossing -a line turns out to be -@texline @math{2/\pi}. -@infoline @expr{2/pi}. -Toss 100 matchsticks to estimate @cpi{}. (If you want still more fun, -the probability that the GCD (@w{@kbd{k g}}) of two large integers is -one turns out to be -@texline @math{6/\pi^2}. -@infoline @expr{6/pi^2}. -That provides yet another way to estimate @cpi{}.) -@xref{List Answer 12, 12}. (@bullet{}) - -(@bullet{}) @strong{Exercise 13.} An algebraic entry of a string in -double-quote marks, @samp{"hello"}, creates a vector of the numerical -(ASCII) codes of the characters (here, @expr{[104, 101, 108, 108, 111]}). -Sometimes it is convenient to compute a @dfn{hash code} of a string, -which is just an integer that represents the value of that string. -Two equal strings have the same hash code; two different strings -@dfn{probably} have different hash codes. (For example, Calc has -over 400 function names, but Emacs can quickly find the definition for -any given name because it has sorted the functions into ``buckets'' by -their hash codes. Sometimes a few names will hash into the same bucket, -but it is easier to search among a few names than among all the names.) -One popular hash function is computed as follows: First set @expr{h = 0}. -Then, for each character from the string in turn, set @expr{h = 3h + c_i} -where @expr{c_i} is the character's ASCII code. If we have 511 buckets, -we then take the hash code modulo 511 to get the bucket number. Develop a -simple command or commands for converting string vectors into hash codes. -The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo -511 is 121. @xref{List Answer 13, 13}. (@bullet{}) - -(@bullet{}) @strong{Exercise 14.} The @kbd{H V R} and @kbd{H V U} -commands do nested function evaluations. @kbd{H V U} takes a starting -value and a number of steps @var{n} from the stack; it then applies the -function you give to the starting value 0, 1, 2, up to @var{n} times -and returns a vector of the results. Use this command to create a -``random walk'' of 50 steps. Start with the two-dimensional point -@expr{(0,0)}; then take one step a random distance between @mathit{-1} and 1 -in both @expr{x} and @expr{y}; then take another step, and so on. Use the -@kbd{g f} command to display this random walk. Now modify your random -walk to walk a unit distance, but in a random direction, at each step. -(Hint: The @code{sincos} function returns a vector of the cosine and -sine of an angle.) @xref{List Answer 14, 14}. (@bullet{}) - -@node Types Tutorial, Algebra Tutorial, Vector/Matrix Tutorial, Tutorial -@section Types Tutorial - -@noindent -Calc understands a variety of data types as well as simple numbers. -In this section, we'll experiment with each of these types in turn. - -The numbers we've been using so far have mainly been either @dfn{integers} -or @dfn{floats}. We saw that floats are usually a good approximation to -the mathematical concept of real numbers, but they are only approximations -and are susceptible to roundoff error. Calc also supports @dfn{fractions}, -which can exactly represent any rational number. - -@smallexample -@group -1: 3628800 2: 3628800 1: 518400:7 1: 518414:7 1: 7:518414 - . 1: 49 . . . - . - - 10 ! 49 @key{RET} : 2 + & -@end group -@end smallexample - -@noindent -The @kbd{:} command divides two integers to get a fraction; @kbd{/} -would normally divide integers to get a floating-point result. -Notice we had to type @key{RET} between the @kbd{49} and the @kbd{:} -since the @kbd{:} would otherwise be interpreted as part of a -fraction beginning with 49. - -You can convert between floating-point and fractional format using -@kbd{c f} and @kbd{c F}: - -@smallexample -@group -1: 1.35027217629e-5 1: 7:518414 - . . - - c f c F -@end group -@end smallexample - -The @kbd{c F} command replaces a floating-point number with the -``simplest'' fraction whose floating-point representation is the -same, to within the current precision. - -@smallexample -@group -1: 3.14159265359 1: 1146408:364913 1: 3.1416 1: 355:113 - . . . . - - P c F @key{DEL} p 5 @key{RET} P c F -@end group -@end smallexample - -(@bullet{}) @strong{Exercise 1.} A calculation has produced the -result 1.26508260337. You suspect it is the square root of the -product of @cpi{} and some rational number. Is it? (Be sure -to allow for roundoff error!) @xref{Types Answer 1, 1}. (@bullet{}) - -@dfn{Complex numbers} can be stored in both rectangular and polar form. - -@smallexample -@group -1: -9 1: (0, 3) 1: (3; 90.) 1: (6; 90.) 1: (2.4495; 45.) - . . . . . - - 9 n Q c p 2 * Q -@end group -@end smallexample - -@noindent -The square root of @mathit{-9} is by default rendered in rectangular form -(@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a -phase angle of 90 degrees). All the usual arithmetic and scientific -operations are defined on both types of complex numbers. - -Another generalized kind of number is @dfn{infinity}. Infinity -isn't really a number, but it can sometimes be treated like one. -Calc uses the symbol @code{inf} to represent positive infinity, -i.e., a value greater than any real number. Naturally, you can -also write @samp{-inf} for minus infinity, a value less than any -real number. The word @code{inf} can only be input using -algebraic entry. - -@smallexample -@group -2: inf 2: -inf 2: -inf 2: -inf 1: nan -1: -17 1: -inf 1: -inf 1: inf . - . . . . - -' inf @key{RET} 17 n * @key{RET} 72 + A + -@end group -@end smallexample - -@noindent -Since infinity is infinitely large, multiplying it by any finite -number (like @mathit{-17}) has no effect, except that since @mathit{-17} -is negative, it changes a plus infinity to a minus infinity. -(``A huge positive number, multiplied by @mathit{-17}, yields a huge -negative number.'') Adding any finite number to infinity also -leaves it unchanged. Taking an absolute value gives us plus -infinity again. Finally, we add this plus infinity to the minus -infinity we had earlier. If you work it out, you might expect -the answer to be @mathit{-72} for this. But the 72 has been completely -lost next to the infinities; by the time we compute @w{@samp{inf - inf}} -the finite difference between them, if any, is undetectable. -So we say the result is @dfn{indeterminate}, which Calc writes -with the symbol @code{nan} (for Not A Number). - -Dividing by zero is normally treated as an error, but you can get -Calc to write an answer in terms of infinity by pressing @kbd{m i} -to turn on Infinite mode. - -@smallexample -@group -3: nan 2: nan 2: nan 2: nan 1: nan -2: 1 1: 1 / 0 1: uinf 1: uinf . -1: 0 . . . - . - - 1 @key{RET} 0 / m i U / 17 n * + -@end group -@end smallexample - -@noindent -Dividing by zero normally is left unevaluated, but after @kbd{m i} -it instead gives an infinite result. The answer is actually -@code{uinf}, ``undirected infinity.'' If you look at a graph of -@expr{1 / x} around @w{@expr{x = 0}}, you'll see that it goes toward -plus infinity as you approach zero from above, but toward minus -infinity as you approach from below. Since we said only @expr{1 / 0}, -Calc knows that the answer is infinite but not in which direction. -That's what @code{uinf} means. Notice that multiplying @code{uinf} -by a negative number still leaves plain @code{uinf}; there's no -point in saying @samp{-uinf} because the sign of @code{uinf} is -unknown anyway. Finally, we add @code{uinf} to our @code{nan}, -yielding @code{nan} again. It's easy to see that, because -@code{nan} means ``totally unknown'' while @code{uinf} means -``unknown sign but known to be infinite,'' the more mysterious -@code{nan} wins out when it is combined with @code{uinf}, or, for -that matter, with anything else. - -(@bullet{}) @strong{Exercise 2.} Predict what Calc will answer -for each of these formulas: @samp{inf / inf}, @samp{exp(inf)}, -@samp{exp(-inf)}, @samp{sqrt(-inf)}, @samp{sqrt(uinf)}, -@samp{abs(uinf)}, @samp{ln(0)}. -@xref{Types Answer 2, 2}. (@bullet{}) - -(@bullet{}) @strong{Exercise 3.} We saw that @samp{inf - inf = nan}, -which stands for an unknown value. Can @code{nan} stand for -a complex number? Can it stand for infinity? -@xref{Types Answer 3, 3}. (@bullet{}) - -@dfn{HMS forms} represent a value in terms of hours, minutes, and -seconds. - -@smallexample -@group -1: 2@@ 30' 0" 1: 3@@ 30' 0" 2: 3@@ 30' 0" 1: 2. - . . 1: 1@@ 45' 0." . - . - - 2@@ 30' @key{RET} 1 + @key{RET} 2 / / -@end group -@end smallexample - -HMS forms can also be used to hold angles in degrees, minutes, and -seconds. - -@smallexample -@group -1: 0.5 1: 26.56505 1: 26@@ 33' 54.18" 1: 0.44721 - . . . . - - 0.5 I T c h S -@end group -@end smallexample - -@noindent -First we convert the inverse tangent of 0.5 to degrees-minutes-seconds -form, then we take the sine of that angle. Note that the trigonometric -functions will accept HMS forms directly as input. - -@cindex Beatles -(@bullet{}) @strong{Exercise 4.} The Beatles' @emph{Abbey Road} is -47 minutes and 26 seconds long, and contains 17 songs. What is the -average length of a song on @emph{Abbey Road}? If the Extended Disco -Version of @emph{Abbey Road} added 20 seconds to the length of each -song, how long would the album be? @xref{Types Answer 4, 4}. (@bullet{}) - -A @dfn{date form} represents a date, or a date and time. Dates must -be entered using algebraic entry. Date forms are surrounded by -@samp{< >} symbols; most standard formats for dates are recognized. - -@smallexample -@group -2: 1: 2.25 -1: <6:00pm Thu Jan 10, 1991> . - . - -' <13 Jan 1991>, <1/10/91, 6pm> @key{RET} - -@end group -@end smallexample - -@noindent -In this example, we enter two dates, then subtract to find the -number of days between them. It is also possible to add an -HMS form or a number (of days) to a date form to get another -date form. - -@smallexample -@group -1: <4:45:59pm Mon Jan 14, 1991> 1: <2:50:59am Thu Jan 17, 1991> - . . - - t N 2 + 10@@ 5' + -@end group -@end smallexample - -@c [fix-ref Date Arithmetic] -@noindent -The @kbd{t N} (``now'') command pushes the current date and time on the -stack; then we add two days, ten hours and five minutes to the date and -time. Other date-and-time related commands include @kbd{t J}, which -does Julian day conversions, @kbd{t W}, which finds the beginning of -the week in which a date form lies, and @kbd{t I}, which increments a -date by one or several months. @xref{Date Arithmetic}, for more. - -(@bullet{}) @strong{Exercise 5.} How many days until the next -Friday the 13th? @xref{Types Answer 5, 5}. (@bullet{}) - -(@bullet{}) @strong{Exercise 6.} How many leap years will there be -between now and the year 10001 A.D.? @xref{Types Answer 6, 6}. (@bullet{}) - -@cindex Slope and angle of a line -@cindex Angle and slope of a line -An @dfn{error form} represents a mean value with an attached standard -deviation, or error estimate. Suppose our measurements indicate that -a certain telephone pole is about 30 meters away, with an estimated -error of 1 meter, and 8 meters tall, with an estimated error of 0.2 -meters. What is the slope of a line from here to the top of the -pole, and what is the equivalent angle in degrees? - -@smallexample -@group -1: 8 +/- 0.2 2: 8 +/- 0.2 1: 0.266 +/- 0.011 1: 14.93 +/- 0.594 - . 1: 30 +/- 1 . . - . - - 8 p .2 @key{RET} 30 p 1 / I T -@end group -@end smallexample - -@noindent -This means that the angle is about 15 degrees, and, assuming our -original error estimates were valid standard deviations, there is about -a 60% chance that the result is correct within 0.59 degrees. - -@cindex Torus, volume of -(@bullet{}) @strong{Exercise 7.} The volume of a torus (a donut shape) is -@texline @math{2 \pi^2 R r^2} -@infoline @w{@expr{2 pi^2 R r^2}} -where @expr{R} is the radius of the circle that -defines the center of the tube and @expr{r} is the radius of the tube -itself. Suppose @expr{R} is 20 cm and @expr{r} is 4 cm, each known to -within 5 percent. What is the volume and the relative uncertainty of -the volume? @xref{Types Answer 7, 7}. (@bullet{}) - -An @dfn{interval form} represents a range of values. While an -error form is best for making statistical estimates, intervals give -you exact bounds on an answer. Suppose we additionally know that -our telephone pole is definitely between 28 and 31 meters away, -and that it is between 7.7 and 8.1 meters tall. - -@smallexample -@group -1: [7.7 .. 8.1] 2: [7.7 .. 8.1] 1: [0.24 .. 0.28] 1: [13.9 .. 16.1] - . 1: [28 .. 31] . . - . - - [ 7.7 .. 8.1 ] [ 28 .. 31 ] / I T -@end group -@end smallexample - -@noindent -If our bounds were correct, then the angle to the top of the pole -is sure to lie in the range shown. - -The square brackets around these intervals indicate that the endpoints -themselves are allowable values. In other words, the distance to the -telephone pole is between 28 and 31, @emph{inclusive}. You can also -make an interval that is exclusive of its endpoints by writing -parentheses instead of square brackets. You can even make an interval -which is inclusive (``closed'') on one end and exclusive (``open'') on -the other. - -@smallexample -@group -1: [1 .. 10) 1: (0.1 .. 1] 2: (0.1 .. 1] 1: (0.2 .. 3) - . . 1: [2 .. 3) . - . - - [ 1 .. 10 ) & [ 2 .. 3 ) * -@end group -@end smallexample - -@noindent -The Calculator automatically keeps track of which end values should -be open and which should be closed. You can also make infinite or -semi-infinite intervals by using @samp{-inf} or @samp{inf} for one -or both endpoints. - -(@bullet{}) @strong{Exercise 8.} What answer would you expect from -@samp{@w{1 /} @w{(0 .. 10)}}? What about @samp{@w{1 /} @w{(-10 .. 0)}}? What -about @samp{@w{1 /} @w{[0 .. 10]}} (where the interval actually includes -zero)? What about @samp{@w{1 /} @w{(-10 .. 10)}}? -@xref{Types Answer 8, 8}. (@bullet{}) - -(@bullet{}) @strong{Exercise 9.} Two easy ways of squaring a number -are @kbd{@key{RET} *} and @w{@kbd{2 ^}}. Normally these produce the same -answer. Would you expect this still to hold true for interval forms? -If not, which of these will result in a larger interval? -@xref{Types Answer 9, 9}. (@bullet{}) - -A @dfn{modulo form} is used for performing arithmetic modulo @var{m}. -For example, arithmetic involving time is generally done modulo 12 -or 24 hours. - -@smallexample -@group -1: 17 mod 24 1: 3 mod 24 1: 21 mod 24 1: 9 mod 24 - . . . . - - 17 M 24 @key{RET} 10 + n 5 / -@end group -@end smallexample - -@noindent -In this last step, Calc has divided by 5 modulo 24; i.e., it has found a -new number which, when multiplied by 5 modulo 24, produces the original -number, 21. If @var{m} is prime and the divisor is not a multiple of -@var{m}, it is always possible to find such a number. For non-prime -@var{m} like 24, it is only sometimes possible. - -@smallexample -@group -1: 10 mod 24 1: 16 mod 24 1: 1000000... 1: 16 - . . . . - - 10 M 24 @key{RET} 100 ^ 10 @key{RET} 100 ^ 24 % -@end group -@end smallexample - -@noindent -These two calculations get the same answer, but the first one is -much more efficient because it avoids the huge intermediate value -that arises in the second one. - -@cindex Fermat, primality test of -(@bullet{}) @strong{Exercise 10.} A theorem of Pierre de Fermat -says that -@texline @w{@math{x^{n-1} \bmod n = 1}} -@infoline @expr{x^(n-1) mod n = 1} -if @expr{n} is a prime number and @expr{x} is an integer less than -@expr{n}. If @expr{n} is @emph{not} a prime number, this will -@emph{not} be true for most values of @expr{x}. Thus we can test -informally if a number is prime by trying this formula for several -values of @expr{x}. Use this test to tell whether the following numbers -are prime: 811749613, 15485863. @xref{Types Answer 10, 10}. (@bullet{}) - -It is possible to use HMS forms as parts of error forms, intervals, -modulo forms, or as the phase part of a polar complex number. -For example, the @code{calc-time} command pushes the current time -of day on the stack as an HMS/modulo form. - -@smallexample -@group -1: 17@@ 34' 45" mod 24@@ 0' 0" 1: 6@@ 22' 15" mod 24@@ 0' 0" - . . - - x time @key{RET} n -@end group -@end smallexample - -@noindent -This calculation tells me it is six hours and 22 minutes until midnight. - -(@bullet{}) @strong{Exercise 11.} A rule of thumb is that one year -is about -@texline @math{\pi \times 10^7} -@infoline @w{@expr{pi * 10^7}} -seconds. What time will it be that many seconds from right now? -@xref{Types Answer 11, 11}. (@bullet{}) - -(@bullet{}) @strong{Exercise 12.} You are preparing to order packaging -for the CD release of the Extended Disco Version of @emph{Abbey Road}. -You are told that the songs will actually be anywhere from 20 to 60 -seconds longer than the originals. One CD can hold about 75 minutes -of music. Should you order single or double packages? -@xref{Types Answer 12, 12}. (@bullet{}) - -Another kind of data the Calculator can manipulate is numbers with -@dfn{units}. This isn't strictly a new data type; it's simply an -application of algebraic expressions, where we use variables with -suggestive names like @samp{cm} and @samp{in} to represent units -like centimeters and inches. - -@smallexample -@group -1: 2 in 1: 5.08 cm 1: 0.027778 fath 1: 0.0508 m - . . . . - - ' 2in @key{RET} u c cm @key{RET} u c fath @key{RET} u b -@end group -@end smallexample - -@noindent -We enter the quantity ``2 inches'' (actually an algebraic expression -which means two times the variable @samp{in}), then we convert it -first to centimeters, then to fathoms, then finally to ``base'' units, -which in this case means meters. - -@smallexample -@group -1: 9 acre 1: 3 sqrt(acre) 1: 190.84 m 1: 190.84 m + 30 cm - . . . . - - ' 9 acre @key{RET} Q u s ' $+30 cm @key{RET} - -@end group -@end smallexample -@noindent -@smallexample -@group -1: 191.14 m 1: 36536.3046 m^2 1: 365363046 cm^2 - . . . - - u s 2 ^ u c cgs -@end group -@end smallexample - -@noindent -Since units expressions are really just formulas, taking the square -root of @samp{acre} is undefined. After all, @code{acre} might be an -algebraic variable that you will someday assign a value. We use the -``units-simplify'' command to simplify the expression with variables -being interpreted as unit names. - -In the final step, we have converted not to a particular unit, but to a -units system. The ``cgs'' system uses centimeters instead of meters -as its standard unit of length. - -There is a wide variety of units defined in the Calculator. - -@smallexample -@group -1: 55 mph 1: 88.5139 kph 1: 88.5139 km / hr 1: 8.201407e-8 c - . . . . - - ' 55 mph @key{RET} u c kph @key{RET} u c km/hr @key{RET} u c c @key{RET} -@end group -@end smallexample - -@noindent -We express a speed first in miles per hour, then in kilometers per -hour, then again using a slightly more explicit notation, then -finally in terms of fractions of the speed of light. - -Temperature conversions are a bit more tricky. There are two ways to -interpret ``20 degrees Fahrenheit''---it could mean an actual -temperature, or it could mean a change in temperature. For normal -units there is no difference, but temperature units have an offset -as well as a scale factor and so there must be two explicit commands -for them. - -@smallexample -@group -1: 20 degF 1: 11.1111 degC 1: -20:3 degC 1: -6.666 degC - . . . . - - ' 20 degF @key{RET} u c degC @key{RET} U u t degC @key{RET} c f -@end group -@end smallexample - -@noindent -First we convert a change of 20 degrees Fahrenheit into an equivalent -change in degrees Celsius (or Centigrade). Then, we convert the -absolute temperature 20 degrees Fahrenheit into Celsius. Since -this comes out as an exact fraction, we then convert to floating-point -for easier comparison with the other result. - -For simple unit conversions, you can put a plain number on the stack. -Then @kbd{u c} and @kbd{u t} will prompt for both old and new units. -When you use this method, you're responsible for remembering which -numbers are in which units: - -@smallexample -@group -1: 55 1: 88.5139 1: 8.201407e-8 - . . . - - 55 u c mph @key{RET} kph @key{RET} u c km/hr @key{RET} c @key{RET} -@end group -@end smallexample - -To see a complete list of built-in units, type @kbd{u v}. Press -@w{@kbd{C-x * c}} again to re-enter the Calculator when you're done looking -at the units table. - -(@bullet{}) @strong{Exercise 13.} How many seconds are there really -in a year? @xref{Types Answer 13, 13}. (@bullet{}) - -@cindex Speed of light -(@bullet{}) @strong{Exercise 14.} Supercomputer designs are limited by -the speed of light (and of electricity, which is nearly as fast). -Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its -cabinet is one meter across. Is speed of light going to be a -significant factor in its design? @xref{Types Answer 14, 14}. (@bullet{}) - -(@bullet{}) @strong{Exercise 15.} Sam the Slug normally travels about -five yards in an hour. He has obtained a supply of Power Pills; each -Power Pill he eats doubles his speed. How many Power Pills can he -swallow and still travel legally on most US highways? -@xref{Types Answer 15, 15}. (@bullet{}) - -@node Algebra Tutorial, Programming Tutorial, Types Tutorial, Tutorial -@section Algebra and Calculus Tutorial - -@noindent -This section shows how to use Calc's algebra facilities to solve -equations, do simple calculus problems, and manipulate algebraic -formulas. - -@menu -* Basic Algebra Tutorial:: -* Rewrites Tutorial:: -@end menu - -@node Basic Algebra Tutorial, Rewrites Tutorial, Algebra Tutorial, Algebra Tutorial -@subsection Basic Algebra - -@noindent -If you enter a formula in Algebraic mode that refers to variables, -the formula itself is pushed onto the stack. You can manipulate -formulas as regular data objects. - -@smallexample -@group -1: 2 x^2 - 6 1: 6 - 2 x^2 1: (6 - 2 x^2) (3 x^2 + y) - . . . - - ' 2x^2-6 @key{RET} n ' 3x^2+y @key{RET} * -@end group -@end smallexample - -(@bullet{}) @strong{Exercise 1.} Do @kbd{' x @key{RET} Q 2 ^} and -@kbd{' x @key{RET} 2 ^ Q} both wind up with the same result (@samp{x})? -Why or why not? @xref{Algebra Answer 1, 1}. (@bullet{}) - -There are also commands for doing common algebraic operations on -formulas. Continuing with the formula from the last example, - -@smallexample -@group -1: 18 x^2 + 6 y - 6 x^4 - 2 x^2 y 1: (18 - 2 y) x^2 - 6 x^4 + 6 y - . . - - a x a c x @key{RET} -@end group -@end smallexample - -@noindent -First we ``expand'' using the distributive law, then we ``collect'' -terms involving like powers of @expr{x}. - -Let's find the value of this expression when @expr{x} is 2 and @expr{y} -is one-half. - -@smallexample -@group -1: 17 x^2 - 6 x^4 + 3 1: -25 - . . - - 1:2 s l y @key{RET} 2 s l x @key{RET} -@end group -@end smallexample - -@noindent -The @kbd{s l} command means ``let''; it takes a number from the top of -the stack and temporarily assigns it as the value of the variable -you specify. It then evaluates (as if by the @kbd{=} key) the -next expression on the stack. After this command, the variable goes -back to its original value, if any. - -(An earlier exercise in this tutorial involved storing a value in the -variable @code{x}; if this value is still there, you will have to -unstore it with @kbd{s u x @key{RET}} before the above example will work -properly.) - -@cindex Maximum of a function using Calculus -Let's find the maximum value of our original expression when @expr{y} -is one-half and @expr{x} ranges over all possible values. We can -do this by taking the derivative with respect to @expr{x} and examining -values of @expr{x} for which the derivative is zero. If the second -derivative of the function at that value of @expr{x} is negative, -the function has a local maximum there. - -@smallexample -@group -1: 17 x^2 - 6 x^4 + 3 1: 34 x - 24 x^3 - . . - - U @key{DEL} s 1 a d x @key{RET} s 2 -@end group -@end smallexample - -@noindent -Well, the derivative is clearly zero when @expr{x} is zero. To find -the other root(s), let's divide through by @expr{x} and then solve: - -@smallexample -@group -1: (34 x - 24 x^3) / x 1: 34 x / x - 24 x^3 / x 1: 34 - 24 x^2 - . . . - - ' x @key{RET} / a x a s - -@end group -@end smallexample -@noindent -@smallexample -@group -1: 34 - 24 x^2 = 0 1: x = 1.19023 - . . - - 0 a = s 3 a S x @key{RET} -@end group -@end smallexample - -@noindent -Notice the use of @kbd{a s} to ``simplify'' the formula. When the -default algebraic simplifications don't do enough, you can use -@kbd{a s} to tell Calc to spend more time on the job. - -Now we compute the second derivative and plug in our values of @expr{x}: - -@smallexample -@group -1: 1.19023 2: 1.19023 2: 1.19023 - . 1: 34 x - 24 x^3 1: 34 - 72 x^2 - . . - - a . r 2 a d x @key{RET} s 4 -@end group -@end smallexample - -@noindent -(The @kbd{a .} command extracts just the righthand side of an equation. -Another method would have been to use @kbd{v u} to unpack the equation -@w{@samp{x = 1.19}} to @samp{x} and @samp{1.19}, then use @kbd{M-- M-2 @key{DEL}} -to delete the @samp{x}.) - -@smallexample -@group -2: 34 - 72 x^2 1: -68. 2: 34 - 72 x^2 1: 34 -1: 1.19023 . 1: 0 . - . . - - @key{TAB} s l x @key{RET} U @key{DEL} 0 s l x @key{RET} -@end group -@end smallexample - -@noindent -The first of these second derivatives is negative, so we know the function -has a maximum value at @expr{x = 1.19023}. (The function also has a -local @emph{minimum} at @expr{x = 0}.) - -When we solved for @expr{x}, we got only one value even though -@expr{34 - 24 x^2 = 0} is a quadratic equation that ought to have -two solutions. The reason is that @w{@kbd{a S}} normally returns a -single ``principal'' solution. If it needs to come up with an -arbitrary sign (as occurs in the quadratic formula) it picks @expr{+}. -If it needs an arbitrary integer, it picks zero. We can get a full -solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}. - -@smallexample -@group -1: 34 - 24 x^2 = 0 1: x = 1.19023 s1 1: x = -1.19023 - . . . - - r 3 H a S x @key{RET} s 5 1 n s l s1 @key{RET} -@end group -@end smallexample - -@noindent -Calc has invented the variable @samp{s1} to represent an unknown sign; -it is supposed to be either @mathit{+1} or @mathit{-1}. Here we have used -the ``let'' command to evaluate the expression when the sign is negative. -If we plugged this into our second derivative we would get the same, -negative, answer, so @expr{x = -1.19023} is also a maximum. - -To find the actual maximum value, we must plug our two values of @expr{x} -into the original formula. - -@smallexample -@group -2: 17 x^2 - 6 x^4 + 3 1: 24.08333 s1^2 - 12.04166 s1^4 + 3 -1: x = 1.19023 s1 . - . - - r 1 r 5 s l @key{RET} -@end group -@end smallexample - -@noindent -(Here we see another way to use @kbd{s l}; if its input is an equation -with a variable on the lefthand side, then @kbd{s l} treats the equation -like an assignment to that variable if you don't give a variable name.) - -It's clear that this will have the same value for either sign of -@code{s1}, but let's work it out anyway, just for the exercise: - -@smallexample -@group -2: [-1, 1] 1: [15.04166, 15.04166] -1: 24.08333 s1^2 ... . - . - - [ 1 n , 1 ] @key{TAB} V M $ @key{RET} -@end group -@end smallexample - -@noindent -Here we have used a vector mapping operation to evaluate the function -at several values of @samp{s1} at once. @kbd{V M $} is like @kbd{V M '} -except that it takes the formula from the top of the stack. The -formula is interpreted as a function to apply across the vector at the -next-to-top stack level. Since a formula on the stack can't contain -@samp{$} signs, Calc assumes the variables in the formula stand for -different arguments. It prompts you for an @dfn{argument list}, giving -the list of all variables in the formula in alphabetical order as the -default list. In this case the default is @samp{(s1)}, which is just -what we want so we simply press @key{RET} at the prompt. - -If there had been several different values, we could have used -@w{@kbd{V R X}} to find the global maximum. - -Calc has a built-in @kbd{a P} command that solves an equation using -@w{@kbd{H a S}} and returns a vector of all the solutions. It simply -automates the job we just did by hand. Applied to our original -cubic polynomial, it would produce the vector of solutions -@expr{[1.19023, -1.19023, 0]}. (There is also an @kbd{a X} command -which finds a local maximum of a function. It uses a numerical search -method rather than examining the derivatives, and thus requires you -to provide some kind of initial guess to show it where to look.) - -(@bullet{}) @strong{Exercise 2.} Given a vector of the roots of a -polynomial (such as the output of an @kbd{a P} command), what -sequence of commands would you use to reconstruct the original -polynomial? (The answer will be unique to within a constant -multiple; choose the solution where the leading coefficient is one.) -@xref{Algebra Answer 2, 2}. (@bullet{}) - -The @kbd{m s} command enables Symbolic mode, in which formulas -like @samp{sqrt(5)} that can't be evaluated exactly are left in -symbolic form rather than giving a floating-point approximate answer. -Fraction mode (@kbd{m f}) is also useful when doing algebra. - -@smallexample -@group -2: 34 x - 24 x^3 2: 34 x - 24 x^3 -1: 34 x - 24 x^3 1: [sqrt(51) / 6, sqrt(51) / -6, 0] - . . - - r 2 @key{RET} m s m f a P x @key{RET} -@end group -@end smallexample - -One more mode that makes reading formulas easier is Big mode. - -@smallexample -@group - 3 -2: 34 x - 24 x - - ____ ____ - V 51 V 51 -1: [-----, -----, 0] - 6 -6 - - . - - d B -@end group -@end smallexample - -Here things like powers, square roots, and quotients and fractions -are displayed in a two-dimensional pictorial form. Calc has other -language modes as well, such as C mode, FORTRAN mode, @TeX{} mode -and La@TeX{} mode. - -@smallexample -@group -2: 34*x - 24*pow(x, 3) 2: 34*x - 24*x**3 -1: @{sqrt(51) / 6, sqrt(51) / -6, 0@} 1: /sqrt(51) / 6, sqrt(51) / -6, 0/ - . . - - d C d F - -@end group -@end smallexample -@noindent -@smallexample -@group -3: 34 x - 24 x^3 -2: [@{\sqrt@{51@} \over 6@}, @{\sqrt@{51@} \over -6@}, 0] -1: @{2 \over 3@} \sqrt@{5@} - . - - d T ' 2 \sqrt@{5@} \over 3 @key{RET} -@end group -@end smallexample - -@noindent -As you can see, language modes affect both entry and display of -formulas. They affect such things as the names used for built-in -functions, the set of arithmetic operators and their precedences, -and notations for vectors and matrices. - -Notice that @samp{sqrt(51)} may cause problems with older -implementations of C and FORTRAN, which would require something more -like @samp{sqrt(51.0)}. It is always wise to check over the formulas -produced by the various language modes to make sure they are fully -correct. - -Type @kbd{m s}, @kbd{m f}, and @kbd{d N} to reset these modes. (You -may prefer to remain in Big mode, but all the examples in the tutorial -are shown in normal mode.) - -@cindex Area under a curve -What is the area under the portion of this curve from @expr{x = 1} to @expr{2}? -This is simply the integral of the function: - -@smallexample -@group -1: 17 x^2 - 6 x^4 + 3 1: 5.6666 x^3 - 1.2 x^5 + 3 x - . . - - r 1 a i x -@end group -@end smallexample - -@noindent -We want to evaluate this at our two values for @expr{x} and subtract. -One way to do it is again with vector mapping and reduction: - -@smallexample -@group -2: [2, 1] 1: [12.93333, 7.46666] 1: 5.46666 -1: 5.6666 x^3 ... . . - - [ 2 , 1 ] @key{TAB} V M $ @key{RET} V R - -@end group -@end smallexample - -(@bullet{}) @strong{Exercise 3.} Find the integral from 1 to @expr{y} -of -@texline @math{x \sin \pi x} -@infoline @w{@expr{x sin(pi x)}} -(where the sine is calculated in radians). Find the values of the -integral for integers @expr{y} from 1 to 5. @xref{Algebra Answer 3, -3}. (@bullet{}) - -Calc's integrator can do many simple integrals symbolically, but many -others are beyond its capabilities. Suppose we wish to find the area -under the curve -@texline @math{\sin x \ln x} -@infoline @expr{sin(x) ln(x)} -over the same range of @expr{x}. If you entered this formula and typed -@kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a -long time but would be unable to find a solution. In fact, there is no -closed-form solution to this integral. Now what do we do? - -@cindex Integration, numerical -@cindex Numerical integration -One approach would be to do the integral numerically. It is not hard -to do this by hand using vector mapping and reduction. It is rather -slow, though, since the sine and logarithm functions take a long time. -We can save some time by reducing the working precision. - -@smallexample -@group -3: 10 1: [1, 1.1, 1.2, ... , 1.8, 1.9] -2: 1 . -1: 0.1 - . - - 10 @key{RET} 1 @key{RET} .1 @key{RET} C-u v x -@end group -@end smallexample - -@noindent -(Note that we have used the extended version of @kbd{v x}; we could -also have used plain @kbd{v x} as follows: @kbd{v x 10 @key{RET} 9 + .1 *}.) - -@smallexample -@group -2: [1, 1.1, ... ] 1: [0., 0.084941, 0.16993, ... ] -1: sin(x) ln(x) . - . - - ' sin(x) ln(x) @key{RET} s 1 m r p 5 @key{RET} V M $ @key{RET} - -@end group -@end smallexample -@noindent -@smallexample -@group -1: 3.4195 0.34195 - . . - - V R + 0.1 * -@end group -@end smallexample - -@noindent -(If you got wildly different results, did you remember to switch -to Radians mode?) - -Here we have divided the curve into ten segments of equal width; -approximating these segments as rectangular boxes (i.e., assuming -the curve is nearly flat at that resolution), we compute the areas -of the boxes (height times width), then sum the areas. (It is -faster to sum first, then multiply by the width, since the width -is the same for every box.) - -The true value of this integral turns out to be about 0.374, so -we're not doing too well. Let's try another approach. - -@smallexample -@group -1: sin(x) ln(x) 1: 0.84147 x - 0.84147 + 0.11957 (x - 1)^2 - ... - . . - - r 1 a t x=1 @key{RET} 4 @key{RET} -@end group -@end smallexample - -@noindent -Here we have computed the Taylor series expansion of the function -about the point @expr{x=1}. We can now integrate this polynomial -approximation, since polynomials are easy to integrate. - -@smallexample -@group -1: 0.42074 x^2 + ... 1: [-0.0446, -0.42073] 1: 0.3761 - . . . - - a i x @key{RET} [ 2 , 1 ] @key{TAB} V M $ @key{RET} V R - -@end group -@end smallexample - -@noindent -Better! By increasing the precision and/or asking for more terms -in the Taylor series, we can get a result as accurate as we like. -(Taylor series converge better away from singularities in the -function such as the one at @code{ln(0)}, so it would also help to -expand the series about the points @expr{x=2} or @expr{x=1.5} instead -of @expr{x=1}.) - -@cindex Simpson's rule -@cindex Integration by Simpson's rule -(@bullet{}) @strong{Exercise 4.} Our first method approximated the -curve by stairsteps of width 0.1; the total area was then the sum -of the areas of the rectangles under these stairsteps. Our second -method approximated the function by a polynomial, which turned out -to be a better approximation than stairsteps. A third method is -@dfn{Simpson's rule}, which is like the stairstep method except -that the steps are not required to be flat. Simpson's rule boils -down to the formula, - -@ifnottex -@example -(h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ... - + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h)) -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ \displaylines{ - \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots - \hfill \cr \hfill {} + 2 f(a+(n-2)h) + 4 f(a+(n-1)h) + f(a+n h)) \qquad -} $$ -\afterdisplay -@end tex - -@noindent -where @expr{n} (which must be even) is the number of slices and @expr{h} -is the width of each slice. These are 10 and 0.1 in our example. -For reference, here is the corresponding formula for the stairstep -method: - -@ifnottex -@example -h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ... - + f(a+(n-2)*h) + f(a+(n-1)*h)) -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots - + f(a+(n-2)h) + f(a+(n-1)h)) $$ -\afterdisplay -@end tex - -Compute the integral from 1 to 2 of -@texline @math{\sin x \ln x} -@infoline @expr{sin(x) ln(x)} -using Simpson's rule with 10 slices. -@xref{Algebra Answer 4, 4}. (@bullet{}) - -Calc has a built-in @kbd{a I} command for doing numerical integration. -It uses @dfn{Romberg's method}, which is a more sophisticated cousin -of Simpson's rule. In particular, it knows how to keep refining the -result until the current precision is satisfied. - -@c [fix-ref Selecting Sub-Formulas] -Aside from the commands we've seen so far, Calc also provides a -large set of commands for operating on parts of formulas. You -indicate the desired sub-formula by placing the cursor on any part -of the formula before giving a @dfn{selection} command. Selections won't -be covered in the tutorial; @pxref{Selecting Subformulas}, for -details and examples. - -@c hard exercise: simplify (2^(n r) - 2^(r*(n - 1))) / (2^r - 1) 2^(n - 1) -@c to 2^((n-1)*(r-1)). - -@node Rewrites Tutorial, , Basic Algebra Tutorial, Algebra Tutorial -@subsection Rewrite Rules - -@noindent -No matter how many built-in commands Calc provided for doing algebra, -there would always be something you wanted to do that Calc didn't have -in its repertoire. So Calc also provides a @dfn{rewrite rule} system -that you can use to define your own algebraic manipulations. - -Suppose we want to simplify this trigonometric formula: - -@smallexample -@group -1: 1 / cos(x) - sin(x) tan(x) - . - - ' 1/cos(x) - sin(x) tan(x) @key{RET} s 1 -@end group -@end smallexample - -@noindent -If we were simplifying this by hand, we'd probably replace the -@samp{tan} with a @samp{sin/cos} first, then combine over a common -denominator. There is no Calc command to do the former; the @kbd{a n} -algebra command will do the latter but we'll do both with rewrite -rules just for practice. - -Rewrite rules are written with the @samp{:=} symbol. - -@smallexample -@group -1: 1 / cos(x) - sin(x)^2 / cos(x) - . - - a r tan(a) := sin(a)/cos(a) @key{RET} -@end group -@end smallexample - -@noindent -(The ``assignment operator'' @samp{:=} has several uses in Calc. All -by itself the formula @samp{tan(a) := sin(a)/cos(a)} doesn't do anything, -but when it is given to the @kbd{a r} command, that command interprets -it as a rewrite rule.) - -The lefthand side, @samp{tan(a)}, is called the @dfn{pattern} of the -rewrite rule. Calc searches the formula on the stack for parts that -match the pattern. Variables in a rewrite pattern are called -@dfn{meta-variables}, and when matching the pattern each meta-variable -can match any sub-formula. Here, the meta-variable @samp{a} matched -the actual variable @samp{x}. - -When the pattern part of a rewrite rule matches a part of the formula, -that part is replaced by the righthand side with all the meta-variables -substituted with the things they matched. So the result is -@samp{sin(x) / cos(x)}. Calc's normal algebraic simplifications then -mix this in with the rest of the original formula. - -To merge over a common denominator, we can use another simple rule: - -@smallexample -@group -1: (1 - sin(x)^2) / cos(x) - . - - a r a/x + b/x := (a+b)/x @key{RET} -@end group -@end smallexample - -This rule points out several interesting features of rewrite patterns. -First, if a meta-variable appears several times in a pattern, it must -match the same thing everywhere. This rule detects common denominators -because the same meta-variable @samp{x} is used in both of the -denominators. - -Second, meta-variable names are independent from variables in the -target formula. Notice that the meta-variable @samp{x} here matches -the subformula @samp{cos(x)}; Calc never confuses the two meanings of -@samp{x}. - -And third, rewrite patterns know a little bit about the algebraic -properties of formulas. The pattern called for a sum of two quotients; -Calc was able to match a difference of two quotients by matching -@samp{a = 1}, @samp{b = -sin(x)^2}, and @samp{x = cos(x)}. - -@c [fix-ref Algebraic Properties of Rewrite Rules] -We could just as easily have written @samp{a/x - b/x := (a-b)/x} for -the rule. It would have worked just the same in all cases. (If we -really wanted the rule to apply only to @samp{+} or only to @samp{-}, -we could have used the @code{plain} symbol. @xref{Algebraic Properties -of Rewrite Rules}, for some examples of this.) - -One more rewrite will complete the job. We want to use the identity -@samp{sin(x)^2 + cos(x)^2 = 1}, but of course we must first rearrange -the identity in a way that matches our formula. The obvious rule -would be @samp{@w{1 - sin(x)^2} := cos(x)^2}, but a little thought shows -that the rule @samp{sin(x)^2 := 1 - cos(x)^2} will also work. The -latter rule has a more general pattern so it will work in many other -situations, too. - -@smallexample -@group -1: (1 + cos(x)^2 - 1) / cos(x) 1: cos(x) - . . - - a r sin(x)^2 := 1 - cos(x)^2 @key{RET} a s -@end group -@end smallexample - -You may ask, what's the point of using the most general rule if you -have to type it in every time anyway? The answer is that Calc allows -you to store a rewrite rule in a variable, then give the variable -name in the @kbd{a r} command. In fact, this is the preferred way to -use rewrites. For one, if you need a rule once you'll most likely -need it again later. Also, if the rule doesn't work quite right you -can simply Undo, edit the variable, and run the rule again without -having to retype it. - -@smallexample -@group -' tan(x) := sin(x)/cos(x) @key{RET} s t tsc @key{RET} -' a/x + b/x := (a+b)/x @key{RET} s t merge @key{RET} -' sin(x)^2 := 1 - cos(x)^2 @key{RET} s t sinsqr @key{RET} - -1: 1 / cos(x) - sin(x) tan(x) 1: cos(x) - . . - - r 1 a r tsc @key{RET} a r merge @key{RET} a r sinsqr @key{RET} a s -@end group -@end smallexample - -To edit a variable, type @kbd{s e} and the variable name, use regular -Emacs editing commands as necessary, then type @kbd{C-c C-c} to store -the edited value back into the variable. -You can also use @w{@kbd{s e}} to create a new variable if you wish. - -Notice that the first time you use each rule, Calc puts up a ``compiling'' -message briefly. The pattern matcher converts rules into a special -optimized pattern-matching language rather than using them directly. -This allows @kbd{a r} to apply even rather complicated rules very -efficiently. If the rule is stored in a variable, Calc compiles it -only once and stores the compiled form along with the variable. That's -another good reason to store your rules in variables rather than -entering them on the fly. - -(@bullet{}) @strong{Exercise 1.} Type @kbd{m s} to get Symbolic -mode, then enter the formula @samp{@w{(2 + sqrt(2))} / @w{(1 + sqrt(2))}}. -Using a rewrite rule, simplify this formula by multiplying the top and -bottom by the conjugate @w{@samp{1 - sqrt(2)}}. The result will have -to be expanded by the distributive law; do this with another -rewrite. @xref{Rewrites Answer 1, 1}. (@bullet{}) - -The @kbd{a r} command can also accept a vector of rewrite rules, or -a variable containing a vector of rules. - -@smallexample -@group -1: [tsc, merge, sinsqr] 1: [tan(x) := sin(x) / cos(x), ... ] - . . - - ' [tsc,merge,sinsqr] @key{RET} = - -@end group -@end smallexample -@noindent -@smallexample -@group -1: 1 / cos(x) - sin(x) tan(x) 1: cos(x) - . . - - s t trig @key{RET} r 1 a r trig @key{RET} a s -@end group -@end smallexample - -@c [fix-ref Nested Formulas with Rewrite Rules] -Calc tries all the rules you give against all parts of the formula, -repeating until no further change is possible. (The exact order in -which things are tried is rather complex, but for simple rules like -the ones we've used here the order doesn't really matter. -@xref{Nested Formulas with Rewrite Rules}.) - -Calc actually repeats only up to 100 times, just in case your rule set -has gotten into an infinite loop. You can give a numeric prefix argument -to @kbd{a r} to specify any limit. In particular, @kbd{M-1 a r} does -only one rewrite at a time. - -@smallexample -@group -1: 1 / cos(x) - sin(x)^2 / cos(x) 1: (1 - sin(x)^2) / cos(x) - . . - - r 1 M-1 a r trig @key{RET} M-1 a r trig @key{RET} -@end group -@end smallexample - -You can type @kbd{M-0 a r} if you want no limit at all on the number -of rewrites that occur. - -Rewrite rules can also be @dfn{conditional}. Simply follow the rule -with a @samp{::} symbol and the desired condition. For example, - -@smallexample -@group -1: exp(2 pi i) + exp(3 pi i) + exp(4 pi i) - . - - ' exp(2 pi i) + exp(3 pi i) + exp(4 pi i) @key{RET} - -@end group -@end smallexample -@noindent -@smallexample -@group -1: 1 + exp(3 pi i) + 1 - . - - a r exp(k pi i) := 1 :: k % 2 = 0 @key{RET} -@end group -@end smallexample - -@noindent -(Recall, @samp{k % 2} is the remainder from dividing @samp{k} by 2, -which will be zero only when @samp{k} is an even integer.) - -An interesting point is that the variables @samp{pi} and @samp{i} -were matched literally rather than acting as meta-variables. -This is because they are special-constant variables. The special -constants @samp{e}, @samp{phi}, and so on also match literally. -A common error with rewrite -rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting -to match any @samp{f} with five arguments but in fact matching -only when the fifth argument is literally @samp{e}! - -@cindex Fibonacci numbers -@ignore -@starindex -@end ignore -@tindex fib -Rewrite rules provide an interesting way to define your own functions. -Suppose we want to define @samp{fib(n)} to produce the @var{n}th -Fibonacci number. The first two Fibonacci numbers are each 1; -later numbers are formed by summing the two preceding numbers in -the sequence. This is easy to express in a set of three rules: - -@smallexample -@group -' [fib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] @key{RET} s t fib - -1: fib(7) 1: 13 - . . - - ' fib(7) @key{RET} a r fib @key{RET} -@end group -@end smallexample - -One thing that is guaranteed about the order that rewrites are tried -is that, for any given subformula, earlier rules in the rule set will -be tried for that subformula before later ones. So even though the -first and third rules both match @samp{fib(1)}, we know the first will -be used preferentially. - -This rule set has one dangerous bug: Suppose we apply it to the -formula @samp{fib(x)}? (Don't actually try this.) The third rule -will match @samp{fib(x)} and replace it with @w{@samp{fib(x-1) + fib(x-2)}}. -Each of these will then be replaced to get @samp{fib(x-2) + 2 fib(x-3) + -fib(x-4)}, and so on, expanding forever. What we really want is to apply -the third rule only when @samp{n} is an integer greater than two. Type -@w{@kbd{s e fib @key{RET}}}, then edit the third rule to: - -@smallexample -fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 -@end smallexample - -@noindent -Now: - -@smallexample -@group -1: fib(6) + fib(x) + fib(0) 1: 8 + fib(x) + fib(0) - . . - - ' fib(6)+fib(x)+fib(0) @key{RET} a r fib @key{RET} -@end group -@end smallexample - -@noindent -We've created a new function, @code{fib}, and a new command, -@w{@kbd{a r fib @key{RET}}}, which means ``evaluate all @code{fib} calls in -this formula.'' To make things easier still, we can tell Calc to -apply these rules automatically by storing them in the special -variable @code{EvalRules}. - -@smallexample -@group -1: [fib(1) := ...] . 1: [8, 13] - . . - - s r fib @key{RET} s t EvalRules @key{RET} ' [fib(6), fib(7)] @key{RET} -@end group -@end smallexample - -It turns out that this rule set has the problem that it does far -more work than it needs to when @samp{n} is large. Consider the -first few steps of the computation of @samp{fib(6)}: - -@smallexample -@group -fib(6) = -fib(5) + fib(4) = -fib(4) + fib(3) + fib(3) + fib(2) = -fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ... -@end group -@end smallexample - -@noindent -Note that @samp{fib(3)} appears three times here. Unless Calc's -algebraic simplifier notices the multiple @samp{fib(3)}s and combines -them (and, as it happens, it doesn't), this rule set does lots of -needless recomputation. To cure the problem, type @code{s e EvalRules} -to edit the rules (or just @kbd{s E}, a shorthand command for editing -@code{EvalRules}) and add another condition: - -@smallexample -fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 :: remember -@end smallexample - -@noindent -If a @samp{:: remember} condition appears anywhere in a rule, then if -that rule succeeds Calc will add another rule that describes that match -to the front of the rule set. (Remembering works in any rule set, but -for technical reasons it is most effective in @code{EvalRules}.) For -example, if the rule rewrites @samp{fib(7)} to something that evaluates -to 13, then the rule @samp{fib(7) := 13} will be added to the rule set. - -Type @kbd{' fib(8) @key{RET}} to compute the eighth Fibonacci number, then -type @kbd{s E} again to see what has happened to the rule set. - -With the @code{remember} feature, our rule set can now compute -@samp{fib(@var{n})} in just @var{n} steps. In the process it builds -up a table of all Fibonacci numbers up to @var{n}. After we have -computed the result for a particular @var{n}, we can get it back -(and the results for all smaller @var{n}) later in just one step. - -All Calc operations will run somewhat slower whenever @code{EvalRules} -contains any rules. You should type @kbd{s u EvalRules @key{RET}} now to -un-store the variable. - -(@bullet{}) @strong{Exercise 2.} Sometimes it is possible to reformulate -a problem to reduce the amount of recursion necessary to solve it. -Create a rule that, in about @var{n} simple steps and without recourse -to the @code{remember} option, replaces @samp{fib(@var{n}, 1, 1)} with -@samp{fib(1, @var{x}, @var{y})} where @var{x} and @var{y} are the -@var{n}th and @var{n+1}st Fibonacci numbers, respectively. This rule is -rather clunky to use, so add a couple more rules to make the ``user -interface'' the same as for our first version: enter @samp{fib(@var{n})}, -get back a plain number. @xref{Rewrites Answer 2, 2}. (@bullet{}) - -There are many more things that rewrites can do. For example, there -are @samp{&&&} and @samp{|||} pattern operators that create ``and'' -and ``or'' combinations of rules. As one really simple example, we -could combine our first two Fibonacci rules thusly: - -@example -[fib(1 ||| 2) := 1, fib(n) := ... ] -@end example - -@noindent -That means ``@code{fib} of something matching either 1 or 2 rewrites -to 1.'' - -You can also make meta-variables optional by enclosing them in @code{opt}. -For example, the pattern @samp{a + b x} matches @samp{2 + 3 x} but not -@samp{2 + x} or @samp{3 x} or @samp{x}. The pattern @samp{opt(a) + opt(b) x} -matches all of these forms, filling in a default of zero for @samp{a} -and one for @samp{b}. - -(@bullet{}) @strong{Exercise 3.} Your friend Joe had @samp{2 + 3 x} -on the stack and tried to use the rule -@samp{opt(a) + opt(b) x := f(a, b, x)}. What happened? -@xref{Rewrites Answer 3, 3}. (@bullet{}) - -(@bullet{}) @strong{Exercise 4.} Starting with a positive integer @expr{a}, -divide @expr{a} by two if it is even, otherwise compute @expr{3 a + 1}. -Now repeat this step over and over. A famous unproved conjecture -is that for any starting @expr{a}, the sequence always eventually -reaches 1. Given the formula @samp{seq(@var{a}, 0)}, write a set of -rules that convert this into @samp{seq(1, @var{n})} where @var{n} -is the number of steps it took the sequence to reach the value 1. -Now enhance the rules to accept @samp{seq(@var{a})} as a starting -configuration, and to stop with just the number @var{n} by itself. -Now make the result be a vector of values in the sequence, from @var{a} -to 1. (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x} -and @var{y}.) For example, rewriting @samp{seq(6)} should yield the -vector @expr{[6, 3, 10, 5, 16, 8, 4, 2, 1]}. -@xref{Rewrites Answer 4, 4}. (@bullet{}) - -(@bullet{}) @strong{Exercise 5.} Define, using rewrite rules, a function -@samp{nterms(@var{x})} that returns the number of terms in the sum -@var{x}, or 1 if @var{x} is not a sum. (A @dfn{sum} for our purposes -is one or more non-sum terms separated by @samp{+} or @samp{-} signs, -so that @expr{2 - 3 (x + y) + x y} is a sum of three terms.) -@xref{Rewrites Answer 5, 5}. (@bullet{}) - -(@bullet{}) @strong{Exercise 6.} A Taylor series for a function is an -infinite series that exactly equals the value of that function at -values of @expr{x} near zero. - -@ifnottex -@example -cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ... -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$ -\afterdisplay -@end tex - -The @kbd{a t} command produces a @dfn{truncated Taylor series} which -is obtained by dropping all the terms higher than, say, @expr{x^2}. -Calc represents the truncated Taylor series as a polynomial in @expr{x}. -Mathematicians often write a truncated series using a ``big-O'' notation -that records what was the lowest term that was truncated. - -@ifnottex -@example -cos(x) = 1 - x^2 / 2! + O(x^3) -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$ -\afterdisplay -@end tex - -@noindent -The meaning of @expr{O(x^3)} is ``a quantity which is negligibly small -if @expr{x^3} is considered negligibly small as @expr{x} goes to zero.'' - -The exercise is to create rewrite rules that simplify sums and products of -power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}. -For example, given @samp{1 - x^2 / 2 + O(x^3)} and @samp{x - x^3 / 6 + O(x^4)} -on the stack, we want to be able to type @kbd{*} and get the result -@samp{x - 2:3 x^3 + O(x^4)}. Don't worry if the terms of the sum are -rearranged or if @kbd{a s} needs to be typed after rewriting. (This one -is rather tricky; the solution at the end of this chapter uses 6 rewrite -rules. Hint: The @samp{constant(x)} condition tests whether @samp{x} is -a number.) @xref{Rewrites Answer 6, 6}. (@bullet{}) - -Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}. -What happens? (Be sure to remove this rule afterward, or you might get -a nasty surprise when you use Calc to balance your checkbook!) - -@xref{Rewrite Rules}, for the whole story on rewrite rules. - -@node Programming Tutorial, Answers to Exercises, Algebra Tutorial, Tutorial -@section Programming Tutorial - -@noindent -The Calculator is written entirely in Emacs Lisp, a highly extensible -language. If you know Lisp, you can program the Calculator to do -anything you like. Rewrite rules also work as a powerful programming -system. But Lisp and rewrite rules take a while to master, and often -all you want to do is define a new function or repeat a command a few -times. Calc has features that allow you to do these things easily. - -One very limited form of programming is defining your own functions. -Calc's @kbd{Z F} command allows you to define a function name and -key sequence to correspond to any formula. Programming commands use -the shift-@kbd{Z} prefix; the user commands they create use the lower -case @kbd{z} prefix. - -@smallexample -@group -1: 1 + x + x^2 / 2 + x^3 / 6 1: 1 + x + x^2 / 2 + x^3 / 6 - . . - - ' 1 + x + x^2/2! + x^3/3! @key{RET} Z F e myexp @key{RET} @key{RET} @key{RET} y -@end group -@end smallexample - -This polynomial is a Taylor series approximation to @samp{exp(x)}. -The @kbd{Z F} command asks a number of questions. The above answers -say that the key sequence for our function should be @kbd{z e}; the -@kbd{M-x} equivalent should be @code{calc-myexp}; the name of the -function in algebraic formulas should also be @code{myexp}; the -default argument list @samp{(x)} is acceptable; and finally @kbd{y} -answers the question ``leave it in symbolic form for non-constant -arguments?'' - -@smallexample -@group -1: 1.3495 2: 1.3495 3: 1.3495 - . 1: 1.34986 2: 1.34986 - . 1: myexp(a + 1) - . - - .3 z e .3 E ' a+1 @key{RET} z e -@end group -@end smallexample - -@noindent -First we call our new @code{exp} approximation with 0.3 as an -argument, and compare it with the true @code{exp} function. Then -we note that, as requested, if we try to give @kbd{z e} an -argument that isn't a plain number, it leaves the @code{myexp} -function call in symbolic form. If we had answered @kbd{n} to the -final question, @samp{myexp(a + 1)} would have evaluated by plugging -in @samp{a + 1} for @samp{x} in the defining formula. - -@cindex Sine integral Si(x) -@ignore -@starindex -@end ignore -@tindex Si -(@bullet{}) @strong{Exercise 1.} The ``sine integral'' function -@texline @math{{\rm Si}(x)} -@infoline @expr{Si(x)} -is defined as the integral of @samp{sin(t)/t} for -@expr{t = 0} to @expr{x} in radians. (It was invented because this -integral has no solution in terms of basic functions; if you give it -to Calc's @kbd{a i} command, it will ponder it for a long time and then -give up.) We can use the numerical integration command, however, -which in algebraic notation is written like @samp{ninteg(f(t), t, 0, x)} -with any integrand @samp{f(t)}. Define a @kbd{z s} command and -@code{Si} function that implement this. You will need to edit the -default argument list a bit. As a test, @samp{Si(1)} should return -0.946083. (If you don't get this answer, you might want to check that -Calc is in Radians mode. Also, @code{ninteg} will run a lot faster if -you reduce the precision to, say, six digits beforehand.) -@xref{Programming Answer 1, 1}. (@bullet{}) - -The simplest way to do real ``programming'' of Emacs is to define a -@dfn{keyboard macro}. A keyboard macro is simply a sequence of -keystrokes which Emacs has stored away and can play back on demand. -For example, if you find yourself typing @kbd{H a S x @key{RET}} often, -you may wish to program a keyboard macro to type this for you. - -@smallexample -@group -1: y = sqrt(x) 1: x = y^2 - . . - - ' y=sqrt(x) @key{RET} C-x ( H a S x @key{RET} C-x ) - -1: y = cos(x) 1: x = s1 arccos(y) + 2 pi n1 - . . - - ' y=cos(x) @key{RET} X -@end group -@end smallexample - -@noindent -When you type @kbd{C-x (}, Emacs begins recording. But it is also -still ready to execute your keystrokes, so you're really ``training'' -Emacs by walking it through the procedure once. When you type -@w{@kbd{C-x )}}, the macro is recorded. You can now type @kbd{X} to -re-execute the same keystrokes. - -You can give a name to your macro by typing @kbd{Z K}. - -@smallexample -@group -1: . 1: y = x^4 1: x = s2 sqrt(s1 sqrt(y)) - . . - - Z K x @key{RET} ' y=x^4 @key{RET} z x -@end group -@end smallexample - -@noindent -Notice that we use shift-@kbd{Z} to define the command, and lower-case -@kbd{z} to call it up. - -Keyboard macros can call other macros. - -@smallexample -@group -1: abs(x) 1: x = s1 y 1: 2 / x 1: x = 2 / y - . . . . - - ' abs(x) @key{RET} C-x ( ' y @key{RET} a = z x C-x ) ' 2/x @key{RET} X -@end group -@end smallexample - -(@bullet{}) @strong{Exercise 2.} Define a keyboard macro to negate -the item in level 3 of the stack, without disturbing the rest of -the stack. @xref{Programming Answer 2, 2}. (@bullet{}) - -(@bullet{}) @strong{Exercise 3.} Define keyboard macros to compute -the following functions: - -@enumerate -@item -Compute -@texline @math{\displaystyle{\sin x \over x}}, -@infoline @expr{sin(x) / x}, -where @expr{x} is the number on the top of the stack. - -@item -Compute the base-@expr{b} logarithm, just like the @kbd{B} key except -the arguments are taken in the opposite order. - -@item -Produce a vector of integers from 1 to the integer on the top of -the stack. -@end enumerate -@noindent -@xref{Programming Answer 3, 3}. (@bullet{}) - -(@bullet{}) @strong{Exercise 4.} Define a keyboard macro to compute -the average (mean) value of a list of numbers. -@xref{Programming Answer 4, 4}. (@bullet{}) - -In many programs, some of the steps must execute several times. -Calc has @dfn{looping} commands that allow this. Loops are useful -inside keyboard macros, but actually work at any time. - -@smallexample -@group -1: x^6 2: x^6 1: 360 x^2 - . 1: 4 . - . - - ' x^6 @key{RET} 4 Z < a d x @key{RET} Z > -@end group -@end smallexample - -@noindent -Here we have computed the fourth derivative of @expr{x^6} by -enclosing a derivative command in a ``repeat loop'' structure. -This structure pops a repeat count from the stack, then -executes the body of the loop that many times. - -If you make a mistake while entering the body of the loop, -type @w{@kbd{Z C-g}} to cancel the loop command. - -@cindex Fibonacci numbers -Here's another example: - -@smallexample -@group -3: 1 2: 10946 -2: 1 1: 17711 -1: 20 . - . - -1 @key{RET} @key{RET} 20 Z < @key{TAB} C-j + Z > -@end group -@end smallexample - -@noindent -The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci -numbers, respectively. (To see what's going on, try a few repetitions -of the loop body by hand; @kbd{C-j}, also on the Line-Feed or @key{LFD} -key if you have one, makes a copy of the number in level 2.) - -@cindex Golden ratio -@cindex Phi, golden ratio -A fascinating property of the Fibonacci numbers is that the @expr{n}th -Fibonacci number can be found directly by computing -@texline @math{\phi^n / \sqrt{5}} -@infoline @expr{phi^n / sqrt(5)} -and then rounding to the nearest integer, where -@texline @math{\phi} (``phi''), -@infoline @expr{phi}, -the ``golden ratio,'' is -@texline @math{(1 + \sqrt{5}) / 2}. -@infoline @expr{(1 + sqrt(5)) / 2}. -(For convenience, this constant is available from the @code{phi} -variable, or the @kbd{I H P} command.) - -@smallexample -@group -1: 1.61803 1: 24476.0000409 1: 10945.9999817 1: 10946 - . . . . - - I H P 21 ^ 5 Q / R -@end group -@end smallexample - -@cindex Continued fractions -(@bullet{}) @strong{Exercise 5.} The @dfn{continued fraction} -representation of -@texline @math{\phi} -@infoline @expr{phi} -is -@texline @math{1 + 1/(1 + 1/(1 + 1/( \ldots )))}. -@infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}. -We can compute an approximate value by carrying this however far -and then replacing the innermost -@texline @math{1/( \ldots )} -@infoline @expr{1/( ...@: )} -by 1. Approximate -@texline @math{\phi} -@infoline @expr{phi} -using a twenty-term continued fraction. -@xref{Programming Answer 5, 5}. (@bullet{}) - -(@bullet{}) @strong{Exercise 6.} Linear recurrences like the one for -Fibonacci numbers can be expressed in terms of matrices. Given a -vector @w{@expr{[a, b]}} determine a matrix which, when multiplied by this -vector, produces the vector @expr{[b, c]}, where @expr{a}, @expr{b} and -@expr{c} are three successive Fibonacci numbers. Now write a program -that, given an integer @expr{n}, computes the @expr{n}th Fibonacci number -using matrix arithmetic. @xref{Programming Answer 6, 6}. (@bullet{}) - -@cindex Harmonic numbers -A more sophisticated kind of loop is the @dfn{for} loop. Suppose -we wish to compute the 20th ``harmonic'' number, which is equal to -the sum of the reciprocals of the integers from 1 to 20. - -@smallexample -@group -3: 0 1: 3.597739 -2: 1 . -1: 20 - . - -0 @key{RET} 1 @key{RET} 20 Z ( & + 1 Z ) -@end group -@end smallexample - -@noindent -The ``for'' loop pops two numbers, the lower and upper limits, then -repeats the body of the loop as an internal counter increases from -the lower limit to the upper one. Just before executing the loop -body, it pushes the current loop counter. When the loop body -finishes, it pops the ``step,'' i.e., the amount by which to -increment the loop counter. As you can see, our loop always -uses a step of one. - -This harmonic number function uses the stack to hold the running -total as well as for the various loop housekeeping functions. If -you find this disorienting, you can sum in a variable instead: - -@smallexample -@group -1: 0 2: 1 . 1: 3.597739 - . 1: 20 . - . - - 0 t 7 1 @key{RET} 20 Z ( & s + 7 1 Z ) r 7 -@end group -@end smallexample - -@noindent -The @kbd{s +} command adds the top-of-stack into the value in a -variable (and removes that value from the stack). - -It's worth noting that many jobs that call for a ``for'' loop can -also be done more easily by Calc's high-level operations. Two -other ways to compute harmonic numbers are to use vector mapping -and reduction (@kbd{v x 20}, then @w{@kbd{V M &}}, then @kbd{V R +}), -or to use the summation command @kbd{a +}. Both of these are -probably easier than using loops. However, there are some -situations where loops really are the way to go: - -(@bullet{}) @strong{Exercise 7.} Use a ``for'' loop to find the first -harmonic number which is greater than 4.0. -@xref{Programming Answer 7, 7}. (@bullet{}) - -Of course, if we're going to be using variables in our programs, -we have to worry about the programs clobbering values that the -caller was keeping in those same variables. This is easy to -fix, though: - -@smallexample -@group - . 1: 0.6667 1: 0.6667 3: 0.6667 - . . 2: 3.597739 - 1: 0.6667 - . - - Z ` p 4 @key{RET} 2 @key{RET} 3 / s 7 s s a @key{RET} Z ' r 7 s r a @key{RET} -@end group -@end smallexample - -@noindent -When we type @kbd{Z `} (that's a back-quote character), Calc saves -its mode settings and the contents of the ten ``quick variables'' -for later reference. When we type @kbd{Z '} (that's an apostrophe -now), Calc restores those saved values. Thus the @kbd{p 4} and -@kbd{s 7} commands have no effect outside this sequence. Wrapping -this around the body of a keyboard macro ensures that it doesn't -interfere with what the user of the macro was doing. Notice that -the contents of the stack, and the values of named variables, -survive past the @kbd{Z '} command. - -@cindex Bernoulli numbers, approximate -The @dfn{Bernoulli numbers} are a sequence with the interesting -property that all of the odd Bernoulli numbers are zero, and the -even ones, while difficult to compute, can be roughly approximated -by the formula -@texline @math{\displaystyle{2 n! \over (2 \pi)^n}}. -@infoline @expr{2 n!@: / (2 pi)^n}. -Let's write a keyboard macro to compute (approximate) Bernoulli numbers. -(Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but -this command is very slow for large @expr{n} since the higher Bernoulli -numbers are very large fractions.) - -@smallexample -@group -1: 10 1: 0.0756823 - . . - - 10 C-x ( @key{RET} 2 % Z [ @key{DEL} 0 Z : ' 2 $! / (2 pi)^$ @key{RET} = Z ] C-x ) -@end group -@end smallexample - -@noindent -You can read @kbd{Z [} as ``then,'' @kbd{Z :} as ``else,'' and -@kbd{Z ]} as ``end-if.'' There is no need for an explicit ``if'' -command. For the purposes of @w{@kbd{Z [}}, the condition is ``true'' -if the value it pops from the stack is a nonzero number, or ``false'' -if it pops zero or something that is not a number (like a formula). -Here we take our integer argument modulo 2; this will be nonzero -if we're asking for an odd Bernoulli number. - -The actual tenth Bernoulli number is @expr{5/66}. - -@smallexample -@group -3: 0.0756823 1: 0 1: 0.25305 1: 0 1: 1.16659 -2: 5:66 . . . . -1: 0.0757575 - . - -10 k b @key{RET} c f M-0 @key{DEL} 11 X @key{DEL} 12 X @key{DEL} 13 X @key{DEL} 14 X -@end group -@end smallexample - -Just to exercise loops a bit more, let's compute a table of even -Bernoulli numbers. - -@smallexample -@group -3: [] 1: [0.10132, 0.03079, 0.02340, 0.033197, ...] -2: 2 . -1: 30 - . - - [ ] 2 @key{RET} 30 Z ( X | 2 Z ) -@end group -@end smallexample - -@noindent -The vertical-bar @kbd{|} is the vector-concatenation command. When -we execute it, the list we are building will be in stack level 2 -(initially this is an empty list), and the next Bernoulli number -will be in level 1. The effect is to append the Bernoulli number -onto the end of the list. (To create a table of exact fractional -Bernoulli numbers, just replace @kbd{X} with @kbd{k b} in the above -sequence of keystrokes.) - -With loops and conditionals, you can program essentially anything -in Calc. One other command that makes looping easier is @kbd{Z /}, -which takes a condition from the stack and breaks out of the enclosing -loop if the condition is true (non-zero). You can use this to make -``while'' and ``until'' style loops. - -If you make a mistake when entering a keyboard macro, you can edit -it using @kbd{Z E}. First, you must attach it to a key with @kbd{Z K}. -One technique is to enter a throwaway dummy definition for the macro, -then enter the real one in the edit command. - -@smallexample -@group -1: 3 1: 3 Calc Macro Edit Mode. - . . Original keys: 1 2 + - - 1 ;; calc digits - RET ;; calc-enter - 2 ;; calc digits - + ;; calc-plus - -C-x ( 1 @key{RET} 2 + C-x ) Z K h @key{RET} Z E h -@end group -@end smallexample - -@noindent -A keyboard macro is stored as a pure keystroke sequence. The -@file{edmacro} package (invoked by @kbd{Z E}) scans along the -macro and tries to decode it back into human-readable steps. -Descriptions of the keystrokes are given as comments, which begin with -@samp{;;}, and which are ignored when the edited macro is saved. -Spaces and line breaks are also ignored when the edited macro is saved. -To enter a space into the macro, type @code{SPC}. All the special -characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, @code{DEL}, -and @code{NUL} must be written in all uppercase, as must the prefixes -@code{C-} and @code{M-}. - -Let's edit in a new definition, for computing harmonic numbers. -First, erase the four lines of the old definition. Then, type -in the new definition (or use Emacs @kbd{M-w} and @kbd{C-y} commands -to copy it from this page of the Info file; you can of course skip -typing the comments, which begin with @samp{;;}). - -@smallexample -Z` ;; calc-kbd-push (Save local values) -0 ;; calc digits (Push a zero onto the stack) -st ;; calc-store-into (Store it in the following variable) -1 ;; calc quick variable (Quick variable q1) -1 ;; calc digits (Initial value for the loop) -TAB ;; calc-roll-down (Swap initial and final) -Z( ;; calc-kbd-for (Begin the "for" loop) -& ;; calc-inv (Take the reciprocal) -s+ ;; calc-store-plus (Add to the following variable) -1 ;; calc quick variable (Quick variable q1) -1 ;; calc digits (The loop step is 1) -Z) ;; calc-kbd-end-for (End the "for" loop) -sr ;; calc-recall (Recall the final accumulated value) -1 ;; calc quick variable (Quick variable q1) -Z' ;; calc-kbd-pop (Restore values) -@end smallexample - -@noindent -Press @kbd{C-c C-c} to finish editing and return to the Calculator. - -@smallexample -@group -1: 20 1: 3.597739 - . . - - 20 z h -@end group -@end smallexample - -The @file{edmacro} package defines a handy @code{read-kbd-macro} command -which reads the current region of the current buffer as a sequence of -keystroke names, and defines that sequence on the @kbd{X} -(and @kbd{C-x e}) key. Because this is so useful, Calc puts this -command on the @kbd{C-x * m} key. Try reading in this macro in the -following form: Press @kbd{C-@@} (or @kbd{C-@key{SPC}}) at -one end of the text below, then type @kbd{C-x * m} at the other. - -@example -@group -Z ` 0 t 1 - 1 TAB - Z ( & s + 1 1 Z ) - r 1 -Z ' -@end group -@end example - -(@bullet{}) @strong{Exercise 8.} A general algorithm for solving -equations numerically is @dfn{Newton's Method}. Given the equation -@expr{f(x) = 0} for any function @expr{f}, and an initial guess -@expr{x_0} which is reasonably close to the desired solution, apply -this formula over and over: - -@ifnottex -@example -new_x = x - f(x)/f'(x) -@end example -@end ifnottex -@tex -\beforedisplay -$$ x_{\rm new} = x - {f(x) \over f'(x)} $$ -\afterdisplay -@end tex - -@noindent -where @expr{f'(x)} is the derivative of @expr{f}. The @expr{x} -values will quickly converge to a solution, i.e., eventually -@texline @math{x_{\rm new}} -@infoline @expr{new_x} -and @expr{x} will be equal to within the limits -of the current precision. Write a program which takes a formula -involving the variable @expr{x}, and an initial guess @expr{x_0}, -on the stack, and produces a value of @expr{x} for which the formula -is zero. Use it to find a solution of -@texline @math{\sin(\cos x) = 0.5} -@infoline @expr{sin(cos(x)) = 0.5} -near @expr{x = 4.5}. (Use angles measured in radians.) Note that -the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's -method when it is able. @xref{Programming Answer 8, 8}. (@bullet{}) - -@cindex Digamma function -@cindex Gamma constant, Euler's -@cindex Euler's gamma constant -(@bullet{}) @strong{Exercise 9.} The @dfn{digamma} function -@texline @math{\psi(z) (``psi'')} -@infoline @expr{psi(z)} -is defined as the derivative of -@texline @math{\ln \Gamma(z)}. -@infoline @expr{ln(gamma(z))}. -For large values of @expr{z}, it can be approximated by the infinite sum - -@ifnottex -@example -psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf) -@end example -@end ifnottex -@tex -\beforedisplay -$$ \psi(z) \approx \ln z - {1\over2z} - - \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}} -$$ -\afterdisplay -@end tex - -@noindent -where -@texline @math{\sum} -@infoline @expr{sum} -represents the sum over @expr{n} from 1 to infinity -(or to some limit high enough to give the desired accuracy), and -the @code{bern} function produces (exact) Bernoulli numbers. -While this sum is not guaranteed to converge, in practice it is safe. -An interesting mathematical constant is Euler's gamma, which is equal -to about 0.5772. One way to compute it is by the formula, -@texline @math{\gamma = -\psi(1)}. -@infoline @expr{gamma = -psi(1)}. -Unfortunately, 1 isn't a large enough argument -for the above formula to work (5 is a much safer value for @expr{z}). -Fortunately, we can compute -@texline @math{\psi(1)} -@infoline @expr{psi(1)} -from -@texline @math{\psi(5)} -@infoline @expr{psi(5)} -using the recurrence -@texline @math{\psi(z+1) = \psi(z) + {1 \over z}}. -@infoline @expr{psi(z+1) = psi(z) + 1/z}. -Your task: Develop a program to compute -@texline @math{\psi(z)}; -@infoline @expr{psi(z)}; -it should ``pump up'' @expr{z} -if necessary to be greater than 5, then use the above summation -formula. Use looping commands to compute the sum. Use your function -to compute -@texline @math{\gamma} -@infoline @expr{gamma} -to twelve decimal places. (Calc has a built-in command -for Euler's constant, @kbd{I P}, which you can use to check your answer.) -@xref{Programming Answer 9, 9}. (@bullet{}) - -@cindex Polynomial, list of coefficients -(@bullet{}) @strong{Exercise 10.} Given a polynomial in @expr{x} and -a number @expr{m} on the stack, where the polynomial is of degree -@expr{m} or less (i.e., does not have any terms higher than @expr{x^m}), -write a program to convert the polynomial into a list-of-coefficients -notation. For example, @expr{5 x^4 + (x + 1)^2} with @expr{m = 6} -should produce the list @expr{[1, 2, 1, 0, 5, 0, 0]}. Also develop -a way to convert from this form back to the standard algebraic form. -@xref{Programming Answer 10, 10}. (@bullet{}) - -@cindex Recursion -(@bullet{}) @strong{Exercise 11.} The @dfn{Stirling numbers of the -first kind} are defined by the recurrences, - -@ifnottex -@example -s(n,n) = 1 for n >= 0, -s(n,0) = 0 for n > 0, -s(n+1,m) = s(n,m-1) - n s(n,m) for n >= m >= 1. -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ \eqalign{ s(n,n) &= 1 \qquad \hbox{for } n \ge 0, \cr - s(n,0) &= 0 \qquad \hbox{for } n > 0, \cr - s(n+1,m) &= s(n,m-1) - n \, s(n,m) \qquad - \hbox{for } n \ge m \ge 1.} -$$ -\afterdisplay -\vskip5pt -(These numbers are also sometimes written $\displaystyle{n \brack m}$.) -@end tex - -This can be implemented using a @dfn{recursive} program in Calc; the -program must invoke itself in order to calculate the two righthand -terms in the general formula. Since it always invokes itself with -``simpler'' arguments, it's easy to see that it must eventually finish -the computation. Recursion is a little difficult with Emacs keyboard -macros since the macro is executed before its definition is complete. -So here's the recommended strategy: Create a ``dummy macro'' and assign -it to a key with, e.g., @kbd{Z K s}. Now enter the true definition, -using the @kbd{z s} command to call itself recursively, then assign it -to the same key with @kbd{Z K s}. Now the @kbd{z s} command will run -the complete recursive program. (Another way is to use @w{@kbd{Z E}} -or @kbd{C-x * m} (@code{read-kbd-macro}) to read the whole macro at once, -thus avoiding the ``training'' phase.) The task: Write a program -that computes Stirling numbers of the first kind, given @expr{n} and -@expr{m} on the stack. Test it with @emph{small} inputs like -@expr{s(4,2)}. (There is a built-in command for Stirling numbers, -@kbd{k s}, which you can use to check your answers.) -@xref{Programming Answer 11, 11}. (@bullet{}) - -The programming commands we've seen in this part of the tutorial -are low-level, general-purpose operations. Often you will find -that a higher-level function, such as vector mapping or rewrite -rules, will do the job much more easily than a detailed, step-by-step -program can: - -(@bullet{}) @strong{Exercise 12.} Write another program for -computing Stirling numbers of the first kind, this time using -rewrite rules. Once again, @expr{n} and @expr{m} should be taken -from the stack. @xref{Programming Answer 12, 12}. (@bullet{}) - -@example - -@end example -This ends the tutorial section of the Calc manual. Now you know enough -about Calc to use it effectively for many kinds of calculations. But -Calc has many features that were not even touched upon in this tutorial. -@c [not-split] -The rest of this manual tells the whole story. -@c [when-split] -@c Volume II of this manual, the @dfn{Calc Reference}, tells the whole story. - -@page -@node Answers to Exercises, , Programming Tutorial, Tutorial -@section Answers to Exercises - -@noindent -This section includes answers to all the exercises in the Calc tutorial. - -@menu -* RPN Answer 1:: 1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * - -* RPN Answer 2:: 2*4 + 7*9.5 + 5/4 -* RPN Answer 3:: Operating on levels 2 and 3 -* RPN Answer 4:: Joe's complex problems -* Algebraic Answer 1:: Simulating Q command -* Algebraic Answer 2:: Joe's algebraic woes -* Algebraic Answer 3:: 1 / 0 -* Modes Answer 1:: 3#0.1 = 3#0.0222222? -* Modes Answer 2:: 16#f.e8fe15 -* Modes Answer 3:: Joe's rounding bug -* Modes Answer 4:: Why floating point? -* Arithmetic Answer 1:: Why the \ command? -* Arithmetic Answer 2:: Tripping up the B command -* Vector Answer 1:: Normalizing a vector -* Vector Answer 2:: Average position -* Matrix Answer 1:: Row and column sums -* Matrix Answer 2:: Symbolic system of equations -* Matrix Answer 3:: Over-determined system -* List Answer 1:: Powers of two -* List Answer 2:: Least-squares fit with matrices -* List Answer 3:: Geometric mean -* List Answer 4:: Divisor function -* List Answer 5:: Duplicate factors -* List Answer 6:: Triangular list -* List Answer 7:: Another triangular list -* List Answer 8:: Maximum of Bessel function -* List Answer 9:: Integers the hard way -* List Answer 10:: All elements equal -* List Answer 11:: Estimating pi with darts -* List Answer 12:: Estimating pi with matchsticks -* List Answer 13:: Hash codes -* List Answer 14:: Random walk -* Types Answer 1:: Square root of pi times rational -* Types Answer 2:: Infinities -* Types Answer 3:: What can "nan" be? -* Types Answer 4:: Abbey Road -* Types Answer 5:: Friday the 13th -* Types Answer 6:: Leap years -* Types Answer 7:: Erroneous donut -* Types Answer 8:: Dividing intervals -* Types Answer 9:: Squaring intervals -* Types Answer 10:: Fermat's primality test -* Types Answer 11:: pi * 10^7 seconds -* Types Answer 12:: Abbey Road on CD -* Types Answer 13:: Not quite pi * 10^7 seconds -* Types Answer 14:: Supercomputers and c -* Types Answer 15:: Sam the Slug -* Algebra Answer 1:: Squares and square roots -* Algebra Answer 2:: Building polynomial from roots -* Algebra Answer 3:: Integral of x sin(pi x) -* Algebra Answer 4:: Simpson's rule -* Rewrites Answer 1:: Multiplying by conjugate -* Rewrites Answer 2:: Alternative fib rule -* Rewrites Answer 3:: Rewriting opt(a) + opt(b) x -* Rewrites Answer 4:: Sequence of integers -* Rewrites Answer 5:: Number of terms in sum -* Rewrites Answer 6:: Truncated Taylor series -* Programming Answer 1:: Fresnel's C(x) -* Programming Answer 2:: Negate third stack element -* Programming Answer 3:: Compute sin(x) / x, etc. -* Programming Answer 4:: Average value of a list -* Programming Answer 5:: Continued fraction phi -* Programming Answer 6:: Matrix Fibonacci numbers -* Programming Answer 7:: Harmonic number greater than 4 -* Programming Answer 8:: Newton's method -* Programming Answer 9:: Digamma function -* Programming Answer 10:: Unpacking a polynomial -* Programming Answer 11:: Recursive Stirling numbers -* Programming Answer 12:: Stirling numbers with rewrites -@end menu - -@c The following kludgery prevents the individual answers from -@c being entered on the table of contents. -@tex -\global\let\oldwrite=\write -\gdef\skipwrite#1#2{\let\write=\oldwrite} -\global\let\oldchapternofonts=\chapternofonts -\gdef\chapternofonts{\let\write=\skipwrite\oldchapternofonts} -@end tex - -@node RPN Answer 1, RPN Answer 2, Answers to Exercises, Answers to Exercises -@subsection RPN Tutorial Exercise 1 - -@noindent -@kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -} - -The result is -@texline @math{1 - (2 \times (3 + 4)) = -13}. -@infoline @expr{1 - (2 * (3 + 4)) = -13}. - -@node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises -@subsection RPN Tutorial Exercise 2 - -@noindent -@texline @math{2\times4 + 7\times9.5 + {5\over4} = 75.75} -@infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75} - -After computing the intermediate term -@texline @math{2\times4 = 8}, -@infoline @expr{2*4 = 8}, -you can leave that result on the stack while you compute the second -term. With both of these results waiting on the stack you can then -compute the final term, then press @kbd{+ +} to add everything up. - -@smallexample -@group -2: 2 1: 8 3: 8 2: 8 -1: 4 . 2: 7 1: 66.5 - . 1: 9.5 . - . - - 2 @key{RET} 4 * 7 @key{RET} 9.5 * - -@end group -@end smallexample -@noindent -@smallexample -@group -4: 8 3: 8 2: 8 1: 75.75 -3: 66.5 2: 66.5 1: 67.75 . -2: 5 1: 1.25 . -1: 4 . - . - - 5 @key{RET} 4 / + + -@end group -@end smallexample - -Alternatively, you could add the first two terms before going on -with the third term. - -@smallexample -@group -2: 8 1: 74.5 3: 74.5 2: 74.5 1: 75.75 -1: 66.5 . 2: 5 1: 1.25 . - . 1: 4 . - . - - ... + 5 @key{RET} 4 / + -@end group -@end smallexample - -On an old-style RPN calculator this second method would have the -advantage of using only three stack levels. But since Calc's stack -can grow arbitrarily large this isn't really an issue. Which method -you choose is purely a matter of taste. - -@node RPN Answer 3, RPN Answer 4, RPN Answer 2, Answers to Exercises -@subsection RPN Tutorial Exercise 3 - -@noindent -The @key{TAB} key provides a way to operate on the number in level 2. - -@smallexample -@group -3: 10 3: 10 4: 10 3: 10 3: 10 -2: 20 2: 30 3: 30 2: 30 2: 21 -1: 30 1: 20 2: 20 1: 21 1: 30 - . . 1: 1 . . - . - - @key{TAB} 1 + @key{TAB} -@end group -@end smallexample - -Similarly, @kbd{M-@key{TAB}} gives you access to the number in level 3. - -@smallexample -@group -3: 10 3: 21 3: 21 3: 30 3: 11 -2: 21 2: 30 2: 30 2: 11 2: 21 -1: 30 1: 10 1: 11 1: 21 1: 30 - . . . . . - - M-@key{TAB} 1 + M-@key{TAB} M-@key{TAB} -@end group -@end smallexample - -@node RPN Answer 4, Algebraic Answer 1, RPN Answer 3, Answers to Exercises -@subsection RPN Tutorial Exercise 4 - -@noindent -Either @kbd{( 2 , 3 )} or @kbd{( 2 @key{SPC} 3 )} would have worked, -but using both the comma and the space at once yields: - -@smallexample -@group -1: ( ... 2: ( ... 1: (2, ... 2: (2, ... 2: (2, ... - . 1: 2 . 1: (2, ... 1: (2, 3) - . . . - - ( 2 , @key{SPC} 3 ) -@end group -@end smallexample - -Joe probably tried to type @kbd{@key{TAB} @key{DEL}} to swap the -extra incomplete object to the top of the stack and delete it. -But a feature of Calc is that @key{DEL} on an incomplete object -deletes just one component out of that object, so he had to press -@key{DEL} twice to finish the job. - -@smallexample -@group -2: (2, ... 2: (2, 3) 2: (2, 3) 1: (2, 3) -1: (2, 3) 1: (2, ... 1: ( ... . - . . . - - @key{TAB} @key{DEL} @key{DEL} -@end group -@end smallexample - -(As it turns out, deleting the second-to-top stack entry happens often -enough that Calc provides a special key, @kbd{M-@key{DEL}}, to do just that. -@kbd{M-@key{DEL}} is just like @kbd{@key{TAB} @key{DEL}}, except that it doesn't exhibit -the ``feature'' that tripped poor Joe.) - -@node Algebraic Answer 1, Algebraic Answer 2, RPN Answer 4, Answers to Exercises -@subsection Algebraic Entry Tutorial Exercise 1 - -@noindent -Type @kbd{' sqrt($) @key{RET}}. - -If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}. -Or, RPN style, @kbd{0.5 ^}. - -(Actually, @samp{$^1:2}, using the fraction one-half as the power, is -a closer equivalent, since @samp{9^0.5} yields @expr{3.0} whereas -@samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @expr{3}.) - -@node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises -@subsection Algebraic Entry Tutorial Exercise 2 - -@noindent -In the formula @samp{2 x (1+y)}, @samp{x} was interpreted as a function -name with @samp{1+y} as its argument. Assigning a value to a variable -has no relation to a function by the same name. Joe needed to use an -explicit @samp{*} symbol here: @samp{2 x*(1+y)}. - -@node Algebraic Answer 3, Modes Answer 1, Algebraic Answer 2, Answers to Exercises -@subsection Algebraic Entry Tutorial Exercise 3 - -@noindent -The result from @kbd{1 @key{RET} 0 /} will be the formula @expr{1 / 0}. -The ``function'' @samp{/} cannot be evaluated when its second argument -is zero, so it is left in symbolic form. When you now type @kbd{0 *}, -the result will be zero because Calc uses the general rule that ``zero -times anything is zero.'' - -@c [fix-ref Infinities] -The @kbd{m i} command enables an @dfn{Infinite mode} in which @expr{1 / 0} -results in a special symbol that represents ``infinity.'' If you -multiply infinity by zero, Calc uses another special new symbol to -show that the answer is ``indeterminate.'' @xref{Infinities}, for -further discussion of infinite and indeterminate values. - -@node Modes Answer 1, Modes Answer 2, Algebraic Answer 3, Answers to Exercises -@subsection Modes Tutorial Exercise 1 - -@noindent -Calc always stores its numbers in decimal, so even though one-third has -an exact base-3 representation (@samp{3#0.1}), it is still stored as -0.3333333 (chopped off after 12 or however many decimal digits) inside -the calculator's memory. When this inexact number is converted back -to base 3 for display, it may still be slightly inexact. When we -multiply this number by 3, we get 0.999999, also an inexact value. - -When Calc displays a number in base 3, it has to decide how many digits -to show. If the current precision is 12 (decimal) digits, that corresponds -to @samp{12 / log10(3) = 25.15} base-3 digits. Because 25.15 is not an -exact integer, Calc shows only 25 digits, with the result that stored -numbers carry a little bit of extra information that may not show up on -the screen. When Joe entered @samp{3#0.2}, the stored number 0.666666 -happened to round to a pleasing value when it lost that last 0.15 of a -digit, but it was still inexact in Calc's memory. When he divided by 2, -he still got the dreaded inexact value 0.333333. (Actually, he divided -0.666667 by 2 to get 0.333334, which is why he got something a little -higher than @code{3#0.1} instead of a little lower.) - -If Joe didn't want to be bothered with all this, he could have typed -@kbd{M-24 d n} to display with one less digit than the default. (If -you give @kbd{d n} a negative argument, it uses default-minus-that, -so @kbd{M-- d n} would be an easier way to get the same effect.) Those -inexact results would still be lurking there, but they would now be -rounded to nice, natural-looking values for display purposes. (Remember, -@samp{0.022222} in base 3 is like @samp{0.099999} in base 10; rounding -off one digit will round the number up to @samp{0.1}.) Depending on the -nature of your work, this hiding of the inexactness may be a benefit or -a danger. With the @kbd{d n} command, Calc gives you the choice. - -Incidentally, another consequence of all this is that if you type -@kbd{M-30 d n} to display more digits than are ``really there,'' -you'll see garbage digits at the end of the number. (In decimal -display mode, with decimally-stored numbers, these garbage digits are -always zero so they vanish and you don't notice them.) Because Calc -rounds off that 0.15 digit, there is the danger that two numbers could -be slightly different internally but still look the same. If you feel -uneasy about this, set the @kbd{d n} precision to be a little higher -than normal; you'll get ugly garbage digits, but you'll always be able -to tell two distinct numbers apart. - -An interesting side note is that most computers store their -floating-point numbers in binary, and convert to decimal for display. -Thus everyday programs have the same problem: Decimal 0.1 cannot be -represented exactly in binary (try it: @kbd{0.1 d 2}), so @samp{0.1 * 10} -comes out as an inexact approximation to 1 on some machines (though -they generally arrange to hide it from you by rounding off one digit as -we did above). Because Calc works in decimal instead of binary, you can -be sure that numbers that look exact @emph{are} exact as long as you stay -in decimal display mode. - -It's not hard to show that any number that can be represented exactly -in binary, octal, or hexadecimal is also exact in decimal, so the kinds -of problems we saw in this exercise are likely to be severe only when -you use a relatively unusual radix like 3. - -@node Modes Answer 2, Modes Answer 3, Modes Answer 1, Answers to Exercises -@subsection Modes Tutorial Exercise 2 - -If the radix is 15 or higher, we can't use the letter @samp{e} to mark -the exponent because @samp{e} is interpreted as a digit. When Calc -needs to display scientific notation in a high radix, it writes -@samp{16#F.E8F*16.^15}. You can enter a number like this as an -algebraic entry. Also, pressing @kbd{e} without any digits before it -normally types @kbd{1e}, but in a high radix it types @kbd{16.^} and -puts you in algebraic entry: @kbd{16#f.e8f @key{RET} e 15 @key{RET} *} is another -way to enter this number. - -The reason Calc puts a decimal point in the @samp{16.^} is to prevent -huge integers from being generated if the exponent is large (consider -@samp{16#1.23*16^1000}, where we compute @samp{16^1000} as a giant -exact integer and then throw away most of the digits when we multiply -it by the floating-point @samp{16#1.23}). While this wouldn't normally -matter for display purposes, it could give you a nasty surprise if you -copied that number into a file and later moved it back into Calc. - -@node Modes Answer 3, Modes Answer 4, Modes Answer 2, Answers to Exercises -@subsection Modes Tutorial Exercise 3 - -@noindent -The answer he got was @expr{0.5000000000006399}. - -The problem is not that the square operation is inexact, but that the -sine of 45 that was already on the stack was accurate to only 12 places. -Arbitrary-precision calculations still only give answers as good as -their inputs. - -The real problem is that there is no 12-digit number which, when -squared, comes out to 0.5 exactly. The @kbd{f [} and @kbd{f ]} -commands decrease or increase a number by one unit in the last -place (according to the current precision). They are useful for -determining facts like this. - -@smallexample -@group -1: 0.707106781187 1: 0.500000000001 - . . - - 45 S 2 ^ - -@end group -@end smallexample -@noindent -@smallexample -@group -1: 0.707106781187 1: 0.707106781186 1: 0.499999999999 - . . . - - U @key{DEL} f [ 2 ^ -@end group -@end smallexample - -A high-precision calculation must be carried out in high precision -all the way. The only number in the original problem which was known -exactly was the quantity 45 degrees, so the precision must be raised -before anything is done after the number 45 has been entered in order -for the higher precision to be meaningful. - -@node Modes Answer 4, Arithmetic Answer 1, Modes Answer 3, Answers to Exercises -@subsection Modes Tutorial Exercise 4 - -@noindent -Many calculations involve real-world quantities, like the width and -height of a piece of wood or the volume of a jar. Such quantities -can't be measured exactly anyway, and if the data that is input to -a calculation is inexact, doing exact arithmetic on it is a waste -of time. - -Fractions become unwieldy after too many calculations have been -done with them. For example, the sum of the reciprocals of the -integers from 1 to 10 is 7381:2520. The sum from 1 to 30 is -9304682830147:2329089562800. After a point it will take a long -time to add even one more term to this sum, but a floating-point -calculation of the sum will not have this problem. - -Also, rational numbers cannot express the results of all calculations. -There is no fractional form for the square root of two, so if you type -@w{@kbd{2 Q}}, Calc has no choice but to give you a floating-point answer. - -@node Arithmetic Answer 1, Arithmetic Answer 2, Modes Answer 4, Answers to Exercises -@subsection Arithmetic Tutorial Exercise 1 - -@noindent -Dividing two integers that are larger than the current precision may -give a floating-point result that is inaccurate even when rounded -down to an integer. Consider @expr{123456789 / 2} when the current -precision is 6 digits. The true answer is @expr{61728394.5}, but -with a precision of 6 this will be rounded to -@texline @math{12345700.0/2.0 = 61728500.0}. -@infoline @expr{12345700.@: / 2.@: = 61728500.}. -The result, when converted to an integer, will be off by 106. - -Here are two solutions: Raise the precision enough that the -floating-point round-off error is strictly to the right of the -decimal point. Or, convert to Fraction mode so that @expr{123456789 / 2} -produces the exact fraction @expr{123456789:2}, which can be rounded -down by the @kbd{F} command without ever switching to floating-point -format. - -@node Arithmetic Answer 2, Vector Answer 1, Arithmetic Answer 1, Answers to Exercises -@subsection Arithmetic Tutorial Exercise 2 - -@noindent -@kbd{27 @key{RET} 9 B} could give the exact result @expr{3:2}, but it -does a floating-point calculation instead and produces @expr{1.5}. - -Calc will find an exact result for a logarithm if the result is an integer -or (when in Fraction mode) the reciprocal of an integer. But there is -no efficient way to search the space of all possible rational numbers -for an exact answer, so Calc doesn't try. - -@node Vector Answer 1, Vector Answer 2, Arithmetic Answer 2, Answers to Exercises -@subsection Vector Tutorial Exercise 1 - -@noindent -Duplicate the vector, compute its length, then divide the vector -by its length: @kbd{@key{RET} A /}. - -@smallexample -@group -1: [1, 2, 3] 2: [1, 2, 3] 1: [0.27, 0.53, 0.80] 1: 1. - . 1: 3.74165738677 . . - . - - r 1 @key{RET} A / A -@end group -@end smallexample - -The final @kbd{A} command shows that the normalized vector does -indeed have unit length. - -@node Vector Answer 2, Matrix Answer 1, Vector Answer 1, Answers to Exercises -@subsection Vector Tutorial Exercise 2 - -@noindent -The average position is equal to the sum of the products of the -positions times their corresponding probabilities. This is the -definition of the dot product operation. So all you need to do -is to put the two vectors on the stack and press @kbd{*}. - -@node Matrix Answer 1, Matrix Answer 2, Vector Answer 2, Answers to Exercises -@subsection Matrix Tutorial Exercise 1 - -@noindent -The trick is to multiply by a vector of ones. Use @kbd{r 4 [1 1 1] *} to -get the row sum. Similarly, use @kbd{[1 1] r 4 *} to get the column sum. - -@node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises -@subsection Matrix Tutorial Exercise 2 - -@ifnottex -@example -@group - x + a y = 6 - x + b y = 10 -@end group -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ \eqalign{ x &+ a y = 6 \cr - x &+ b y = 10} -$$ -\afterdisplay -@end tex - -Just enter the righthand side vector, then divide by the lefthand side -matrix as usual. - -@smallexample -@group -1: [6, 10] 2: [6, 10] 1: [6 - 4 a / (b - a), 4 / (b - a) ] - . 1: [ [ 1, a ] . - [ 1, b ] ] - . - -' [6 10] @key{RET} ' [1 a; 1 b] @key{RET} / -@end group -@end smallexample - -This can be made more readable using @kbd{d B} to enable Big display -mode: - -@smallexample -@group - 4 a 4 -1: [6 - -----, -----] - b - a b - a -@end group -@end smallexample - -Type @kbd{d N} to return to Normal display mode afterwards. - -@node Matrix Answer 3, List Answer 1, Matrix Answer 2, Answers to Exercises -@subsection Matrix Tutorial Exercise 3 - -@noindent -To solve -@texline @math{A^T A \, X = A^T B}, -@infoline @expr{trn(A) * A * X = trn(A) * B}, -first we compute -@texline @math{A' = A^T A} -@infoline @expr{A2 = trn(A) * A} -and -@texline @math{B' = A^T B}; -@infoline @expr{B2 = trn(A) * B}; -now, we have a system -@texline @math{A' X = B'} -@infoline @expr{A2 * X = B2} -which we can solve using Calc's @samp{/} command. - -@ifnottex -@example -@group - a + 2b + 3c = 6 - 4a + 5b + 6c = 2 - 7a + 6b = 3 - 2a + 4b + 6c = 11 -@end group -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplayh -$$ \openup1\jot \tabskip=0pt plus1fil -\halign to\displaywidth{\tabskip=0pt - $\hfil#$&$\hfil{}#{}$& - $\hfil#$&$\hfil{}#{}$& - $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr - a&+&2b&+&3c&=6 \cr - 4a&+&5b&+&6c&=2 \cr - 7a&+&6b& & &=3 \cr - 2a&+&4b&+&6c&=11 \cr} -$$ -\afterdisplayh -@end tex - -The first step is to enter the coefficient matrix. We'll store it in -quick variable number 7 for later reference. Next, we compute the -@texline @math{B'} -@infoline @expr{B2} -vector. - -@smallexample -@group -1: [ [ 1, 2, 3 ] 2: [ [ 1, 4, 7, 2 ] 1: [57, 84, 96] - [ 4, 5, 6 ] [ 2, 5, 6, 4 ] . - [ 7, 6, 0 ] [ 3, 6, 0, 6 ] ] - [ 2, 4, 6 ] ] 1: [6, 2, 3, 11] - . . - -' [1 2 3; 4 5 6; 7 6 0; 2 4 6] @key{RET} s 7 v t [6 2 3 11] * -@end group -@end smallexample - -@noindent -Now we compute the matrix -@texline @math{A'} -@infoline @expr{A2} -and divide. - -@smallexample -@group -2: [57, 84, 96] 1: [-11.64, 14.08, -3.64] -1: [ [ 70, 72, 39 ] . - [ 72, 81, 60 ] - [ 39, 60, 81 ] ] - . - - r 7 v t r 7 * / -@end group -@end smallexample - -@noindent -(The actual computed answer will be slightly inexact due to -round-off error.) - -Notice that the answers are similar to those for the -@texline @math{3\times3} -@infoline 3x3 -system solved in the text. That's because the fourth equation that was -added to the system is almost identical to the first one multiplied -by two. (If it were identical, we would have gotten the exact same -answer since the -@texline @math{4\times3} -@infoline 4x3 -system would be equivalent to the original -@texline @math{3\times3} -@infoline 3x3 -system.) - -Since the first and fourth equations aren't quite equivalent, they -can't both be satisfied at once. Let's plug our answers back into -the original system of equations to see how well they match. - -@smallexample -@group -2: [-11.64, 14.08, -3.64] 1: [5.6, 2., 3., 11.2] -1: [ [ 1, 2, 3 ] . - [ 4, 5, 6 ] - [ 7, 6, 0 ] - [ 2, 4, 6 ] ] - . - - r 7 @key{TAB} * -@end group -@end smallexample - -@noindent -This is reasonably close to our original @expr{B} vector, -@expr{[6, 2, 3, 11]}. - -@node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises -@subsection List Tutorial Exercise 1 - -@noindent -We can use @kbd{v x} to build a vector of integers. This needs to be -adjusted to get the range of integers we desire. Mapping @samp{-} -across the vector will accomplish this, although it turns out the -plain @samp{-} key will work just as well. - -@smallexample -@group -2: 2 2: 2 -1: [1, 2, 3, 4, 5, 6, 7, 8, 9] 1: [-4, -3, -2, -1, 0, 1, 2, 3, 4] - . . - - 2 v x 9 @key{RET} 5 V M - or 5 - -@end group -@end smallexample - -@noindent -Now we use @kbd{V M ^} to map the exponentiation operator across the -vector. - -@smallexample -@group -1: [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16] - . - - V M ^ -@end group -@end smallexample - -@node List Answer 2, List Answer 3, List Answer 1, Answers to Exercises -@subsection List Tutorial Exercise 2 - -@noindent -Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before, -the first job is to form the matrix that describes the problem. - -@ifnottex -@example - m*x + b*1 = y -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ m \times x + b \times 1 = y $$ -\afterdisplay -@end tex - -Thus we want a -@texline @math{19\times2} -@infoline 19x2 -matrix with our @expr{x} vector as one column and -ones as the other column. So, first we build the column of ones, then -we combine the two columns to form our @expr{A} matrix. - -@smallexample -@group -2: [1.34, 1.41, 1.49, ... ] 1: [ [ 1.34, 1 ] -1: [1, 1, 1, ...] [ 1.41, 1 ] - . [ 1.49, 1 ] - @dots{} - - r 1 1 v b 19 @key{RET} M-2 v p v t s 3 -@end group -@end smallexample - -@noindent -Now we compute -@texline @math{A^T y} -@infoline @expr{trn(A) * y} -and -@texline @math{A^T A} -@infoline @expr{trn(A) * A} -and divide. - -@smallexample -@group -1: [33.36554, 13.613] 2: [33.36554, 13.613] - . 1: [ [ 98.0003, 41.63 ] - [ 41.63, 19 ] ] - . - - v t r 2 * r 3 v t r 3 * -@end group -@end smallexample - -@noindent -(Hey, those numbers look familiar!) - -@smallexample -@group -1: [0.52141679, -0.425978] - . - - / -@end group -@end smallexample - -Since we were solving equations of the form -@texline @math{m \times x + b \times 1 = y}, -@infoline @expr{m*x + b*1 = y}, -these numbers should be @expr{m} and @expr{b}, respectively. Sure -enough, they agree exactly with the result computed using @kbd{V M} and -@kbd{V R}! - -The moral of this story: @kbd{V M} and @kbd{V R} will probably solve -your problem, but there is often an easier way using the higher-level -arithmetic functions! - -@c [fix-ref Curve Fitting] -In fact, there is a built-in @kbd{a F} command that does least-squares -fits. @xref{Curve Fitting}. - -@node List Answer 3, List Answer 4, List Answer 2, Answers to Exercises -@subsection List Tutorial Exercise 3 - -@noindent -Move to one end of the list and press @kbd{C-@@} (or @kbd{C-@key{SPC}} or -whatever) to set the mark, then move to the other end of the list -and type @w{@kbd{C-x * g}}. - -@smallexample -@group -1: [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5] - . -@end group -@end smallexample - -To make things interesting, let's assume we don't know at a glance -how many numbers are in this list. Then we could type: - -@smallexample -@group -2: [2.3, 6, 22, ... ] 2: [2.3, 6, 22, ... ] -1: [2.3, 6, 22, ... ] 1: 126356422.5 - . . - - @key{RET} V R * - -@end group -@end smallexample -@noindent -@smallexample -@group -2: 126356422.5 2: 126356422.5 1: 7.94652913734 -1: [2.3, 6, 22, ... ] 1: 9 . - . . - - @key{TAB} v l I ^ -@end group -@end smallexample - -@noindent -(The @kbd{I ^} command computes the @var{n}th root of a number. -You could also type @kbd{& ^} to take the reciprocal of 9 and -then raise the number to that power.) - -@node List Answer 4, List Answer 5, List Answer 3, Answers to Exercises -@subsection List Tutorial Exercise 4 - -@noindent -A number @expr{j} is a divisor of @expr{n} if -@texline @math{n \mathbin{\hbox{\code{\%}}} j = 0}. -@infoline @samp{n % j = 0}. -The first step is to get a vector that identifies the divisors. - -@smallexample -@group -2: 30 2: [0, 0, 0, 2, ...] 1: [1, 1, 1, 0, ...] -1: [1, 2, 3, 4, ...] 1: 0 . - . . - - 30 @key{RET} v x 30 @key{RET} s 1 V M % 0 V M a = s 2 -@end group -@end smallexample - -@noindent -This vector has 1's marking divisors of 30 and 0's marking non-divisors. - -The zeroth divisor function is just the total number of divisors. -The first divisor function is the sum of the divisors. - -@smallexample -@group -1: 8 3: 8 2: 8 2: 8 - 2: [1, 2, 3, 4, ...] 1: [1, 2, 3, 0, ...] 1: 72 - 1: [1, 1, 1, 0, ...] . . - . - - V R + r 1 r 2 V M * V R + -@end group -@end smallexample - -@noindent -Once again, the last two steps just compute a dot product for which -a simple @kbd{*} would have worked equally well. - -@node List Answer 5, List Answer 6, List Answer 4, Answers to Exercises -@subsection List Tutorial Exercise 5 - -@noindent -The obvious first step is to obtain the list of factors with @kbd{k f}. -This list will always be in sorted order, so if there are duplicates -they will be right next to each other. A suitable method is to compare -the list with a copy of itself shifted over by one. - -@smallexample -@group -1: [3, 7, 7, 7, 19] 2: [3, 7, 7, 7, 19] 2: [3, 7, 7, 7, 19, 0] - . 1: [3, 7, 7, 7, 19, 0] 1: [0, 3, 7, 7, 7, 19] - . . - - 19551 k f @key{RET} 0 | @key{TAB} 0 @key{TAB} | - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [0, 0, 1, 1, 0, 0] 1: 2 1: 0 - . . . - - V M a = V R + 0 a = -@end group -@end smallexample - -@noindent -Note that we have to arrange for both vectors to have the same length -so that the mapping operation works; no prime factor will ever be -zero, so adding zeros on the left and right is safe. From then on -the job is pretty straightforward. - -Incidentally, Calc provides the -@texline @dfn{M@"obius} @math{\mu} -@infoline @dfn{Moebius mu} -function which is zero if and only if its argument is square-free. It -would be a much more convenient way to do the above test in practice. - -@node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises -@subsection List Tutorial Exercise 6 - -@noindent -First use @kbd{v x 6 @key{RET}} to get a list of integers, then @kbd{V M v x} -to get a list of lists of integers! - -@node List Answer 7, List Answer 8, List Answer 6, Answers to Exercises -@subsection List Tutorial Exercise 7 - -@noindent -Here's one solution. First, compute the triangular list from the previous -exercise and type @kbd{1 -} to subtract one from all the elements. - -@smallexample -@group -1: [ [0], - [0, 1], - [0, 1, 2], - @dots{} - - 1 - -@end group -@end smallexample - -The numbers down the lefthand edge of the list we desire are called -the ``triangular numbers'' (now you know why!). The @expr{n}th -triangular number is the sum of the integers from 1 to @expr{n}, and -can be computed directly by the formula -@texline @math{n (n+1) \over 2}. -@infoline @expr{n * (n+1) / 2}. - -@smallexample -@group -2: [ [0], [0, 1], ... ] 2: [ [0], [0, 1], ... ] -1: [0, 1, 2, 3, 4, 5] 1: [0, 1, 3, 6, 10, 15] - . . - - v x 6 @key{RET} 1 - V M ' $ ($+1)/2 @key{RET} -@end group -@end smallexample - -@noindent -Adding this list to the above list of lists produces the desired -result: - -@smallexample -@group -1: [ [0], - [1, 2], - [3, 4, 5], - [6, 7, 8, 9], - [10, 11, 12, 13, 14], - [15, 16, 17, 18, 19, 20] ] - . - - V M + -@end group -@end smallexample - -If we did not know the formula for triangular numbers, we could have -computed them using a @kbd{V U +} command. We could also have -gotten them the hard way by mapping a reduction across the original -triangular list. - -@smallexample -@group -2: [ [0], [0, 1], ... ] 2: [ [0], [0, 1], ... ] -1: [ [0], [0, 1], ... ] 1: [0, 1, 3, 6, 10, 15] - . . - - @key{RET} V M V R + -@end group -@end smallexample - -@noindent -(This means ``map a @kbd{V R +} command across the vector,'' and -since each element of the main vector is itself a small vector, -@kbd{V R +} computes the sum of its elements.) - -@node List Answer 8, List Answer 9, List Answer 7, Answers to Exercises -@subsection List Tutorial Exercise 8 - -@noindent -The first step is to build a list of values of @expr{x}. - -@smallexample -@group -1: [1, 2, 3, ..., 21] 1: [0, 1, 2, ..., 20] 1: [0, 0.25, 0.5, ..., 5] - . . . - - v x 21 @key{RET} 1 - 4 / s 1 -@end group -@end smallexample - -Next, we compute the Bessel function values. - -@smallexample -@group -1: [0., 0.124, 0.242, ..., -0.328] - . - - V M ' besJ(1,$) @key{RET} -@end group -@end smallexample - -@noindent -(Another way to do this would be @kbd{1 @key{TAB} V M f j}.) - -A way to isolate the maximum value is to compute the maximum using -@kbd{V R X}, then compare all the Bessel values with that maximum. - -@smallexample -@group -2: [0., 0.124, 0.242, ... ] 1: [0, 0, 0, ... ] 2: [0, 0, 0, ... ] -1: 0.5801562 . 1: 1 - . . - - @key{RET} V R X V M a = @key{RET} V R + @key{DEL} -@end group -@end smallexample - -@noindent -It's a good idea to verify, as in the last step above, that only -one value is equal to the maximum. (After all, a plot of -@texline @math{\sin x} -@infoline @expr{sin(x)} -might have many points all equal to the maximum value, 1.) - -The vector we have now has a single 1 in the position that indicates -the maximum value of @expr{x}. Now it is a simple matter to convert -this back into the corresponding value itself. - -@smallexample -@group -2: [0, 0, 0, ... ] 1: [0, 0., 0., ... ] 1: 1.75 -1: [0, 0.25, 0.5, ... ] . . - . - - r 1 V M * V R + -@end group -@end smallexample - -If @kbd{a =} had produced more than one @expr{1} value, this method -would have given the sum of all maximum @expr{x} values; not very -useful! In this case we could have used @kbd{v m} (@code{calc-mask-vector}) -instead. This command deletes all elements of a ``data'' vector that -correspond to zeros in a ``mask'' vector, leaving us with, in this -example, a vector of maximum @expr{x} values. - -The built-in @kbd{a X} command maximizes a function using more -efficient methods. Just for illustration, let's use @kbd{a X} -to maximize @samp{besJ(1,x)} over this same interval. - -@smallexample -@group -2: besJ(1, x) 1: [1.84115, 0.581865] -1: [0 .. 5] . - . - -' besJ(1,x), [0..5] @key{RET} a X x @key{RET} -@end group -@end smallexample - -@noindent -The output from @kbd{a X} is a vector containing the value of @expr{x} -that maximizes the function, and the function's value at that maximum. -As you can see, our simple search got quite close to the right answer. - -@node List Answer 9, List Answer 10, List Answer 8, Answers to Exercises -@subsection List Tutorial Exercise 9 - -@noindent -Step one is to convert our integer into vector notation. - -@smallexample -@group -1: 25129925999 3: 25129925999 - . 2: 10 - 1: [11, 10, 9, ..., 1, 0] - . - - 25129925999 @key{RET} 10 @key{RET} 12 @key{RET} v x 12 @key{RET} - - -@end group -@end smallexample -@noindent -@smallexample -@group -1: 25129925999 1: [0, 2, 25, 251, 2512, ... ] -2: [100000000000, ... ] . - . - - V M ^ s 1 V M \ -@end group -@end smallexample - -@noindent -(Recall, the @kbd{\} command computes an integer quotient.) - -@smallexample -@group -1: [0, 2, 5, 1, 2, 9, 9, 2, 5, 9, 9, 9] - . - - 10 V M % s 2 -@end group -@end smallexample - -Next we must increment this number. This involves adding one to -the last digit, plus handling carries. There is a carry to the -left out of a digit if that digit is a nine and all the digits to -the right of it are nines. - -@smallexample -@group -1: [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1] 1: [1, 1, 1, 0, 0, 1, ... ] - . . - - 9 V M a = v v - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [1, 1, 1, 0, 0, 0, ... ] 1: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1] - . . - - V U * v v 1 | -@end group -@end smallexample - -@noindent -Accumulating @kbd{*} across a vector of ones and zeros will preserve -only the initial run of ones. These are the carries into all digits -except the rightmost digit. Concatenating a one on the right takes -care of aligning the carries properly, and also adding one to the -rightmost digit. - -@smallexample -@group -2: [0, 0, 0, 0, ... ] 1: [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0] -1: [0, 0, 2, 5, ... ] . - . - - 0 r 2 | V M + 10 V M % -@end group -@end smallexample - -@noindent -Here we have concatenated 0 to the @emph{left} of the original number; -this takes care of shifting the carries by one with respect to the -digits that generated them. - -Finally, we must convert this list back into an integer. - -@smallexample -@group -3: [0, 0, 2, 5, ... ] 2: [0, 0, 2, 5, ... ] -2: 1000000000000 1: [1000000000000, 100000000000, ... ] -1: [100000000000, ... ] . - . - - 10 @key{RET} 12 ^ r 1 | - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [0, 0, 20000000000, 5000000000, ... ] 1: 25129926000 - . . - - V M * V R + -@end group -@end smallexample - -@noindent -Another way to do this final step would be to reduce the formula -@w{@samp{10 $$ + $}} across the vector of digits. - -@smallexample -@group -1: [0, 0, 2, 5, ... ] 1: 25129926000 - . . - - V R ' 10 $$ + $ @key{RET} -@end group -@end smallexample - -@node List Answer 10, List Answer 11, List Answer 9, Answers to Exercises -@subsection List Tutorial Exercise 10 - -@noindent -For the list @expr{[a, b, c, d]}, the result is @expr{((a = b) = c) = d}, -which will compare @expr{a} and @expr{b} to produce a 1 or 0, which is -then compared with @expr{c} to produce another 1 or 0, which is then -compared with @expr{d}. This is not at all what Joe wanted. - -Here's a more correct method: - -@smallexample -@group -1: [7, 7, 7, 8, 7] 2: [7, 7, 7, 8, 7] - . 1: 7 - . - - ' [7,7,7,8,7] @key{RET} @key{RET} v r 1 @key{RET} - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [1, 1, 1, 0, 1] 1: 0 - . . - - V M a = V R * -@end group -@end smallexample - -@node List Answer 11, List Answer 12, List Answer 10, Answers to Exercises -@subsection List Tutorial Exercise 11 - -@noindent -The circle of unit radius consists of those points @expr{(x,y)} for which -@expr{x^2 + y^2 < 1}. We start by generating a vector of @expr{x^2} -and a vector of @expr{y^2}. - -We can make this go a bit faster by using the @kbd{v .} and @kbd{t .} -commands. - -@smallexample -@group -2: [2., 2., ..., 2.] 2: [2., 2., ..., 2.] -1: [2., 2., ..., 2.] 1: [1.16, 1.98, ..., 0.81] - . . - - v . t . 2. v b 100 @key{RET} @key{RET} V M k r - -@end group -@end smallexample -@noindent -@smallexample -@group -2: [2., 2., ..., 2.] 1: [0.026, 0.96, ..., 0.036] -1: [0.026, 0.96, ..., 0.036] 2: [0.53, 0.81, ..., 0.094] - . . - - 1 - 2 V M ^ @key{TAB} V M k r 1 - 2 V M ^ -@end group -@end smallexample - -Now we sum the @expr{x^2} and @expr{y^2} values, compare with 1 to -get a vector of 1/0 truth values, then sum the truth values. - -@smallexample -@group -1: [0.56, 1.78, ..., 0.13] 1: [1, 0, ..., 1] 1: 84 - . . . - - + 1 V M a < V R + -@end group -@end smallexample - -@noindent -The ratio @expr{84/100} should approximate the ratio @cpiover{4}. - -@smallexample -@group -1: 0.84 1: 3.36 2: 3.36 1: 1.0695 - . . 1: 3.14159 . - - 100 / 4 * P / -@end group -@end smallexample - -@noindent -Our estimate, 3.36, is off by about 7%. We could get a better estimate -by taking more points (say, 1000), but it's clear that this method is -not very efficient! - -(Naturally, since this example uses random numbers your own answer -will be slightly different from the one shown here!) - -If you typed @kbd{v .} and @kbd{t .} before, type them again to -return to full-sized display of vectors. - -@node List Answer 12, List Answer 13, List Answer 11, Answers to Exercises -@subsection List Tutorial Exercise 12 - -@noindent -This problem can be made a lot easier by taking advantage of some -symmetries. First of all, after some thought it's clear that the -@expr{y} axis can be ignored altogether. Just pick a random @expr{x} -component for one end of the match, pick a random direction -@texline @math{\theta}, -@infoline @expr{theta}, -and see if @expr{x} and -@texline @math{x + \cos \theta} -@infoline @expr{x + cos(theta)} -(which is the @expr{x} coordinate of the other endpoint) cross a line. -The lines are at integer coordinates, so this happens when the two -numbers surround an integer. - -Since the two endpoints are equivalent, we may as well choose the leftmost -of the two endpoints as @expr{x}. Then @expr{theta} is an angle pointing -to the right, in the range -90 to 90 degrees. (We could use radians, but -it would feel like cheating to refer to @cpiover{2} radians while trying -to estimate @cpi{}!) - -In fact, since the field of lines is infinite we can choose the -coordinates 0 and 1 for the lines on either side of the leftmost -endpoint. The rightmost endpoint will be between 0 and 1 if the -match does not cross a line, or between 1 and 2 if it does. So: -Pick random @expr{x} and -@texline @math{\theta}, -@infoline @expr{theta}, -compute -@texline @math{x + \cos \theta}, -@infoline @expr{x + cos(theta)}, -and count how many of the results are greater than one. Simple! - -We can make this go a bit faster by using the @kbd{v .} and @kbd{t .} -commands. - -@smallexample -@group -1: [0.52, 0.71, ..., 0.72] 2: [0.52, 0.71, ..., 0.72] - . 1: [78.4, 64.5, ..., -42.9] - . - -v . t . 1. v b 100 @key{RET} V M k r 180. v b 100 @key{RET} V M k r 90 - -@end group -@end smallexample - -@noindent -(The next step may be slow, depending on the speed of your computer.) - -@smallexample -@group -2: [0.52, 0.71, ..., 0.72] 1: [0.72, 1.14, ..., 1.45] -1: [0.20, 0.43, ..., 0.73] . - . - - m d V M C + - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [0, 1, ..., 1] 1: 0.64 1: 3.125 - . . . - - 1 V M a > V R + 100 / 2 @key{TAB} / -@end group -@end smallexample - -Let's try the third method, too. We'll use random integers up to -one million. The @kbd{k r} command with an integer argument picks -a random integer. - -@smallexample -@group -2: [1000000, 1000000, ..., 1000000] 2: [78489, 527587, ..., 814975] -1: [1000000, 1000000, ..., 1000000] 1: [324014, 358783, ..., 955450] - . . - - 1000000 v b 100 @key{RET} @key{RET} V M k r @key{TAB} V M k r - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [1, 1, ..., 25] 1: [1, 1, ..., 0] 1: 0.56 - . . . - - V M k g 1 V M a = V R + 100 / - -@end group -@end smallexample -@noindent -@smallexample -@group -1: 10.714 1: 3.273 - . . - - 6 @key{TAB} / Q -@end group -@end smallexample - -For a proof of this property of the GCD function, see section 4.5.2, -exercise 10, of Knuth's @emph{Art of Computer Programming}, volume II. - -If you typed @kbd{v .} and @kbd{t .} before, type them again to -return to full-sized display of vectors. - -@node List Answer 13, List Answer 14, List Answer 12, Answers to Exercises -@subsection List Tutorial Exercise 13 - -@noindent -First, we put the string on the stack as a vector of ASCII codes. - -@smallexample -@group -1: [84, 101, 115, ..., 51] - . - - "Testing, 1, 2, 3 @key{RET} -@end group -@end smallexample - -@noindent -Note that the @kbd{"} key, like @kbd{$}, initiates algebraic entry so -there was no need to type an apostrophe. Also, Calc didn't mind that -we omitted the closing @kbd{"}. (The same goes for all closing delimiters -like @kbd{)} and @kbd{]} at the end of a formula. - -We'll show two different approaches here. In the first, we note that -if the input vector is @expr{[a, b, c, d]}, then the hash code is -@expr{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}. In other words, -it's a sum of descending powers of three times the ASCII codes. - -@smallexample -@group -2: [84, 101, 115, ..., 51] 2: [84, 101, 115, ..., 51] -1: 16 1: [15, 14, 13, ..., 0] - . . - - @key{RET} v l v x 16 @key{RET} - - -@end group -@end smallexample -@noindent -@smallexample -@group -2: [84, 101, 115, ..., 51] 1: 1960915098 1: 121 -1: [14348907, ..., 1] . . - . - - 3 @key{TAB} V M ^ * 511 % -@end group -@end smallexample - -@noindent -Once again, @kbd{*} elegantly summarizes most of the computation. -But there's an even more elegant approach: Reduce the formula -@kbd{3 $$ + $} across the vector. Recall that this represents a -function of two arguments that computes its first argument times three -plus its second argument. - -@smallexample -@group -1: [84, 101, 115, ..., 51] 1: 1960915098 - . . - - "Testing, 1, 2, 3 @key{RET} V R ' 3$$+$ @key{RET} -@end group -@end smallexample - -@noindent -If you did the decimal arithmetic exercise, this will be familiar. -Basically, we're turning a base-3 vector of digits into an integer, -except that our ``digits'' are much larger than real digits. - -Instead of typing @kbd{511 %} again to reduce the result, we can be -cleverer still and notice that rather than computing a huge integer -and taking the modulo at the end, we can take the modulo at each step -without affecting the result. While this means there are more -arithmetic operations, the numbers we operate on remain small so -the operations are faster. - -@smallexample -@group -1: [84, 101, 115, ..., 51] 1: 121 - . . - - "Testing, 1, 2, 3 @key{RET} V R ' (3$$+$)%511 @key{RET} -@end group -@end smallexample - -Why does this work? Think about a two-step computation: -@w{@expr{3 (3a + b) + c}}. Taking a result modulo 511 basically means -subtracting off enough 511's to put the result in the desired range. -So the result when we take the modulo after every step is, - -@ifnottex -@example -3 (3 a + b - 511 m) + c - 511 n -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ 3 (3 a + b - 511 m) + c - 511 n $$ -\afterdisplay -@end tex - -@noindent -for some suitable integers @expr{m} and @expr{n}. Expanding out by -the distributive law yields - -@ifnottex -@example -9 a + 3 b + c - 511*3 m - 511 n -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ 9 a + 3 b + c - 511\times3 m - 511 n $$ -\afterdisplay -@end tex - -@noindent -The @expr{m} term in the latter formula is redundant because any -contribution it makes could just as easily be made by the @expr{n} -term. So we can take it out to get an equivalent formula with -@expr{n' = 3m + n}, - -@ifnottex -@example -9 a + 3 b + c - 511 n' -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ 9 a + 3 b + c - 511 n' $$ -\afterdisplay -@end tex - -@noindent -which is just the formula for taking the modulo only at the end of -the calculation. Therefore the two methods are essentially the same. - -Later in the tutorial we will encounter @dfn{modulo forms}, which -basically automate the idea of reducing every intermediate result -modulo some value @var{m}. - -@node List Answer 14, Types Answer 1, List Answer 13, Answers to Exercises -@subsection List Tutorial Exercise 14 - -We want to use @kbd{H V U} to nest a function which adds a random -step to an @expr{(x,y)} coordinate. The function is a bit long, but -otherwise the problem is quite straightforward. - -@smallexample -@group -2: [0, 0] 1: [ [ 0, 0 ] -1: 50 [ 0.4288, -0.1695 ] - . [ -0.4787, -0.9027 ] - ... - - [0,0] 50 H V U ' <# + [random(2.0)-1, random(2.0)-1]> @key{RET} -@end group -@end smallexample - -Just as the text recommended, we used @samp{< >} nameless function -notation to keep the two @code{random} calls from being evaluated -before nesting even begins. - -We now have a vector of @expr{[x, y]} sub-vectors, which by Calc's -rules acts like a matrix. We can transpose this matrix and unpack -to get a pair of vectors, @expr{x} and @expr{y}, suitable for graphing. - -@smallexample -@group -2: [ 0, 0.4288, -0.4787, ... ] -1: [ 0, -0.1696, -0.9027, ... ] - . - - v t v u g f -@end group -@end smallexample - -Incidentally, because the @expr{x} and @expr{y} are completely -independent in this case, we could have done two separate commands -to create our @expr{x} and @expr{y} vectors of numbers directly. - -To make a random walk of unit steps, we note that @code{sincos} of -a random direction exactly gives us an @expr{[x, y]} step of unit -length; in fact, the new nesting function is even briefer, though -we might want to lower the precision a bit for it. - -@smallexample -@group -2: [0, 0] 1: [ [ 0, 0 ] -1: 50 [ 0.1318, 0.9912 ] - . [ -0.5965, 0.3061 ] - ... - - [0,0] 50 m d p 6 @key{RET} H V U ' <# + sincos(random(360.0))> @key{RET} -@end group -@end smallexample - -Another @kbd{v t v u g f} sequence will graph this new random walk. - -An interesting twist on these random walk functions would be to use -complex numbers instead of 2-vectors to represent points on the plane. -In the first example, we'd use something like @samp{random + random*(0,1)}, -and in the second we could use polar complex numbers with random phase -angles. (This exercise was first suggested in this form by Randal -Schwartz.) - -@node Types Answer 1, Types Answer 2, List Answer 14, Answers to Exercises -@subsection Types Tutorial Exercise 1 - -@noindent -If the number is the square root of @cpi{} times a rational number, -then its square, divided by @cpi{}, should be a rational number. - -@smallexample -@group -1: 1.26508260337 1: 0.509433962268 1: 2486645810:4881193627 - . . . - - 2 ^ P / c F -@end group -@end smallexample - -@noindent -Technically speaking this is a rational number, but not one that is -likely to have arisen in the original problem. More likely, it just -happens to be the fraction which most closely represents some -irrational number to within 12 digits. - -But perhaps our result was not quite exact. Let's reduce the -precision slightly and try again: - -@smallexample -@group -1: 0.509433962268 1: 27:53 - . . - - U p 10 @key{RET} c F -@end group -@end smallexample - -@noindent -Aha! It's unlikely that an irrational number would equal a fraction -this simple to within ten digits, so our original number was probably -@texline @math{\sqrt{27 \pi / 53}}. -@infoline @expr{sqrt(27 pi / 53)}. - -Notice that we didn't need to re-round the number when we reduced the -precision. Remember, arithmetic operations always round their inputs -to the current precision before they begin. - -@node Types Answer 2, Types Answer 3, Types Answer 1, Answers to Exercises -@subsection Types Tutorial Exercise 2 - -@noindent -@samp{inf / inf = nan}. Perhaps @samp{1} is the ``obvious'' answer. -But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too. - -@samp{exp(inf) = inf}. It's tempting to say that the exponential -of infinity must be ``bigger'' than ``regular'' infinity, but as -far as Calc is concerned all infinities are as just as big. -In other words, as @expr{x} goes to infinity, @expr{e^x} also goes -to infinity, but the fact the @expr{e^x} grows much faster than -@expr{x} is not relevant here. - -@samp{exp(-inf) = 0}. Here we have a finite answer even though -the input is infinite. - -@samp{sqrt(-inf) = (0, 1) inf}. Remember that @expr{(0, 1)} -represents the imaginary number @expr{i}. Here's a derivation: -@samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}. -The first part is, by definition, @expr{i}; the second is @code{inf} -because, once again, all infinities are the same size. - -@samp{sqrt(uinf) = uinf}. In fact, we do know something about the -direction because @code{sqrt} is defined to return a value in the -right half of the complex plane. But Calc has no notation for this, -so it settles for the conservative answer @code{uinf}. - -@samp{abs(uinf) = inf}. No matter which direction @expr{x} points, -@samp{abs(x)} always points along the positive real axis. - -@samp{ln(0) = -inf}. Here we have an infinite answer to a finite -input. As in the @expr{1 / 0} case, Calc will only use infinities -here if you have turned on Infinite mode. Otherwise, it will -treat @samp{ln(0)} as an error. - -@node Types Answer 3, Types Answer 4, Types Answer 2, Answers to Exercises -@subsection Types Tutorial Exercise 3 - -@noindent -We can make @samp{inf - inf} be any real number we like, say, -@expr{a}, just by claiming that we added @expr{a} to the first -infinity but not to the second. This is just as true for complex -values of @expr{a}, so @code{nan} can stand for a complex number. -(And, similarly, @code{uinf} can stand for an infinity that points -in any direction in the complex plane, such as @samp{(0, 1) inf}). - -In fact, we can multiply the first @code{inf} by two. Surely -@w{@samp{2 inf - inf = inf}}, but also @samp{2 inf - inf = inf - inf = nan}. -So @code{nan} can even stand for infinity. Obviously it's just -as easy to make it stand for minus infinity as for plus infinity. - -The moral of this story is that ``infinity'' is a slippery fish -indeed, and Calc tries to handle it by having a very simple model -for infinities (only the direction counts, not the ``size''); but -Calc is careful to write @code{nan} any time this simple model is -unable to tell what the true answer is. - -@node Types Answer 4, Types Answer 5, Types Answer 3, Answers to Exercises -@subsection Types Tutorial Exercise 4 - -@smallexample -@group -2: 0@@ 47' 26" 1: 0@@ 2' 47.411765" -1: 17 . - . - - 0@@ 47' 26" @key{RET} 17 / -@end group -@end smallexample - -@noindent -The average song length is two minutes and 47.4 seconds. - -@smallexample -@group -2: 0@@ 2' 47.411765" 1: 0@@ 3' 7.411765" 1: 0@@ 53' 6.000005" -1: 0@@ 0' 20" . . - . - - 20" + 17 * -@end group -@end smallexample - -@noindent -The album would be 53 minutes and 6 seconds long. - -@node Types Answer 5, Types Answer 6, Types Answer 4, Answers to Exercises -@subsection Types Tutorial Exercise 5 - -@noindent -Let's suppose it's January 14, 1991. The easiest thing to do is -to keep trying 13ths of months until Calc reports a Friday. -We can do this by manually entering dates, or by using @kbd{t I}: - -@smallexample -@group -1: 1: 1: - . . . - - ' <2/13> @key{RET} @key{DEL} ' <3/13> @key{RET} t I -@end group -@end smallexample - -@noindent -(Calc assumes the current year if you don't say otherwise.) - -This is getting tedious---we can keep advancing the date by typing -@kbd{t I} over and over again, but let's automate the job by using -vector mapping. The @kbd{t I} command actually takes a second -``how-many-months'' argument, which defaults to one. This -argument is exactly what we want to map over: - -@smallexample -@group -2: 1: [, , -1: [1, 2, 3, 4, 5, 6] , , - . , ] - . - - v x 6 @key{RET} V M t I -@end group -@end smallexample - -@noindent -Et voil@`a, September 13, 1991 is a Friday. - -@smallexample -@group -1: 242 - . - -' - @key{RET} -@end group -@end smallexample - -@noindent -And the answer to our original question: 242 days to go. - -@node Types Answer 6, Types Answer 7, Types Answer 5, Answers to Exercises -@subsection Types Tutorial Exercise 6 - -@noindent -The full rule for leap years is that they occur in every year divisible -by four, except that they don't occur in years divisible by 100, except -that they @emph{do} in years divisible by 400. We could work out the -answer by carefully counting the years divisible by four and the -exceptions, but there is a much simpler way that works even if we -don't know the leap year rule. - -Let's assume the present year is 1991. Years have 365 days, except -that leap years (whenever they occur) have 366 days. So let's count -the number of days between now and then, and compare that to the -number of years times 365. The number of extra days we find must be -equal to the number of leap years there were. - -@smallexample -@group -1: 2: 1: 2925593 - . 1: . - . - - ' @key{RET} ' @key{RET} - - -@end group -@end smallexample -@noindent -@smallexample -@group -3: 2925593 2: 2925593 2: 2925593 1: 1943 -2: 10001 1: 8010 1: 2923650 . -1: 1991 . . - . - - 10001 @key{RET} 1991 - 365 * - -@end group -@end smallexample - -@c [fix-ref Date Forms] -@noindent -There will be 1943 leap years before the year 10001. (Assuming, -of course, that the algorithm for computing leap years remains -unchanged for that long. @xref{Date Forms}, for some interesting -background information in that regard.) - -@node Types Answer 7, Types Answer 8, Types Answer 6, Answers to Exercises -@subsection Types Tutorial Exercise 7 - -@noindent -The relative errors must be converted to absolute errors so that -@samp{+/-} notation may be used. - -@smallexample -@group -1: 1. 2: 1. - . 1: 0.2 - . - - 20 @key{RET} .05 * 4 @key{RET} .05 * -@end group -@end smallexample - -Now we simply chug through the formula. - -@smallexample -@group -1: 19.7392088022 1: 394.78 +/- 19.739 1: 6316.5 +/- 706.21 - . . . - - 2 P 2 ^ * 20 p 1 * 4 p .2 @key{RET} 2 ^ * -@end group -@end smallexample - -It turns out the @kbd{v u} command will unpack an error form as -well as a vector. This saves us some retyping of numbers. - -@smallexample -@group -3: 6316.5 +/- 706.21 2: 6316.5 +/- 706.21 -2: 6316.5 1: 0.1118 -1: 706.21 . - . - - @key{RET} v u @key{TAB} / -@end group -@end smallexample - -@noindent -Thus the volume is 6316 cubic centimeters, within about 11 percent. - -@node Types Answer 8, Types Answer 9, Types Answer 7, Answers to Exercises -@subsection Types Tutorial Exercise 8 - -@noindent -The first answer is pretty simple: @samp{1 / (0 .. 10) = (0.1 .. inf)}. -Since a number in the interval @samp{(0 .. 10)} can get arbitrarily -close to zero, its reciprocal can get arbitrarily large, so the answer -is an interval that effectively means, ``any number greater than 0.1'' -but with no upper bound. - -The second answer, similarly, is @samp{1 / (-10 .. 0) = (-inf .. -0.1)}. - -Calc normally treats division by zero as an error, so that the formula -@w{@samp{1 / 0}} is left unsimplified. Our third problem, -@w{@samp{1 / [0 .. 10]}}, also (potentially) divides by zero because zero -is now a member of the interval. So Calc leaves this one unevaluated, too. - -If you turn on Infinite mode by pressing @kbd{m i}, you will -instead get the answer @samp{[0.1 .. inf]}, which includes infinity -as a possible value. - -The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem. -Zero is buried inside the interval, but it's still a possible value. -It's not hard to see that the actual result of @samp{1 / (-10 .. 10)} -will be either greater than @mathit{0.1}, or less than @mathit{-0.1}. Thus -the interval goes from minus infinity to plus infinity, with a ``hole'' -in it from @mathit{-0.1} to @mathit{0.1}. Calc doesn't have any way to -represent this, so it just reports @samp{[-inf .. inf]} as the answer. -It may be disappointing to hear ``the answer lies somewhere between -minus infinity and plus infinity, inclusive,'' but that's the best -that interval arithmetic can do in this case. - -@node Types Answer 9, Types Answer 10, Types Answer 8, Answers to Exercises -@subsection Types Tutorial Exercise 9 - -@smallexample -@group -1: [-3 .. 3] 2: [-3 .. 3] 2: [0 .. 9] - . 1: [0 .. 9] 1: [-9 .. 9] - . . - - [ 3 n .. 3 ] @key{RET} 2 ^ @key{TAB} @key{RET} * -@end group -@end smallexample - -@noindent -In the first case the result says, ``if a number is between @mathit{-3} and -3, its square is between 0 and 9.'' The second case says, ``the product -of two numbers each between @mathit{-3} and 3 is between @mathit{-9} and 9.'' - -An interval form is not a number; it is a symbol that can stand for -many different numbers. Two identical-looking interval forms can stand -for different numbers. - -The same issue arises when you try to square an error form. - -@node Types Answer 10, Types Answer 11, Types Answer 9, Answers to Exercises -@subsection Types Tutorial Exercise 10 - -@noindent -Testing the first number, we might arbitrarily choose 17 for @expr{x}. - -@smallexample -@group -1: 17 mod 811749613 2: 17 mod 811749613 1: 533694123 mod 811749613 - . 811749612 . - . - - 17 M 811749613 @key{RET} 811749612 ^ -@end group -@end smallexample - -@noindent -Since 533694123 is (considerably) different from 1, the number 811749613 -must not be prime. - -It's awkward to type the number in twice as we did above. There are -various ways to avoid this, and algebraic entry is one. In fact, using -a vector mapping operation we can perform several tests at once. Let's -use this method to test the second number. - -@smallexample -@group -2: [17, 42, 100000] 1: [1 mod 15485863, 1 mod ... ] -1: 15485863 . - . - - [17 42 100000] 15485863 @key{RET} V M ' ($$ mod $)^($-1) @key{RET} -@end group -@end smallexample - -@noindent -The result is three ones (modulo @expr{n}), so it's very probable that -15485863 is prime. (In fact, this number is the millionth prime.) - -Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $} -would have been hopelessly inefficient, since they would have calculated -the power using full integer arithmetic. - -Calc has a @kbd{k p} command that does primality testing. For small -numbers it does an exact test; for large numbers it uses a variant -of the Fermat test we used here. You can use @kbd{k p} repeatedly -to prove that a large integer is prime with any desired probability. - -@node Types Answer 11, Types Answer 12, Types Answer 10, Answers to Exercises -@subsection Types Tutorial Exercise 11 - -@noindent -There are several ways to insert a calculated number into an HMS form. -One way to convert a number of seconds to an HMS form is simply to -multiply the number by an HMS form representing one second: - -@smallexample -@group -1: 31415926.5359 2: 31415926.5359 1: 8726@@ 38' 46.5359" - . 1: 0@@ 0' 1" . - . - - P 1e7 * 0@@ 0' 1" * - -@end group -@end smallexample -@noindent -@smallexample -@group -2: 8726@@ 38' 46.5359" 1: 6@@ 6' 2.5359" mod 24@@ 0' 0" -1: 15@@ 27' 16" mod 24@@ 0' 0" . - . - - x time @key{RET} + -@end group -@end smallexample - -@noindent -It will be just after six in the morning. - -The algebraic @code{hms} function can also be used to build an -HMS form: - -@smallexample -@group -1: hms(0, 0, 10000000. pi) 1: 8726@@ 38' 46.5359" - . . - - ' hms(0, 0, 1e7 pi) @key{RET} = -@end group -@end smallexample - -@noindent -The @kbd{=} key is necessary to evaluate the symbol @samp{pi} to -the actual number 3.14159... - -@node Types Answer 12, Types Answer 13, Types Answer 11, Answers to Exercises -@subsection Types Tutorial Exercise 12 - -@noindent -As we recall, there are 17 songs of about 2 minutes and 47 seconds -each. - -@smallexample -@group -2: 0@@ 2' 47" 1: [0@@ 3' 7" .. 0@@ 3' 47"] -1: [0@@ 0' 20" .. 0@@ 1' 0"] . - . - - [ 0@@ 20" .. 0@@ 1' ] + - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [0@@ 52' 59." .. 1@@ 4' 19."] - . - - 17 * -@end group -@end smallexample - -@noindent -No matter how long it is, the album will fit nicely on one CD. - -@node Types Answer 13, Types Answer 14, Types Answer 12, Answers to Exercises -@subsection Types Tutorial Exercise 13 - -@noindent -Type @kbd{' 1 yr @key{RET} u c s @key{RET}}. The answer is 31557600 seconds. - -@node Types Answer 14, Types Answer 15, Types Answer 13, Answers to Exercises -@subsection Types Tutorial Exercise 14 - -@noindent -How long will it take for a signal to get from one end of the computer -to the other? - -@smallexample -@group -1: m / c 1: 3.3356 ns - . . - - ' 1 m / c @key{RET} u c ns @key{RET} -@end group -@end smallexample - -@noindent -(Recall, @samp{c} is a ``unit'' corresponding to the speed of light.) - -@smallexample -@group -1: 3.3356 ns 1: 0.81356 ns / ns 1: 0.81356 -2: 4.1 ns . . - . - - ' 4.1 ns @key{RET} / u s -@end group -@end smallexample - -@noindent -Thus a signal could take up to 81 percent of a clock cycle just to -go from one place to another inside the computer, assuming the signal -could actually attain the full speed of light. Pretty tight! - -@node Types Answer 15, Algebra Answer 1, Types Answer 14, Answers to Exercises -@subsection Types Tutorial Exercise 15 - -@noindent -The speed limit is 55 miles per hour on most highways. We want to -find the ratio of Sam's speed to the US speed limit. - -@smallexample -@group -1: 55 mph 2: 55 mph 3: 11 hr mph / yd - . 1: 5 yd / hr . - . - - ' 55 mph @key{RET} ' 5 yd/hr @key{RET} / -@end group -@end smallexample - -The @kbd{u s} command cancels out these units to get a plain -number. Now we take the logarithm base two to find the final -answer, assuming that each successive pill doubles his speed. - -@smallexample -@group -1: 19360. 2: 19360. 1: 14.24 - . 1: 2 . - . - - u s 2 B -@end group -@end smallexample - -@noindent -Thus Sam can take up to 14 pills without a worry. - -@node Algebra Answer 1, Algebra Answer 2, Types Answer 15, Answers to Exercises -@subsection Algebra Tutorial Exercise 1 - -@noindent -@c [fix-ref Declarations] -The result @samp{sqrt(x)^2} is simplified back to @expr{x} by the -Calculator, but @samp{sqrt(x^2)} is not. (Consider what happens -if @w{@expr{x = -4}}.) If @expr{x} is real, this formula could be -simplified to @samp{abs(x)}, but for general complex arguments even -that is not safe. (@xref{Declarations}, for a way to tell Calc -that @expr{x} is known to be real.) - -@node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises -@subsection Algebra Tutorial Exercise 2 - -@noindent -Suppose our roots are @expr{[a, b, c]}. We want a polynomial which -is zero when @expr{x} is any of these values. The trivial polynomial -@expr{x-a} is zero when @expr{x=a}, so the product @expr{(x-a)(x-b)(x-c)} -will do the job. We can use @kbd{a c x} to write this in a more -familiar form. - -@smallexample -@group -1: 34 x - 24 x^3 1: [1.19023, -1.19023, 0] - . . - - r 2 a P x @key{RET} - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [x - 1.19023, x + 1.19023, x] 1: (x - 1.19023) (x + 1.19023) x - . . - - V M ' x-$ @key{RET} V R * - -@end group -@end smallexample -@noindent -@smallexample -@group -1: x^3 - 1.41666 x 1: 34 x - 24 x^3 - . . - - a c x @key{RET} 24 n * a x -@end group -@end smallexample - -@noindent -Sure enough, our answer (multiplied by a suitable constant) is the -same as the original polynomial. - -@node Algebra Answer 3, Algebra Answer 4, Algebra Answer 2, Answers to Exercises -@subsection Algebra Tutorial Exercise 3 - -@smallexample -@group -1: x sin(pi x) 1: (sin(pi x) - pi x cos(pi x)) / pi^2 - . . - - ' x sin(pi x) @key{RET} m r a i x @key{RET} - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [y, 1] -2: (sin(pi x) - pi x cos(pi x)) / pi^2 - . - - ' [y,1] @key{RET} @key{TAB} - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [(sin(pi y) - pi y cos(pi y)) / pi^2, (sin(pi) - pi cos(pi)) / pi^2] - . - - V M $ @key{RET} - -@end group -@end smallexample -@noindent -@smallexample -@group -1: (sin(pi y) - pi y cos(pi y)) / pi^2 + (pi cos(pi) - sin(pi)) / pi^2 - . - - V R - - -@end group -@end smallexample -@noindent -@smallexample -@group -1: (sin(3.14159 y) - 3.14159 y cos(3.14159 y)) / 9.8696 - 0.3183 - . - - = - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [0., -0.95493, 0.63662, -1.5915, 1.2732] - . - - v x 5 @key{RET} @key{TAB} V M $ @key{RET} -@end group -@end smallexample - -@node Algebra Answer 4, Rewrites Answer 1, Algebra Answer 3, Answers to Exercises -@subsection Algebra Tutorial Exercise 4 - -@noindent -The hard part is that @kbd{V R +} is no longer sufficient to add up all -the contributions from the slices, since the slices have varying -coefficients. So first we must come up with a vector of these -coefficients. Here's one way: - -@smallexample -@group -2: -1 2: 3 1: [4, 2, ..., 4] -1: [1, 2, ..., 9] 1: [-1, 1, ..., -1] . - . . - - 1 n v x 9 @key{RET} V M ^ 3 @key{TAB} - - -@end group -@end smallexample -@noindent -@smallexample -@group -1: [4, 2, ..., 4, 1] 1: [1, 4, 2, ..., 4, 1] - . . - - 1 | 1 @key{TAB} | -@end group -@end smallexample - -@noindent -Now we compute the function values. Note that for this method we need -eleven values, including both endpoints of the desired interval. - -@smallexample -@group -2: [1, 4, 2, ..., 4, 1] -1: [1, 1.1, 1.2, ... , 1.8, 1.9, 2.] - . - - 11 @key{RET} 1 @key{RET} .1 @key{RET} C-u v x - -@end group -@end smallexample -@noindent -@smallexample -@group -2: [1, 4, 2, ..., 4, 1] -1: [0., 0.084941, 0.16993, ... ] - . - - ' sin(x) ln(x) @key{RET} m r p 5 @key{RET} V M $ @key{RET} -@end group -@end smallexample - -@noindent -Once again this calls for @kbd{V M * V R +}; a simple @kbd{*} does the -same thing. - -@smallexample -@group -1: 11.22 1: 1.122 1: 0.374 - . . . - - * .1 * 3 / -@end group -@end smallexample - -@noindent -Wow! That's even better than the result from the Taylor series method. - -@node Rewrites Answer 1, Rewrites Answer 2, Algebra Answer 4, Answers to Exercises -@subsection Rewrites Tutorial Exercise 1 - -@noindent -We'll use Big mode to make the formulas more readable. - -@smallexample -@group - ___ - 2 + V 2 -1: (2 + sqrt(2)) / (1 + sqrt(2)) 1: -------- - . ___ - 1 + V 2 - - . - - ' (2+sqrt(2)) / (1+sqrt(2)) @key{RET} d B -@end group -@end smallexample - -@noindent -Multiplying by the conjugate helps because @expr{(a+b) (a-b) = a^2 - b^2}. - -@smallexample -@group - ___ ___ -1: (2 + V 2 ) (V 2 - 1) - . - - a r a/(b+c) := a*(b-c) / (b^2-c^2) @key{RET} - -@end group -@end smallexample -@noindent -@smallexample -@group - ___ ___ -1: 2 + V 2 - 2 1: V 2 - . . - - a r a*(b+c) := a*b + a*c a s -@end group -@end smallexample - -@noindent -(We could have used @kbd{a x} instead of a rewrite rule for the -second step.) - -The multiply-by-conjugate rule turns out to be useful in many -different circumstances, such as when the denominator involves -sines and cosines or the imaginary constant @code{i}. - -@node Rewrites Answer 2, Rewrites Answer 3, Rewrites Answer 1, Answers to Exercises -@subsection Rewrites Tutorial Exercise 2 - -@noindent -Here is the rule set: - -@smallexample -@group -[ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1, - fib(1, x, y) := x, - fib(n, x, y) := fib(n-1, y, x+y) ] -@end group -@end smallexample - -@noindent -The first rule turns a one-argument @code{fib} that people like to write -into a three-argument @code{fib} that makes computation easier. The -second rule converts back from three-argument form once the computation -is done. The third rule does the computation itself. It basically -says that if @expr{x} and @expr{y} are two consecutive Fibonacci numbers, -then @expr{y} and @expr{x+y} are the next (overlapping) pair of Fibonacci -numbers. - -Notice that because the number @expr{n} was ``validated'' by the -conditions on the first rule, there is no need to put conditions on -the other rules because the rule set would never get that far unless -the input were valid. That further speeds computation, since no -extra conditions need to be checked at every step. - -Actually, a user with a nasty sense of humor could enter a bad -three-argument @code{fib} call directly, say, @samp{fib(0, 1, 1)}, -which would get the rules into an infinite loop. One thing that would -help keep this from happening by accident would be to use something like -@samp{ZzFib} instead of @code{fib} as the name of the three-argument -function. - -@node Rewrites Answer 3, Rewrites Answer 4, Rewrites Answer 2, Answers to Exercises -@subsection Rewrites Tutorial Exercise 3 - -@noindent -He got an infinite loop. First, Calc did as expected and rewrote -@w{@samp{2 + 3 x}} to @samp{f(2, 3, x)}. Then it looked for ways to -apply the rule again, and found that @samp{f(2, 3, x)} looks like -@samp{a + b x} with @w{@samp{a = 0}} and @samp{b = 1}, so it rewrote to -@samp{f(0, 1, f(2, 3, x))}. It then wrapped another @samp{f(0, 1, ...)} -around that, and so on, ad infinitum. Joe should have used @kbd{M-1 a r} -to make sure the rule applied only once. - -(Actually, even the first step didn't work as he expected. What Calc -really gives for @kbd{M-1 a r} in this situation is @samp{f(3 x, 1, 2)}, -treating 2 as the ``variable,'' and @samp{3 x} as a constant being added -to it. While this may seem odd, it's just as valid a solution as the -``obvious'' one. One way to fix this would be to add the condition -@samp{:: variable(x)} to the rule, to make sure the thing that matches -@samp{x} is indeed a variable, or to change @samp{x} to @samp{quote(x)} -on the lefthand side, so that the rule matches the actual variable -@samp{x} rather than letting @samp{x} stand for something else.) - -@node Rewrites Answer 4, Rewrites Answer 5, Rewrites Answer 3, Answers to Exercises -@subsection Rewrites Tutorial Exercise 4 - -@noindent -@ignore -@starindex -@end ignore -@tindex seq -Here is a suitable set of rules to solve the first part of the problem: - -@smallexample -@group -[ seq(n, c) := seq(n/2, c+1) :: n%2 = 0, - seq(n, c) := seq(3n+1, c+1) :: n%2 = 1 :: n > 1 ] -@end group -@end smallexample - -Given the initial formula @samp{seq(6, 0)}, application of these -rules produces the following sequence of formulas: - -@example -seq( 3, 1) -seq(10, 2) -seq( 5, 3) -seq(16, 4) -seq( 8, 5) -seq( 4, 6) -seq( 2, 7) -seq( 1, 8) -@end example - -@noindent -whereupon neither of the rules match, and rewriting stops. - -We can pretty this up a bit with a couple more rules: - -@smallexample -@group -[ seq(n) := seq(n, 0), - seq(1, c) := c, - ... ] -@end group -@end smallexample - -@noindent -Now, given @samp{seq(6)} as the starting configuration, we get 8 -as the result. - -The change to return a vector is quite simple: - -@smallexample -@group -[ seq(n) := seq(n, []) :: integer(n) :: n > 0, - seq(1, v) := v | 1, - seq(n, v) := seq(n/2, v | n) :: n%2 = 0, - seq(n, v) := seq(3n+1, v | n) :: n%2 = 1 ] -@end group -@end smallexample - -@noindent -Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}. - -Notice that the @expr{n > 1} guard is no longer necessary on the last -rule since the @expr{n = 1} case is now detected by another rule. -But a guard has been added to the initial rule to make sure the -initial value is suitable before the computation begins. - -While still a good idea, this guard is not as vitally important as it -was for the @code{fib} function, since calling, say, @samp{seq(x, [])} -will not get into an infinite loop. Calc will not be able to prove -the symbol @samp{x} is either even or odd, so none of the rules will -apply and the rewrites will stop right away. - -@node Rewrites Answer 5, Rewrites Answer 6, Rewrites Answer 4, Answers to Exercises -@subsection Rewrites Tutorial Exercise 5 - -@noindent -@ignore -@starindex -@end ignore -@tindex nterms -If @expr{x} is the sum @expr{a + b}, then `@tfn{nterms(}@var{x}@tfn{)}' must -be `@tfn{nterms(}@var{a}@tfn{)}' plus `@tfn{nterms(}@var{b}@tfn{)}'. If @expr{x} -is not a sum, then `@tfn{nterms(}@var{x}@tfn{)}' = 1. - -@smallexample -@group -[ nterms(a + b) := nterms(a) + nterms(b), - nterms(x) := 1 ] -@end group -@end smallexample - -@noindent -Here we have taken advantage of the fact that earlier rules always -match before later rules; @samp{nterms(x)} will only be tried if we -already know that @samp{x} is not a sum. - -@node Rewrites Answer 6, Programming Answer 1, Rewrites Answer 5, Answers to Exercises -@subsection Rewrites Tutorial Exercise 6 - -@noindent -Here is a rule set that will do the job: - -@smallexample -@group -[ a*(b + c) := a*b + a*c, - opt(a) O(x^n) + opt(b) O(x^m) := O(x^n) :: n <= m - :: constant(a) :: constant(b), - opt(a) O(x^n) + opt(b) x^m := O(x^n) :: n <= m - :: constant(a) :: constant(b), - a O(x^n) := O(x^n) :: constant(a), - x^opt(m) O(x^n) := O(x^(n+m)), - O(x^n) O(x^m) := O(x^(n+m)) ] -@end group -@end smallexample - -If we really want the @kbd{+} and @kbd{*} keys to operate naturally -on power series, we should put these rules in @code{EvalRules}. For -testing purposes, it is better to put them in a different variable, -say, @code{O}, first. - -The first rule just expands products of sums so that the rest of the -rules can assume they have an expanded-out polynomial to work with. -Note that this rule does not mention @samp{O} at all, so it will -apply to any product-of-sum it encounters---this rule may surprise -you if you put it into @code{EvalRules}! - -In the second rule, the sum of two O's is changed to the smaller O. -The optional constant coefficients are there mostly so that -@samp{O(x^2) - O(x^3)} and @samp{O(x^3) - O(x^2)} are handled -as well as @samp{O(x^2) + O(x^3)}. - -The third rule absorbs higher powers of @samp{x} into O's. - -The fourth rule says that a constant times a negligible quantity -is still negligible. (This rule will also match @samp{O(x^3) / 4}, -with @samp{a = 1/4}.) - -The fifth rule rewrites, for example, @samp{x^2 O(x^3)} to @samp{O(x^5)}. -(It is easy to see that if one of these forms is negligible, the other -is, too.) Notice the @samp{x^opt(m)} to pick up terms like -@w{@samp{x O(x^3)}}. Optional powers will match @samp{x} as @samp{x^1} -but not 1 as @samp{x^0}. This turns out to be exactly what we want here. - -The sixth rule is the corresponding rule for products of two O's. - -Another way to solve this problem would be to create a new ``data type'' -that represents truncated power series. We might represent these as -function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is -a vector of coefficients for @expr{x^0}, @expr{x^1}, @expr{x^2}, and so -on. Rules would exist for sums and products of such @code{series} -objects, and as an optional convenience could also know how to combine a -@code{series} object with a normal polynomial. (With this, and with a -rule that rewrites @samp{O(x^n)} to the equivalent @code{series} form, -you could still enter power series in exactly the same notation as -before.) Operations on such objects would probably be more efficient, -although the objects would be a bit harder to read. - -@c [fix-ref Compositions] -Some other symbolic math programs provide a power series data type -similar to this. Mathematica, for example, has an object that looks -like @samp{PowerSeries[@var{x}, @var{x0}, @var{coefs}, @var{nmin}, -@var{nmax}, @var{den}]}, where @var{x0} is the point about which the -power series is taken (we've been assuming this was always zero), -and @var{nmin}, @var{nmax}, and @var{den} allow pseudo-power-series -with fractional or negative powers. Also, the @code{PowerSeries} -objects have a special display format that makes them look like -@samp{2 x^2 + O(x^4)} when they are printed out. (@xref{Compositions}, -for a way to do this in Calc, although for something as involved as -this it would probably be better to write the formatting routine -in Lisp.) - -@node Programming Answer 1, Programming Answer 2, Rewrites Answer 6, Answers to Exercises -@subsection Programming Tutorial Exercise 1 - -@noindent -Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type -@kbd{Z F}, and answer the questions. Since this formula contains two -variables, the default argument list will be @samp{(t x)}. We want to -change this to @samp{(x)} since @expr{t} is really a dummy variable -to be used within @code{ninteg}. - -The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}. -(The @kbd{C-b C-b @key{DEL} @key{DEL}} are what fix the argument list.) - -@node Programming Answer 2, Programming Answer 3, Programming Answer 1, Answers to Exercises -@subsection Programming Tutorial Exercise 2 - -@noindent -One way is to move the number to the top of the stack, operate on -it, then move it back: @kbd{C-x ( M-@key{TAB} n M-@key{TAB} M-@key{TAB} C-x )}. - -Another way is to negate the top three stack entries, then negate -again the top two stack entries: @kbd{C-x ( M-3 n M-2 n C-x )}. - -Finally, it turns out that a negative prefix argument causes a -command like @kbd{n} to operate on the specified stack entry only, -which is just what we want: @kbd{C-x ( M-- 3 n C-x )}. - -Just for kicks, let's also do it algebraically: -@w{@kbd{C-x ( ' -$$$, $$, $ @key{RET} C-x )}}. - -@node Programming Answer 3, Programming Answer 4, Programming Answer 2, Answers to Exercises -@subsection Programming Tutorial Exercise 3 - -@noindent -Each of these functions can be computed using the stack, or using -algebraic entry, whichever way you prefer: - -@noindent -Computing -@texline @math{\displaystyle{\sin x \over x}}: -@infoline @expr{sin(x) / x}: - -Using the stack: @kbd{C-x ( @key{RET} S @key{TAB} / C-x )}. - -Using algebraic entry: @kbd{C-x ( ' sin($)/$ @key{RET} C-x )}. - -@noindent -Computing the logarithm: - -Using the stack: @kbd{C-x ( @key{TAB} B C-x )} - -Using algebraic entry: @kbd{C-x ( ' log($,$$) @key{RET} C-x )}. - -@noindent -Computing the vector of integers: - -Using the stack: @kbd{C-x ( 1 @key{RET} 1 C-u v x C-x )}. (Recall that -@kbd{C-u v x} takes the vector size, starting value, and increment -from the stack.) - -Alternatively: @kbd{C-x ( ~ v x C-x )}. (The @kbd{~} key pops a -number from the stack and uses it as the prefix argument for the -next command.) - -Using algebraic entry: @kbd{C-x ( ' index($) @key{RET} C-x )}. - -@node Programming Answer 4, Programming Answer 5, Programming Answer 3, Answers to Exercises -@subsection Programming Tutorial Exercise 4 - -@noindent -Here's one way: @kbd{C-x ( @key{RET} V R + @key{TAB} v l / C-x )}. - -@node Programming Answer 5, Programming Answer 6, Programming Answer 4, Answers to Exercises -@subsection Programming Tutorial Exercise 5 - -@smallexample -@group -2: 1 1: 1.61803398502 2: 1.61803398502 -1: 20 . 1: 1.61803398875 - . . - - 1 @key{RET} 20 Z < & 1 + Z > I H P -@end group -@end smallexample - -@noindent -This answer is quite accurate. - -@node Programming Answer 6, Programming Answer 7, Programming Answer 5, Answers to Exercises -@subsection Programming Tutorial Exercise 6 - -@noindent -Here is the matrix: - -@example -[ [ 0, 1 ] * [a, b] = [b, a + b] - [ 1, 1 ] ] -@end example - -@noindent -Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @expr{n+1} -and @expr{n+2}. Here's one program that does the job: - -@example -C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x ) -@end example - -@noindent -This program is quite efficient because Calc knows how to raise a -matrix (or other value) to the power @expr{n} in only -@texline @math{\log_2 n} -@infoline @expr{log(n,2)} -steps. For example, this program can compute the 1000th Fibonacci -number (a 209-digit integer!) in about 10 steps; even though the -@kbd{Z < ... Z >} solution had much simpler steps, it would have -required so many steps that it would not have been practical. - -@node Programming Answer 7, Programming Answer 8, Programming Answer 6, Answers to Exercises -@subsection Programming Tutorial Exercise 7 - -@noindent -The trick here is to compute the harmonic numbers differently, so that -the loop counter itself accumulates the sum of reciprocals. We use -a separate variable to hold the integer counter. - -@smallexample -@group -1: 1 2: 1 1: . - . 1: 4 - . - - 1 t 1 1 @key{RET} 4 Z ( t 2 r 1 1 + s 1 & Z ) -@end group -@end smallexample - -@noindent -The body of the loop goes as follows: First save the harmonic sum -so far in variable 2. Then delete it from the stack; the for loop -itself will take care of remembering it for us. Next, recall the -count from variable 1, add one to it, and feed its reciprocal to -the for loop to use as the step value. The for loop will increase -the ``loop counter'' by that amount and keep going until the -loop counter exceeds 4. - -@smallexample -@group -2: 31 3: 31 -1: 3.99498713092 2: 3.99498713092 - . 1: 4.02724519544 - . - - r 1 r 2 @key{RET} 31 & + -@end group -@end smallexample - -Thus we find that the 30th harmonic number is 3.99, and the 31st -harmonic number is 4.02. - -@node Programming Answer 8, Programming Answer 9, Programming Answer 7, Answers to Exercises -@subsection Programming Tutorial Exercise 8 - -@noindent -The first step is to compute the derivative @expr{f'(x)} and thus -the formula -@texline @math{\displaystyle{x - {f(x) \over f'(x)}}}. -@infoline @expr{x - f(x)/f'(x)}. - -(Because this definition is long, it will be repeated in concise form -below. You can use @w{@kbd{C-x * m}} to load it from there. While you are -entering a @kbd{Z ` Z '} body in a macro, Calc simply collects -keystrokes without executing them. In the following diagrams we'll -pretend Calc actually executed the keystrokes as you typed them, -just for purposes of illustration.) - -@smallexample -@group -2: sin(cos(x)) - 0.5 3: 4.5 -1: 4.5 2: sin(cos(x)) - 0.5 - . 1: -(sin(x) cos(cos(x))) - . - -' sin(cos(x))-0.5 @key{RET} 4.5 m r C-x ( Z ` @key{TAB} @key{RET} a d x @key{RET} - -@end group -@end smallexample -@noindent -@smallexample -@group -2: 4.5 -1: x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x)) - . - - / ' x @key{RET} @key{TAB} - t 1 -@end group -@end smallexample - -Now, we enter the loop. We'll use a repeat loop with a 20-repetition -limit just in case the method fails to converge for some reason. -(Normally, the @w{@kbd{Z /}} command will stop the loop before all 20 -repetitions are done.) - -@smallexample -@group -1: 4.5 3: 4.5 2: 4.5 - . 2: x + (sin(cos(x)) ... 1: 5.24196456928 - 1: 4.5 . - . - - 20 Z < @key{RET} r 1 @key{TAB} s l x @key{RET} -@end group -@end smallexample - -This is the new guess for @expr{x}. Now we compare it with the -old one to see if we've converged. - -@smallexample -@group -3: 5.24196 2: 5.24196 1: 5.24196 1: 5.26345856348 -2: 5.24196 1: 0 . . -1: 4.5 . - . - - @key{RET} M-@key{TAB} a = Z / Z > Z ' C-x ) -@end group -@end smallexample - -The loop converges in just a few steps to this value. To check -the result, we can simply substitute it back into the equation. - -@smallexample -@group -2: 5.26345856348 -1: 0.499999999997 - . - - @key{RET} ' sin(cos($)) @key{RET} -@end group -@end smallexample - -Let's test the new definition again: - -@smallexample -@group -2: x^2 - 9 1: 3. -1: 1 . - . - - ' x^2-9 @key{RET} 1 X -@end group -@end smallexample - -Once again, here's the full Newton's Method definition: - -@example -@group -C-x ( Z ` @key{TAB} @key{RET} a d x @key{RET} / ' x @key{RET} @key{TAB} - t 1 - 20 Z < @key{RET} r 1 @key{TAB} s l x @key{RET} - @key{RET} M-@key{TAB} a = Z / - Z > - Z ' -C-x ) -@end group -@end example - -@c [fix-ref Nesting and Fixed Points] -It turns out that Calc has a built-in command for applying a formula -repeatedly until it converges to a number. @xref{Nesting and Fixed Points}, -to see how to use it. - -@c [fix-ref Root Finding] -Also, of course, @kbd{a R} is a built-in command that uses Newton's -method (among others) to look for numerical solutions to any equation. -@xref{Root Finding}. - -@node Programming Answer 9, Programming Answer 10, Programming Answer 8, Answers to Exercises -@subsection Programming Tutorial Exercise 9 - -@noindent -The first step is to adjust @expr{z} to be greater than 5. A simple -``for'' loop will do the job here. If @expr{z} is less than 5, we -reduce the problem using -@texline @math{\psi(z) = \psi(z+1) - 1/z}. -@infoline @expr{psi(z) = psi(z+1) - 1/z}. We go -on to compute -@texline @math{\psi(z+1)}, -@infoline @expr{psi(z+1)}, -and remember to add back a factor of @expr{-1/z} when we're done. This -step is repeated until @expr{z > 5}. - -(Because this definition is long, it will be repeated in concise form -below. You can use @w{@kbd{C-x * m}} to load it from there. While you are -entering a @kbd{Z ` Z '} body in a macro, Calc simply collects -keystrokes without executing them. In the following diagrams we'll -pretend Calc actually executed the keystrokes as you typed them, -just for purposes of illustration.) - -@smallexample -@group -1: 1. 1: 1. - . . - - 1.0 @key{RET} C-x ( Z ` s 1 0 t 2 -@end group -@end smallexample - -Here, variable 1 holds @expr{z} and variable 2 holds the adjustment -factor. If @expr{z < 5}, we use a loop to increase it. - -(By the way, we started with @samp{1.0} instead of the integer 1 because -otherwise the calculation below will try to do exact fractional arithmetic, -and will never converge because fractions compare equal only if they -are exactly equal, not just equal to within the current precision.) - -@smallexample -@group -3: 1. 2: 1. 1: 6. -2: 1. 1: 1 . -1: 5 . - . - - @key{RET} 5 a < Z [ 5 Z ( & s + 2 1 s + 1 1 Z ) r 1 Z ] -@end group -@end smallexample - -Now we compute the initial part of the sum: -@texline @math{\ln z - {1 \over 2z}} -@infoline @expr{ln(z) - 1/2z} -minus the adjustment factor. - -@smallexample -@group -2: 1.79175946923 2: 1.7084261359 1: -0.57490719743 -1: 0.0833333333333 1: 2.28333333333 . - . . - - L r 1 2 * & - r 2 - -@end group -@end smallexample - -Now we evaluate the series. We'll use another ``for'' loop counting -up the value of @expr{2 n}. (Calc does have a summation command, -@kbd{a +}, but we'll use loops just to get more practice with them.) - -@smallexample -@group -3: -0.5749 3: -0.5749 4: -0.5749 2: -0.5749 -2: 2 2: 1:6 3: 1:6 1: 2.3148e-3 -1: 40 1: 2 2: 2 . - . . 1: 36. - . - - 2 @key{RET} 40 Z ( @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * / - -@end group -@end smallexample -@noindent -@smallexample -@group -3: -0.5749 3: -0.5772 2: -0.5772 1: -0.577215664892 -2: -0.5749 2: -0.5772 1: 0 . -1: 2.3148e-3 1: -0.5749 . - . . - - @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z / 2 Z ) Z ' C-x ) -@end group -@end smallexample - -This is the value of -@texline @math{-\gamma}, -@infoline @expr{- gamma}, -with a slight bit of roundoff error. To get a full 12 digits, let's use -a higher precision: - -@smallexample -@group -2: -0.577215664892 2: -0.577215664892 -1: 1. 1: -0.577215664901532 - - 1. @key{RET} p 16 @key{RET} X -@end group -@end smallexample - -Here's the complete sequence of keystrokes: - -@example -@group -C-x ( Z ` s 1 0 t 2 - @key{RET} 5 a < Z [ 5 Z ( & s + 2 1 s + 1 1 Z ) r 1 Z ] - L r 1 2 * & - r 2 - - 2 @key{RET} 40 Z ( @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * / - @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z / - 2 Z ) - Z ' -C-x ) -@end group -@end example - -@node Programming Answer 10, Programming Answer 11, Programming Answer 9, Answers to Exercises -@subsection Programming Tutorial Exercise 10 - -@noindent -Taking the derivative of a term of the form @expr{x^n} will produce -a term like -@texline @math{n x^{n-1}}. -@infoline @expr{n x^(n-1)}. -Taking the derivative of a constant -produces zero. From this it is easy to see that the @expr{n}th -derivative of a polynomial, evaluated at @expr{x = 0}, will equal the -coefficient on the @expr{x^n} term times @expr{n!}. - -(Because this definition is long, it will be repeated in concise form -below. You can use @w{@kbd{C-x * m}} to load it from there. While you are -entering a @kbd{Z ` Z '} body in a macro, Calc simply collects -keystrokes without executing them. In the following diagrams we'll -pretend Calc actually executed the keystrokes as you typed them, -just for purposes of illustration.) - -@smallexample -@group -2: 5 x^4 + (x + 1)^2 3: 5 x^4 + (x + 1)^2 -1: 6 2: 0 - . 1: 6 - . - - ' 5 x^4 + (x+1)^2 @key{RET} 6 C-x ( Z ` [ ] t 1 0 @key{TAB} -@end group -@end smallexample - -@noindent -Variable 1 will accumulate the vector of coefficients. - -@smallexample -@group -2: 0 3: 0 2: 5 x^4 + ... -1: 5 x^4 + ... 2: 5 x^4 + ... 1: 1 - . 1: 1 . - . - - Z ( @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! / s | 1 -@end group -@end smallexample - -@noindent -Note that @kbd{s | 1} appends the top-of-stack value to the vector -in a variable; it is completely analogous to @kbd{s + 1}. We could -have written instead, @kbd{r 1 @key{TAB} | t 1}. - -@smallexample -@group -1: 20 x^3 + 2 x + 2 1: 0 1: [1, 2, 1, 0, 5, 0, 0] - . . . - - a d x @key{RET} 1 Z ) @key{DEL} r 1 Z ' C-x ) -@end group -@end smallexample - -To convert back, a simple method is just to map the coefficients -against a table of powers of @expr{x}. - -@smallexample -@group -2: [1, 2, 1, 0, 5, 0, 0] 2: [1, 2, 1, 0, 5, 0, 0] -1: 6 1: [0, 1, 2, 3, 4, 5, 6] - . . - - 6 @key{RET} 1 + 0 @key{RET} 1 C-u v x - -@end group -@end smallexample -@noindent -@smallexample -@group -2: [1, 2, 1, 0, 5, 0, 0] 2: 1 + 2 x + x^2 + 5 x^4 -1: [1, x, x^2, x^3, ... ] . - . - - ' x @key{RET} @key{TAB} V M ^ * -@end group -@end smallexample - -Once again, here are the whole polynomial to/from vector programs: - -@example -@group -C-x ( Z ` [ ] t 1 0 @key{TAB} - Z ( @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! / s | 1 - a d x @key{RET} - 1 Z ) r 1 - Z ' -C-x ) - -C-x ( 1 + 0 @key{RET} 1 C-u v x ' x @key{RET} @key{TAB} V M ^ * C-x ) -@end group -@end example - -@node Programming Answer 11, Programming Answer 12, Programming Answer 10, Answers to Exercises -@subsection Programming Tutorial Exercise 11 - -@noindent -First we define a dummy program to go on the @kbd{z s} key. The true -@w{@kbd{z s}} key is supposed to take two numbers from the stack and -return one number, so @key{DEL} as a dummy definition will make -sure the stack comes out right. - -@smallexample -@group -2: 4 1: 4 2: 4 -1: 2 . 1: 2 - . . - - 4 @key{RET} 2 C-x ( @key{DEL} C-x ) Z K s @key{RET} 2 -@end group -@end smallexample - -The last step replaces the 2 that was eaten during the creation -of the dummy @kbd{z s} command. Now we move on to the real -definition. The recurrence needs to be rewritten slightly, -to the form @expr{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}. - -(Because this definition is long, it will be repeated in concise form -below. You can use @kbd{C-x * m} to load it from there.) - -@smallexample -@group -2: 4 4: 4 3: 4 2: 4 -1: 2 3: 2 2: 2 1: 2 - . 2: 4 1: 0 . - 1: 2 . - . - - C-x ( M-2 @key{RET} a = Z [ @key{DEL} @key{DEL} 1 Z : - -@end group -@end smallexample -@noindent -@smallexample -@group -4: 4 2: 4 2: 3 4: 3 4: 3 3: 3 -3: 2 1: 2 1: 2 3: 2 3: 2 2: 2 -2: 2 . . 2: 3 2: 3 1: 3 -1: 0 1: 2 1: 1 . - . . . - - @key{RET} 0 a = Z [ @key{DEL} @key{DEL} 0 Z : @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s -@end group -@end smallexample - -@noindent -(Note that the value 3 that our dummy @kbd{z s} produces is not correct; -it is merely a placeholder that will do just as well for now.) - -@smallexample -@group -3: 3 4: 3 3: 3 2: 3 1: -6 -2: 3 3: 3 2: 3 1: 9 . -1: 2 2: 3 1: 3 . - . 1: 2 . - . - - M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * - - -@end group -@end smallexample -@noindent -@smallexample -@group -1: -6 2: 4 1: 11 2: 11 - . 1: 2 . 1: 11 - . . - - Z ] Z ] C-x ) Z K s @key{RET} @key{DEL} 4 @key{RET} 2 z s M-@key{RET} k s -@end group -@end smallexample - -Even though the result that we got during the definition was highly -bogus, once the definition is complete the @kbd{z s} command gets -the right answers. - -Here's the full program once again: - -@example -@group -C-x ( M-2 @key{RET} a = - Z [ @key{DEL} @key{DEL} 1 - Z : @key{RET} 0 a = - Z [ @key{DEL} @key{DEL} 0 - Z : @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s - M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * - - Z ] - Z ] -C-x ) -@end group -@end example - -You can read this definition using @kbd{C-x * m} (@code{read-kbd-macro}) -followed by @kbd{Z K s}, without having to make a dummy definition -first, because @code{read-kbd-macro} doesn't need to execute the -definition as it reads it in. For this reason, @code{C-x * m} is often -the easiest way to create recursive programs in Calc. - -@node Programming Answer 12, , Programming Answer 11, Answers to Exercises -@subsection Programming Tutorial Exercise 12 - -@noindent -This turns out to be a much easier way to solve the problem. Let's -denote Stirling numbers as calls of the function @samp{s}. - -First, we store the rewrite rules corresponding to the definition of -Stirling numbers in a convenient variable: - -@smallexample -s e StirlingRules @key{RET} -[ s(n,n) := 1 :: n >= 0, - s(n,0) := 0 :: n > 0, - s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n >= m :: m >= 1 ] -C-c C-c -@end smallexample - -Now, it's just a matter of applying the rules: - -@smallexample -@group -2: 4 1: s(4, 2) 1: 11 -1: 2 . . - . - - 4 @key{RET} 2 C-x ( ' s($$,$) @key{RET} a r StirlingRules @key{RET} C-x ) -@end group -@end smallexample - -As in the case of the @code{fib} rules, it would be useful to put these -rules in @code{EvalRules} and to add a @samp{:: remember} condition to -the last rule. - -@c This ends the table-of-contents kludge from above: -@tex -\global\let\chapternofonts=\oldchapternofonts -@end tex - -@c [reference] - -@node Introduction, Data Types, Tutorial, Top -@chapter Introduction - -@noindent -This chapter is the beginning of the Calc reference manual. -It covers basic concepts such as the stack, algebraic and -numeric entry, undo, numeric prefix arguments, etc. - -@c [when-split] -@c (Chapter 2, the Tutorial, has been printed in a separate volume.) - -@menu -* Basic Commands:: -* Help Commands:: -* Stack Basics:: -* Numeric Entry:: -* Algebraic Entry:: -* Quick Calculator:: -* Prefix Arguments:: -* Undo:: -* Error Messages:: -* Multiple Calculators:: -* Troubleshooting Commands:: -@end menu - -@node Basic Commands, Help Commands, Introduction, Introduction -@section Basic Commands - -@noindent -@pindex calc -@pindex calc-mode -@cindex Starting the Calculator -@cindex Running the Calculator -To start the Calculator in its standard interface, type @kbd{M-x calc}. -By default this creates a pair of small windows, @samp{*Calculator*} -and @samp{*Calc Trail*}. The former displays the contents of the -Calculator stack and is manipulated exclusively through Calc commands. -It is possible (though not usually necessary) to create several Calc -mode buffers each of which has an independent stack, undo list, and -mode settings. There is exactly one Calc Trail buffer; it records a -list of the results of all calculations that have been done. The -Calc Trail buffer uses a variant of Calc mode, so Calculator commands -still work when the trail buffer's window is selected. It is possible -to turn the trail window off, but the @samp{*Calc Trail*} buffer itself -still exists and is updated silently. @xref{Trail Commands}. - -@kindex C-x * c -@kindex C-x * * -@ignore -@mindex @null -@end ignore -In most installations, the @kbd{C-x * c} key sequence is a more -convenient way to start the Calculator. Also, @kbd{C-x * *} -is a synonym for @kbd{C-x * c} unless you last used Calc -in its Keypad mode. - -@kindex x -@kindex M-x -@pindex calc-execute-extended-command -Most Calc commands use one or two keystrokes. Lower- and upper-case -letters are distinct. Commands may also be entered in full @kbd{M-x} form; -for some commands this is the only form. As a convenience, the @kbd{x} -key (@code{calc-execute-extended-command}) -is like @kbd{M-x} except that it enters the initial string @samp{calc-} -for you. For example, the following key sequences are equivalent: -@kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}. - -@cindex Extensions module -@cindex @file{calc-ext} module -The Calculator exists in many parts. When you type @kbd{C-x * c}, the -Emacs ``auto-load'' mechanism will bring in only the first part, which -contains the basic arithmetic functions. The other parts will be -auto-loaded the first time you use the more advanced commands like trig -functions or matrix operations. This is done to improve the response time -of the Calculator in the common case when all you need to do is a -little arithmetic. If for some reason the Calculator fails to load an -extension module automatically, you can force it to load all the -extensions by using the @kbd{C-x * L} (@code{calc-load-everything}) -command. @xref{Mode Settings}. - -If you type @kbd{M-x calc} or @kbd{C-x * c} with any numeric prefix argument, -the Calculator is loaded if necessary, but it is not actually started. -If the argument is positive, the @file{calc-ext} extensions are also -loaded if necessary. User-written Lisp code that wishes to make use -of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)} -to auto-load the Calculator. - -@kindex C-x * b -@pindex full-calc -If you type @kbd{C-x * b}, then next time you use @kbd{C-x * c} you -will get a Calculator that uses the full height of the Emacs screen. -When full-screen mode is on, @kbd{C-x * c} runs the @code{full-calc} -command instead of @code{calc}. From the Unix shell you can type -@samp{emacs -f full-calc} to start a new Emacs specifically for use -as a calculator. When Calc is started from the Emacs command line -like this, Calc's normal ``quit'' commands actually quit Emacs itself. - -@kindex C-x * o -@pindex calc-other-window -The @kbd{C-x * o} command is like @kbd{C-x * c} except that the Calc -window is not actually selected. If you are already in the Calc -window, @kbd{C-x * o} switches you out of it. (The regular Emacs -@kbd{C-x o} command would also work for this, but it has a -tendency to drop you into the Calc Trail window instead, which -@kbd{C-x * o} takes care not to do.) - -@ignore -@mindex C-x * q -@end ignore -For one quick calculation, you can type @kbd{C-x * q} (@code{quick-calc}) -which prompts you for a formula (like @samp{2+3/4}). The result is -displayed at the bottom of the Emacs screen without ever creating -any special Calculator windows. @xref{Quick Calculator}. - -@ignore -@mindex C-x * k -@end ignore -Finally, if you are using the X window system you may want to try -@kbd{C-x * k} (@code{calc-keypad}) which runs Calc with a -``calculator keypad'' picture as well as a stack display. Click on -the keys with the mouse to operate the calculator. @xref{Keypad Mode}. - -@kindex q -@pindex calc-quit -@cindex Quitting the Calculator -@cindex Exiting the Calculator -The @kbd{q} key (@code{calc-quit}) exits Calc mode and closes the -Calculator's window(s). It does not delete the Calculator buffers. -If you type @kbd{M-x calc} again, the Calculator will reappear with the -contents of the stack intact. Typing @kbd{C-x * c} or @kbd{C-x * *} -again from inside the Calculator buffer is equivalent to executing -@code{calc-quit}; you can think of @kbd{C-x * *} as toggling the -Calculator on and off. - -@kindex C-x * x -The @kbd{C-x * x} command also turns the Calculator off, no matter which -user interface (standard, Keypad, or Embedded) is currently active. -It also cancels @code{calc-edit} mode if used from there. - -@kindex d @key{SPC} -@pindex calc-refresh -@cindex Refreshing a garbled display -@cindex Garbled displays, refreshing -The @kbd{d @key{SPC}} key sequence (@code{calc-refresh}) redraws the contents -of the Calculator buffer from memory. Use this if the contents of the -buffer have been damaged somehow. - -@ignore -@mindex o -@end ignore -The @kbd{o} key (@code{calc-realign}) moves the cursor back to its -``home'' position at the bottom of the Calculator buffer. - -@kindex < -@kindex > -@pindex calc-scroll-left -@pindex calc-scroll-right -@cindex Horizontal scrolling -@cindex Scrolling -@cindex Wide text, scrolling -The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and -@code{calc-scroll-right}. These are just like the normal horizontal -scrolling commands except that they scroll one half-screen at a time by -default. (Calc formats its output to fit within the bounds of the -window whenever it can.) - -@kindex @{ -@kindex @} -@pindex calc-scroll-down -@pindex calc-scroll-up -@cindex Vertical scrolling -The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down} -and @code{calc-scroll-up}. They scroll up or down by one-half the -height of the Calc window. - -@kindex C-x * 0 -@pindex calc-reset -The @kbd{C-x * 0} command (@code{calc-reset}; that's @kbd{C-x *} followed -by a zero) resets the Calculator to its initial state. This clears -the stack, resets all the modes to their initial values (the values -that were saved with @kbd{m m} (@code{calc-save-modes})), clears the -caches (@pxref{Caches}), and so on. (It does @emph{not} erase the -values of any variables.) With an argument of 0, Calc will be reset to -its default state; namely, the modes will be given their default values. -With a positive prefix argument, @kbd{C-x * 0} preserves the contents of -the stack but resets everything else to its initial state; with a -negative prefix argument, @kbd{C-x * 0} preserves the contents of the -stack but resets everything else to its default state. - -@pindex calc-version -The @kbd{M-x calc-version} command displays the current version number -of Calc and the name of the person who installed it on your system. -(This information is also present in the @samp{*Calc Trail*} buffer, -and in the output of the @kbd{h h} command.) - -@node Help Commands, Stack Basics, Basic Commands, Introduction -@section Help Commands - -@noindent -@cindex Help commands -@kindex ? -@pindex calc-help -The @kbd{?} key (@code{calc-help}) displays a series of brief help messages. -Some keys (such as @kbd{b} and @kbd{d}) are prefix keys, like Emacs' -@key{ESC} and @kbd{C-x} prefixes. You can type -@kbd{?} after a prefix to see a list of commands beginning with that -prefix. (If the message includes @samp{[MORE]}, press @kbd{?} again -to see additional commands for that prefix.) - -@kindex h h -@pindex calc-full-help -The @kbd{h h} (@code{calc-full-help}) command displays all the @kbd{?} -responses at once. When printed, this makes a nice, compact (three pages) -summary of Calc keystrokes. - -In general, the @kbd{h} key prefix introduces various commands that -provide help within Calc. Many of the @kbd{h} key functions are -Calc-specific analogues to the @kbd{C-h} functions for Emacs help. - -@kindex h i -@kindex C-x * i -@kindex i -@pindex calc-info -The @kbd{h i} (@code{calc-info}) command runs the Emacs Info system -to read this manual on-line. This is basically the same as typing -@kbd{C-h i} (the regular way to run the Info system), then, if Info -is not already in the Calc manual, selecting the beginning of the -manual. The @kbd{C-x * i} command is another way to read the Calc -manual; it is different from @kbd{h i} in that it works any time, -not just inside Calc. The plain @kbd{i} key is also equivalent to -@kbd{h i}, though this key is obsolete and may be replaced with a -different command in a future version of Calc. - -@kindex h t -@kindex C-x * t -@pindex calc-tutorial -The @kbd{h t} (@code{calc-tutorial}) command runs the Info system on -the Tutorial section of the Calc manual. It is like @kbd{h i}, -except that it selects the starting node of the tutorial rather -than the beginning of the whole manual. (It actually selects the -node ``Interactive Tutorial'' which tells a few things about -using the Info system before going on to the actual tutorial.) -The @kbd{C-x * t} key is equivalent to @kbd{h t} (but it works at -all times). - -@kindex h s -@kindex C-x * s -@pindex calc-info-summary -The @kbd{h s} (@code{calc-info-summary}) command runs the Info system -on the Summary node of the Calc manual. @xref{Summary}. The @kbd{C-x * s} -key is equivalent to @kbd{h s}. - -@kindex h k -@pindex calc-describe-key -The @kbd{h k} (@code{calc-describe-key}) command looks up a key -sequence in the Calc manual. For example, @kbd{h k H a S} looks -up the documentation on the @kbd{H a S} (@code{calc-solve-for}) -command. This works by looking up the textual description of -the key(s) in the Key Index of the manual, then jumping to the -node indicated by the index. - -Most Calc commands do not have traditional Emacs documentation -strings, since the @kbd{h k} command is both more convenient and -more instructive. This means the regular Emacs @kbd{C-h k} -(@code{describe-key}) command will not be useful for Calc keystrokes. - -@kindex h c -@pindex calc-describe-key-briefly -The @kbd{h c} (@code{calc-describe-key-briefly}) command reads a -key sequence and displays a brief one-line description of it at -the bottom of the screen. It looks for the key sequence in the -Summary node of the Calc manual; if it doesn't find the sequence -there, it acts just like its regular Emacs counterpart @kbd{C-h c} -(@code{describe-key-briefly}). For example, @kbd{h c H a S} -gives the description: - -@smallexample -H a S runs calc-solve-for: a `H a S' v => fsolve(a,v) (?=notes) -@end smallexample - -@noindent -which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for} -takes a value @expr{a} from the stack, prompts for a value @expr{v}, -then applies the algebraic function @code{fsolve} to these values. -The @samp{?=notes} message means you can now type @kbd{?} to see -additional notes from the summary that apply to this command. - -@kindex h f -@pindex calc-describe-function -The @kbd{h f} (@code{calc-describe-function}) command looks up an -algebraic function or a command name in the Calc manual. Enter an -algebraic function name to look up that function in the Function -Index or enter a command name beginning with @samp{calc-} to look it -up in the Command Index. This command will also look up operator -symbols that can appear in algebraic formulas, like @samp{%} and -@samp{=>}. - -@kindex h v -@pindex calc-describe-variable -The @kbd{h v} (@code{calc-describe-variable}) command looks up a -variable in the Calc manual. Enter a variable name like @code{pi} or -@code{PlotRejects}. - -@kindex h b -@pindex describe-bindings -The @kbd{h b} (@code{calc-describe-bindings}) command is just like -@kbd{C-h b}, except that only local (Calc-related) key bindings are -listed. - -@kindex h n -The @kbd{h n} or @kbd{h C-n} (@code{calc-view-news}) command displays -the ``news'' or change history of Calc. This is kept in the file -@file{README}, which Calc looks for in the same directory as the Calc -source files. - -@kindex h C-c -@kindex h C-d -@kindex h C-w -The @kbd{h C-c}, @kbd{h C-d}, and @kbd{h C-w} keys display copying, -distribution, and warranty information about Calc. These work by -pulling up the appropriate parts of the ``Copying'' or ``Reporting -Bugs'' sections of the manual. - -@node Stack Basics, Numeric Entry, Help Commands, Introduction -@section Stack Basics - -@noindent -@cindex Stack basics -@c [fix-tut RPN Calculations and the Stack] -Calc uses RPN notation. If you are not familiar with RPN, @pxref{RPN -Tutorial}. - -To add the numbers 1 and 2 in Calc you would type the keys: -@kbd{1 @key{RET} 2 +}. -(@key{RET} corresponds to the @key{ENTER} key on most calculators.) -The first three keystrokes ``push'' the numbers 1 and 2 onto the stack. The -@kbd{+} key always ``pops'' the top two numbers from the stack, adds them, -and pushes the result (3) back onto the stack. This number is ready for -further calculations: @kbd{5 -} pushes 5 onto the stack, then pops the -3 and 5, subtracts them, and pushes the result (@mathit{-2}). - -Note that the ``top'' of the stack actually appears at the @emph{bottom} -of the buffer. A line containing a single @samp{.} character signifies -the end of the buffer; Calculator commands operate on the number(s) -directly above this line. The @kbd{d t} (@code{calc-truncate-stack}) -command allows you to move the @samp{.} marker up and down in the stack; -@pxref{Truncating the Stack}. - -@kindex d l -@pindex calc-line-numbering -Stack elements are numbered consecutively, with number 1 being the top of -the stack. These line numbers are ordinarily displayed on the lefthand side -of the window. The @kbd{d l} (@code{calc-line-numbering}) command controls -whether these numbers appear. (Line numbers may be turned off since they -slow the Calculator down a bit and also clutter the display.) - -@kindex o -@pindex calc-realign -The unshifted letter @kbd{o} (@code{calc-realign}) command repositions -the cursor to its top-of-stack ``home'' position. It also undoes any -horizontal scrolling in the window. If you give it a numeric prefix -argument, it instead moves the cursor to the specified stack element. - -The @key{RET} (or equivalent @key{SPC}) key is only required to separate -two consecutive numbers. -(After all, if you typed @kbd{1 2} by themselves the Calculator -would enter the number 12.) If you press @key{RET} or @key{SPC} @emph{not} -right after typing a number, the key duplicates the number on the top of -the stack. @kbd{@key{RET} *} is thus a handy way to square a number. - -The @key{DEL} key pops and throws away the top number on the stack. -The @key{TAB} key swaps the top two objects on the stack. -@xref{Stack and Trail}, for descriptions of these and other stack-related -commands. - -@node Numeric Entry, Algebraic Entry, Stack Basics, Introduction -@section Numeric Entry - -@noindent -@kindex 0-9 -@kindex . -@kindex e -@cindex Numeric entry -@cindex Entering numbers -Pressing a digit or other numeric key begins numeric entry using the -minibuffer. The number is pushed on the stack when you press the @key{RET} -or @key{SPC} keys. If you press any other non-numeric key, the number is -pushed onto the stack and the appropriate operation is performed. If -you press a numeric key which is not valid, the key is ignored. - -@cindex Minus signs -@cindex Negative numbers, entering -@kindex _ -There are three different concepts corresponding to the word ``minus,'' -typified by @expr{a-b} (subtraction), @expr{-x} -(change-sign), and @expr{-5} (negative number). Calc uses three -different keys for these operations, respectively: -@kbd{-}, @kbd{n}, and @kbd{_} (the underscore). The @kbd{-} key subtracts -the two numbers on the top of the stack. The @kbd{n} key changes the sign -of the number on the top of the stack or the number currently being entered. -The @kbd{_} key begins entry of a negative number or changes the sign of -the number currently being entered. The following sequences all enter the -number @mathit{-5} onto the stack: @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}}, -@kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}. - -Some other keys are active during numeric entry, such as @kbd{#} for -non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms. -These notations are described later in this manual with the corresponding -data types. @xref{Data Types}. - -During numeric entry, the only editing key available is @key{DEL}. - -@node Algebraic Entry, Quick Calculator, Numeric Entry, Introduction -@section Algebraic Entry - -@noindent -@kindex ' -@pindex calc-algebraic-entry -@cindex Algebraic notation -@cindex Formulas, entering -Calculations can also be entered in algebraic form. This is accomplished -by typing the apostrophe key, ', followed by the expression in -standard format: - -@example -' 2+3*4 @key{RET}. -@end example - -@noindent -This will compute -@texline @math{2+(3\times4) = 14} -@infoline @expr{2+(3*4) = 14} -and push it on the stack. If you wish you can -ignore the RPN aspect of Calc altogether and simply enter algebraic -expressions in this way. You may want to use @key{DEL} every so often to -clear previous results off the stack. - -You can press the apostrophe key during normal numeric entry to switch -the half-entered number into Algebraic entry mode. One reason to do this -would be to use the full Emacs cursor motion and editing keys, which are -available during algebraic entry but not during numeric entry. - -In the same vein, during either numeric or algebraic entry you can -press @kbd{`} (backquote) to switch to @code{calc-edit} mode, where -you complete your half-finished entry in a separate buffer. -@xref{Editing Stack Entries}. - -@kindex m a -@pindex calc-algebraic-mode -@cindex Algebraic Mode -If you prefer algebraic entry, you can use the command @kbd{m a} -(@code{calc-algebraic-mode}) to set Algebraic mode. In this mode, -digits and other keys that would normally start numeric entry instead -start full algebraic entry; as long as your formula begins with a digit -you can omit the apostrophe. Open parentheses and square brackets also -begin algebraic entry. You can still do RPN calculations in this mode, -but you will have to press @key{RET} to terminate every number: -@kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same -thing as @kbd{2*3+4 @key{RET}}. - -@cindex Incomplete Algebraic Mode -If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a} -command, it enables Incomplete Algebraic mode; this is like regular -Algebraic mode except that it applies to the @kbd{(} and @kbd{[} keys -only. Numeric keys still begin a numeric entry in this mode. - -@kindex m t -@pindex calc-total-algebraic-mode -@cindex Total Algebraic Mode -The @kbd{m t} (@code{calc-total-algebraic-mode}) gives you an even -stronger algebraic-entry mode, in which @emph{all} regular letter and -punctuation keys begin algebraic entry. Use this if you prefer typing -@w{@kbd{sqrt( )}} instead of @kbd{Q}, @w{@kbd{factor( )}} instead of -@kbd{a f}, and so on. To type regular Calc commands when you are in -Total Algebraic mode, hold down the @key{META} key. Thus @kbd{M-q} -is the command to quit Calc, @kbd{M-p} sets the precision, and -@kbd{M-m t} (or @kbd{M-m M-t}, if you prefer) turns Total Algebraic -mode back off again. Meta keys also terminate algebraic entry, so -that @kbd{2+3 M-S} is equivalent to @kbd{2+3 @key{RET} M-S}. The symbol -@samp{Alg*} will appear in the mode line whenever you are in this mode. - -Pressing @kbd{'} (the apostrophe) a second time re-enters the previous -algebraic formula. You can then use the normal Emacs editing keys to -modify this formula to your liking before pressing @key{RET}. - -@kindex $ -@cindex Formulas, referring to stack -Within a formula entered from the keyboard, the symbol @kbd{$} -represents the number on the top of the stack. If an entered formula -contains any @kbd{$} characters, the Calculator replaces the top of -stack with that formula rather than simply pushing the formula onto the -stack. Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2 -@key{RET}} replaces it with 6. Note that the @kbd{$} key always -initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the -first character in the new formula. - -Higher stack elements can be accessed from an entered formula with the -symbols @kbd{$$}, @kbd{$$$}, and so on. The number of stack elements -removed (to be replaced by the entered values) equals the number of dollar -signs in the longest such symbol in the formula. For example, @samp{$$+$$$} -adds the second and third stack elements, replacing the top three elements -with the answer. (All information about the top stack element is thus lost -since no single @samp{$} appears in this formula.) - -A slightly different way to refer to stack elements is with a dollar -sign followed by a number: @samp{$1}, @samp{$2}, and so on are much -like @samp{$}, @samp{$$}, etc., except that stack entries referred -to numerically are not replaced by the algebraic entry. That is, while -@samp{$+1} replaces 5 on the stack with 6, @samp{$1+1} leaves the 5 -on the stack and pushes an additional 6. - -If a sequence of formulas are entered separated by commas, each formula -is pushed onto the stack in turn. For example, @samp{1,2,3} pushes -those three numbers onto the stack (leaving the 3 at the top), and -@samp{$+1,$-1} replaces a 5 on the stack with 4 followed by 6. Also, -@samp{$,$$} exchanges the top two elements of the stack, just like the -@key{TAB} key. - -You can finish an algebraic entry with @kbd{M-=} or @kbd{M-@key{RET}} instead -of @key{RET}. This uses @kbd{=} to evaluate the variables in each -formula that goes onto the stack. (Thus @kbd{' pi @key{RET}} pushes -the variable @samp{pi}, but @kbd{' pi M-@key{RET}} pushes 3.1415.) - -If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j}) -instead of @key{RET}, Calc disables the default simplifications -(as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry -is being pushed on the stack. Thus @kbd{' 1+2 @key{RET}} pushes 3 -on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @expr{1+2}; -you might then press @kbd{=} when it is time to evaluate this formula. - -@node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction -@section ``Quick Calculator'' Mode - -@noindent -@kindex C-x * q -@pindex quick-calc -@cindex Quick Calculator -There is another way to invoke the Calculator if all you need to do -is make one or two quick calculations. Type @kbd{C-x * q} (or -@kbd{M-x quick-calc}), then type any formula as an algebraic entry. -The Calculator will compute the result and display it in the echo -area, without ever actually putting up a Calc window. - -You can use the @kbd{$} character in a Quick Calculator formula to -refer to the previous Quick Calculator result. Older results are -not retained; the Quick Calculator has no effect on the full -Calculator's stack or trail. If you compute a result and then -forget what it was, just run @code{C-x * q} again and enter -@samp{$} as the formula. - -If this is the first time you have used the Calculator in this Emacs -session, the @kbd{C-x * q} command will create the @code{*Calculator*} -buffer and perform all the usual initializations; it simply will -refrain from putting that buffer up in a new window. The Quick -Calculator refers to the @code{*Calculator*} buffer for all mode -settings. Thus, for example, to set the precision that the Quick -Calculator uses, simply run the full Calculator momentarily and use -the regular @kbd{p} command. - -If you use @code{C-x * q} from inside the Calculator buffer, the -effect is the same as pressing the apostrophe key (algebraic entry). - -The result of a Quick calculation is placed in the Emacs ``kill ring'' -as well as being displayed. A subsequent @kbd{C-y} command will -yank the result into the editing buffer. You can also use this -to yank the result into the next @kbd{C-x * q} input line as a more -explicit alternative to @kbd{$} notation, or to yank the result -into the Calculator stack after typing @kbd{C-x * c}. - -If you finish your formula by typing @key{LFD} (or @kbd{C-j}) instead -of @key{RET}, the result is inserted immediately into the current -buffer rather than going into the kill ring. - -Quick Calculator results are actually evaluated as if by the @kbd{=} -key (which replaces variable names by their stored values, if any). -If the formula you enter is an assignment to a variable using the -@samp{:=} operator, say, @samp{foo := 2 + 3} or @samp{foo := foo + 1}, -then the result of the evaluation is stored in that Calc variable. -@xref{Store and Recall}. - -If the result is an integer and the current display radix is decimal, -the number will also be displayed in hex, octal and binary formats. If -the integer is in the range from 1 to 126, it will also be displayed as -an ASCII character. - -For example, the quoted character @samp{"x"} produces the vector -result @samp{[120]} (because 120 is the ASCII code of the lower-case -`x'; @pxref{Strings}). Since this is a vector, not an integer, it -is displayed only according to the current mode settings. But -running Quick Calc again and entering @samp{120} will produce the -result @samp{120 (16#78, 8#170, x)} which shows the number in its -decimal, hexadecimal, octal, and ASCII forms. - -Please note that the Quick Calculator is not any faster at loading -or computing the answer than the full Calculator; the name ``quick'' -merely refers to the fact that it's much less hassle to use for -small calculations. - -@node Prefix Arguments, Undo, Quick Calculator, Introduction -@section Numeric Prefix Arguments - -@noindent -Many Calculator commands use numeric prefix arguments. Some, such as -@kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of -the prefix argument or use a default if you don't use a prefix. -Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument -and prompt for a number if you don't give one as a prefix. - -As a rule, stack-manipulation commands accept a numeric prefix argument -which is interpreted as an index into the stack. A positive argument -operates on the top @var{n} stack entries; a negative argument operates -on the @var{n}th stack entry in isolation; and a zero argument operates -on the entire stack. - -Most commands that perform computations (such as the arithmetic and -scientific functions) accept a numeric prefix argument that allows the -operation to be applied across many stack elements. For unary operations -(that is, functions of one argument like absolute value or complex -conjugate), a positive prefix argument applies that function to the top -@var{n} stack entries simultaneously, and a negative argument applies it -to the @var{n}th stack entry only. For binary operations (functions of -two arguments like addition, GCD, and vector concatenation), a positive -prefix argument ``reduces'' the function across the top @var{n} -stack elements (for example, @kbd{C-u 5 +} sums the top 5 stack entries; -@pxref{Reducing and Mapping}), and a negative argument maps the next-to-top -@var{n} stack elements with the top stack element as a second argument -(for example, @kbd{7 c-u -5 +} adds 7 to the top 5 stack elements). -This feature is not available for operations which use the numeric prefix -argument for some other purpose. - -Numeric prefixes are specified the same way as always in Emacs: Press -a sequence of @key{META}-digits, or press @key{ESC} followed by digits, -or press @kbd{C-u} followed by digits. Some commands treat plain -@kbd{C-u} (without any actual digits) specially. - -@kindex ~ -@pindex calc-num-prefix -You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the -top of the stack and enter it as the numeric prefix for the next command. -For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate -(silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2 -to the fourth power and set the precision to that value. - -Conversely, if you have typed a numeric prefix argument the @kbd{~} key -pushes it onto the stack in the form of an integer. - -@node Undo, Error Messages, Prefix Arguments, Introduction -@section Undoing Mistakes - -@noindent -@kindex U -@kindex C-_ -@pindex calc-undo -@cindex Mistakes, undoing -@cindex Undoing mistakes -@cindex Errors, undoing -The shift-@kbd{U} key (@code{calc-undo}) undoes the most recent operation. -If that operation added or dropped objects from the stack, those objects -are removed or restored. If it was a ``store'' operation, you are -queried whether or not to restore the variable to its original value. -The @kbd{U} key may be pressed any number of times to undo successively -farther back in time; with a numeric prefix argument it undoes a -specified number of operations. The undo history is cleared only by the -@kbd{q} (@code{calc-quit}) command. (Recall that @kbd{C-x * c} is -synonymous with @code{calc-quit} while inside the Calculator; this -also clears the undo history.) - -Currently the mode-setting commands (like @code{calc-precision}) are not -undoable. You can undo past a point where you changed a mode, but you -will need to reset the mode yourself. - -@kindex D -@pindex calc-redo -@cindex Redoing after an Undo -The shift-@kbd{D} key (@code{calc-redo}) redoes an operation that was -mistakenly undone. Pressing @kbd{U} with a negative prefix argument is -equivalent to executing @code{calc-redo}. You can redo any number of -times, up to the number of recent consecutive undo commands. Redo -information is cleared whenever you give any command that adds new undo -information, i.e., if you undo, then enter a number on the stack or make -any other change, then it will be too late to redo. - -@kindex M-@key{RET} -@pindex calc-last-args -@cindex Last-arguments feature -@cindex Arguments, restoring -The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that -it restores the arguments of the most recent command onto the stack; -however, it does not remove the result of that command. Given a numeric -prefix argument, this command applies to the @expr{n}th most recent -command which removed items from the stack; it pushes those items back -onto the stack. - -The @kbd{K} (@code{calc-keep-args}) command provides a related function -to @kbd{M-@key{RET}}. @xref{Stack and Trail}. - -It is also possible to recall previous results or inputs using the trail. -@xref{Trail Commands}. - -The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}. - -@node Error Messages, Multiple Calculators, Undo, Introduction -@section Error Messages - -@noindent -@kindex w -@pindex calc-why -@cindex Errors, messages -@cindex Why did an error occur? -Many situations that would produce an error message in other calculators -simply create unsimplified formulas in the Emacs Calculator. For example, -@kbd{1 @key{RET} 0 /} pushes the formula @expr{1 / 0}; @w{@kbd{0 L}} pushes -the formula @samp{ln(0)}. Floating-point overflow and underflow are also -reasons for this to happen. - -When a function call must be left in symbolic form, Calc usually -produces a message explaining why. Messages that are probably -surprising or indicative of user errors are displayed automatically. -Other messages are simply kept in Calc's memory and are displayed only -if you type @kbd{w} (@code{calc-why}). You can also press @kbd{w} if -the same computation results in several messages. (The first message -will end with @samp{[w=more]} in this case.) - -@kindex d w -@pindex calc-auto-why -The @kbd{d w} (@code{calc-auto-why}) command controls when error messages -are displayed automatically. (Calc effectively presses @kbd{w} for you -after your computation finishes.) By default, this occurs only for -``important'' messages. The other possible modes are to report -@emph{all} messages automatically, or to report none automatically (so -that you must always press @kbd{w} yourself to see the messages). - -@node Multiple Calculators, Troubleshooting Commands, Error Messages, Introduction -@section Multiple Calculators - -@noindent -@pindex another-calc -It is possible to have any number of Calc mode buffers at once. -Usually this is done by executing @kbd{M-x another-calc}, which -is similar to @kbd{C-x * c} except that if a @samp{*Calculator*} -buffer already exists, a new, independent one with a name of the -form @samp{*Calculator*<@var{n}>} is created. You can also use the -command @code{calc-mode} to put any buffer into Calculator mode, but -this would ordinarily never be done. - -The @kbd{q} (@code{calc-quit}) command does not destroy a Calculator buffer; -it only closes its window. Use @kbd{M-x kill-buffer} to destroy a -Calculator buffer. - -Each Calculator buffer keeps its own stack, undo list, and mode settings -such as precision, angular mode, and display formats. In Emacs terms, -variables such as @code{calc-stack} are buffer-local variables. The -global default values of these variables are used only when a new -Calculator buffer is created. The @code{calc-quit} command saves -the stack and mode settings of the buffer being quit as the new defaults. - -There is only one trail buffer, @samp{*Calc Trail*}, used by all -Calculator buffers. - -@node Troubleshooting Commands, , Multiple Calculators, Introduction -@section Troubleshooting Commands - -@noindent -This section describes commands you can use in case a computation -incorrectly fails or gives the wrong answer. - -@xref{Reporting Bugs}, if you find a problem that appears to be due -to a bug or deficiency in Calc. - -@menu -* Autoloading Problems:: -* Recursion Depth:: -* Caches:: -* Debugging Calc:: -@end menu - -@node Autoloading Problems, Recursion Depth, Troubleshooting Commands, Troubleshooting Commands -@subsection Autoloading Problems - -@noindent -The Calc program is split into many component files; components are -loaded automatically as you use various commands that require them. -Occasionally Calc may lose track of when a certain component is -necessary; typically this means you will type a command and it won't -work because some function you've never heard of was undefined. - -@kindex C-x * L -@pindex calc-load-everything -If this happens, the easiest workaround is to type @kbd{C-x * L} -(@code{calc-load-everything}) to force all the parts of Calc to be -loaded right away. This will cause Emacs to take up a lot more -memory than it would otherwise, but it's guaranteed to fix the problem. - -@node Recursion Depth, Caches, Autoloading Problems, Troubleshooting Commands -@subsection Recursion Depth - -@noindent -@kindex M -@kindex I M -@pindex calc-more-recursion-depth -@pindex calc-less-recursion-depth -@cindex Recursion depth -@cindex ``Computation got stuck'' message -@cindex @code{max-lisp-eval-depth} -@cindex @code{max-specpdl-size} -Calc uses recursion in many of its calculations. Emacs Lisp keeps a -variable @code{max-lisp-eval-depth} which limits the amount of recursion -possible in an attempt to recover from program bugs. If a calculation -ever halts incorrectly with the message ``Computation got stuck or -ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth}) -to increase this limit. (Of course, this will not help if the -calculation really did get stuck due to some problem inside Calc.) - -The limit is always increased (multiplied) by a factor of two. There -is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which -decreases this limit by a factor of two, down to a minimum value of 200. -The default value is 1000. - -These commands also double or halve @code{max-specpdl-size}, another -internal Lisp recursion limit. The minimum value for this limit is 600. - -@node Caches, Debugging Calc, Recursion Depth, Troubleshooting Commands -@subsection Caches - -@noindent -@cindex Caches -@cindex Flushing caches -Calc saves certain values after they have been computed once. For -example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the -constant @cpi{} to about 20 decimal places; if the current precision -is greater than this, it will recompute @cpi{} using a series -approximation. This value will not need to be recomputed ever again -unless you raise the precision still further. Many operations such as -logarithms and sines make use of similarly cached values such as -@cpiover{4} and -@texline @math{\ln 2}. -@infoline @expr{ln(2)}. -The visible effect of caching is that -high-precision computations may seem to do extra work the first time. -Other things cached include powers of two (for the binary arithmetic -functions), matrix inverses and determinants, symbolic integrals, and -data points computed by the graphing commands. - -@pindex calc-flush-caches -If you suspect a Calculator cache has become corrupt, you can use the -@code{calc-flush-caches} command to reset all caches to the empty state. -(This should only be necessary in the event of bugs in the Calculator.) -The @kbd{C-x * 0} (with the zero key) command also resets caches along -with all other aspects of the Calculator's state. - -@node Debugging Calc, , Caches, Troubleshooting Commands -@subsection Debugging Calc - -@noindent -A few commands exist to help in the debugging of Calc commands. -@xref{Programming}, to see the various ways that you can write -your own Calc commands. - -@kindex Z T -@pindex calc-timing -The @kbd{Z T} (@code{calc-timing}) command turns on and off a mode -in which the timing of slow commands is reported in the Trail. -Any Calc command that takes two seconds or longer writes a line -to the Trail showing how many seconds it took. This value is -accurate only to within one second. - -All steps of executing a command are included; in particular, time -taken to format the result for display in the stack and trail is -counted. Some prompts also count time taken waiting for them to -be answered, while others do not; this depends on the exact -implementation of the command. For best results, if you are timing -a sequence that includes prompts or multiple commands, define a -keyboard macro to run the whole sequence at once. Calc's @kbd{X} -command (@pxref{Keyboard Macros}) will then report the time taken -to execute the whole macro. - -Another advantage of the @kbd{X} command is that while it is -executing, the stack and trail are not updated from step to step. -So if you expect the output of your test sequence to leave a result -that may take a long time to format and you don't wish to count -this formatting time, end your sequence with a @key{DEL} keystroke -to clear the result from the stack. When you run the sequence with -@kbd{X}, Calc will never bother to format the large result. - -Another thing @kbd{Z T} does is to increase the Emacs variable -@code{gc-cons-threshold} to a much higher value (two million; the -usual default in Calc is 250,000) for the duration of each command. -This generally prevents garbage collection during the timing of -the command, though it may cause your Emacs process to grow -abnormally large. (Garbage collection time is a major unpredictable -factor in the timing of Emacs operations.) - -Another command that is useful when debugging your own Lisp -extensions to Calc is @kbd{M-x calc-pass-errors}, which disables -the error handler that changes the ``@code{max-lisp-eval-depth} -exceeded'' message to the much more friendly ``Computation got -stuck or ran too long.'' This handler interferes with the Emacs -Lisp debugger's @code{debug-on-error} mode. Errors are reported -in the handler itself rather than at the true location of the -error. After you have executed @code{calc-pass-errors}, Lisp -errors will be reported correctly but the user-friendly message -will be lost. - -@node Data Types, Stack and Trail, Introduction, Top -@chapter Data Types - -@noindent -This chapter discusses the various types of objects that can be placed -on the Calculator stack, how they are displayed, and how they are -entered. (@xref{Data Type Formats}, for information on how these data -types are represented as underlying Lisp objects.) - -Integers, fractions, and floats are various ways of describing real -numbers. HMS forms also for many purposes act as real numbers. These -types can be combined to form complex numbers, modulo forms, error forms, -or interval forms. (But these last four types cannot be combined -arbitrarily:@: error forms may not contain modulo forms, for example.) -Finally, all these types of numbers may be combined into vectors, -matrices, or algebraic formulas. - -@menu -* Integers:: The most basic data type. -* Fractions:: This and above are called @dfn{rationals}. -* Floats:: This and above are called @dfn{reals}. -* Complex Numbers:: This and above are called @dfn{numbers}. -* Infinities:: -* Vectors and Matrices:: -* Strings:: -* HMS Forms:: -* Date Forms:: -* Modulo Forms:: -* Error Forms:: -* Interval Forms:: -* Incomplete Objects:: -* Variables:: -* Formulas:: -@end menu - -@node Integers, Fractions, Data Types, Data Types -@section Integers - -@noindent -@cindex Integers -The Calculator stores integers to arbitrary precision. Addition, -subtraction, and multiplication of integers always yields an exact -integer result. (If the result of a division or exponentiation of -integers is not an integer, it is expressed in fractional or -floating-point form according to the current Fraction mode. -@xref{Fraction Mode}.) - -A decimal integer is represented as an optional sign followed by a -sequence of digits. Grouping (@pxref{Grouping Digits}) can be used to -insert a comma at every third digit for display purposes, but you -must not type commas during the entry of numbers. - -@kindex # -A non-decimal integer is represented as an optional sign, a radix -between 2 and 36, a @samp{#} symbol, and one or more digits. For radix 11 -and above, the letters A through Z (upper- or lower-case) count as -digits and do not terminate numeric entry mode. @xref{Radix Modes}, for how -to set the default radix for display of integers. Numbers of any radix -may be entered at any time. If you press @kbd{#} at the beginning of a -number, the current display radix is used. - -@node Fractions, Floats, Integers, Data Types -@section Fractions - -@noindent -@cindex Fractions -A @dfn{fraction} is a ratio of two integers. Fractions are traditionally -written ``2/3'' but Calc uses the notation @samp{2:3}. (The @kbd{/} key -performs RPN division; the following two sequences push the number -@samp{2:3} on the stack: @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /} -assuming Fraction mode has been enabled.) -When the Calculator produces a fractional result it always reduces it to -simplest form, which may in fact be an integer. - -Fractions may also be entered in a three-part form, where @samp{2:3:4} -represents two-and-three-quarters. @xref{Fraction Formats}, for fraction -display formats. - -Non-decimal fractions are entered and displayed as -@samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part -form). The numerator and denominator always use the same radix. - -@node Floats, Complex Numbers, Fractions, Data Types -@section Floats - -@noindent -@cindex Floating-point numbers -A floating-point number or @dfn{float} is a number stored in scientific -notation. The number of significant digits in the fractional part is -governed by the current floating precision (@pxref{Precision}). The -range of acceptable values is from -@texline @math{10^{-3999999}} -@infoline @expr{10^-3999999} -(inclusive) to -@texline @math{10^{4000000}} -@infoline @expr{10^4000000} -(exclusive), plus the corresponding negative values and zero. - -Calculations that would exceed the allowable range of values (such -as @samp{exp(exp(20))}) are left in symbolic form by Calc. The -messages ``floating-point overflow'' or ``floating-point underflow'' -indicate that during the calculation a number would have been produced -that was too large or too close to zero, respectively, to be represented -by Calc. This does not necessarily mean the final result would have -overflowed, just that an overflow occurred while computing the result. -(In fact, it could report an underflow even though the final result -would have overflowed!) - -If a rational number and a float are mixed in a calculation, the result -will in general be expressed as a float. Commands that require an integer -value (such as @kbd{k g} [@code{gcd}]) will also accept integer-valued -floats, i.e., floating-point numbers with nothing after the decimal point. - -Floats are identified by the presence of a decimal point and/or an -exponent. In general a float consists of an optional sign, digits -including an optional decimal point, and an optional exponent consisting -of an @samp{e}, an optional sign, and up to seven exponent digits. -For example, @samp{23.5e-2} is 23.5 times ten to the minus-second power, -or 0.235. - -Floating-point numbers are normally displayed in decimal notation with -all significant figures shown. Exceedingly large or small numbers are -displayed in scientific notation. Various other display options are -available. @xref{Float Formats}. - -@cindex Accuracy of calculations -Floating-point numbers are stored in decimal, not binary. The result -of each operation is rounded to the nearest value representable in the -number of significant digits specified by the current precision, -rounding away from zero in the case of a tie. Thus (in the default -display mode) what you see is exactly what you get. Some operations such -as square roots and transcendental functions are performed with several -digits of extra precision and then rounded down, in an effort to make the -final result accurate to the full requested precision. However, -accuracy is not rigorously guaranteed. If you suspect the validity of a -result, try doing the same calculation in a higher precision. The -Calculator's arithmetic is not intended to be IEEE-conformant in any -way. - -While floats are always @emph{stored} in decimal, they can be entered -and displayed in any radix just like integers and fractions. Since a -float that is entered in a radix other that 10 will be converted to -decimal, the number that Calc stores may not be exactly the number that -was entered, it will be the closest decimal approximation given the -current precison. The notation @samp{@var{radix}#@var{ddd}.@var{ddd}} -is a floating-point number whose digits are in the specified radix. -Note that the @samp{.} is more aptly referred to as a ``radix point'' -than as a decimal point in this case. The number @samp{8#123.4567} is -defined as @samp{8#1234567 * 8^-4}. If the radix is 14 or less, you can -use @samp{e} notation to write a non-decimal number in scientific -notation. The exponent is written in decimal, and is considered to be a -power of the radix: @samp{8#1234567e-4}. If the radix is 15 or above, -the letter @samp{e} is a digit, so scientific notation must be written -out, e.g., @samp{16#123.4567*16^2}. The first two exercises of the -Modes Tutorial explore some of the properties of non-decimal floats. - -@node Complex Numbers, Infinities, Floats, Data Types -@section Complex Numbers - -@noindent -@cindex Complex numbers -There are two supported formats for complex numbers: rectangular and -polar. The default format is rectangular, displayed in the form -@samp{(@var{real},@var{imag})} where @var{real} is the real part and -@var{imag} is the imaginary part, each of which may be any real number. -Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i} -notation; @pxref{Complex Formats}. - -Polar complex numbers are displayed in the form -@texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}' -@infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}' -where @var{r} is the nonnegative magnitude and -@texline @math{\theta} -@infoline @var{theta} -is the argument or phase angle. The range of -@texline @math{\theta} -@infoline @var{theta} -depends on the current angular mode (@pxref{Angular Modes}); it is -generally between @mathit{-180} and @mathit{+180} degrees or the equivalent range -in radians. - -Complex numbers are entered in stages using incomplete objects. -@xref{Incomplete Objects}. - -Operations on rectangular complex numbers yield rectangular complex -results, and similarly for polar complex numbers. Where the two types -are mixed, or where new complex numbers arise (as for the square root of -a negative real), the current @dfn{Polar mode} is used to determine the -type. @xref{Polar Mode}. - -A complex result in which the imaginary part is zero (or the phase angle -is 0 or 180 degrees or @cpi{} radians) is automatically converted to a real -number. - -@node Infinities, Vectors and Matrices, Complex Numbers, Data Types -@section Infinities - -@noindent -@cindex Infinity -@cindex @code{inf} variable -@cindex @code{uinf} variable -@cindex @code{nan} variable -@vindex inf -@vindex uinf -@vindex nan -The word @code{inf} represents the mathematical concept of @dfn{infinity}. -Calc actually has three slightly different infinity-like values: -@code{inf}, @code{uinf}, and @code{nan}. These are just regular -variable names (@pxref{Variables}); you should avoid using these -names for your own variables because Calc gives them special -treatment. Infinities, like all variable names, are normally -entered using algebraic entry. - -Mathematically speaking, it is not rigorously correct to treat -``infinity'' as if it were a number, but mathematicians often do -so informally. When they say that @samp{1 / inf = 0}, what they -really mean is that @expr{1 / x}, as @expr{x} becomes larger and -larger, becomes arbitrarily close to zero. So you can imagine -that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x} -would go all the way to zero. Similarly, when they say that -@samp{exp(inf) = inf}, they mean that -@texline @math{e^x} -@infoline @expr{exp(x)} -grows without bound as @expr{x} grows. The symbol @samp{-inf} likewise -stands for an infinitely negative real value; for example, we say that -@samp{exp(-inf) = 0}. You can have an infinity pointing in any -direction on the complex plane: @samp{sqrt(-inf) = i inf}. - -The same concept of limits can be used to define @expr{1 / 0}. We -really want the value that @expr{1 / x} approaches as @expr{x} -approaches zero. But if all we have is @expr{1 / 0}, we can't -tell which direction @expr{x} was coming from. If @expr{x} was -positive and decreasing toward zero, then we should say that -@samp{1 / 0 = inf}. But if @expr{x} was negative and increasing -toward zero, the answer is @samp{1 / 0 = -inf}. In fact, @expr{x} -could be an imaginary number, giving the answer @samp{i inf} or -@samp{-i inf}. Calc uses the special symbol @samp{uinf} to mean -@dfn{undirected infinity}, i.e., a value which is infinitely -large but with an unknown sign (or direction on the complex plane). - -Calc actually has three modes that say how infinities are handled. -Normally, infinities never arise from calculations that didn't -already have them. Thus, @expr{1 / 0} is treated simply as an -error and left unevaluated. The @kbd{m i} (@code{calc-infinite-mode}) -command (@pxref{Infinite Mode}) enables a mode in which -@expr{1 / 0} evaluates to @code{uinf} instead. There is also -an alternative type of infinite mode which says to treat zeros -as if they were positive, so that @samp{1 / 0 = inf}. While this -is less mathematically correct, it may be the answer you want in -some cases. - -Since all infinities are ``as large'' as all others, Calc simplifies, -e.g., @samp{5 inf} to @samp{inf}. Another example is -@samp{5 - inf = -inf}, where the @samp{-inf} is so large that -adding a finite number like five to it does not affect it. -Note that @samp{a - inf} also results in @samp{-inf}; Calc assumes -that variables like @code{a} always stand for finite quantities. -Just to show that infinities really are all the same size, -note that @samp{sqrt(inf) = inf^2 = exp(inf) = inf} in Calc's -notation. - -It's not so easy to define certain formulas like @samp{0 * inf} and -@samp{inf / inf}. Depending on where these zeros and infinities -came from, the answer could be literally anything. The latter -formula could be the limit of @expr{x / x} (giving a result of one), -or @expr{2 x / x} (giving two), or @expr{x^2 / x} (giving @code{inf}), -or @expr{x / x^2} (giving zero). Calc uses the symbol @code{nan} -to represent such an @dfn{indeterminate} value. (The name ``nan'' -comes from analogy with the ``NAN'' concept of IEEE standard -arithmetic; it stands for ``Not A Number.'' This is somewhat of a -misnomer, since @code{nan} @emph{does} stand for some number or -infinity, it's just that @emph{which} number it stands for -cannot be determined.) In Calc's notation, @samp{0 * inf = nan} -and @samp{inf / inf = nan}. A few other common indeterminate -expressions are @samp{inf - inf} and @samp{inf ^ 0}. Also, -@samp{0 / 0 = nan} if you have turned on Infinite mode -(as described above). - -Infinities are especially useful as parts of @dfn{intervals}. -@xref{Interval Forms}. - -@node Vectors and Matrices, Strings, Infinities, Data Types -@section Vectors and Matrices - -@noindent -@cindex Vectors -@cindex Plain vectors -@cindex Matrices -The @dfn{vector} data type is flexible and general. A vector is simply a -list of zero or more data objects. When these objects are numbers, the -whole is a vector in the mathematical sense. When these objects are -themselves vectors of equal (nonzero) length, the whole is a @dfn{matrix}. -A vector which is not a matrix is referred to here as a @dfn{plain vector}. - -A vector is displayed as a list of values separated by commas and enclosed -in square brackets: @samp{[1, 2, 3]}. Thus the following is a 2 row by -3 column matrix: @samp{[[1, 2, 3], [4, 5, 6]]}. Vectors, like complex -numbers, are entered as incomplete objects. @xref{Incomplete Objects}. -During algebraic entry, vectors are entered all at once in the usual -brackets-and-commas form. Matrices may be entered algebraically as nested -vectors, or using the shortcut notation @w{@samp{[1, 2, 3; 4, 5, 6]}}, -with rows separated by semicolons. The commas may usually be omitted -when entering vectors: @samp{[1 2 3]}. Curly braces may be used in -place of brackets: @samp{@{1, 2, 3@}}, but the commas are required in -this case. - -Traditional vector and matrix arithmetic is also supported; -@pxref{Basic Arithmetic} and @pxref{Matrix Functions}. -Many other operations are applied to vectors element-wise. For example, -the complex conjugate of a vector is a vector of the complex conjugates -of its elements. - -@ignore -@starindex -@end ignore -@tindex vec -Algebraic functions for building vectors include @samp{vec(a, b, c)} -to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an -@texline @math{n\times m} -@infoline @var{n}x@var{m} -matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers -from 1 to @samp{n}. - -@node Strings, HMS Forms, Vectors and Matrices, Data Types -@section Strings - -@noindent -@kindex " -@cindex Strings -@cindex Character strings -Character strings are not a special data type in the Calculator. -Rather, a string is represented simply as a vector all of whose -elements are integers in the range 0 to 255 (ASCII codes). You can -enter a string at any time by pressing the @kbd{"} key. Quotation -marks and backslashes are written @samp{\"} and @samp{\\}, respectively, -inside strings. Other notations introduced by backslashes are: - -@example -@group -\a 7 \^@@ 0 -\b 8 \^a-z 1-26 -\e 27 \^[ 27 -\f 12 \^\\ 28 -\n 10 \^] 29 -\r 13 \^^ 30 -\t 9 \^_ 31 - \^? 127 -@end group -@end example - -@noindent -Finally, a backslash followed by three octal digits produces any -character from its ASCII code. - -@kindex d " -@pindex calc-display-strings -Strings are normally displayed in vector-of-integers form. The -@w{@kbd{d "}} (@code{calc-display-strings}) command toggles a mode in -which any vectors of small integers are displayed as quoted strings -instead. - -The backslash notations shown above are also used for displaying -strings. Characters 128 and above are not translated by Calc; unless -you have an Emacs modified for 8-bit fonts, these will show up in -backslash-octal-digits notation. For characters below 32, and -for character 127, Calc uses the backslash-letter combination if -there is one, or otherwise uses a @samp{\^} sequence. - -The only Calc feature that uses strings is @dfn{compositions}; -@pxref{Compositions}. Strings also provide a convenient -way to do conversions between ASCII characters and integers. - -@ignore -@starindex -@end ignore -@tindex string -There is a @code{string} function which provides a different display -format for strings. Basically, @samp{string(@var{s})}, where @var{s} -is a vector of integers in the proper range, is displayed as the -corresponding string of characters with no surrounding quotation -marks or other modifications. Thus @samp{string("ABC")} (or -@samp{string([65 66 67])}) will look like @samp{ABC} on the stack. -This happens regardless of whether @w{@kbd{d "}} has been used. The -only way to turn it off is to use @kbd{d U} (unformatted language -mode) which will display @samp{string("ABC")} instead. - -Control characters are displayed somewhat differently by @code{string}. -Characters below 32, and character 127, are shown using @samp{^} notation -(same as shown above, but without the backslash). The quote and -backslash characters are left alone, as are characters 128 and above. - -@ignore -@starindex -@end ignore -@tindex bstring -The @code{bstring} function is just like @code{string} except that -the resulting string is breakable across multiple lines if it doesn't -fit all on one line. Potential break points occur at every space -character in the string. - -@node HMS Forms, Date Forms, Strings, Data Types -@section HMS Forms - -@noindent -@cindex Hours-minutes-seconds forms -@cindex Degrees-minutes-seconds forms -@dfn{HMS} stands for Hours-Minutes-Seconds; when used as an angular -argument, the interpretation is Degrees-Minutes-Seconds. All functions -that operate on angles accept HMS forms. These are interpreted as -degrees regardless of the current angular mode. It is also possible to -use HMS as the angular mode so that calculated angles are expressed in -degrees, minutes, and seconds. - -@kindex @@ -@ignore -@mindex @null -@end ignore -@kindex ' (HMS forms) -@ignore -@mindex @null -@end ignore -@kindex " (HMS forms) -@ignore -@mindex @null -@end ignore -@kindex h (HMS forms) -@ignore -@mindex @null -@end ignore -@kindex o (HMS forms) -@ignore -@mindex @null -@end ignore -@kindex m (HMS forms) -@ignore -@mindex @null -@end ignore -@kindex s (HMS forms) -The default format for HMS values is -@samp{@var{hours}@@ @var{mins}' @var{secs}"}. During entry, the letters -@samp{h} (for ``hours'') or -@samp{o} (approximating the ``degrees'' symbol) are accepted as well as -@samp{@@}, @samp{m} is accepted in place of @samp{'}, and @samp{s} is -accepted in place of @samp{"}. -The @var{hours} value is an integer (or integer-valued float). -The @var{mins} value is an integer or integer-valued float between 0 and 59. -The @var{secs} value is a real number between 0 (inclusive) and 60 -(exclusive). A positive HMS form is interpreted as @var{hours} + -@var{mins}/60 + @var{secs}/3600. A negative HMS form is interpreted -as @mathit{- @var{hours}} @mathit{-} @var{mins}/60 @mathit{-} @var{secs}/3600. -Display format for HMS forms is quite flexible. @xref{HMS Formats}. - -HMS forms can be added and subtracted. When they are added to numbers, -the numbers are interpreted according to the current angular mode. HMS -forms can also be multiplied and divided by real numbers. Dividing -two HMS forms produces a real-valued ratio of the two angles. - -@pindex calc-time -@cindex Time of day -Just for kicks, @kbd{M-x calc-time} pushes the current time of day on -the stack as an HMS form. - -@node Date Forms, Modulo Forms, HMS Forms, Data Types -@section Date Forms - -@noindent -@cindex Date forms -A @dfn{date form} represents a date and possibly an associated time. -Simple date arithmetic is supported: Adding a number to a date -produces a new date shifted by that many days; adding an HMS form to -a date shifts it by that many hours. Subtracting two date forms -computes the number of days between them (represented as a simple -number). Many other operations, such as multiplying two date forms, -are nonsensical and are not allowed by Calc. - -Date forms are entered and displayed enclosed in @samp{< >} brackets. -The default format is, e.g., @samp{} for dates, -or @samp{<3:32:20pm Wed Jan 9, 1991>} for dates with times. -Input is flexible; date forms can be entered in any of the usual -notations for dates and times. @xref{Date Formats}. - -Date forms are stored internally as numbers, specifically the number -of days since midnight on the morning of January 1 of the year 1 AD. -If the internal number is an integer, the form represents a date only; -if the internal number is a fraction or float, the form represents -a date and time. For example, @samp{<6:00am Wed Jan 9, 1991>} -is represented by the number 726842.25. The standard precision of -12 decimal digits is enough to ensure that a (reasonable) date and -time can be stored without roundoff error. - -If the current precision is greater than 12, date forms will keep -additional digits in the seconds position. For example, if the -precision is 15, the seconds will keep three digits after the -decimal point. Decreasing the precision below 12 may cause the -time part of a date form to become inaccurate. This can also happen -if astronomically high years are used, though this will not be an -issue in everyday (or even everymillennium) use. Note that date -forms without times are stored as exact integers, so roundoff is -never an issue for them. - -You can use the @kbd{v p} (@code{calc-pack}) and @kbd{v u} -(@code{calc-unpack}) commands to get at the numerical representation -of a date form. @xref{Packing and Unpacking}. - -Date forms can go arbitrarily far into the future or past. Negative -year numbers represent years BC. Calc uses a combination of the -Gregorian and Julian calendars, following the history of Great -Britain and the British colonies. This is the same calendar that -is used by the @code{cal} program in most Unix implementations. - -@cindex Julian calendar -@cindex Gregorian calendar -Some historical background: The Julian calendar was created by -Julius Caesar in the year 46 BC as an attempt to fix the gradual -drift caused by the lack of leap years in the calendar used -until that time. The Julian calendar introduced an extra day in -all years divisible by four. After some initial confusion, the -calendar was adopted around the year we call 8 AD. Some centuries -later it became apparent that the Julian year of 365.25 days was -itself not quite right. In 1582 Pope Gregory XIII introduced the -Gregorian calendar, which added the new rule that years divisible -by 100, but not by 400, were not to be considered leap years -despite being divisible by four. Many countries delayed adoption -of the Gregorian calendar because of religious differences; -in Britain it was put off until the year 1752, by which time -the Julian calendar had fallen eleven days behind the true -seasons. So the switch to the Gregorian calendar in early -September 1752 introduced a discontinuity: The day after -Sep 2, 1752 is Sep 14, 1752. Calc follows this convention. -To take another example, Russia waited until 1918 before -adopting the new calendar, and thus needed to remove thirteen -days (between Feb 1, 1918 and Feb 14, 1918). This means that -Calc's reckoning will be inconsistent with Russian history between -1752 and 1918, and similarly for various other countries. - -Today's timekeepers introduce an occasional ``leap second'' as -well, but Calc does not take these minor effects into account. -(If it did, it would have to report a non-integer number of days -between, say, @samp{<12:00am Mon Jan 1, 1900>} and -@samp{<12:00am Sat Jan 1, 2000>}.) - -Calc uses the Julian calendar for all dates before the year 1752, -including dates BC when the Julian calendar technically had not -yet been invented. Thus the claim that day number @mathit{-10000} is -called ``August 16, 28 BC'' should be taken with a grain of salt. - -Please note that there is no ``year 0''; the day before -@samp{} is @samp{}. These are -days 0 and @mathit{-1} respectively in Calc's internal numbering scheme. - -@cindex Julian day counting -Another day counting system in common use is, confusingly, also called -``Julian.'' The Julian day number is the numbers of days since -12:00 noon (GMT) on Jan 1, 4713 BC, which in Calc's scheme (in GMT) -is @mathit{-1721423.5} (recall that Calc starts at midnight instead -of noon). Thus to convert a Calc date code obtained by unpacking a -date form into a Julian day number, simply add 1721423.5 after -compensating for the time zone difference. The built-in @kbd{t J} -command performs this conversion for you. - -The Julian day number is based on the Julian cycle, which was invented -in 1583 by Joseph Justus Scaliger. Scaliger named it the Julian cycle -since it is involves the Julian calendar, but some have suggested that -Scaliger named it in honor of his father, Julius Caesar Scaliger. The -Julian cycle is based it on three other cycles: the indiction cycle, -the Metonic cycle, and the solar cycle. The indiction cycle is a 15 -year cycle originally used by the Romans for tax purposes but later -used to date medieval documents. The Metonic cycle is a 19 year -cycle; 19 years is close to being a common multiple of a solar year -and a lunar month, and so every 19 years the phases of the moon will -occur on the same days of the year. The solar cycle is a 28 year -cycle; the Julian calendar repeats itself every 28 years. The -smallest time period which contains multiples of all three cycles is -the least common multiple of 15 years, 19 years and 28 years, which -(since they're pairwise relatively prime) is -@texline @math{15\times 19\times 28 = 7980} years. -@infoline 15*19*28 = 7980 years. -This is the length of a Julian cycle. Working backwards, the previous -year in which all three cycles began was 4713 BC, and so Scalinger -chose that year as the beginning of a Julian cycle. Since at the time -there were no historical records from before 4713 BC, using this year -as a starting point had the advantage of avoiding negative year -numbers. In 1849, the astronomer John Herschel (son of William -Herschel) suggested using the number of days since the beginning of -the Julian cycle as an astronomical dating system; this idea was taken -up by other astronomers. (At the time, noon was the start of the -astronomical day. Herschel originally suggested counting the days -since Jan 1, 4713 BC at noon Alexandria time; this was later amended to -noon GMT.) Julian day numbering is largely used in astronomy. - -@cindex Unix time format -The Unix operating system measures time as an integer number of -seconds since midnight, Jan 1, 1970. To convert a Calc date -value into a Unix time stamp, first subtract 719164 (the code -for @samp{}), then multiply by 86400 (the number of -seconds in a day) and press @kbd{R} to round to the nearest -integer. If you have a date form, you can simply subtract the -day @samp{} instead of unpacking and subtracting -719164. Likewise, divide by 86400 and add @samp{} -to convert from Unix time to a Calc date form. (Note that -Unix normally maintains the time in the GMT time zone; you may -need to subtract five hours to get New York time, or eight hours -for California time. The same is usually true of Julian day -counts.) The built-in @kbd{t U} command performs these -conversions. - -@node Modulo Forms, Error Forms, Date Forms, Data Types -@section Modulo Forms - -@noindent -@cindex Modulo forms -A @dfn{modulo form} is a real number which is taken modulo (i.e., within -an integer multiple of) some value @var{M}. Arithmetic modulo @var{M} -often arises in number theory. Modulo forms are written -`@var{a} @tfn{mod} @var{M}', -where @var{a} and @var{M} are real numbers or HMS forms, and -@texline @math{0 \le a < M}. -@infoline @expr{0 <= a < @var{M}}. -In many applications @expr{a} and @expr{M} will be -integers but this is not required. - -@ignore -@mindex M -@end ignore -@kindex M (modulo forms) -@ignore -@mindex mod -@end ignore -@tindex mod (operator) -To create a modulo form during numeric entry, press the shift-@kbd{M} -key to enter the word @samp{mod}. As a special convenience, pressing -shift-@kbd{M} a second time automatically enters the value of @expr{M} -that was most recently used before. During algebraic entry, either -type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}). -Once again, pressing this a second time enters the current modulo. - -Modulo forms are not to be confused with the modulo operator @samp{%}. -The expression @samp{27 % 10} means to compute 27 modulo 10 to produce -the result 7. Further computations treat this 7 as just a regular integer. -The expression @samp{27 mod 10} produces the result @samp{7 mod 10}; -further computations with this value are again reduced modulo 10 so that -the result always lies in the desired range. - -When two modulo forms with identical @expr{M}'s are added or multiplied, -the Calculator simply adds or multiplies the values, then reduces modulo -@expr{M}. If one argument is a modulo form and the other a plain number, -the plain number is treated like a compatible modulo form. It is also -possible to raise modulo forms to powers; the result is the value raised -to the power, then reduced modulo @expr{M}. (When all values involved -are integers, this calculation is done much more efficiently than -actually computing the power and then reducing.) - -@cindex Modulo division -Two modulo forms `@var{a} @tfn{mod} @var{M}' and `@var{b} @tfn{mod} @var{M}' -can be divided if @expr{a}, @expr{b}, and @expr{M} are all -integers. The result is the modulo form which, when multiplied by -`@var{b} @tfn{mod} @var{M}', produces `@var{a} @tfn{mod} @var{M}'. If -there is no solution to this equation (which can happen only when -@expr{M} is non-prime), or if any of the arguments are non-integers, the -division is left in symbolic form. Other operations, such as square -roots, are not yet supported for modulo forms. (Note that, although -@w{`@tfn{(}@var{a} @tfn{mod} @var{M}@tfn{)^.5}'} will compute a ``modulo square root'' -in the sense of reducing -@texline @math{\sqrt a} -@infoline @expr{sqrt(a)} -modulo @expr{M}, this is not a useful definition from the -number-theoretical point of view.) - -It is possible to mix HMS forms and modulo forms. For example, an -HMS form modulo 24 could be used to manipulate clock times; an HMS -form modulo 360 would be suitable for angles. Making the modulo @expr{M} -also be an HMS form eliminates troubles that would arise if the angular -mode were inadvertently set to Radians, in which case -@w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo -24 radians! - -Modulo forms cannot have variables or formulas for components. If you -enter the formula @samp{(x + 2) mod 5}, Calc propagates the modulus -to each of the coefficients: @samp{(1 mod 5) x + (2 mod 5)}. - -You can use @kbd{v p} and @kbd{%} to modify modulo forms. -@xref{Packing and Unpacking}. @xref{Basic Arithmetic}. - -@ignore -@starindex -@end ignore -@tindex makemod -The algebraic function @samp{makemod(a, m)} builds the modulo form -@w{@samp{a mod m}}. - -@node Error Forms, Interval Forms, Modulo Forms, Data Types -@section Error Forms - -@noindent -@cindex Error forms -@cindex Standard deviations -An @dfn{error form} is a number with an associated standard -deviation, as in @samp{2.3 +/- 0.12}. The notation -@texline `@var{x} @tfn{+/-} @math{\sigma}' -@infoline `@var{x} @tfn{+/-} sigma' -stands for an uncertain value which follows -a normal or Gaussian distribution of mean @expr{x} and standard -deviation or ``error'' -@texline @math{\sigma}. -@infoline @expr{sigma}. -Both the mean and the error can be either numbers or -formulas. Generally these are real numbers but the mean may also be -complex. If the error is negative or complex, it is changed to its -absolute value. An error form with zero error is converted to a -regular number by the Calculator. - -All arithmetic and transcendental functions accept error forms as input. -Operations on the mean-value part work just like operations on regular -numbers. The error part for any function @expr{f(x)} (such as -@texline @math{\sin x} -@infoline @expr{sin(x)}) -is defined by the error of @expr{x} times the derivative of @expr{f} -evaluated at the mean value of @expr{x}. For a two-argument function -@expr{f(x,y)} (such as addition) the error is the square root of the sum -of the squares of the errors due to @expr{x} and @expr{y}. -@tex -$$ \eqalign{ - f(x \hbox{\code{ +/- }} \sigma) - &= f(x) \hbox{\code{ +/- }} \sigma \left| {df(x) \over dx} \right| \cr - f(x \hbox{\code{ +/- }} \sigma_x, y \hbox{\code{ +/- }} \sigma_y) - &= f(x,y) \hbox{\code{ +/- }} - \sqrt{\left(\sigma_x \left| {\partial f(x,y) \over \partial x} - \right| \right)^2 - +\left(\sigma_y \left| {\partial f(x,y) \over \partial y} - \right| \right)^2 } \cr -} $$ -@end tex -Note that this -definition assumes the errors in @expr{x} and @expr{y} are uncorrelated. -A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)} -is not the same as @samp{(2 +/- 1)^2}; the former represents the product -of two independent values which happen to have the same probability -distributions, and the latter is the product of one random value with itself. -The former will produce an answer with less error, since on the average -the two independent errors can be expected to cancel out. - -Consult a good text on error analysis for a discussion of the proper use -of standard deviations. Actual errors often are neither Gaussian-distributed -nor uncorrelated, and the above formulas are valid only when errors -are small. As an example, the error arising from -@texline `@tfn{sin(}@var{x} @tfn{+/-} @math{\sigma}@tfn{)}' -@infoline `@tfn{sin(}@var{x} @tfn{+/-} @var{sigma}@tfn{)}' -is -@texline `@math{\sigma} @tfn{abs(cos(}@var{x}@tfn{))}'. -@infoline `@var{sigma} @tfn{abs(cos(}@var{x}@tfn{))}'. -When @expr{x} is close to zero, -@texline @math{\cos x} -@infoline @expr{cos(x)} -is close to one so the error in the sine is close to -@texline @math{\sigma}; -@infoline @expr{sigma}; -this makes sense, since -@texline @math{\sin x} -@infoline @expr{sin(x)} -is approximately @expr{x} near zero, so a given error in @expr{x} will -produce about the same error in the sine. Likewise, near 90 degrees -@texline @math{\cos x} -@infoline @expr{cos(x)} -is nearly zero and so the computed error is -small: The sine curve is nearly flat in that region, so an error in @expr{x} -has relatively little effect on the value of -@texline @math{\sin x}. -@infoline @expr{sin(x)}. -However, consider @samp{sin(90 +/- 1000)}. The cosine of 90 is zero, so -Calc will report zero error! We get an obviously wrong result because -we have violated the small-error approximation underlying the error -analysis. If the error in @expr{x} had been small, the error in -@texline @math{\sin x} -@infoline @expr{sin(x)} -would indeed have been negligible. - -@ignore -@mindex p -@end ignore -@kindex p (error forms) -@tindex +/- -To enter an error form during regular numeric entry, use the @kbd{p} -(``plus-or-minus'') key to type the @samp{+/-} symbol. (If you try actually -typing @samp{+/-} the @kbd{+} key will be interpreted as the Calculator's -@kbd{+} command!) Within an algebraic formula, you can press @kbd{M-+} to -type the @samp{+/-} symbol, or type it out by hand. - -Error forms and complex numbers can be mixed; the formulas shown above -are used for complex numbers, too; note that if the error part evaluates -to a complex number its absolute value (or the square root of the sum of -the squares of the absolute values of the two error contributions) is -used. Mathematically, this corresponds to a radially symmetric Gaussian -distribution of numbers on the complex plane. However, note that Calc -considers an error form with real components to represent a real number, -not a complex distribution around a real mean. - -Error forms may also be composed of HMS forms. For best results, both -the mean and the error should be HMS forms if either one is. - -@ignore -@starindex -@end ignore -@tindex sdev -The algebraic function @samp{sdev(a, b)} builds the error form @samp{a +/- b}. - -@node Interval Forms, Incomplete Objects, Error Forms, Data Types -@section Interval Forms - -@noindent -@cindex Interval forms -An @dfn{interval} is a subset of consecutive real numbers. For example, -the interval @samp{[2 ..@: 4]} represents all the numbers from 2 to 4, -inclusive. If you multiply it by the interval @samp{[0.5 ..@: 2]} you -obtain @samp{[1 ..@: 8]}. This calculation represents the fact that if -you multiply some number in the range @samp{[2 ..@: 4]} by some other -number in the range @samp{[0.5 ..@: 2]}, your result will lie in the range -from 1 to 8. Interval arithmetic is used to get a worst-case estimate -of the possible range of values a computation will produce, given the -set of possible values of the input. - -@ifnottex -Calc supports several varieties of intervals, including @dfn{closed} -intervals of the type shown above, @dfn{open} intervals such as -@samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4 -@emph{exclusive}, and @dfn{semi-open} intervals in which one end -uses a round parenthesis and the other a square bracket. In mathematical -terms, -@samp{[2 ..@: 4]} means @expr{2 <= x <= 4}, whereas -@samp{[2 ..@: 4)} represents @expr{2 <= x < 4}, -@samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and -@samp{(2 ..@: 4)} represents @expr{2 < x < 4}. -@end ifnottex -@tex -Calc supports several varieties of intervals, including \dfn{closed} -intervals of the type shown above, \dfn{open} intervals such as -\samp{(2 ..\: 4)}, which represents the range of numbers from 2 to 4 -\emph{exclusive}, and \dfn{semi-open} intervals in which one end -uses a round parenthesis and the other a square bracket. In mathematical -terms, -$$ \eqalign{ - [2 \hbox{\cite{..}} 4] &\quad\hbox{means}\quad 2 \le x \le 4 \cr - [2 \hbox{\cite{..}} 4) &\quad\hbox{means}\quad 2 \le x < 4 \cr - (2 \hbox{\cite{..}} 4] &\quad\hbox{means}\quad 2 < x \le 4 \cr - (2 \hbox{\cite{..}} 4) &\quad\hbox{means}\quad 2 < x < 4 \cr -} $$ -@end tex - -The lower and upper limits of an interval must be either real numbers -(or HMS or date forms), or symbolic expressions which are assumed to be -real-valued, or @samp{-inf} and @samp{inf}. In general the lower limit -must be less than the upper limit. A closed interval containing only -one value, @samp{[3 ..@: 3]}, is converted to a plain number (3) -automatically. An interval containing no values at all (such as -@samp{[3 ..@: 2]} or @samp{[2 ..@: 2)}) can be represented but is not -guaranteed to behave well when used in arithmetic. Note that the -interval @samp{[3 .. inf)} represents all real numbers greater than -or equal to 3, and @samp{(-inf .. inf)} represents all real numbers. -In fact, @samp{[-inf .. inf]} represents all real numbers including -the real infinities. - -Intervals are entered in the notation shown here, either as algebraic -formulas, or using incomplete forms. (@xref{Incomplete Objects}.) -In algebraic formulas, multiple periods in a row are collected from -left to right, so that @samp{1...1e2} is interpreted as @samp{1.0 ..@: 1e2} -rather than @samp{1 ..@: 0.1e2}. Add spaces or zeros if you want to -get the other interpretation. If you omit the lower or upper limit, -a default of @samp{-inf} or @samp{inf} (respectively) is furnished. - -Infinite mode also affects operations on intervals -(@pxref{Infinities}). Calc will always introduce an open infinity, -as in @samp{1 / (0 .. 2] = [0.5 .. inf)}. But closed infinities, -@w{@samp{1 / [0 .. 2] = [0.5 .. inf]}}, arise only in Infinite mode; -otherwise they are left unevaluated. Note that the ``direction'' of -a zero is not an issue in this case since the zero is always assumed -to be continuous with the rest of the interval. For intervals that -contain zero inside them Calc is forced to give the result, -@samp{1 / (-2 .. 2) = [-inf .. inf]}. - -While it may seem that intervals and error forms are similar, they are -based on entirely different concepts of inexact quantities. An error -form -@texline `@var{x} @tfn{+/-} @math{\sigma}' -@infoline `@var{x} @tfn{+/-} @var{sigma}' -means a variable is random, and its value could -be anything but is ``probably'' within one -@texline @math{\sigma} -@infoline @var{sigma} -of the mean value @expr{x}. An interval -`@tfn{[}@var{a} @tfn{..@:} @var{b}@tfn{]}' means a -variable's value is unknown, but guaranteed to lie in the specified -range. Error forms are statistical or ``average case'' approximations; -interval arithmetic tends to produce ``worst case'' bounds on an -answer. - -Intervals may not contain complex numbers, but they may contain -HMS forms or date forms. - -@xref{Set Operations}, for commands that interpret interval forms -as subsets of the set of real numbers. - -@ignore -@starindex -@end ignore -@tindex intv -The algebraic function @samp{intv(n, a, b)} builds an interval form -from @samp{a} to @samp{b}; @samp{n} is an integer code which must -be 0 for @samp{(..)}, 1 for @samp{(..]}, 2 for @samp{[..)}, or -3 for @samp{[..]}. - -Please note that in fully rigorous interval arithmetic, care would be -taken to make sure that the computation of the lower bound rounds toward -minus infinity, while upper bound computations round toward plus -infinity. Calc's arithmetic always uses a round-to-nearest mode, -which means that roundoff errors could creep into an interval -calculation to produce intervals slightly smaller than they ought to -be. For example, entering @samp{[1..2]} and pressing @kbd{Q 2 ^} -should yield the interval @samp{[1..2]} again, but in fact it yields the -(slightly too small) interval @samp{[1..1.9999999]} due to roundoff -error. - -@node Incomplete Objects, Variables, Interval Forms, Data Types -@section Incomplete Objects - -@noindent -@ignore -@mindex [ ] -@end ignore -@kindex [ -@ignore -@mindex ( ) -@end ignore -@kindex ( -@kindex , -@ignore -@mindex @null -@end ignore -@kindex ] -@ignore -@mindex @null -@end ignore -@kindex ) -@cindex Incomplete vectors -@cindex Incomplete complex numbers -@cindex Incomplete interval forms -When @kbd{(} or @kbd{[} is typed to begin entering a complex number or -vector, respectively, the effect is to push an @dfn{incomplete} complex -number or vector onto the stack. The @kbd{,} key adds the value(s) at -the top of the stack onto the current incomplete object. The @kbd{)} -and @kbd{]} keys ``close'' the incomplete object after adding any values -on the top of the stack in front of the incomplete object. - -As a result, the sequence of keystrokes @kbd{[ 2 , 3 @key{RET} 2 * , 9 ]} -pushes the vector @samp{[2, 6, 9]} onto the stack. Likewise, @kbd{( 1 , 2 Q )} -pushes the complex number @samp{(1, 1.414)} (approximately). - -If several values lie on the stack in front of the incomplete object, -all are collected and appended to the object. Thus the @kbd{,} key -is redundant: @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}. Some people -prefer the equivalent @key{SPC} key to @key{RET}. - -As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or -@kbd{,} adds a zero or duplicates the preceding value in the list being -formed. Typing @key{DEL} during incomplete entry removes the last item -from the list. - -@kindex ; -The @kbd{;} key is used in the same way as @kbd{,} to create polar complex -numbers: @kbd{( 1 ; 2 )}. When entering a vector, @kbd{;} is useful for -creating a matrix. In particular, @kbd{[ [ 1 , 2 ; 3 , 4 ; 5 , 6 ] ]} is -equivalent to @kbd{[ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] ]}. - -@kindex .. -@pindex calc-dots -Incomplete entry is also used to enter intervals. For example, -@kbd{[ 2 ..@: 4 )} enters a semi-open interval. Note that when you type -the first period, it will be interpreted as a decimal point, but when -you type a second period immediately afterward, it is re-interpreted as -part of the interval symbol. Typing @kbd{..} corresponds to executing -the @code{calc-dots} command. - -If you find incomplete entry distracting, you may wish to enter vectors -and complex numbers as algebraic formulas by pressing the apostrophe key. - -@node Variables, Formulas, Incomplete Objects, Data Types -@section Variables - -@noindent -@cindex Variables, in formulas -A @dfn{variable} is somewhere between a storage register on a conventional -calculator, and a variable in a programming language. (In fact, a Calc -variable is really just an Emacs Lisp variable that contains a Calc number -or formula.) A variable's name is normally composed of letters and digits. -Calc also allows apostrophes and @code{#} signs in variable names. -(The Calc variable @code{foo} corresponds to the Emacs Lisp variable -@code{var-foo}, but unless you access the variable from within Emacs -Lisp, you don't need to worry about it. Variable names in algebraic -formulas implicitly have @samp{var-} prefixed to their names. The -@samp{#} character in variable names used in algebraic formulas -corresponds to a dash @samp{-} in the Lisp variable name. If the name -contains any dashes, the prefix @samp{var-} is @emph{not} automatically -added. Thus the two formulas @samp{foo + 1} and @samp{var#foo + 1} both -refer to the same variable.) - -In a command that takes a variable name, you can either type the full -name of a variable, or type a single digit to use one of the special -convenience variables @code{q0} through @code{q9}. For example, -@kbd{3 s s 2} stores the number 3 in variable @code{q2}, and -@w{@kbd{3 s s foo @key{RET}}} stores that number in variable -@code{foo}. - -To push a variable itself (as opposed to the variable's value) on the -stack, enter its name as an algebraic expression using the apostrophe -(@key{'}) key. - -@kindex = -@pindex calc-evaluate -@cindex Evaluation of variables in a formula -@cindex Variables, evaluation -@cindex Formulas, evaluation -The @kbd{=} (@code{calc-evaluate}) key ``evaluates'' a formula by -replacing all variables in the formula which have been given values by a -@code{calc-store} or @code{calc-let} command by their stored values. -Other variables are left alone. Thus a variable that has not been -stored acts like an abstract variable in algebra; a variable that has -been stored acts more like a register in a traditional calculator. -With a positive numeric prefix argument, @kbd{=} evaluates the top -@var{n} stack entries; with a negative argument, @kbd{=} evaluates -the @var{n}th stack entry. - -@cindex @code{e} variable -@cindex @code{pi} variable -@cindex @code{i} variable -@cindex @code{phi} variable -@cindex @code{gamma} variable -@vindex e -@vindex pi -@vindex i -@vindex phi -@vindex gamma -A few variables are called @dfn{special constants}. Their names are -@samp{e}, @samp{pi}, @samp{i}, @samp{phi}, and @samp{gamma}. -(@xref{Scientific Functions}.) When they are evaluated with @kbd{=}, -their values are calculated if necessary according to the current precision -or complex polar mode. If you wish to use these symbols for other purposes, -simply undefine or redefine them using @code{calc-store}. - -The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for -infinite or indeterminate values. It's best not to use them as -regular variables, since Calc uses special algebraic rules when -it manipulates them. Calc displays a warning message if you store -a value into any of these special variables. - -@xref{Store and Recall}, for a discussion of commands dealing with variables. - -@node Formulas, , Variables, Data Types -@section Formulas - -@noindent -@cindex Formulas -@cindex Expressions -@cindex Operators in formulas -@cindex Precedence of operators -When you press the apostrophe key you may enter any expression or formula -in algebraic form. (Calc uses the terms ``expression'' and ``formula'' -interchangeably.) An expression is built up of numbers, variable names, -and function calls, combined with various arithmetic operators. -Parentheses may -be used to indicate grouping. Spaces are ignored within formulas, except -that spaces are not permitted within variable names or numbers. -Arithmetic operators, in order from highest to lowest precedence, and -with their equivalent function names, are: - -@samp{_} [@code{subscr}] (subscripts); - -postfix @samp{%} [@code{percent}] (as in @samp{25% = 0.25}); - -prefix @samp{+} and @samp{-} [@code{neg}] (as in @samp{-x}) -and prefix @samp{!} [@code{lnot}] (logical ``not,'' as in @samp{!x}); - -@samp{+/-} [@code{sdev}] (the standard deviation symbol) and -@samp{mod} [@code{makemod}] (the symbol for modulo forms); - -postfix @samp{!} [@code{fact}] (factorial, as in @samp{n!}) -and postfix @samp{!!} [@code{dfact}] (double factorial); - -@samp{^} [@code{pow}] (raised-to-the-power-of); - -@samp{*} [@code{mul}]; - -@samp{/} [@code{div}], @samp{%} [@code{mod}] (modulo), and -@samp{\} [@code{idiv}] (integer division); - -infix @samp{+} [@code{add}] and @samp{-} [@code{sub}] (as in @samp{x-y}); - -@samp{|} [@code{vconcat}] (vector concatenation); - -relations @samp{=} [@code{eq}], @samp{!=} [@code{neq}], @samp{<} [@code{lt}], -@samp{>} [@code{gt}], @samp{<=} [@code{leq}], and @samp{>=} [@code{geq}]; - -@samp{&&} [@code{land}] (logical ``and''); - -@samp{||} [@code{lor}] (logical ``or''); - -the C-style ``if'' operator @samp{a?b:c} [@code{if}]; - -@samp{!!!} [@code{pnot}] (rewrite pattern ``not''); - -@samp{&&&} [@code{pand}] (rewrite pattern ``and''); - -@samp{|||} [@code{por}] (rewrite pattern ``or''); - -@samp{:=} [@code{assign}] (for assignments and rewrite rules); - -@samp{::} [@code{condition}] (rewrite pattern condition); - -@samp{=>} [@code{evalto}]. - -Note that, unlike in usual computer notation, multiplication binds more -strongly than division: @samp{a*b/c*d} is equivalent to -@texline @math{a b \over c d}. -@infoline @expr{(a*b)/(c*d)}. - -@cindex Multiplication, implicit -@cindex Implicit multiplication -The multiplication sign @samp{*} may be omitted in many cases. In particular, -if the righthand side is a number, variable name, or parenthesized -expression, the @samp{*} may be omitted. Implicit multiplication has the -same precedence as the explicit @samp{*} operator. The one exception to -the rule is that a variable name followed by a parenthesized expression, -as in @samp{f(x)}, -is interpreted as a function call, not an implicit @samp{*}. In many -cases you must use a space if you omit the @samp{*}: @samp{2a} is the -same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab} -is a variable called @code{ab}, @emph{not} the product of @samp{a} and -@samp{b}! Also note that @samp{f (x)} is still a function call. - -@cindex Implicit comma in vectors -The rules are slightly different for vectors written with square brackets. -In vectors, the space character is interpreted (like the comma) as a -separator of elements of the vector. Thus @w{@samp{[ 2a b+c d ]}} is -equivalent to @samp{[2*a, b+c, d]}, whereas @samp{2a b+c d} is equivalent -to @samp{2*a*b + c*d}. -Note that spaces around the brackets, and around explicit commas, are -ignored. To force spaces to be interpreted as multiplication you can -enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is -interpreted as @samp{[a*b, 2*c*d]}. An implicit comma is also inserted -between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}. - -Vectors that contain commas (not embedded within nested parentheses or -brackets) do not treat spaces specially: @samp{[a b, 2 c d]} is a vector -of two elements. Also, if it would be an error to treat spaces as -separators, but not otherwise, then Calc will ignore spaces: -@w{@samp{[a - b]}} is a vector of one element, but @w{@samp{[a -b]}} is -a vector of two elements. Finally, vectors entered with curly braces -instead of square brackets do not give spaces any special treatment. -When Calc displays a vector that does not contain any commas, it will -insert parentheses if necessary to make the meaning clear: -@w{@samp{[(a b)]}}. - -The expression @samp{5%-2} is ambiguous; is this five-percent minus two, -or five modulo minus-two? Calc always interprets the leftmost symbol as -an infix operator preferentially (modulo, in this case), so you would -need to write @samp{(5%)-2} to get the former interpretation. - -@cindex Function call notation -A function call is, e.g., @samp{sin(1+x)}. (The Calc algebraic function -@code{foo} corresponds to the Emacs Lisp function @code{calcFunc-foo}, -but unless you access the function from within Emacs Lisp, you don't -need to worry about it.) Most mathematical Calculator commands like -@code{calc-sin} have function equivalents like @code{sin}. -If no Lisp function is defined for a function called by a formula, the -call is left as it is during algebraic manipulation: @samp{f(x+y)} is -left alone. Beware that many innocent-looking short names like @code{in} -and @code{re} have predefined meanings which could surprise you; however, -single letters or single letters followed by digits are always safe to -use for your own function names. @xref{Function Index}. - -In the documentation for particular commands, the notation @kbd{H S} -(@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the -command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all -represent the same operation. - -Commands that interpret (``parse'') text as algebraic formulas include -algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse -the contents of the editing buffer when you finish, the @kbd{C-x * g} -and @w{@kbd{C-x * r}} commands, the @kbd{C-y} command, the X window system -``paste'' mouse operation, and Embedded mode. All of these operations -use the same rules for parsing formulas; in particular, language modes -(@pxref{Language Modes}) affect them all in the same way. - -When you read a large amount of text into the Calculator (say a vector -which represents a big set of rewrite rules; @pxref{Rewrite Rules}), -you may wish to include comments in the text. Calc's formula parser -ignores the symbol @samp{%%} and anything following it on a line: - -@example -[ a + b, %% the sum of "a" and "b" - c + d, - %% last line is coming up: - e + f ] -@end example - -@noindent -This is parsed exactly the same as @samp{[ a + b, c + d, e + f ]}. - -@xref{Syntax Tables}, for a way to create your own operators and other -input notations. @xref{Compositions}, for a way to create new display -formats. - -@xref{Algebra}, for commands for manipulating formulas symbolically. - -@node Stack and Trail, Mode Settings, Data Types, Top -@chapter Stack and Trail Commands - -@noindent -This chapter describes the Calc commands for manipulating objects on the -stack and in the trail buffer. (These commands operate on objects of any -type, such as numbers, vectors, formulas, and incomplete objects.) - -@menu -* Stack Manipulation:: -* Editing Stack Entries:: -* Trail Commands:: -* Keep Arguments:: -@end menu - -@node Stack Manipulation, Editing Stack Entries, Stack and Trail, Stack and Trail -@section Stack Manipulation Commands - -@noindent -@kindex @key{RET} -@kindex @key{SPC} -@pindex calc-enter -@cindex Duplicating stack entries -To duplicate the top object on the stack, press @key{RET} or @key{SPC} -(two equivalent keys for the @code{calc-enter} command). -Given a positive numeric prefix argument, these commands duplicate -several elements at the top of the stack. -Given a negative argument, -these commands duplicate the specified element of the stack. -Given an argument of zero, they duplicate the entire stack. -For example, with @samp{10 20 30} on the stack, -@key{RET} creates @samp{10 20 30 30}, -@kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30}, -@kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and -@kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}. - -@kindex @key{LFD} -@pindex calc-over -The @key{LFD} (@code{calc-over}) command (on a key marked Line-Feed if you -have it, else on @kbd{C-j}) is like @code{calc-enter} -except that the sign of the numeric prefix argument is interpreted -oppositely. Also, with no prefix argument the default argument is 2. -Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}} -are both equivalent to @kbd{C-u - 2 @key{RET}}, producing -@samp{10 20 30 20}. - -@kindex @key{DEL} -@kindex C-d -@pindex calc-pop -@cindex Removing stack entries -@cindex Deleting stack entries -To remove the top element from the stack, press @key{DEL} (@code{calc-pop}). -The @kbd{C-d} key is a synonym for @key{DEL}. -(If the top element is an incomplete object with at least one element, the -last element is removed from it.) Given a positive numeric prefix argument, -several elements are removed. Given a negative argument, the specified -element of the stack is deleted. Given an argument of zero, the entire -stack is emptied. -For example, with @samp{10 20 30} on the stack, -@key{DEL} leaves @samp{10 20}, -@kbd{C-u 2 @key{DEL}} leaves @samp{10}, -@kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and -@kbd{C-u 0 @key{DEL}} leaves an empty stack. - -@kindex M-@key{DEL} -@pindex calc-pop-above -The @kbd{M-@key{DEL}} (@code{calc-pop-above}) command is to @key{DEL} what -@key{LFD} is to @key{RET}: It interprets the sign of the numeric -prefix argument in the opposite way, and the default argument is 2. -Thus @kbd{M-@key{DEL}} by itself removes the second-from-top stack element, -leaving the first, third, fourth, and so on; @kbd{M-3 M-@key{DEL}} deletes -the third stack element. - -@kindex @key{TAB} -@pindex calc-roll-down -To exchange the top two elements of the stack, press @key{TAB} -(@code{calc-roll-down}). Given a positive numeric prefix argument, the -specified number of elements at the top of the stack are rotated downward. -Given a negative argument, the entire stack is rotated downward the specified -number of times. Given an argument of zero, the entire stack is reversed -top-for-bottom. -For example, with @samp{10 20 30 40 50} on the stack, -@key{TAB} creates @samp{10 20 30 50 40}, -@kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40}, -@kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and -@kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}. - -@kindex M-@key{TAB} -@pindex calc-roll-up -The command @kbd{M-@key{TAB}} (@code{calc-roll-up}) is analogous to @key{TAB} -except that it rotates upward instead of downward. Also, the default -with no prefix argument is to rotate the top 3 elements. -For example, with @samp{10 20 30 40 50} on the stack, -@kbd{M-@key{TAB}} creates @samp{10 20 40 50 30}, -@kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20}, -@kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and -@kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}. - -A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in -terms of moving a particular element to a new position in the stack. -With a positive argument @var{n}, @key{TAB} moves the top stack -element down to level @var{n}, making room for it by pulling all the -intervening stack elements toward the top. @kbd{M-@key{TAB}} moves the -element at level @var{n} up to the top. (Compare with @key{LFD}, -which copies instead of moving the element in level @var{n}.) - -With a negative argument @mathit{-@var{n}}, @key{TAB} rotates the stack -to move the object in level @var{n} to the deepest place in the -stack, and the object in level @mathit{@var{n}+1} to the top. @kbd{M-@key{TAB}} -rotates the deepest stack element to be in level @mathit{n}, also -putting the top stack element in level @mathit{@var{n}+1}. - -@xref{Selecting Subformulas}, for a way to apply these commands to -any portion of a vector or formula on the stack. - -@node Editing Stack Entries, Trail Commands, Stack Manipulation, Stack and Trail -@section Editing Stack Entries - -@noindent -@kindex ` -@pindex calc-edit -@pindex calc-edit-finish -@cindex Editing the stack with Emacs -The backquote, @kbd{`} (@code{calc-edit}) command creates a temporary -buffer (@samp{*Calc Edit*}) for editing the top-of-stack value using -regular Emacs commands. With a numeric prefix argument, it edits the -specified number of stack entries at once. (An argument of zero edits -the entire stack; a negative argument edits one specific stack entry.) - -When you are done editing, press @kbd{C-c C-c} to finish and return -to Calc. The @key{RET} and @key{LFD} keys also work to finish most -sorts of editing, though in some cases Calc leaves @key{RET} with its -usual meaning (``insert a newline'') if it's a situation where you -might want to insert new lines into the editing buffer. - -When you finish editing, the Calculator parses the lines of text in -the @samp{*Calc Edit*} buffer as numbers or formulas, replaces the -original stack elements in the original buffer with these new values, -then kills the @samp{*Calc Edit*} buffer. The original Calculator buffer -continues to exist during editing, but for best results you should be -careful not to change it until you have finished the edit. You can -also cancel the edit by killing the buffer with @kbd{C-x k}. - -The formula is normally reevaluated as it is put onto the stack. -For example, editing @samp{a + 2} to @samp{3 + 2} and pressing -@kbd{C-c C-c} will push 5 on the stack. If you use @key{LFD} to -finish, Calc will put the result on the stack without evaluating it. - -If you give a prefix argument to @kbd{C-c C-c}, -Calc will not kill the @samp{*Calc Edit*} buffer. You can switch -back to that buffer and continue editing if you wish. However, you -should understand that if you initiated the edit with @kbd{`}, the -@kbd{C-c C-c} operation will be programmed to replace the top of the -stack with the new edited value, and it will do this even if you have -rearranged the stack in the meanwhile. This is not so much of a problem -with other editing commands, though, such as @kbd{s e} -(@code{calc-edit-variable}; @pxref{Operations on Variables}). - -If the @code{calc-edit} command involves more than one stack entry, -each line of the @samp{*Calc Edit*} buffer is interpreted as a -separate formula. Otherwise, the entire buffer is interpreted as -one formula, with line breaks ignored. (You can use @kbd{C-o} or -@kbd{C-q C-j} to insert a newline in the buffer without pressing @key{RET}.) - -The @kbd{`} key also works during numeric or algebraic entry. The -text entered so far is moved to the @code{*Calc Edit*} buffer for -more extensive editing than is convenient in the minibuffer. - -@node Trail Commands, Keep Arguments, Editing Stack Entries, Stack and Trail -@section Trail Commands - -@noindent -@cindex Trail buffer -The commands for manipulating the Calc Trail buffer are two-key sequences -beginning with the @kbd{t} prefix. - -@kindex t d -@pindex calc-trail-display -The @kbd{t d} (@code{calc-trail-display}) command turns display of the -trail on and off. Normally the trail display is toggled on if it was off, -off if it was on. With a numeric prefix of zero, this command always -turns the trail off; with a prefix of one, it always turns the trail on. -The other trail-manipulation commands described here automatically turn -the trail on. Note that when the trail is off values are still recorded -there; they are simply not displayed. To set Emacs to turn the trail -off by default, type @kbd{t d} and then save the mode settings with -@kbd{m m} (@code{calc-save-modes}). - -@kindex t i -@pindex calc-trail-in -@kindex t o -@pindex calc-trail-out -The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o} -(@code{calc-trail-out}) commands switch the cursor into and out of the -Calc Trail window. In practice they are rarely used, since the commands -shown below are a more convenient way to move around in the -trail, and they work ``by remote control'' when the cursor is still -in the Calculator window. - -@cindex Trail pointer -There is a @dfn{trail pointer} which selects some entry of the trail at -any given time. The trail pointer looks like a @samp{>} symbol right -before the selected number. The following commands operate on the -trail pointer in various ways. - -@kindex t y -@pindex calc-trail-yank -@cindex Retrieving previous results -The @kbd{t y} (@code{calc-trail-yank}) command reads the selected value in -the trail and pushes it onto the Calculator stack. It allows you to -re-use any previously computed value without retyping. With a numeric -prefix argument @var{n}, it yanks the value @var{n} lines above the current -trail pointer. - -@kindex t < -@pindex calc-trail-scroll-left -@kindex t > -@pindex calc-trail-scroll-right -The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >} -(@code{calc-trail-scroll-right}) commands horizontally scroll the trail -window left or right by one half of its width. - -@kindex t n -@pindex calc-trail-next -@kindex t p -@pindex calc-trail-previous -@kindex t f -@pindex calc-trail-forward -@kindex t b -@pindex calc-trail-backward -The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p} -(@code{calc-trail-previous)} commands move the trail pointer down or up -one line. The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b} -(@code{calc-trail-backward}) commands move the trail pointer down or up -one screenful at a time. All of these commands accept numeric prefix -arguments to move several lines or screenfuls at a time. - -@kindex t [ -@pindex calc-trail-first -@kindex t ] -@pindex calc-trail-last -@kindex t h -@pindex calc-trail-here -The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]} -(@code{calc-trail-last}) commands move the trail pointer to the first or -last line of the trail. The @kbd{t h} (@code{calc-trail-here}) command -moves the trail pointer to the cursor position; unlike the other trail -commands, @kbd{t h} works only when Calc Trail is the selected window. - -@kindex t s -@pindex calc-trail-isearch-forward -@kindex t r -@pindex calc-trail-isearch-backward -@ifnottex -The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r} -(@code{calc-trail-isearch-backward}) commands perform an incremental -search forward or backward through the trail. You can press @key{RET} -to terminate the search; the trail pointer moves to the current line. -If you cancel the search with @kbd{C-g}, the trail pointer stays where -it was when the search began. -@end ifnottex -@tex -The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r} -(@code{calc-trail-isearch-backward}) com\-mands perform an incremental -search forward or backward through the trail. You can press @key{RET} -to terminate the search; the trail pointer moves to the current line. -If you cancel the search with @kbd{C-g}, the trail pointer stays where -it was when the search began. -@end tex - -@kindex t m -@pindex calc-trail-marker -The @kbd{t m} (@code{calc-trail-marker}) command allows you to enter a -line of text of your own choosing into the trail. The text is inserted -after the line containing the trail pointer; this usually means it is -added to the end of the trail. Trail markers are useful mainly as the -targets for later incremental searches in the trail. - -@kindex t k -@pindex calc-trail-kill -The @kbd{t k} (@code{calc-trail-kill}) command removes the selected line -from the trail. The line is saved in the Emacs kill ring suitable for -yanking into another buffer, but it is not easy to yank the text back -into the trail buffer. With a numeric prefix argument, this command -kills the @var{n} lines below or above the selected one. - -The @kbd{t .} (@code{calc-full-trail-vectors}) command is described -elsewhere; @pxref{Vector and Matrix Formats}. - -@node Keep Arguments, , Trail Commands, Stack and Trail -@section Keep Arguments - -@noindent -@kindex K -@pindex calc-keep-args -The @kbd{K} (@code{calc-keep-args}) command acts like a prefix for -the following command. It prevents that command from removing its -arguments from the stack. For example, after @kbd{2 @key{RET} 3 +}, -the stack contains the sole number 5, but after @kbd{2 @key{RET} 3 K +}, -the stack contains the arguments and the result: @samp{2 3 5}. - -With the exception of keyboard macros, this works for all commands that -take arguments off the stack. (To avoid potentially unpleasant behavior, -a @kbd{K} prefix before a keyboard macro will be ignored. A @kbd{K} -prefix called @emph{within} the keyboard macro will still take effect.) -As another example, @kbd{K a s} simplifies a formula, pushing the -simplified version of the formula onto the stack after the original -formula (rather than replacing the original formula). Note that you -could get the same effect by typing @kbd{@key{RET} a s}, copying the -formula and then simplifying the copy. One difference is that for a very -large formula the time taken to format the intermediate copy in -@kbd{@key{RET} a s} could be noticeable; @kbd{K a s} would avoid this -extra work. - -Even stack manipulation commands are affected. @key{TAB} works by -popping two values and pushing them back in the opposite order, -so @kbd{2 @key{RET} 3 K @key{TAB}} produces @samp{2 3 3 2}. - -A few Calc commands provide other ways of doing the same thing. -For example, @kbd{' sin($)} replaces the number on the stack with -its sine using algebraic entry; to push the sine and keep the -original argument you could use either @kbd{' sin($1)} or -@kbd{K ' sin($)}. @xref{Algebraic Entry}. Also, the @kbd{s s} -command is effectively the same as @kbd{K s t}. @xref{Storing Variables}. - -If you execute a command and then decide you really wanted to keep -the argument, you can press @kbd{M-@key{RET}} (@code{calc-last-args}). -This command pushes the last arguments that were popped by any command -onto the stack. Note that the order of things on the stack will be -different than with @kbd{K}: @kbd{2 @key{RET} 3 + M-@key{RET}} leaves -@samp{5 2 3} on the stack instead of @samp{2 3 5}. @xref{Undo}. - -@node Mode Settings, Arithmetic, Stack and Trail, Top -@chapter Mode Settings - -@noindent -This chapter describes commands that set modes in the Calculator. -They do not affect the contents of the stack, although they may change -the @emph{appearance} or @emph{interpretation} of the stack's contents. - -@menu -* General Mode Commands:: -* Precision:: -* Inverse and Hyperbolic:: -* Calculation Modes:: -* Simplification Modes:: -* Declarations:: -* Display Modes:: -* Language Modes:: -* Modes Variable:: -* Calc Mode Line:: -@end menu - -@node General Mode Commands, Precision, Mode Settings, Mode Settings -@section General Mode Commands - -@noindent -@kindex m m -@pindex calc-save-modes -@cindex Continuous memory -@cindex Saving mode settings -@cindex Permanent mode settings -@cindex Calc init file, mode settings -You can save all of the current mode settings in your Calc init file -(the file given by the variable @code{calc-settings-file}, typically -@file{~/.calc.el}) with the @kbd{m m} (@code{calc-save-modes}) command. -This will cause Emacs to reestablish these modes each time it starts up. -The modes saved in the file include everything controlled by the @kbd{m} -and @kbd{d} prefix keys, the current precision and binary word size, -whether or not the trail is displayed, the current height of the Calc -window, and more. The current interface (used when you type @kbd{C-x * *}) -is also saved. If there were already saved mode settings in the -file, they are replaced. Otherwise, the new mode information is -appended to the end of the file. - -@kindex m R -@pindex calc-mode-record-mode -The @kbd{m R} (@code{calc-mode-record-mode}) command tells Calc to -record all the mode settings (as if by pressing @kbd{m m}) every -time a mode setting changes. If the modes are saved this way, then this -``automatic mode recording'' mode is also saved. -Type @kbd{m R} again to disable this method of recording the mode -settings. To turn it off permanently, the @kbd{m m} command will also be -necessary. (If Embedded mode is enabled, other options for recording -the modes are available; @pxref{Mode Settings in Embedded Mode}.) - -@kindex m F -@pindex calc-settings-file-name -The @kbd{m F} (@code{calc-settings-file-name}) command allows you to -choose a different file than the current value of @code{calc-settings-file} -for @kbd{m m}, @kbd{Z P}, and similar commands to save permanent information. -You are prompted for a file name. All Calc modes are then reset to -their default values, then settings from the file you named are loaded -if this file exists, and this file becomes the one that Calc will -use in the future for commands like @kbd{m m}. The default settings -file name is @file{~/.calc.el}. You can see the current file name by -giving a blank response to the @kbd{m F} prompt. See also the -discussion of the @code{calc-settings-file} variable; @pxref{Customizing Calc}. - -If the file name you give is your user init file (typically -@file{~/.emacs}), @kbd{m F} will not automatically load the new file. This -is because your user init file may contain other things you don't want -to reread. You can give -a numeric prefix argument of 1 to @kbd{m F} to force it to read the -file no matter what. Conversely, an argument of @mathit{-1} tells -@kbd{m F} @emph{not} to read the new file. An argument of 2 or @mathit{-2} -tells @kbd{m F} not to reset the modes to their defaults beforehand, -which is useful if you intend your new file to have a variant of the -modes present in the file you were using before. - -@kindex m x -@pindex calc-always-load-extensions -The @kbd{m x} (@code{calc-always-load-extensions}) command enables a mode -in which the first use of Calc loads the entire program, including all -extensions modules. Otherwise, the extensions modules will not be loaded -until the various advanced Calc features are used. Since this mode only -has effect when Calc is first loaded, @kbd{m x} is usually followed by -@kbd{m m} to make the mode-setting permanent. To load all of Calc just -once, rather than always in the future, you can press @kbd{C-x * L}. - -@kindex m S -@pindex calc-shift-prefix -The @kbd{m S} (@code{calc-shift-prefix}) command enables a mode in which -all of Calc's letter prefix keys may be typed shifted as well as unshifted. -If you are typing, say, @kbd{a S} (@code{calc-solve-for}) quite often -you might find it easier to turn this mode on so that you can type -@kbd{A S} instead. When this mode is enabled, the commands that used to -be on those single shifted letters (e.g., @kbd{A} (@code{calc-abs})) can -now be invoked by pressing the shifted letter twice: @kbd{A A}. Note -that the @kbd{v} prefix key always works both shifted and unshifted, and -the @kbd{z} and @kbd{Z} prefix keys are always distinct. Also, the @kbd{h} -prefix is not affected by this mode. Press @kbd{m S} again to disable -shifted-prefix mode. - -@node Precision, Inverse and Hyperbolic, General Mode Commands, Mode Settings -@section Precision - -@noindent -@kindex p -@pindex calc-precision -@cindex Precision of calculations -The @kbd{p} (@code{calc-precision}) command controls the precision to -which floating-point calculations are carried. The precision must be -at least 3 digits and may be arbitrarily high, within the limits of -memory and time. This affects only floats: Integer and rational -calculations are always carried out with as many digits as necessary. - -The @kbd{p} key prompts for the current precision. If you wish you -can instead give the precision as a numeric prefix argument. - -Many internal calculations are carried to one or two digits higher -precision than normal. Results are rounded down afterward to the -current precision. Unless a special display mode has been selected, -floats are always displayed with their full stored precision, i.e., -what you see is what you get. Reducing the current precision does not -round values already on the stack, but those values will be rounded -down before being used in any calculation. The @kbd{c 0} through -@kbd{c 9} commands (@pxref{Conversions}) can be used to round an -existing value to a new precision. - -@cindex Accuracy of calculations -It is important to distinguish the concepts of @dfn{precision} and -@dfn{accuracy}. In the normal usage of these words, the number -123.4567 has a precision of 7 digits but an accuracy of 4 digits. -The precision is the total number of digits not counting leading -or trailing zeros (regardless of the position of the decimal point). -The accuracy is simply the number of digits after the decimal point -(again not counting trailing zeros). In Calc you control the precision, -not the accuracy of computations. If you were to set the accuracy -instead, then calculations like @samp{exp(100)} would generate many -more digits than you would typically need, while @samp{exp(-100)} would -probably round to zero! In Calc, both these computations give you -exactly 12 (or the requested number of) significant digits. - -The only Calc features that deal with accuracy instead of precision -are fixed-point display mode for floats (@kbd{d f}; @pxref{Float Formats}), -and the rounding functions like @code{floor} and @code{round} -(@pxref{Integer Truncation}). Also, @kbd{c 0} through @kbd{c 9} -deal with both precision and accuracy depending on the magnitudes -of the numbers involved. - -If you need to work with a particular fixed accuracy (say, dollars and -cents with two digits after the decimal point), one solution is to work -with integers and an ``implied'' decimal point. For example, $8.99 -divided by 6 would be entered @kbd{899 @key{RET} 6 /}, yielding 149.833 -(actually $1.49833 with our implied decimal point); pressing @kbd{R} -would round this to 150 cents, i.e., $1.50. - -@xref{Floats}, for still more on floating-point precision and related -issues. - -@node Inverse and Hyperbolic, Calculation Modes, Precision, Mode Settings -@section Inverse and Hyperbolic Flags - -@noindent -@kindex I -@pindex calc-inverse -There is no single-key equivalent to the @code{calc-arcsin} function. -Instead, you must first press @kbd{I} (@code{calc-inverse}) to set -the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}). -The @kbd{I} key actually toggles the Inverse Flag. When this flag -is set, the word @samp{Inv} appears in the mode line. - -@kindex H -@pindex calc-hyperbolic -Likewise, the @kbd{H} key (@code{calc-hyperbolic}) sets or clears the -Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}. -If both of these flags are set at once, the effect will be -@code{calc-arcsinh}. (The Hyperbolic flag is also used by some -non-trigonometric commands; for example @kbd{H L} computes a base-10, -instead of base-@mathit{e}, logarithm.) - -Command names like @code{calc-arcsin} are provided for completeness, and -may be executed with @kbd{x} or @kbd{M-x}. Their effect is simply to -toggle the Inverse and/or Hyperbolic flags and then execute the -corresponding base command (@code{calc-sin} in this case). - -The Inverse and Hyperbolic flags apply only to the next Calculator -command, after which they are automatically cleared. (They are also -cleared if the next keystroke is not a Calc command.) Digits you -type after @kbd{I} or @kbd{H} (or @kbd{K}) are treated as prefix -arguments for the next command, not as numeric entries. The same -is true of @kbd{C-u}, but not of the minus sign (@kbd{K -} means to -subtract and keep arguments). - -The third Calc prefix flag, @kbd{K} (keep-arguments), is discussed -elsewhere. @xref{Keep Arguments}. - -@node Calculation Modes, Simplification Modes, Inverse and Hyperbolic, Mode Settings -@section Calculation Modes - -@noindent -The commands in this section are two-key sequences beginning with -the @kbd{m} prefix. (That's the letter @kbd{m}, not the @key{META} key.) -The @samp{m a} (@code{calc-algebraic-mode}) command is described elsewhere -(@pxref{Algebraic Entry}). - -@menu -* Angular Modes:: -* Polar Mode:: -* Fraction Mode:: -* Infinite Mode:: -* Symbolic Mode:: -* Matrix Mode:: -* Automatic Recomputation:: -* Working Message:: -@end menu - -@node Angular Modes, Polar Mode, Calculation Modes, Calculation Modes -@subsection Angular Modes - -@noindent -@cindex Angular mode -The Calculator supports three notations for angles: radians, degrees, -and degrees-minutes-seconds. When a number is presented to a function -like @code{sin} that requires an angle, the current angular mode is -used to interpret the number as either radians or degrees. If an HMS -form is presented to @code{sin}, it is always interpreted as -degrees-minutes-seconds. - -Functions that compute angles produce a number in radians, a number in -degrees, or an HMS form depending on the current angular mode. If the -result is a complex number and the current mode is HMS, the number is -instead expressed in degrees. (Complex-number calculations would -normally be done in Radians mode, though. Complex numbers are converted -to degrees by calculating the complex result in radians and then -multiplying by 180 over @cpi{}.) - -@kindex m r -@pindex calc-radians-mode -@kindex m d -@pindex calc-degrees-mode -@kindex m h -@pindex calc-hms-mode -The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}), -and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode. -The current angular mode is displayed on the Emacs mode line. -The default angular mode is Degrees. - -@node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes -@subsection Polar Mode - -@noindent -@cindex Polar mode -The Calculator normally ``prefers'' rectangular complex numbers in the -sense that rectangular form is used when the proper form can not be -decided from the input. This might happen by multiplying a rectangular -number by a polar one, by taking the square root of a negative real -number, or by entering @kbd{( 2 @key{SPC} 3 )}. - -@kindex m p -@pindex calc-polar-mode -The @kbd{m p} (@code{calc-polar-mode}) command toggles complex-number -preference between rectangular and polar forms. In Polar mode, all -of the above example situations would produce polar complex numbers. - -@node Fraction Mode, Infinite Mode, Polar Mode, Calculation Modes -@subsection Fraction Mode - -@noindent -@cindex Fraction mode -@cindex Division of integers -Division of two integers normally yields a floating-point number if the -result cannot be expressed as an integer. In some cases you would -rather get an exact fractional answer. One way to accomplish this is -to use the @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command, which -divides the two integers on the top of the stack to produce a fraction: -@kbd{6 @key{RET} 4 :} produces @expr{3:2} even though -@kbd{6 @key{RET} 4 /} produces @expr{1.5}. - -@kindex m f -@pindex calc-frac-mode -To set the Calculator to produce fractional results for normal integer -divisions, use the @kbd{m f} (@code{calc-frac-mode}) command. -For example, @expr{8/4} produces @expr{2} in either mode, -but @expr{6/4} produces @expr{3:2} in Fraction mode, @expr{1.5} in -Float mode. - -At any time you can use @kbd{c f} (@code{calc-float}) to convert a -fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a -float to a fraction. @xref{Conversions}. - -@node Infinite Mode, Symbolic Mode, Fraction Mode, Calculation Modes -@subsection Infinite Mode - -@noindent -@cindex Infinite mode -The Calculator normally treats results like @expr{1 / 0} as errors; -formulas like this are left in unsimplified form. But Calc can be -put into a mode where such calculations instead produce ``infinite'' -results. - -@kindex m i -@pindex calc-infinite-mode -The @kbd{m i} (@code{calc-infinite-mode}) command turns this mode -on and off. When the mode is off, infinities do not arise except -in calculations that already had infinities as inputs. (One exception -is that infinite open intervals like @samp{[0 .. inf)} can be -generated; however, intervals closed at infinity (@samp{[0 .. inf]}) -will not be generated when Infinite mode is off.) - -With Infinite mode turned on, @samp{1 / 0} will generate @code{uinf}, -an undirected infinity. @xref{Infinities}, for a discussion of the -difference between @code{inf} and @code{uinf}. Also, @expr{0 / 0} -evaluates to @code{nan}, the ``indeterminate'' symbol. Various other -functions can also return infinities in this mode; for example, -@samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}. Once again, -note that @samp{exp(inf) = inf} regardless of Infinite mode because -this calculation has infinity as an input. - -@cindex Positive Infinite mode -The @kbd{m i} command with a numeric prefix argument of zero, -i.e., @kbd{C-u 0 m i}, turns on a Positive Infinite mode in -which zero is treated as positive instead of being directionless. -Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode. -Note that zero never actually has a sign in Calc; there are no -separate representations for @mathit{+0} and @mathit{-0}. Positive -Infinite mode merely changes the interpretation given to the -single symbol, @samp{0}. One consequence of this is that, while -you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0} -is equivalent to @samp{1 / 0}, which is equal to positive @code{inf}. - -@node Symbolic Mode, Matrix Mode, Infinite Mode, Calculation Modes -@subsection Symbolic Mode - -@noindent -@cindex Symbolic mode -@cindex Inexact results -Calculations are normally performed numerically wherever possible. -For example, the @code{calc-sqrt} command, or @code{sqrt} function in an -algebraic expression, produces a numeric answer if the argument is a -number or a symbolic expression if the argument is an expression: -@kbd{2 Q} pushes 1.4142 but @kbd{@key{'} x+1 @key{RET} Q} pushes @samp{sqrt(x+1)}. - -@kindex m s -@pindex calc-symbolic-mode -In @dfn{Symbolic mode}, controlled by the @kbd{m s} (@code{calc-symbolic-mode}) -command, functions which would produce inexact, irrational results are -left in symbolic form. Thus @kbd{16 Q} pushes 4, but @kbd{2 Q} pushes -@samp{sqrt(2)}. - -@kindex N -@pindex calc-eval-num -The shift-@kbd{N} (@code{calc-eval-num}) command evaluates numerically -the expression at the top of the stack, by temporarily disabling -@code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}). -Given a numeric prefix argument, it also -sets the floating-point precision to the specified value for the duration -of the command. - -To evaluate a formula numerically without expanding the variables it -contains, you can use the key sequence @kbd{m s a v m s} (this uses -@code{calc-alg-evaluate}, which resimplifies but doesn't evaluate -variables.) - -@node Matrix Mode, Automatic Recomputation, Symbolic Mode, Calculation Modes -@subsection Matrix and Scalar Modes - -@noindent -@cindex Matrix mode -@cindex Scalar mode -Calc sometimes makes assumptions during algebraic manipulation that -are awkward or incorrect when vectors and matrices are involved. -Calc has two modes, @dfn{Matrix mode} and @dfn{Scalar mode}, which -modify its behavior around vectors in useful ways. - -@kindex m v -@pindex calc-matrix-mode -Press @kbd{m v} (@code{calc-matrix-mode}) once to enter Matrix mode. -In this mode, all objects are assumed to be matrices unless provably -otherwise. One major effect is that Calc will no longer consider -multiplication to be commutative. (Recall that in matrix arithmetic, -@samp{A*B} is not the same as @samp{B*A}.) This assumption affects -rewrite rules and algebraic simplification. Another effect of this -mode is that calculations that would normally produce constants like -0 and 1 (e.g., @expr{a - a} and @expr{a / a}, respectively) will now -produce function calls that represent ``generic'' zero or identity -matrices: @samp{idn(0)}, @samp{idn(1)}. The @code{idn} function -@samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n} -identity matrix; if @var{n} is omitted, it doesn't know what -dimension to use and so the @code{idn} call remains in symbolic -form. However, if this generic identity matrix is later combined -with a matrix whose size is known, it will be converted into -a true identity matrix of the appropriate size. On the other hand, -if it is combined with a scalar (as in @samp{idn(1) + 2}), Calc -will assume it really was a scalar after all and produce, e.g., 3. - -Press @kbd{m v} a second time to get Scalar mode. Here, objects are -assumed @emph{not} to be vectors or matrices unless provably so. -For example, normally adding a variable to a vector, as in -@samp{[x, y, z] + a}, will leave the sum in symbolic form because -as far as Calc knows, @samp{a} could represent either a number or -another 3-vector. In Scalar mode, @samp{a} is assumed to be a -non-vector, and the addition is evaluated to @samp{[x+a, y+a, z+a]}. - -Press @kbd{m v} a third time to return to the normal mode of operation. - -If you press @kbd{m v} with a numeric prefix argument @var{n}, you -get a special ``dimensioned'' Matrix mode in which matrices of -unknown size are assumed to be @var{n}x@var{n} square matrices. -Then, the function call @samp{idn(1)} will expand into an actual -matrix rather than representing a ``generic'' matrix. Simply typing -@kbd{C-u m v} will get you a square Matrix mode, in which matrices of -unknown size are assumed to be square matrices of unspecified size. - -@cindex Declaring scalar variables -Of course these modes are approximations to the true state of -affairs, which is probably that some quantities will be matrices -and others will be scalars. One solution is to ``declare'' -certain variables or functions to be scalar-valued. -@xref{Declarations}, to see how to make declarations in Calc. - -There is nothing stopping you from declaring a variable to be -scalar and then storing a matrix in it; however, if you do, the -results you get from Calc may not be valid. Suppose you let Calc -get the result @samp{[x+a, y+a, z+a]} shown above, and then stored -@samp{[1, 2, 3]} in @samp{a}. The result would not be the same as -for @samp{[x, y, z] + [1, 2, 3]}, but that's because you have broken -your earlier promise to Calc that @samp{a} would be scalar. - -Another way to mix scalars and matrices is to use selections -(@pxref{Selecting Subformulas}). Use Matrix mode when operating on -your formula normally; then, to apply Scalar mode to a certain part -of the formula without affecting the rest just select that part, -change into Scalar mode and press @kbd{=} to resimplify the part -under this mode, then change back to Matrix mode before deselecting. - -@node Automatic Recomputation, Working Message, Matrix Mode, Calculation Modes -@subsection Automatic Recomputation - -@noindent -The @dfn{evaluates-to} operator, @samp{=>}, has the special -property that any @samp{=>} formulas on the stack are recomputed -whenever variable values or mode settings that might affect them -are changed. @xref{Evaluates-To Operator}. - -@kindex m C -@pindex calc-auto-recompute -The @kbd{m C} (@code{calc-auto-recompute}) command turns this -automatic recomputation on and off. If you turn it off, Calc will -not update @samp{=>} operators on the stack (nor those in the -attached Embedded mode buffer, if there is one). They will not -be updated unless you explicitly do so by pressing @kbd{=} or until -you press @kbd{m C} to turn recomputation back on. (While automatic -recomputation is off, you can think of @kbd{m C m C} as a command -to update all @samp{=>} operators while leaving recomputation off.) - -To update @samp{=>} operators in an Embedded buffer while -automatic recomputation is off, use @w{@kbd{C-x * u}}. -@xref{Embedded Mode}. - -@node Working Message, , Automatic Recomputation, Calculation Modes -@subsection Working Messages - -@noindent -@cindex Performance -@cindex Working messages -Since the Calculator is written entirely in Emacs Lisp, which is not -designed for heavy numerical work, many operations are quite slow. -The Calculator normally displays the message @samp{Working...} in the -echo area during any command that may be slow. In addition, iterative -operations such as square roots and trigonometric functions display the -intermediate result at each step. Both of these types of messages can -be disabled if you find them distracting. - -@kindex m w -@pindex calc-working -Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to -disable all ``working'' messages. Use a numeric prefix of 1 to enable -only the plain @samp{Working...} message. Use a numeric prefix of 2 to -see intermediate results as well. With no numeric prefix this displays -the current mode. - -While it may seem that the ``working'' messages will slow Calc down -considerably, experiments have shown that their impact is actually -quite small. But if your terminal is slow you may find that it helps -to turn the messages off. - -@node Simplification Modes, Declarations, Calculation Modes, Mode Settings -@section Simplification Modes - -@noindent -The current @dfn{simplification mode} controls how numbers and formulas -are ``normalized'' when being taken from or pushed onto the stack. -Some normalizations are unavoidable, such as rounding floating-point -results to the current precision, and reducing fractions to simplest -form. Others, such as simplifying a formula like @expr{a+a} (or @expr{2+3}), -are done by default but can be turned off when necessary. - -When you press a key like @kbd{+} when @expr{2} and @expr{3} are on the -stack, Calc pops these numbers, normalizes them, creates the formula -@expr{2+3}, normalizes it, and pushes the result. Of course the standard -rules for normalizing @expr{2+3} will produce the result @expr{5}. - -Simplification mode commands consist of the lower-case @kbd{m} prefix key -followed by a shifted letter. - -@kindex m O -@pindex calc-no-simplify-mode -The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional -simplifications. These would leave a formula like @expr{2+3} alone. In -fact, nothing except simple numbers are ever affected by normalization -in this mode. - -@kindex m N -@pindex calc-num-simplify-mode -The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification -of any formulas except those for which all arguments are constants. For -example, @expr{1+2} is simplified to @expr{3}, and @expr{a+(2-2)} is -simplified to @expr{a+0} but no further, since one argument of the sum -is not a constant. Unfortunately, @expr{(a+2)-2} is @emph{not} simplified -because the top-level @samp{-} operator's arguments are not both -constant numbers (one of them is the formula @expr{a+2}). -A constant is a number or other numeric object (such as a constant -error form or modulo form), or a vector all of whose -elements are constant. - -@kindex m D -@pindex calc-default-simplify-mode -The @kbd{m D} (@code{calc-default-simplify-mode}) command restores the -default simplifications for all formulas. This includes many easy and -fast algebraic simplifications such as @expr{a+0} to @expr{a}, and -@expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like -@expr{@tfn{deriv}(x^2, x)} to @expr{2 x}. - -@kindex m B -@pindex calc-bin-simplify-mode -The @kbd{m B} (@code{calc-bin-simplify-mode}) mode applies the default -simplifications to a result and then, if the result is an integer, -uses the @kbd{b c} (@code{calc-clip}) command to clip the integer according -to the current binary word size. @xref{Binary Functions}. Real numbers -are rounded to the nearest integer and then clipped; other kinds of -results (after the default simplifications) are left alone. - -@kindex m A -@pindex calc-alg-simplify-mode -The @kbd{m A} (@code{calc-alg-simplify-mode}) mode does algebraic -simplification; it applies all the default simplifications, and also -the more powerful (and slower) simplifications made by @kbd{a s} -(@code{calc-simplify}). @xref{Algebraic Simplifications}. - -@kindex m E -@pindex calc-ext-simplify-mode -The @kbd{m E} (@code{calc-ext-simplify-mode}) mode does ``extended'' -algebraic simplification, as by the @kbd{a e} (@code{calc-simplify-extended}) -command. @xref{Unsafe Simplifications}. - -@kindex m U -@pindex calc-units-simplify-mode -The @kbd{m U} (@code{calc-units-simplify-mode}) mode does units -simplification; it applies the command @kbd{u s} -(@code{calc-simplify-units}), which in turn -is a superset of @kbd{a s}. In this mode, variable names which -are identifiable as unit names (like @samp{mm} for ``millimeters'') -are simplified with their unit definitions in mind. - -A common technique is to set the simplification mode down to the lowest -amount of simplification you will allow to be applied automatically, then -use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to -perform higher types of simplifications on demand. @xref{Algebraic -Definitions}, for another sample use of No-Simplification mode. - -@node Declarations, Display Modes, Simplification Modes, Mode Settings -@section Declarations - -@noindent -A @dfn{declaration} is a statement you make that promises you will -use a certain variable or function in a restricted way. This may -give Calc the freedom to do things that it couldn't do if it had to -take the fully general situation into account. - -@menu -* Declaration Basics:: -* Kinds of Declarations:: -* Functions for Declarations:: -@end menu - -@node Declaration Basics, Kinds of Declarations, Declarations, Declarations -@subsection Declaration Basics - -@noindent -@kindex s d -@pindex calc-declare-variable -The @kbd{s d} (@code{calc-declare-variable}) command is the easiest -way to make a declaration for a variable. This command prompts for -the variable name, then prompts for the declaration. The default -at the declaration prompt is the previous declaration, if any. -You can edit this declaration, or press @kbd{C-k} to erase it and -type a new declaration. (Or, erase it and press @key{RET} to clear -the declaration, effectively ``undeclaring'' the variable.) - -A declaration is in general a vector of @dfn{type symbols} and -@dfn{range} values. If there is only one type symbol or range value, -you can write it directly rather than enclosing it in a vector. -For example, @kbd{s d foo @key{RET} real @key{RET}} declares @code{foo} to -be a real number, and @kbd{s d bar @key{RET} [int, const, [1..6]] @key{RET}} -declares @code{bar} to be a constant integer between 1 and 6. -(Actually, you can omit the outermost brackets and Calc will -provide them for you: @kbd{s d bar @key{RET} int, const, [1..6] @key{RET}}.) - -@cindex @code{Decls} variable -@vindex Decls -Declarations in Calc are kept in a special variable called @code{Decls}. -This variable encodes the set of all outstanding declarations in -the form of a matrix. Each row has two elements: A variable or -vector of variables declared by that row, and the declaration -specifier as described above. You can use the @kbd{s D} command to -edit this variable if you wish to see all the declarations at once. -@xref{Operations on Variables}, for a description of this command -and the @kbd{s p} command that allows you to save your declarations -permanently if you wish. - -Items being declared can also be function calls. The arguments in -the call are ignored; the effect is to say that this function returns -values of the declared type for any valid arguments. The @kbd{s d} -command declares only variables, so if you wish to make a function -declaration you will have to edit the @code{Decls} matrix yourself. - -For example, the declaration matrix - -@smallexample -@group -[ [ foo, real ] - [ [j, k, n], int ] - [ f(1,2,3), [0 .. inf) ] ] -@end group -@end smallexample - -@noindent -declares that @code{foo} represents a real number, @code{j}, @code{k} -and @code{n} represent integers, and the function @code{f} always -returns a real number in the interval shown. - -@vindex All -If there is a declaration for the variable @code{All}, then that -declaration applies to all variables that are not otherwise declared. -It does not apply to function names. For example, using the row -@samp{[All, real]} says that all your variables are real unless they -are explicitly declared without @code{real} in some other row. -The @kbd{s d} command declares @code{All} if you give a blank -response to the variable-name prompt. - -@node Kinds of Declarations, Functions for Declarations, Declaration Basics, Declarations -@subsection Kinds of Declarations - -@noindent -The type-specifier part of a declaration (that is, the second prompt -in the @kbd{s d} command) can be a type symbol, an interval, or a -vector consisting of zero or more type symbols followed by zero or -more intervals or numbers that represent the set of possible values -for the variable. - -@smallexample -@group -[ [ a, [1, 2, 3, 4, 5] ] - [ b, [1 .. 5] ] - [ c, [int, 1 .. 5] ] ] -@end group -@end smallexample - -Here @code{a} is declared to contain one of the five integers shown; -@code{b} is any number in the interval from 1 to 5 (any real number -since we haven't specified), and @code{c} is any integer in that -interval. Thus the declarations for @code{a} and @code{c} are -nearly equivalent (see below). - -The type-specifier can be the empty vector @samp{[]} to say that -nothing is known about a given variable's value. This is the same -as not declaring the variable at all except that it overrides any -@code{All} declaration which would otherwise apply. - -The initial value of @code{Decls} is the empty vector @samp{[]}. -If @code{Decls} has no stored value or if the value stored in it -is not valid, it is ignored and there are no declarations as far -as Calc is concerned. (The @kbd{s d} command will replace such a -malformed value with a fresh empty matrix, @samp{[]}, before recording -the new declaration.) Unrecognized type symbols are ignored. - -The following type symbols describe what sorts of numbers will be -stored in a variable: - -@table @code -@item int -Integers. -@item numint -Numerical integers. (Integers or integer-valued floats.) -@item frac -Fractions. (Rational numbers which are not integers.) -@item rat -Rational numbers. (Either integers or fractions.) -@item float -Floating-point numbers. -@item real -Real numbers. (Integers, fractions, or floats. Actually, -intervals and error forms with real components also count as -reals here.) -@item pos -Positive real numbers. (Strictly greater than zero.) -@item nonneg -Nonnegative real numbers. (Greater than or equal to zero.) -@item number -Numbers. (Real or complex.) -@end table - -Calc uses this information to determine when certain simplifications -of formulas are safe. For example, @samp{(x^y)^z} cannot be -simplified to @samp{x^(y z)} in general; for example, -@samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @mathit{-3}. -However, this simplification @emph{is} safe if @code{z} is known -to be an integer, or if @code{x} is known to be a nonnegative -real number. If you have given declarations that allow Calc to -deduce either of these facts, Calc will perform this simplification -of the formula. - -Calc can apply a certain amount of logic when using declarations. -For example, @samp{(x^y)^(2n+1)} will be simplified if @code{n} -has been declared @code{int}; Calc knows that an integer times an -integer, plus an integer, must always be an integer. (In fact, -Calc would simplify @samp{(-x)^(2n+1)} to @samp{-(x^(2n+1))} since -it is able to determine that @samp{2n+1} must be an odd integer.) - -Similarly, @samp{(abs(x)^y)^z} will be simplified to @samp{abs(x)^(y z)} -because Calc knows that the @code{abs} function always returns a -nonnegative real. If you had a @code{myabs} function that also had -this property, you could get Calc to recognize it by adding the row -@samp{[myabs(), nonneg]} to the @code{Decls} matrix. - -One instance of this simplification is @samp{sqrt(x^2)} (since the -@code{sqrt} function is effectively a one-half power). Normally -Calc leaves this formula alone. After the command -@kbd{s d x @key{RET} real @key{RET}}, however, it can simplify the formula to -@samp{abs(x)}. And after @kbd{s d x @key{RET} nonneg @key{RET}}, Calc can -simplify this formula all the way to @samp{x}. - -If there are any intervals or real numbers in the type specifier, -they comprise the set of possible values that the variable or -function being declared can have. In particular, the type symbol -@code{real} is effectively the same as the range @samp{[-inf .. inf]} -(note that infinity is included in the range of possible values); -@code{pos} is the same as @samp{(0 .. inf]}, and @code{nonneg} is -the same as @samp{[0 .. inf]}. Saying @samp{[real, [-5 .. 5]]} is -redundant because the fact that the variable is real can be -deduced just from the interval, but @samp{[int, [-5 .. 5]]} and -@samp{[rat, [-5 .. 5]]} are useful combinations. - -Note that the vector of intervals or numbers is in the same format -used by Calc's set-manipulation commands. @xref{Set Operations}. - -The type specifier @samp{[1, 2, 3]} is equivalent to -@samp{[numint, 1, 2, 3]}, @emph{not} to @samp{[int, 1, 2, 3]}. -In other words, the range of possible values means only that -the variable's value must be numerically equal to a number in -that range, but not that it must be equal in type as well. -Calc's set operations act the same way; @samp{in(2, [1., 2., 3.])} -and @samp{in(1.5, [1:2, 3:2, 5:2])} both report ``true.'' - -If you use a conflicting combination of type specifiers, the -results are unpredictable. An example is @samp{[pos, [0 .. 5]]}, -where the interval does not lie in the range described by the -type symbol. - -``Real'' declarations mostly affect simplifications involving powers -like the one described above. Another case where they are used -is in the @kbd{a P} command which returns a list of all roots of a -polynomial; if the variable has been declared real, only the real -roots (if any) will be included in the list. - -``Integer'' declarations are used for simplifications which are valid -only when certain values are integers (such as @samp{(x^y)^z} -shown above). - -Another command that makes use of declarations is @kbd{a s}, when -simplifying equations and inequalities. It will cancel @code{x} -from both sides of @samp{a x = b x} only if it is sure @code{x} -is non-zero, say, because it has a @code{pos} declaration. -To declare specifically that @code{x} is real and non-zero, -use @samp{[[-inf .. 0), (0 .. inf]]}. (There is no way in the -current notation to say that @code{x} is nonzero but not necessarily -real.) The @kbd{a e} command does ``unsafe'' simplifications, -including cancelling @samp{x} from the equation when @samp{x} is -not known to be nonzero. - -Another set of type symbols distinguish between scalars and vectors. - -@table @code -@item scalar -The value is not a vector. -@item vector -The value is a vector. -@item matrix -The value is a matrix (a rectangular vector of vectors). -@item sqmatrix -The value is a square matrix. -@end table - -These type symbols can be combined with the other type symbols -described above; @samp{[int, matrix]} describes an object which -is a matrix of integers. - -Scalar/vector declarations are used to determine whether certain -algebraic operations are safe. For example, @samp{[a, b, c] + x} -is normally not simplified to @samp{[a + x, b + x, c + x]}, but -it will be if @code{x} has been declared @code{scalar}. On the -other hand, multiplication is usually assumed to be commutative, -but the terms in @samp{x y} will never be exchanged if both @code{x} -and @code{y} are known to be vectors or matrices. (Calc currently -never distinguishes between @code{vector} and @code{matrix} -declarations.) - -@xref{Matrix Mode}, for a discussion of Matrix mode and -Scalar mode, which are similar to declaring @samp{[All, matrix]} -or @samp{[All, scalar]} but much more convenient. - -One more type symbol that is recognized is used with the @kbd{H a d} -command for taking total derivatives of a formula. @xref{Calculus}. - -@table @code -@item const -The value is a constant with respect to other variables. -@end table - -Calc does not check the declarations for a variable when you store -a value in it. However, storing @mathit{-3.5} in a variable that has -been declared @code{pos}, @code{int}, or @code{matrix} may have -unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5} -if it substitutes the value first, or to @expr{-3.5} if @code{x} -was declared @code{pos} and the formula @samp{sqrt(x^2)} is -simplified to @samp{x} before the value is substituted. Before -using a variable for a new purpose, it is best to use @kbd{s d} -or @kbd{s D} to check to make sure you don't still have an old -declaration for the variable that will conflict with its new meaning. - -@node Functions for Declarations, , Kinds of Declarations, Declarations -@subsection Functions for Declarations - -@noindent -Calc has a set of functions for accessing the current declarations -in a convenient manner. These functions return 1 if the argument -can be shown to have the specified property, or 0 if the argument -can be shown @emph{not} to have that property; otherwise they are -left unevaluated. These functions are suitable for use with rewrite -rules (@pxref{Conditional Rewrite Rules}) or programming constructs -(@pxref{Conditionals in Macros}). They can be entered only using -algebraic notation. @xref{Logical Operations}, for functions -that perform other tests not related to declarations. - -For example, @samp{dint(17)} returns 1 because 17 is an integer, as -do @samp{dint(n)} and @samp{dint(2 n - 3)} if @code{n} has been declared -@code{int}, but @samp{dint(2.5)} and @samp{dint(n + 0.5)} return 0. -Calc consults knowledge of its own built-in functions as well as your -own declarations: @samp{dint(floor(x))} returns 1. - -@ignore -@starindex -@end ignore -@tindex dint -@ignore -@starindex -@end ignore -@tindex dnumint -@ignore -@starindex -@end ignore -@tindex dnatnum -The @code{dint} function checks if its argument is an integer. -The @code{dnatnum} function checks if its argument is a natural -number, i.e., a nonnegative integer. The @code{dnumint} function -checks if its argument is numerically an integer, i.e., either an -integer or an integer-valued float. Note that these and the other -data type functions also accept vectors or matrices composed of -suitable elements, and that real infinities @samp{inf} and @samp{-inf} -are considered to be integers for the purposes of these functions. - -@ignore -@starindex -@end ignore -@tindex drat -The @code{drat} function checks if its argument is rational, i.e., -an integer or fraction. Infinities count as rational, but intervals -and error forms do not. - -@ignore -@starindex -@end ignore -@tindex dreal -The @code{dreal} function checks if its argument is real. This -includes integers, fractions, floats, real error forms, and intervals. - -@ignore -@starindex -@end ignore -@tindex dimag -The @code{dimag} function checks if its argument is imaginary, -i.e., is mathematically equal to a real number times @expr{i}. - -@ignore -@starindex -@end ignore -@tindex dpos -@ignore -@starindex -@end ignore -@tindex dneg -@ignore -@starindex -@end ignore -@tindex dnonneg -The @code{dpos} function checks for positive (but nonzero) reals. -The @code{dneg} function checks for negative reals. The @code{dnonneg} -function checks for nonnegative reals, i.e., reals greater than or -equal to zero. Note that the @kbd{a s} command can simplify an -expression like @expr{x > 0} to 1 or 0 using @code{dpos}, and that -@kbd{a s} is effectively applied to all conditions in rewrite rules, -so the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg} -are rarely necessary. - -@ignore -@starindex -@end ignore -@tindex dnonzero -The @code{dnonzero} function checks that its argument is nonzero. -This includes all nonzero real or complex numbers, all intervals that -do not include zero, all nonzero modulo forms, vectors all of whose -elements are nonzero, and variables or formulas whose values can be -deduced to be nonzero. It does not include error forms, since they -represent values which could be anything including zero. (This is -also the set of objects considered ``true'' in conditional contexts.) - -@ignore -@starindex -@end ignore -@tindex deven -@ignore -@starindex -@end ignore -@tindex dodd -The @code{deven} function returns 1 if its argument is known to be -an even integer (or integer-valued float); it returns 0 if its argument -is known not to be even (because it is known to be odd or a non-integer). -The @kbd{a s} command uses this to simplify a test of the form -@samp{x % 2 = 0}. There is also an analogous @code{dodd} function. - -@ignore -@starindex -@end ignore -@tindex drange -The @code{drange} function returns a set (an interval or a vector -of intervals and/or numbers; @pxref{Set Operations}) that describes -the set of possible values of its argument. If the argument is -a variable or a function with a declaration, the range is copied -from the declaration. Otherwise, the possible signs of the -expression are determined using a method similar to @code{dpos}, -etc., and a suitable set like @samp{[0 .. inf]} is returned. If -the expression is not provably real, the @code{drange} function -remains unevaluated. - -@ignore -@starindex -@end ignore -@tindex dscalar -The @code{dscalar} function returns 1 if its argument is provably -scalar, or 0 if its argument is provably non-scalar. It is left -unevaluated if this cannot be determined. (If Matrix mode or Scalar -mode is in effect, this function returns 1 or 0, respectively, -if it has no other information.) When Calc interprets a condition -(say, in a rewrite rule) it considers an unevaluated formula to be -``false.'' Thus, @samp{dscalar(a)} is ``true'' only if @code{a} is -provably scalar, and @samp{!dscalar(a)} is ``true'' only if @code{a} -is provably non-scalar; both are ``false'' if there is insufficient -information to tell. - -@node Display Modes, Language Modes, Declarations, Mode Settings -@section Display Modes - -@noindent -The commands in this section are two-key sequences beginning with the -@kbd{d} prefix. The @kbd{d l} (@code{calc-line-numbering}) and @kbd{d b} -(@code{calc-line-breaking}) commands are described elsewhere; -@pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively. -Display formats for vectors and matrices are also covered elsewhere; -@pxref{Vector and Matrix Formats}. - -One thing all display modes have in common is their treatment of the -@kbd{H} prefix. This prefix causes any mode command that would normally -refresh the stack to leave the stack display alone. The word ``Dirty'' -will appear in the mode line when Calc thinks the stack display may not -reflect the latest mode settings. - -@kindex d @key{RET} -@pindex calc-refresh-top -The @kbd{d @key{RET}} (@code{calc-refresh-top}) command reformats the -top stack entry according to all the current modes. Positive prefix -arguments reformat the top @var{n} entries; negative prefix arguments -reformat the specified entry, and a prefix of zero is equivalent to -@kbd{d @key{SPC}} (@code{calc-refresh}), which reformats the entire stack. -For example, @kbd{H d s M-2 d @key{RET}} changes to scientific notation -but reformats only the top two stack entries in the new mode. - -The @kbd{I} prefix has another effect on the display modes. The mode -is set only temporarily; the top stack entry is reformatted according -to that mode, then the original mode setting is restored. In other -words, @kbd{I d s} is equivalent to @kbd{H d s d @key{RET} H d (@var{old mode})}. - -@menu -* Radix Modes:: -* Grouping Digits:: -* Float Formats:: -* Complex Formats:: -* Fraction Formats:: -* HMS Formats:: -* Date Formats:: -* Truncating the Stack:: -* Justification:: -* Labels:: -@end menu - -@node Radix Modes, Grouping Digits, Display Modes, Display Modes -@subsection Radix Modes - -@noindent -@cindex Radix display -@cindex Non-decimal numbers -@cindex Decimal and non-decimal numbers -Calc normally displays numbers in decimal (@dfn{base-10} or @dfn{radix-10}) -notation. Calc can actually display in any radix from two (binary) to 36. -When the radix is above 10, the letters @code{A} to @code{Z} are used as -digits. When entering such a number, letter keys are interpreted as -potential digits rather than terminating numeric entry mode. - -@kindex d 2 -@kindex d 8 -@kindex d 6 -@kindex d 0 -@cindex Hexadecimal integers -@cindex Octal integers -The key sequences @kbd{d 2}, @kbd{d 8}, @kbd{d 6}, and @kbd{d 0} select -binary, octal, hexadecimal, and decimal as the current display radix, -respectively. Numbers can always be entered in any radix, though the -current radix is used as a default if you press @kbd{#} without any initial -digits. A number entered without a @kbd{#} is @emph{always} interpreted -as decimal. - -@kindex d r -@pindex calc-radix -To set the radix generally, use @kbd{d r} (@code{calc-radix}) and enter -an integer from 2 to 36. You can specify the radix as a numeric prefix -argument; otherwise you will be prompted for it. - -@kindex d z -@pindex calc-leading-zeros -@cindex Leading zeros -Integers normally are displayed with however many digits are necessary to -represent the integer and no more. The @kbd{d z} (@code{calc-leading-zeros}) -command causes integers to be padded out with leading zeros according to the -current binary word size. (@xref{Binary Functions}, for a discussion of -word size.) If the absolute value of the word size is @expr{w}, all integers -are displayed with at least enough digits to represent -@texline @math{2^w-1} -@infoline @expr{(2^w)-1} -in the current radix. (Larger integers will still be displayed in their -entirety.) - -@node Grouping Digits, Float Formats, Radix Modes, Display Modes -@subsection Grouping Digits - -@noindent -@kindex d g -@pindex calc-group-digits -@cindex Grouping digits -@cindex Digit grouping -Long numbers can be hard to read if they have too many digits. For -example, the factorial of 30 is 33 digits long! Press @kbd{d g} -(@code{calc-group-digits}) to enable @dfn{Grouping} mode, in which digits -are displayed in clumps of 3 or 4 (depending on the current radix) -separated by commas. - -The @kbd{d g} command toggles grouping on and off. -With a numeric prefix of 0, this command displays the current state of -the grouping flag; with an argument of minus one it disables grouping; -with a positive argument @expr{N} it enables grouping on every @expr{N} -digits. For floating-point numbers, grouping normally occurs only -before the decimal point. A negative prefix argument @expr{-N} enables -grouping every @expr{N} digits both before and after the decimal point. - -@kindex d , -@pindex calc-group-char -The @kbd{d ,} (@code{calc-group-char}) command allows you to choose any -character as the grouping separator. The default is the comma character. -If you find it difficult to read vectors of large integers grouped with -commas, you may wish to use spaces or some other character instead. -This command takes the next character you type, whatever it is, and -uses it as the digit separator. As a special case, @kbd{d , \} selects -@samp{\,} (@TeX{}'s thin-space symbol) as the digit separator. - -Please note that grouped numbers will not generally be parsed correctly -if re-read in textual form, say by the use of @kbd{C-x * y} and @kbd{C-x * g}. -(@xref{Kill and Yank}, for details on these commands.) One exception is -the @samp{\,} separator, which doesn't interfere with parsing because it -is ignored by @TeX{} language mode. - -@node Float Formats, Complex Formats, Grouping Digits, Display Modes -@subsection Float Formats - -@noindent -Floating-point quantities are normally displayed in standard decimal -form, with scientific notation used if the exponent is especially high -or low. All significant digits are normally displayed. The commands -in this section allow you to choose among several alternative display -formats for floats. - -@kindex d n -@pindex calc-normal-notation -The @kbd{d n} (@code{calc-normal-notation}) command selects the normal -display format. All significant figures in a number are displayed. -With a positive numeric prefix, numbers are rounded if necessary to -that number of significant digits. With a negative numerix prefix, -the specified number of significant digits less than the current -precision is used. (Thus @kbd{C-u -2 d n} displays 10 digits if the -current precision is 12.) - -@kindex d f -@pindex calc-fix-notation -The @kbd{d f} (@code{calc-fix-notation}) command selects fixed-point -notation. The numeric argument is the number of digits after the -decimal point, zero or more. This format will relax into scientific -notation if a nonzero number would otherwise have been rounded all the -way to zero. Specifying a negative number of digits is the same as -for a positive number, except that small nonzero numbers will be rounded -to zero rather than switching to scientific notation. - -@kindex d s -@pindex calc-sci-notation -@cindex Scientific notation, display of -The @kbd{d s} (@code{calc-sci-notation}) command selects scientific -notation. A positive argument sets the number of significant figures -displayed, of which one will be before and the rest after the decimal -point. A negative argument works the same as for @kbd{d n} format. -The default is to display all significant digits. - -@kindex d e -@pindex calc-eng-notation -@cindex Engineering notation, display of -The @kbd{d e} (@code{calc-eng-notation}) command selects engineering -notation. This is similar to scientific notation except that the -exponent is rounded down to a multiple of three, with from one to three -digits before the decimal point. An optional numeric prefix sets the -number of significant digits to display, as for @kbd{d s}. - -It is important to distinguish between the current @emph{precision} and -the current @emph{display format}. After the commands @kbd{C-u 10 p} -and @kbd{C-u 6 d n} the Calculator computes all results to ten -significant figures but displays only six. (In fact, intermediate -calculations are often carried to one or two more significant figures, -but values placed on the stack will be rounded down to ten figures.) -Numbers are never actually rounded to the display precision for storage, -except by commands like @kbd{C-k} and @kbd{C-x * y} which operate on the -actual displayed text in the Calculator buffer. - -@kindex d . -@pindex calc-point-char -The @kbd{d .} (@code{calc-point-char}) command selects the character used -as a decimal point. Normally this is a period; users in some countries -may wish to change this to a comma. Note that this is only a display -style; on entry, periods must always be used to denote floating-point -numbers, and commas to separate elements in a list. - -@node Complex Formats, Fraction Formats, Float Formats, Display Modes -@subsection Complex Formats - -@noindent -@kindex d c -@pindex calc-complex-notation -There are three supported notations for complex numbers in rectangular -form. The default is as a pair of real numbers enclosed in parentheses -and separated by a comma: @samp{(a,b)}. The @kbd{d c} -(@code{calc-complex-notation}) command selects this style. - -@kindex d i -@pindex calc-i-notation -@kindex d j -@pindex calc-j-notation -The other notations are @kbd{d i} (@code{calc-i-notation}), in which -numbers are displayed in @samp{a+bi} form, and @kbd{d j} -(@code{calc-j-notation}) which displays the form @samp{a+bj} preferred -in some disciplines. - -@cindex @code{i} variable -@vindex i -Complex numbers are normally entered in @samp{(a,b)} format. -If you enter @samp{2+3i} as an algebraic formula, it will be stored as -the formula @samp{2 + 3 * i}. However, if you use @kbd{=} to evaluate -this formula and you have not changed the variable @samp{i}, the @samp{i} -will be interpreted as @samp{(0,1)} and the formula will be simplified -to @samp{(2,3)}. Other commands (like @code{calc-sin}) will @emph{not} -interpret the formula @samp{2 + 3 * i} as a complex number. -@xref{Variables}, under ``special constants.'' - -@node Fraction Formats, HMS Formats, Complex Formats, Display Modes -@subsection Fraction Formats - -@noindent -@kindex d o -@pindex calc-over-notation -Display of fractional numbers is controlled by the @kbd{d o} -(@code{calc-over-notation}) command. By default, a number like -eight thirds is displayed in the form @samp{8:3}. The @kbd{d o} command -prompts for a one- or two-character format. If you give one character, -that character is used as the fraction separator. Common separators are -@samp{:} and @samp{/}. (During input of numbers, the @kbd{:} key must be -used regardless of the display format; in particular, the @kbd{/} is used -for RPN-style division, @emph{not} for entering fractions.) - -If you give two characters, fractions use ``integer-plus-fractional-part'' -notation. For example, the format @samp{+/} would display eight thirds -as @samp{2+2/3}. If two colons are present in a number being entered, -the number is interpreted in this form (so that the entries @kbd{2:2:3} -and @kbd{8:3} are equivalent). - -It is also possible to follow the one- or two-character format with -a number. For example: @samp{:10} or @samp{+/3}. In this case, -Calc adjusts all fractions that are displayed to have the specified -denominator, if possible. Otherwise it adjusts the denominator to -be a multiple of the specified value. For example, in @samp{:6} mode -the fraction @expr{1:6} will be unaffected, but @expr{2:3} will be -displayed as @expr{4:6}, @expr{1:2} will be displayed as @expr{3:6}, -and @expr{1:8} will be displayed as @expr{3:24}. Integers are also -affected by this mode: 3 is displayed as @expr{18:6}. Note that the -format @samp{:1} writes fractions the same as @samp{:}, but it writes -integers as @expr{n:1}. - -The fraction format does not affect the way fractions or integers are -stored, only the way they appear on the screen. The fraction format -never affects floats. - -@node HMS Formats, Date Formats, Fraction Formats, Display Modes -@subsection HMS Formats - -@noindent -@kindex d h -@pindex calc-hms-notation -The @kbd{d h} (@code{calc-hms-notation}) command controls the display of -HMS (hours-minutes-seconds) forms. It prompts for a string which -consists basically of an ``hours'' marker, optional punctuation, a -``minutes'' marker, more optional punctuation, and a ``seconds'' marker. -Punctuation is zero or more spaces, commas, or semicolons. The hours -marker is one or more non-punctuation characters. The minutes and -seconds markers must be single non-punctuation characters. - -The default HMS format is @samp{@@ ' "}, producing HMS values of the form -@samp{23@@ 30' 15.75"}. The format @samp{deg, ms} would display this same -value as @samp{23deg, 30m15.75s}. During numeric entry, the @kbd{h} or @kbd{o} -keys are recognized as synonyms for @kbd{@@} regardless of display format. -The @kbd{m} and @kbd{s} keys are recognized as synonyms for @kbd{'} and -@kbd{"}, respectively, but only if an @kbd{@@} (or @kbd{h} or @kbd{o}) has -already been typed; otherwise, they have their usual meanings -(@kbd{m-} prefix and @kbd{s-} prefix). Thus, @kbd{5 "}, @kbd{0 @@ 5 "}, and -@kbd{0 h 5 s} are some of the ways to enter the quantity ``five seconds.'' -The @kbd{'} key is recognized as ``minutes'' only if @kbd{@@} (or @kbd{h} or -@kbd{o}) has already been pressed; otherwise it means to switch to algebraic -entry. - -@node Date Formats, Truncating the Stack, HMS Formats, Display Modes -@subsection Date Formats - -@noindent -@kindex d d -@pindex calc-date-notation -The @kbd{d d} (@code{calc-date-notation}) command controls the display -of date forms (@pxref{Date Forms}). It prompts for a string which -contains letters that represent the various parts of a date and time. -To show which parts should be omitted when the form represents a pure -date with no time, parts of the string can be enclosed in @samp{< >} -marks. If you don't include @samp{< >} markers in the format, Calc -guesses at which parts, if any, should be omitted when formatting -pure dates. - -The default format is: @samp{Www Mmm D, YYYY}. -An example string in this format is @samp{3:32pm Wed Jan 9, 1991}. -If you enter a blank format string, this default format is -reestablished. - -Calc uses @samp{< >} notation for nameless functions as well as for -dates. @xref{Specifying Operators}. To avoid confusion with nameless -functions, your date formats should avoid using the @samp{#} character. - -@menu -* Date Formatting Codes:: -* Free-Form Dates:: -* Standard Date Formats:: -@end menu - -@node Date Formatting Codes, Free-Form Dates, Date Formats, Date Formats -@subsubsection Date Formatting Codes - -@noindent -When displaying a date, the current date format is used. All -characters except for letters and @samp{<} and @samp{>} are -copied literally when dates are formatted. The portion between -@samp{< >} markers is omitted for pure dates, or included for -date/time forms. Letters are interpreted according to the table -below. - -When dates are read in during algebraic entry, Calc first tries to -match the input string to the current format either with or without -the time part. The punctuation characters (including spaces) must -match exactly; letter fields must correspond to suitable text in -the input. If this doesn't work, Calc checks if the input is a -simple number; if so, the number is interpreted as a number of days -since Jan 1, 1 AD. Otherwise, Calc tries a much more relaxed and -flexible algorithm which is described in the next section. - -Weekday names are ignored during reading. - -Two-digit year numbers are interpreted as lying in the range -from 1941 to 2039. Years outside that range are always -entered and displayed in full. Year numbers with a leading -@samp{+} sign are always interpreted exactly, allowing the -entry and display of the years 1 through 99 AD. - -Here is a complete list of the formatting codes for dates: - -@table @asis -@item Y -Year: ``91'' for 1991, ``7'' for 2007, ``+23'' for 23 AD. -@item YY -Year: ``91'' for 1991, ``07'' for 2007, ``+23'' for 23 AD. -@item BY -Year: ``91'' for 1991, `` 7'' for 2007, ``+23'' for 23 AD. -@item YYY -Year: ``1991'' for 1991, ``23'' for 23 AD. -@item YYYY -Year: ``1991'' for 1991, ``+23'' for 23 AD. -@item aa -Year: ``ad'' or blank. -@item AA -Year: ``AD'' or blank. -@item aaa -Year: ``ad '' or blank. (Note trailing space.) -@item AAA -Year: ``AD '' or blank. -@item aaaa -Year: ``a.d.'' or blank. -@item AAAA -Year: ``A.D.'' or blank. -@item bb -Year: ``bc'' or blank. -@item BB -Year: ``BC'' or blank. -@item bbb -Year: `` bc'' or blank. (Note leading space.) -@item BBB -Year: `` BC'' or blank. -@item bbbb -Year: ``b.c.'' or blank. -@item BBBB -Year: ``B.C.'' or blank. -@item M -Month: ``8'' for August. -@item MM -Month: ``08'' for August. -@item BM -Month: `` 8'' for August. -@item MMM -Month: ``AUG'' for August. -@item Mmm -Month: ``Aug'' for August. -@item mmm -Month: ``aug'' for August. -@item MMMM -Month: ``AUGUST'' for August. -@item Mmmm -Month: ``August'' for August. -@item D -Day: ``7'' for 7th day of month. -@item DD -Day: ``07'' for 7th day of month. -@item BD -Day: `` 7'' for 7th day of month. -@item W -Weekday: ``0'' for Sunday, ``6'' for Saturday. -@item WWW -Weekday: ``SUN'' for Sunday. -@item Www -Weekday: ``Sun'' for Sunday. -@item www -Weekday: ``sun'' for Sunday. -@item WWWW -Weekday: ``SUNDAY'' for Sunday. -@item Wwww -Weekday: ``Sunday'' for Sunday. -@item d -Day of year: ``34'' for Feb. 3. -@item ddd -Day of year: ``034'' for Feb. 3. -@item bdd -Day of year: `` 34'' for Feb. 3. -@item h -Hour: ``5'' for 5 AM; ``17'' for 5 PM. -@item hh -Hour: ``05'' for 5 AM; ``17'' for 5 PM. -@item bh -Hour: `` 5'' for 5 AM; ``17'' for 5 PM. -@item H -Hour: ``5'' for 5 AM and 5 PM. -@item HH -Hour: ``05'' for 5 AM and 5 PM. -@item BH -Hour: `` 5'' for 5 AM and 5 PM. -@item p -AM/PM: ``a'' or ``p''. -@item P -AM/PM: ``A'' or ``P''. -@item pp -AM/PM: ``am'' or ``pm''. -@item PP -AM/PM: ``AM'' or ``PM''. -@item pppp -AM/PM: ``a.m.'' or ``p.m.''. -@item PPPP -AM/PM: ``A.M.'' or ``P.M.''. -@item m -Minutes: ``7'' for 7. -@item mm -Minutes: ``07'' for 7. -@item bm -Minutes: `` 7'' for 7. -@item s -Seconds: ``7'' for 7; ``7.23'' for 7.23. -@item ss -Seconds: ``07'' for 7; ``07.23'' for 7.23. -@item bs -Seconds: `` 7'' for 7; `` 7.23'' for 7.23. -@item SS -Optional seconds: ``07'' for 7; blank for 0. -@item BS -Optional seconds: `` 7'' for 7; blank for 0. -@item N -Numeric date/time: ``726842.25'' for 6:00am Wed Jan 9, 1991. -@item n -Numeric date: ``726842'' for any time on Wed Jan 9, 1991. -@item J -Julian date/time: ``2448265.75'' for 6:00am Wed Jan 9, 1991. -@item j -Julian date: ``2448266'' for any time on Wed Jan 9, 1991. -@item U -Unix time: ``663400800'' for 6:00am Wed Jan 9, 1991. -@item X -Brackets suppression. An ``X'' at the front of the format -causes the surrounding @w{@samp{< >}} delimiters to be omitted -when formatting dates. Note that the brackets are still -required for algebraic entry. -@end table - -If ``SS'' or ``BS'' (optional seconds) is preceded by a colon, the -colon is also omitted if the seconds part is zero. - -If ``bb,'' ``bbb'' or ``bbbb'' or their upper-case equivalents -appear in the format, then negative year numbers are displayed -without a minus sign. Note that ``aa'' and ``bb'' are mutually -exclusive. Some typical usages would be @samp{YYYY AABB}; -@samp{AAAYYYYBBB}; @samp{YYYYBBB}. - -The formats ``YY,'' ``YYYY,'' ``MM,'' ``DD,'' ``ddd,'' ``hh,'' ``HH,'' -``mm,'' ``ss,'' and ``SS'' actually match any number of digits during -reading unless several of these codes are strung together with no -punctuation in between, in which case the input must have exactly as -many digits as there are letters in the format. - -The ``j,'' ``J,'' and ``U'' formats do not make any time zone -adjustment. They effectively use @samp{julian(x,0)} and -@samp{unixtime(x,0)} to make the conversion; @pxref{Date Arithmetic}. - -@node Free-Form Dates, Standard Date Formats, Date Formatting Codes, Date Formats -@subsubsection Free-Form Dates - -@noindent -When reading a date form during algebraic entry, Calc falls back -on the algorithm described here if the input does not exactly -match the current date format. This algorithm generally -``does the right thing'' and you don't have to worry about it, -but it is described here in full detail for the curious. - -Calc does not distinguish between upper- and lower-case letters -while interpreting dates. - -First, the time portion, if present, is located somewhere in the -text and then removed. The remaining text is then interpreted as -the date. - -A time is of the form @samp{hh:mm:ss}, possibly with the seconds -part omitted and possibly with an AM/PM indicator added to indicate -12-hour time. If the AM/PM is present, the minutes may also be -omitted. The AM/PM part may be any of the words @samp{am}, -@samp{pm}, @samp{noon}, or @samp{midnight}; each of these may be -abbreviated to one letter, and the alternate forms @samp{a.m.}, -@samp{p.m.}, and @samp{mid} are also understood. Obviously -@samp{noon} and @samp{midnight} are allowed only on 12:00:00. -The words @samp{noon}, @samp{mid}, and @samp{midnight} are also -recognized with no number attached. - -If there is no AM/PM indicator, the time is interpreted in 24-hour -format. - -To read the date portion, all words and numbers are isolated -from the string; other characters are ignored. All words must -be either month names or day-of-week names (the latter of which -are ignored). Names can be written in full or as three-letter -abbreviations. - -Large numbers, or numbers with @samp{+} or @samp{-} signs, -are interpreted as years. If one of the other numbers is -greater than 12, then that must be the day and the remaining -number in the input is therefore the month. Otherwise, Calc -assumes the month, day and year are in the same order that they -appear in the current date format. If the year is omitted, the -current year is taken from the system clock. - -If there are too many or too few numbers, or any unrecognizable -words, then the input is rejected. - -If there are any large numbers (of five digits or more) other than -the year, they are ignored on the assumption that they are something -like Julian dates that were included along with the traditional -date components when the date was formatted. - -One of the words @samp{ad}, @samp{a.d.}, @samp{bc}, or @samp{b.c.} -may optionally be used; the latter two are equivalent to a -minus sign on the year value. - -If you always enter a four-digit year, and use a name instead -of a number for the month, there is no danger of ambiguity. - -@node Standard Date Formats, , Free-Form Dates, Date Formats -@subsubsection Standard Date Formats - -@noindent -There are actually ten standard date formats, numbered 0 through 9. -Entering a blank line at the @kbd{d d} command's prompt gives -you format number 1, Calc's usual format. You can enter any digit -to select the other formats. - -To create your own standard date formats, give a numeric prefix -argument from 0 to 9 to the @w{@kbd{d d}} command. The format you -enter will be recorded as the new standard format of that -number, as well as becoming the new current date format. -You can save your formats permanently with the @w{@kbd{m m}} -command (@pxref{Mode Settings}). - -@table @asis -@item 0 -@samp{N} (Numerical format) -@item 1 -@samp{Www Mmm D, YYYY} (American format) -@item 2 -@samp{D Mmm YYYY<, h:mm:SS>} (European format) -@item 3 -@samp{Www Mmm BD< hh:mm:ss> YYYY} (Unix written date format) -@item 4 -@samp{M/D/Y< H:mm:SSpp>} (American slashed format) -@item 5 -@samp{D.M.Y< h:mm:SS>} (European dotted format) -@item 6 -@samp{M-D-Y< H:mm:SSpp>} (American dashed format) -@item 7 -@samp{D-M-Y< h:mm:SS>} (European dashed format) -@item 8 -@samp{j<, h:mm:ss>} (Julian day plus time) -@item 9 -@samp{YYddd< hh:mm:ss>} (Year-day format) -@end table - -@node Truncating the Stack, Justification, Date Formats, Display Modes -@subsection Truncating the Stack - -@noindent -@kindex d t -@pindex calc-truncate-stack -@cindex Truncating the stack -@cindex Narrowing the stack -The @kbd{d t} (@code{calc-truncate-stack}) command moves the @samp{.}@: -line that marks the top-of-stack up or down in the Calculator buffer. -The number right above that line is considered to the be at the top of -the stack. Any numbers below that line are ``hidden'' from all stack -operations (although still visible to the user). This is similar to the -Emacs ``narrowing'' feature, except that the values below the @samp{.} -are @emph{visible}, just temporarily frozen. This feature allows you to -keep several independent calculations running at once in different parts -of the stack, or to apply a certain command to an element buried deep in -the stack. - -Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor -is on. Thus, this line and all those below it become hidden. To un-hide -these lines, move down to the end of the buffer and press @w{@kbd{d t}}. -With a positive numeric prefix argument @expr{n}, @kbd{d t} hides the -bottom @expr{n} values in the buffer. With a negative argument, it hides -all but the top @expr{n} values. With an argument of zero, it hides zero -values, i.e., moves the @samp{.} all the way down to the bottom. - -@kindex d [ -@pindex calc-truncate-up -@kindex d ] -@pindex calc-truncate-down -The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]} -(@code{calc-truncate-down}) commands move the @samp{.} up or down one -line at a time (or several lines with a prefix argument). - -@node Justification, Labels, Truncating the Stack, Display Modes -@subsection Justification - -@noindent -@kindex d < -@pindex calc-left-justify -@kindex d = -@pindex calc-center-justify -@kindex d > -@pindex calc-right-justify -Values on the stack are normally left-justified in the window. You can -control this arrangement by typing @kbd{d <} (@code{calc-left-justify}), -@kbd{d >} (@code{calc-right-justify}), or @kbd{d =} -(@code{calc-center-justify}). For example, in Right-Justification mode, -stack entries are displayed flush-right against the right edge of the -window. - -If you change the width of the Calculator window you may have to type -@kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered -text. - -Right-justification is especially useful together with fixed-point -notation (see @code{d f}; @code{calc-fix-notation}). With these modes -together, the decimal points on numbers will always line up. - -With a numeric prefix argument, the justification commands give you -a little extra control over the display. The argument specifies the -horizontal ``origin'' of a display line. It is also possible to -specify a maximum line width using the @kbd{d b} command (@pxref{Normal -Language Modes}). For reference, the precise rules for formatting and -breaking lines are given below. Notice that the interaction between -origin and line width is slightly different in each justification -mode. - -In Left-Justified mode, the line is indented by a number of spaces -given by the origin (default zero). If the result is longer than the -maximum line width, if given, or too wide to fit in the Calc window -otherwise, then it is broken into lines which will fit; each broken -line is indented to the origin. - -In Right-Justified mode, lines are shifted right so that the rightmost -character is just before the origin, or just before the current -window width if no origin was specified. If the line is too long -for this, then it is broken; the current line width is used, if -specified, or else the origin is used as a width if that is -specified, or else the line is broken to fit in the window. - -In Centering mode, the origin is the column number of the center of -each stack entry. If a line width is specified, lines will not be -allowed to go past that width; Calc will either indent less or -break the lines if necessary. If no origin is specified, half the -line width or Calc window width is used. - -Note that, in each case, if line numbering is enabled the display -is indented an additional four spaces to make room for the line -number. The width of the line number is taken into account when -positioning according to the current Calc window width, but not -when positioning by explicit origins and widths. In the latter -case, the display is formatted as specified, and then uniformly -shifted over four spaces to fit the line numbers. - -@node Labels, , Justification, Display Modes -@subsection Labels - -@noindent -@kindex d @{ -@pindex calc-left-label -The @kbd{d @{} (@code{calc-left-label}) command prompts for a string, -then displays that string to the left of every stack entry. If the -entries are left-justified (@pxref{Justification}), then they will -appear immediately after the label (unless you specified an origin -greater than the length of the label). If the entries are centered -or right-justified, the label appears on the far left and does not -affect the horizontal position of the stack entry. - -Give a blank string (with @kbd{d @{ @key{RET}}) to turn the label off. - -@kindex d @} -@pindex calc-right-label -The @kbd{d @}} (@code{calc-right-label}) command similarly adds a -label on the righthand side. It does not affect positioning of -the stack entries unless they are right-justified. Also, if both -a line width and an origin are given in Right-Justified mode, the -stack entry is justified to the origin and the righthand label is -justified to the line width. - -One application of labels would be to add equation numbers to -formulas you are manipulating in Calc and then copying into a -document (possibly using Embedded mode). The equations would -typically be centered, and the equation numbers would be on the -left or right as you prefer. - -@node Language Modes, Modes Variable, Display Modes, Mode Settings -@section Language Modes - -@noindent -The commands in this section change Calc to use a different notation for -entry and display of formulas, corresponding to the conventions of some -other common language such as Pascal or La@TeX{}. Objects displayed on the -stack or yanked from the Calculator to an editing buffer will be formatted -in the current language; objects entered in algebraic entry or yanked from -another buffer will be interpreted according to the current language. - -The current language has no effect on things written to or read from the -trail buffer, nor does it affect numeric entry. Only algebraic entry is -affected. You can make even algebraic entry ignore the current language -and use the standard notation by giving a numeric prefix, e.g., @kbd{C-u '}. - -For example, suppose the formula @samp{2*a[1] + atan(a[2])} occurs in a C -program; elsewhere in the program you need the derivatives of this formula -with respect to @samp{a[1]} and @samp{a[2]}. First, type @kbd{d C} -to switch to C notation. Now use @code{C-u C-x * g} to grab the formula -into the Calculator, @kbd{a d a[1] @key{RET}} to differentiate with respect -to the first variable, and @kbd{C-x * y} to yank the formula for the derivative -back into your C program. Press @kbd{U} to undo the differentiation and -repeat with @kbd{a d a[2] @key{RET}} for the other derivative. - -Without being switched into C mode first, Calc would have misinterpreted -the brackets in @samp{a[1]} and @samp{a[2]}, would not have known that -@code{atan} was equivalent to Calc's built-in @code{arctan} function, -and would have written the formula back with notations (like implicit -multiplication) which would not have been valid for a C program. - -As another example, suppose you are maintaining a C program and a La@TeX{} -document, each of which needs a copy of the same formula. You can grab the -formula from the program in C mode, switch to La@TeX{} mode, and yank the -formula into the document in La@TeX{} math-mode format. - -Language modes are selected by typing the letter @kbd{d} followed by a -shifted letter key. - -@menu -* Normal Language Modes:: -* C FORTRAN Pascal:: -* TeX and LaTeX Language Modes:: -* Eqn Language Mode:: -* Mathematica Language Mode:: -* Maple Language Mode:: -* Compositions:: -* Syntax Tables:: -@end menu - -@node Normal Language Modes, C FORTRAN Pascal, Language Modes, Language Modes -@subsection Normal Language Modes - -@noindent -@kindex d N -@pindex calc-normal-language -The @kbd{d N} (@code{calc-normal-language}) command selects the usual -notation for Calc formulas, as described in the rest of this manual. -Matrices are displayed in a multi-line tabular format, but all other -objects are written in linear form, as they would be typed from the -keyboard. - -@kindex d O -@pindex calc-flat-language -@cindex Matrix display -The @kbd{d O} (@code{calc-flat-language}) command selects a language -identical with the normal one, except that matrices are written in -one-line form along with everything else. In some applications this -form may be more suitable for yanking data into other buffers. - -@kindex d b -@pindex calc-line-breaking -@cindex Line breaking -@cindex Breaking up long lines -Even in one-line mode, long formulas or vectors will still be split -across multiple lines if they exceed the width of the Calculator window. -The @kbd{d b} (@code{calc-line-breaking}) command turns this line-breaking -feature on and off. (It works independently of the current language.) -If you give a numeric prefix argument of five or greater to the @kbd{d b} -command, that argument will specify the line width used when breaking -long lines. - -@kindex d B -@pindex calc-big-language -The @kbd{d B} (@code{calc-big-language}) command selects a language -which uses textual approximations to various mathematical notations, -such as powers, quotients, and square roots: - -@example - ____________ - | a + 1 2 - | ----- + c -\| b -@end example - -@noindent -in place of @samp{sqrt((a+1)/b + c^2)}. - -Subscripts like @samp{a_i} are displayed as actual subscripts in Big -mode. Double subscripts, @samp{a_i_j} (@samp{subscr(subscr(a, i), j)}) -are displayed as @samp{a} with subscripts separated by commas: -@samp{i, j}. They must still be entered in the usual underscore -notation. - -One slight ambiguity of Big notation is that - -@example - 3 -- - - 4 -@end example - -@noindent -can represent either the negative rational number @expr{-3:4}, or the -actual expression @samp{-(3/4)}; but the latter formula would normally -never be displayed because it would immediately be evaluated to -@expr{-3:4} or @expr{-0.75}, so this ambiguity is not a problem in -typical use. - -Non-decimal numbers are displayed with subscripts. Thus there is no -way to tell the difference between @samp{16#C2} and @samp{C2_16}, -though generally you will know which interpretation is correct. -Logarithms @samp{log(x,b)} and @samp{log10(x)} also use subscripts -in Big mode. - -In Big mode, stack entries often take up several lines. To aid -readability, stack entries are separated by a blank line in this mode. -You may find it useful to expand the Calc window's height using -@kbd{C-x ^} (@code{enlarge-window}) or to make the Calc window the only -one on the screen with @kbd{C-x 1} (@code{delete-other-windows}). - -Long lines are currently not rearranged to fit the window width in -Big mode, so you may need to use the @kbd{<} and @kbd{>} keys -to scroll across a wide formula. For really big formulas, you may -even need to use @kbd{@{} and @kbd{@}} to scroll up and down. - -@kindex d U -@pindex calc-unformatted-language -The @kbd{d U} (@code{calc-unformatted-language}) command altogether disables -the use of operator notation in formulas. In this mode, the formula -shown above would be displayed: - -@example -sqrt(add(div(add(a, 1), b), pow(c, 2))) -@end example - -These four modes differ only in display format, not in the format -expected for algebraic entry. The standard Calc operators work in -all four modes, and unformatted notation works in any language mode -(except that Mathematica mode expects square brackets instead of -parentheses). - -@node C FORTRAN Pascal, TeX and LaTeX Language Modes, Normal Language Modes, Language Modes -@subsection C, FORTRAN, and Pascal Modes - -@noindent -@kindex d C -@pindex calc-c-language -@cindex C language -The @kbd{d C} (@code{calc-c-language}) command selects the conventions -of the C language for display and entry of formulas. This differs from -the normal language mode in a variety of (mostly minor) ways. In -particular, C language operators and operator precedences are used in -place of Calc's usual ones. For example, @samp{a^b} means @samp{xor(a,b)} -in C mode; a value raised to a power is written as a function call, -@samp{pow(a,b)}. - -In C mode, vectors and matrices use curly braces instead of brackets. -Octal and hexadecimal values are written with leading @samp{0} or @samp{0x} -rather than using the @samp{#} symbol. Array subscripting is -translated into @code{subscr} calls, so that @samp{a[i]} in C -mode is the same as @samp{a_i} in Normal mode. Assignments -turn into the @code{assign} function, which Calc normally displays -using the @samp{:=} symbol. - -The variables @code{pi} and @code{e} would be displayed @samp{pi} -and @samp{e} in Normal mode, but in C mode they are displayed as -@samp{M_PI} and @samp{M_E}, corresponding to the names of constants -typically provided in the @file{} header. Functions whose -names are different in C are translated automatically for entry and -display purposes. For example, entering @samp{asin(x)} will push the -formula @samp{arcsin(x)} onto the stack; this formula will be displayed -as @samp{asin(x)} as long as C mode is in effect. - -@kindex d P -@pindex calc-pascal-language -@cindex Pascal language -The @kbd{d P} (@code{calc-pascal-language}) command selects Pascal -conventions. Like C mode, Pascal mode interprets array brackets and uses -a different table of operators. Hexadecimal numbers are entered and -displayed with a preceding dollar sign. (Thus the regular meaning of -@kbd{$2} during algebraic entry does not work in Pascal mode, though -@kbd{$} (and @kbd{$$}, etc.) not followed by digits works the same as -always.) No special provisions are made for other non-decimal numbers, -vectors, and so on, since there is no universally accepted standard way -of handling these in Pascal. - -@kindex d F -@pindex calc-fortran-language -@cindex FORTRAN language -The @kbd{d F} (@code{calc-fortran-language}) command selects FORTRAN -conventions. Various function names are transformed into FORTRAN -equivalents. Vectors are written as @samp{/1, 2, 3/}, and may be -entered this way or using square brackets. Since FORTRAN uses round -parentheses for both function calls and array subscripts, Calc displays -both in the same way; @samp{a(i)} is interpreted as a function call -upon reading, and subscripts must be entered as @samp{subscr(a, i)}. -Also, if the variable @code{a} has been declared to have type -@code{vector} or @code{matrix} then @samp{a(i)} will be parsed as a -subscript. (@xref{Declarations}.) Usually it doesn't matter, though; -if you enter the subscript expression @samp{a(i)} and Calc interprets -it as a function call, you'll never know the difference unless you -switch to another language mode or replace @code{a} with an actual -vector (or unless @code{a} happens to be the name of a built-in -function!). - -Underscores are allowed in variable and function names in all of these -language modes. The underscore here is equivalent to the @samp{#} in -Normal mode, or to hyphens in the underlying Emacs Lisp variable names. - -FORTRAN and Pascal modes normally do not adjust the case of letters in -formulas. Most built-in Calc names use lower-case letters. If you use a -positive numeric prefix argument with @kbd{d P} or @kbd{d F}, these -modes will use upper-case letters exclusively for display, and will -convert to lower-case on input. With a negative prefix, these modes -convert to lower-case for display and input. - -@node TeX and LaTeX Language Modes, Eqn Language Mode, C FORTRAN Pascal, Language Modes -@subsection @TeX{} and La@TeX{} Language Modes - -@noindent -@kindex d T -@pindex calc-tex-language -@cindex TeX language -@kindex d L -@pindex calc-latex-language -@cindex LaTeX language -The @kbd{d T} (@code{calc-tex-language}) command selects the conventions -of ``math mode'' in Donald Knuth's @TeX{} typesetting language, -and the @kbd{d L} (@code{calc-latex-language}) command selects the -conventions of ``math mode'' in La@TeX{}, a typesetting language that -uses @TeX{} as its formatting engine. Calc's La@TeX{} language mode can -read any formula that the @TeX{} language mode can, although La@TeX{} -mode may display it differently. - -Formulas are entered and displayed in the appropriate notation; -@texline @math{\sin(a/b)} -@infoline @expr{sin(a/b)} -will appear as @samp{\sin\left( a \over b \right)} in @TeX{} mode and -@samp{\sin\left(\frac@{a@}@{b@}\right)} in La@TeX{} mode. -Math formulas are often enclosed by @samp{$ $} signs in @TeX{} and -La@TeX{}; these should be omitted when interfacing with Calc. To Calc, -the @samp{$} sign has the same meaning it always does in algebraic -formulas (a reference to an existing entry on the stack). - -Complex numbers are displayed as in @samp{3 + 4i}. Fractions and -quotients are written using @code{\over} in @TeX{} mode (as in -@code{@{a \over b@}}) and @code{\frac} in La@TeX{} mode (as in -@code{\frac@{a@}@{b@}}); binomial coefficients are written with -@code{\choose} in @TeX{} mode (as in @code{@{a \choose b@}}) and -@code{\binom} in La@TeX{} mode (as in @code{\binom@{a@}@{b@}}). -Interval forms are written with @code{\ldots}, and error forms are -written with @code{\pm}. Absolute values are written as in -@samp{|x + 1|}, and the floor and ceiling functions are written with -@code{\lfloor}, @code{\rfloor}, etc. The words @code{\left} and -@code{\right} are ignored when reading formulas in @TeX{} and La@TeX{} -modes. Both @code{inf} and @code{uinf} are written as @code{\infty}; -when read, @code{\infty} always translates to @code{inf}. - -Function calls are written the usual way, with the function name followed -by the arguments in parentheses. However, functions for which @TeX{} -and La@TeX{} have special names (like @code{\sin}) will use curly braces -instead of parentheses for very simple arguments. During input, curly -braces and parentheses work equally well for grouping, but when the -document is formatted the curly braces will be invisible. Thus the -printed result is -@texline @math{\sin{2 x}} -@infoline @expr{sin 2x} -but -@texline @math{\sin(2 + x)}. -@infoline @expr{sin(2 + x)}. - -Function and variable names not treated specially by @TeX{} and La@TeX{} -are simply written out as-is, which will cause them to come out in -italic letters in the printed document. If you invoke @kbd{d T} or -@kbd{d L} with a positive numeric prefix argument, names of more than -one character will instead be enclosed in a protective commands that -will prevent them from being typeset in the math italics; they will be -written @samp{\hbox@{@var{name}@}} in @TeX{} mode and -@samp{\text@{@var{name}@}} in La@TeX{} mode. The -@samp{\hbox@{ @}} and @samp{\text@{ @}} notations are ignored during -reading. If you use a negative prefix argument, such function names are -written @samp{\@var{name}}, and function names that begin with @code{\} during -reading have the @code{\} removed. (Note that in this mode, long -variable names are still written with @code{\hbox} or @code{\text}. -However, you can always make an actual variable name like @code{\bar} in -any @TeX{} mode.) - -During reading, text of the form @samp{\matrix@{ ...@: @}} is replaced -by @samp{[ ...@: ]}. The same also applies to @code{\pmatrix} and -@code{\bmatrix}. In La@TeX{} mode this also applies to -@samp{\begin@{matrix@} ... \end@{matrix@}}, -@samp{\begin@{bmatrix@} ... \end@{bmatrix@}}, -@samp{\begin@{pmatrix@} ... \end@{pmatrix@}}, as well as -@samp{\begin@{smallmatrix@} ... \end@{smallmatrix@}}. -The symbol @samp{&} is interpreted as a comma, -and the symbols @samp{\cr} and @samp{\\} are interpreted as semicolons. -During output, matrices are displayed in @samp{\matrix@{ a & b \\ c & d@}} -format in @TeX{} mode and in -@samp{\begin@{pmatrix@} a & b \\ c & d \end@{pmatrix@}} format in -La@TeX{} mode; you may need to edit this afterwards to change to your -preferred matrix form. If you invoke @kbd{d T} or @kbd{d L} with an -argument of 2 or -2, then matrices will be displayed in two-dimensional -form, such as - -@example -\begin@{pmatrix@} -a & b \\ -c & d -\end@{pmatrix@} -@end example - -@noindent -This may be convenient for isolated matrices, but could lead to -expressions being displayed like - -@example -\begin@{pmatrix@} \times x -a & b \\ -c & d -\end@{pmatrix@} -@end example - -@noindent -While this wouldn't bother Calc, it is incorrect La@TeX{}. -(Similarly for @TeX{}.) - -Accents like @code{\tilde} and @code{\bar} translate into function -calls internally (@samp{tilde(x)}, @samp{bar(x)}). The @code{\underline} -sequence is treated as an accent. The @code{\vec} accent corresponds -to the function name @code{Vec}, because @code{vec} is the name of -a built-in Calc function. The following table shows the accents -in Calc, @TeX{}, La@TeX{} and @dfn{eqn} (described in the next section): - -@iftex -@begingroup -@let@calcindexershow=@calcindexernoshow @c Suppress marginal notes -@let@calcindexersh=@calcindexernoshow -@end iftex -@ignore -@starindex -@end ignore -@tindex acute -@ignore -@starindex -@end ignore -@tindex Acute -@ignore -@starindex -@end ignore -@tindex bar -@ignore -@starindex -@end ignore -@tindex Bar -@ignore -@starindex -@end ignore -@tindex breve -@ignore -@starindex -@end ignore -@tindex Breve -@ignore -@starindex -@end ignore -@tindex check -@ignore -@starindex -@end ignore -@tindex Check -@ignore -@starindex -@end ignore -@tindex dddot -@ignore -@starindex -@end ignore -@tindex ddddot -@ignore -@starindex -@end ignore -@tindex dot -@ignore -@starindex -@end ignore -@tindex Dot -@ignore -@starindex -@end ignore -@tindex dotdot -@ignore -@starindex -@end ignore -@tindex DotDot -@ignore -@starindex -@end ignore -@tindex dyad -@ignore -@starindex -@end ignore -@tindex grave -@ignore -@starindex -@end ignore -@tindex Grave -@ignore -@starindex -@end ignore -@tindex hat -@ignore -@starindex -@end ignore -@tindex Hat -@ignore -@starindex -@end ignore -@tindex Prime -@ignore -@starindex -@end ignore -@tindex tilde -@ignore -@starindex -@end ignore -@tindex Tilde -@ignore -@starindex -@end ignore -@tindex under -@ignore -@starindex -@end ignore -@tindex Vec -@ignore -@starindex -@end ignore -@tindex VEC -@iftex -@endgroup -@end iftex -@example -Calc TeX LaTeX eqn ----- --- ----- --- -acute \acute \acute -Acute \Acute -bar \bar \bar bar -Bar \Bar -breve \breve \breve -Breve \Breve -check \check \check -Check \Check -dddot \dddot -ddddot \ddddot -dot \dot \dot dot -Dot \Dot -dotdot \ddot \ddot dotdot -DotDot \Ddot -dyad dyad -grave \grave \grave -Grave \Grave -hat \hat \hat hat -Hat \Hat -Prime prime -tilde \tilde \tilde tilde -Tilde \Tilde -under \underline \underline under -Vec \vec \vec vec -VEC \Vec -@end example - -The @samp{=>} (evaluates-to) operator appears as a @code{\to} symbol: -@samp{@{@var{a} \to @var{b}@}}. @TeX{} defines @code{\to} as an -alias for @code{\rightarrow}. However, if the @samp{=>} is the -top-level expression being formatted, a slightly different notation -is used: @samp{\evalto @var{a} \to @var{b}}. The @code{\evalto} -word is ignored by Calc's input routines, and is undefined in @TeX{}. -You will typically want to include one of the following definitions -at the top of a @TeX{} file that uses @code{\evalto}: - -@example -\def\evalto@{@} -\def\evalto#1\to@{@} -@end example - -The first definition formats evaluates-to operators in the usual -way. The second causes only the @var{b} part to appear in the -printed document; the @var{a} part and the arrow are hidden. -Another definition you may wish to use is @samp{\let\to=\Rightarrow} -which causes @code{\to} to appear more like Calc's @samp{=>} symbol. -@xref{Evaluates-To Operator}, for a discussion of @code{evalto}. - -The complete set of @TeX{} control sequences that are ignored during -reading is: - -@example -\hbox \mbox \text \left \right -\, \> \: \; \! \quad \qquad \hfil \hfill -\displaystyle \textstyle \dsize \tsize -\scriptstyle \scriptscriptstyle \ssize \ssize -\rm \bf \it \sl \roman \bold \italic \slanted -\cal \mit \Cal \Bbb \frak \goth -\evalto -@end example - -Note that, because these symbols are ignored, reading a @TeX{} or -La@TeX{} formula into Calc and writing it back out may lose spacing and -font information. - -Also, the ``discretionary multiplication sign'' @samp{\*} is read -the same as @samp{*}. - -@ifnottex -The @TeX{} version of this manual includes some printed examples at the -end of this section. -@end ifnottex -@iftex -Here are some examples of how various Calc formulas are formatted in @TeX{}: - -@example -@group -sin(a^2 / b_i) -\sin\left( {a^2 \over b_i} \right) -@end group -@end example -@tex -$$ \sin\left( a^2 \over b_i \right) $$ -@end tex -@sp 1 - -@example -@group -[(3, 4), 3:4, 3 +/- 4, [3 .. inf)] -[3 + 4i, @{3 \over 4@}, 3 \pm 4, [3 \ldots \infty)] -@end group -@end example -@tex -\turnoffactive -$$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$ -@end tex -@sp 1 - -@example -@group -[abs(a), abs(a / b), floor(a), ceil(a / b)] -[|a|, \left| a \over b \right|, - \lfloor a \rfloor, \left\lceil a \over b \right\rceil] -@end group -@end example -@tex -$$ [|a|, \left| a \over b \right|, - \lfloor a \rfloor, \left\lceil a \over b \right\rceil] $$ -@end tex -@sp 1 - -@example -@group -[sin(a), sin(2 a), sin(2 + a), sin(a / b)] -[\sin@{a@}, \sin@{2 a@}, \sin(2 + a), - \sin\left( @{a \over b@} \right)] -@end group -@end example -@tex -\turnoffactive -$$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$ -@end tex -@sp 2 - -First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with -@kbd{C-u - d T} (using the example definition -@samp{\def\foo#1@{\tilde F(#1)@}}: - -@example -@group -[f(a), foo(bar), sin(pi)] -[f(a), foo(bar), \sin{\pi}] -[f(a), \hbox@{foo@}(\hbox@{bar@}), \sin@{\pi@}] -[f(a), \foo@{\hbox@{bar@}@}, \sin@{\pi@}] -@end group -@end example -@tex -$$ [f(a), foo(bar), \sin{\pi}] $$ -$$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$ -$$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$ -@end tex -@sp 2 - -First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}: - -@example -@group -2 + 3 => 5 -\evalto 2 + 3 \to 5 -@end group -@end example -@tex -\turnoffactive -$$ 2 + 3 \to 5 $$ -$$ 5 $$ -@end tex -@sp 2 - -First with standard @code{\to}, then with @samp{\let\to\Rightarrow}: - -@example -@group -[2 + 3 => 5, a / 2 => (b + c) / 2] -[@{2 + 3 \to 5@}, @{@{a \over 2@} \to @{b + c \over 2@}@}] -@end group -@end example -@tex -\turnoffactive -$$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$ -{\let\to\Rightarrow -$$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$} -@end tex -@sp 2 - -Matrices normally, then changing @code{\matrix} to @code{\pmatrix}: - -@example -@group -[ [ a / b, 0 ], [ 0, 2^(x + 1) ] ] -\matrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @} -\pmatrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @} -@end group -@end example -@tex -\turnoffactive -$$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$ -$$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$ -@end tex -@sp 2 -@end iftex - -@node Eqn Language Mode, Mathematica Language Mode, TeX and LaTeX Language Modes, Language Modes -@subsection Eqn Language Mode - -@noindent -@kindex d E -@pindex calc-eqn-language -@dfn{Eqn} is another popular formatter for math formulas. It is -designed for use with the TROFF text formatter, and comes standard -with many versions of Unix. The @kbd{d E} (@code{calc-eqn-language}) -command selects @dfn{eqn} notation. - -The @dfn{eqn} language's main idiosyncrasy is that whitespace plays -a significant part in the parsing of the language. For example, -@samp{sqrt x+1 + y} treats @samp{x+1} as the argument of the -@code{sqrt} operator. @dfn{Eqn} also understands more conventional -grouping using curly braces: @samp{sqrt@{x+1@} + y}. Braces are -required only when the argument contains spaces. - -In Calc's @dfn{eqn} mode, however, curly braces are required to -delimit arguments of operators like @code{sqrt}. The first of the -above examples would treat only the @samp{x} as the argument of -@code{sqrt}, and in fact @samp{sin x+1} would be interpreted as -@samp{sin * x + 1}, because @code{sin} is not a special operator -in the @dfn{eqn} language. If you always surround the argument -with curly braces, Calc will never misunderstand. - -Calc also understands parentheses as grouping characters. Another -peculiarity of @dfn{eqn}'s syntax makes it advisable to separate -words with spaces from any surrounding characters that aren't curly -braces, so Calc writes @samp{sin ( x + y )} in @dfn{eqn} mode. -(The spaces around @code{sin} are important to make @dfn{eqn} -recognize that @code{sin} should be typeset in a roman font, and -the spaces around @code{x} and @code{y} are a good idea just in -case the @dfn{eqn} document has defined special meanings for these -names, too.) - -Powers and subscripts are written with the @code{sub} and @code{sup} -operators, respectively. Note that the caret symbol @samp{^} is -treated the same as a space in @dfn{eqn} mode, as is the @samp{~} -symbol (these are used to introduce spaces of various widths into -the typeset output of @dfn{eqn}). - -As in La@TeX{} mode, Calc's formatter omits parentheses around the -arguments of functions like @code{ln} and @code{sin} if they are -``simple-looking''; in this case Calc surrounds the argument with -braces, separated by a @samp{~} from the function name: @samp{sin~@{x@}}. - -Font change codes (like @samp{roman @var{x}}) and positioning codes -(like @samp{~} and @samp{down @var{n} @var{x}}) are ignored by the -@dfn{eqn} reader. Also ignored are the words @code{left}, @code{right}, -@code{mark}, and @code{lineup}. Quotation marks in @dfn{eqn} mode input -are treated the same as curly braces: @samp{sqrt "1+x"} is equivalent to -@samp{sqrt @{1+x@}}; this is only an approximation to the true meaning -of quotes in @dfn{eqn}, but it is good enough for most uses. - -Accent codes (@samp{@var{x} dot}) are handled by treating them as -function calls (@samp{dot(@var{x})}) internally. -@xref{TeX and LaTeX Language Modes}, for a table of these accent -functions. The @code{prime} accent is treated specially if it occurs on -a variable or function name: @samp{f prime prime @w{( x prime )}} is -stored internally as @samp{f'@w{'}(x')}. For example, taking the -derivative of @samp{f(2 x)} with @kbd{a d x} will produce @samp{2 f'(2 -x)}, which @dfn{eqn} mode will display as @samp{2 f prime ( 2 x )}. - -Assignments are written with the @samp{<-} (left-arrow) symbol, -and @code{evalto} operators are written with @samp{->} or -@samp{evalto ... ->} (@pxref{TeX and LaTeX Language Modes}, for a discussion -of this). The regular Calc symbols @samp{:=} and @samp{=>} are also -recognized for these operators during reading. - -Vectors in @dfn{eqn} mode use regular Calc square brackets, but -matrices are formatted as @samp{matrix @{ ccol @{ a above b @} ... @}}. -The words @code{lcol} and @code{rcol} are recognized as synonyms -for @code{ccol} during input, and are generated instead of @code{ccol} -if the matrix justification mode so specifies. - -@node Mathematica Language Mode, Maple Language Mode, Eqn Language Mode, Language Modes -@subsection Mathematica Language Mode - -@noindent -@kindex d M -@pindex calc-mathematica-language -@cindex Mathematica language -The @kbd{d M} (@code{calc-mathematica-language}) command selects the -conventions of Mathematica. Notable differences in Mathematica mode -are that the names of built-in functions are capitalized, and function -calls use square brackets instead of parentheses. Thus the Calc -formula @samp{sin(2 x)} is entered and displayed @w{@samp{Sin[2 x]}} in -Mathematica mode. - -Vectors and matrices use curly braces in Mathematica. Complex numbers -are written @samp{3 + 4 I}. The standard special constants in Calc are -written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma}, -@code{Infinity}, @code{ComplexInfinity}, and @code{Indeterminate} in -Mathematica mode. -Non-decimal numbers are written, e.g., @samp{16^^7fff}. Floating-point -numbers in scientific notation are written @samp{1.23*10.^3}. -Subscripts use double square brackets: @samp{a[[i]]}. - -@node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes -@subsection Maple Language Mode - -@noindent -@kindex d W -@pindex calc-maple-language -@cindex Maple language -The @kbd{d W} (@code{calc-maple-language}) command selects the -conventions of Maple. - -Maple's language is much like C. Underscores are allowed in symbol -names; square brackets are used for subscripts; explicit @samp{*}s for -multiplications are required. Use either @samp{^} or @samp{**} to -denote powers. - -Maple uses square brackets for lists and curly braces for sets. Calc -interprets both notations as vectors, and displays vectors with square -brackets. This means Maple sets will be converted to lists when they -pass through Calc. As a special case, matrices are written as calls -to the function @code{matrix}, given a list of lists as the argument, -and can be read in this form or with all-capitals @code{MATRIX}. - -The Maple interval notation @samp{2 .. 3} has no surrounding brackets; -Calc reads @samp{2 .. 3} as the closed interval @samp{[2 .. 3]}, and -writes any kind of interval as @samp{2 .. 3}. This means you cannot -see the difference between an open and a closed interval while in -Maple display mode. - -Maple writes complex numbers as @samp{3 + 4*I}. Its special constants -are @code{Pi}, @code{E}, @code{I}, and @code{infinity} (all three of -@code{inf}, @code{uinf}, and @code{nan} display as @code{infinity}). -Floating-point numbers are written @samp{1.23*10.^3}. - -Among things not currently handled by Calc's Maple mode are the -various quote symbols, procedures and functional operators, and -inert (@samp{&}) operators. - -@node Compositions, Syntax Tables, Maple Language Mode, Language Modes -@subsection Compositions - -@noindent -@cindex Compositions -There are several @dfn{composition functions} which allow you to get -displays in a variety of formats similar to those in Big language -mode. Most of these functions do not evaluate to anything; they are -placeholders which are left in symbolic form by Calc's evaluator but -are recognized by Calc's display formatting routines. - -Two of these, @code{string} and @code{bstring}, are described elsewhere. -@xref{Strings}. For example, @samp{string("ABC")} is displayed as -@samp{ABC}. When viewed on the stack it will be indistinguishable from -the variable @code{ABC}, but internally it will be stored as -@samp{string([65, 66, 67])} and can still be manipulated this way; for -example, the selection and vector commands @kbd{j 1 v v j u} would -select the vector portion of this object and reverse the elements, then -deselect to reveal a string whose characters had been reversed. - -The composition functions do the same thing in all language modes -(although their components will of course be formatted in the current -language mode). The one exception is Unformatted mode (@kbd{d U}), -which does not give the composition functions any special treatment. -The functions are discussed here because of their relationship to -the language modes. - -@menu -* Composition Basics:: -* Horizontal Compositions:: -* Vertical Compositions:: -* Other Compositions:: -* Information about Compositions:: -* User-Defined Compositions:: -@end menu - -@node Composition Basics, Horizontal Compositions, Compositions, Compositions -@subsubsection Composition Basics - -@noindent -Compositions are generally formed by stacking formulas together -horizontally or vertically in various ways. Those formulas are -themselves compositions. @TeX{} users will find this analogous -to @TeX{}'s ``boxes.'' Each multi-line composition has a -@dfn{baseline}; horizontal compositions use the baselines to -decide how formulas should be positioned relative to one another. -For example, in the Big mode formula - -@example -@group - 2 - a + b -17 + ------ - c -@end group -@end example - -@noindent -the second term of the sum is four lines tall and has line three as -its baseline. Thus when the term is combined with 17, line three -is placed on the same level as the baseline of 17. - -@tex -\bigskip -@end tex - -Another important composition concept is @dfn{precedence}. This is -an integer that represents the binding strength of various operators. -For example, @samp{*} has higher precedence (195) than @samp{+} (180), -which means that @samp{(a * b) + c} will be formatted without the -parentheses, but @samp{a * (b + c)} will keep the parentheses. - -The operator table used by normal and Big language modes has the -following precedences: - -@example -_ 1200 @r{(subscripts)} -% 1100 @r{(as in n}%@r{)} -- 1000 @r{(as in }-@r{n)} -! 1000 @r{(as in }!@r{n)} -mod 400 -+/- 300 -!! 210 @r{(as in n}!!@r{)} -! 210 @r{(as in n}!@r{)} -^ 200 -* 195 @r{(or implicit multiplication)} -/ % \ 190 -+ - 180 @r{(as in a}+@r{b)} -| 170 -< = 160 @r{(and other relations)} -&& 110 -|| 100 -? : 90 -!!! 85 -&&& 80 -||| 75 -:= 50 -:: 45 -=> 40 -@end example - -The general rule is that if an operator with precedence @expr{n} -occurs as an argument to an operator with precedence @expr{m}, then -the argument is enclosed in parentheses if @expr{n < m}. Top-level -expressions and expressions which are function arguments, vector -components, etc., are formatted with precedence zero (so that they -normally never get additional parentheses). - -For binary left-associative operators like @samp{+}, the righthand -argument is actually formatted with one-higher precedence than shown -in the table. This makes sure @samp{(a + b) + c} omits the parentheses, -but the unnatural form @samp{a + (b + c)} keeps its parentheses. -Right-associative operators like @samp{^} format the lefthand argument -with one-higher precedence. - -@ignore -@starindex -@end ignore -@tindex cprec -The @code{cprec} function formats an expression with an arbitrary -precedence. For example, @samp{cprec(abc, 185)} will combine into -sums and products as follows: @samp{7 + abc}, @samp{7 (abc)} (because -this @code{cprec} form has higher precedence than addition, but lower -precedence than multiplication). - -@tex -\bigskip -@end tex - -A final composition issue is @dfn{line breaking}. Calc uses two -different strategies for ``flat'' and ``non-flat'' compositions. -A non-flat composition is anything that appears on multiple lines -(not counting line breaking). Examples would be matrices and Big -mode powers and quotients. Non-flat compositions are displayed -exactly as specified. If they come out wider than the current -window, you must use horizontal scrolling (@kbd{<} and @kbd{>}) to -view them. - -Flat compositions, on the other hand, will be broken across several -lines if they are too wide to fit the window. Certain points in a -composition are noted internally as @dfn{break points}. Calc's -general strategy is to fill each line as much as possible, then to -move down to the next line starting at the first break point that -didn't fit. However, the line breaker understands the hierarchical -structure of formulas. It will not break an ``inner'' formula if -it can use an earlier break point from an ``outer'' formula instead. -For example, a vector of sums might be formatted as: - -@example -@group -[ a + b + c, d + e + f, - g + h + i, j + k + l, m ] -@end group -@end example - -@noindent -If the @samp{m} can fit, then so, it seems, could the @samp{g}. -But Calc prefers to break at the comma since the comma is part -of a ``more outer'' formula. Calc would break at a plus sign -only if it had to, say, if the very first sum in the vector had -itself been too large to fit. - -Of the composition functions described below, only @code{choriz} -generates break points. The @code{bstring} function (@pxref{Strings}) -also generates breakable items: A break point is added after every -space (or group of spaces) except for spaces at the very beginning or -end of the string. - -Composition functions themselves count as levels in the formula -hierarchy, so a @code{choriz} that is a component of a larger -@code{choriz} will be less likely to be broken. As a special case, -if a @code{bstring} occurs as a component of a @code{choriz} or -@code{choriz}-like object (such as a vector or a list of arguments -in a function call), then the break points in that @code{bstring} -will be on the same level as the break points of the surrounding -object. - -@node Horizontal Compositions, Vertical Compositions, Composition Basics, Compositions -@subsubsection Horizontal Compositions - -@noindent -@ignore -@starindex -@end ignore -@tindex choriz -The @code{choriz} function takes a vector of objects and composes -them horizontally. For example, @samp{choriz([17, a b/c, d])} formats -as @w{@samp{17a b / cd}} in Normal language mode, or as - -@example -@group - a b -17---d - c -@end group -@end example - -@noindent -in Big language mode. This is actually one case of the general -function @samp{choriz(@var{vec}, @var{sep}, @var{prec})}, where -either or both of @var{sep} and @var{prec} may be omitted. -@var{Prec} gives the @dfn{precedence} to use when formatting -each of the components of @var{vec}. The default precedence is -the precedence from the surrounding environment. - -@var{Sep} is a string (i.e., a vector of character codes as might -be entered with @code{" "} notation) which should separate components -of the composition. Also, if @var{sep} is given, the line breaker -will allow lines to be broken after each occurrence of @var{sep}. -If @var{sep} is omitted, the composition will not be breakable -(unless any of its component compositions are breakable). - -For example, @samp{2 choriz([a, b c, d = e], " + ", 180)} is -formatted as @samp{2 a + b c + (d = e)}. To get the @code{choriz} -to have precedence 180 ``outwards'' as well as ``inwards,'' -enclose it in a @code{cprec} form: @samp{2 cprec(choriz(...), 180)} -formats as @samp{2 (a + b c + (d = e))}. - -The baseline of a horizontal composition is the same as the -baselines of the component compositions, which are all aligned. - -@node Vertical Compositions, Other Compositions, Horizontal Compositions, Compositions -@subsubsection Vertical Compositions - -@noindent -@ignore -@starindex -@end ignore -@tindex cvert -The @code{cvert} function makes a vertical composition. Each -component of the vector is centered in a column. The baseline of -the result is by default the top line of the resulting composition. -For example, @samp{f(cvert([a, bb, ccc]), cvert([a^2 + 1, b^2]))} -formats in Big mode as - -@example -@group -f( a , 2 ) - bb a + 1 - ccc 2 - b -@end group -@end example - -@ignore -@starindex -@end ignore -@tindex cbase -There are several special composition functions that work only as -components of a vertical composition. The @code{cbase} function -controls the baseline of the vertical composition; the baseline -will be the same as the baseline of whatever component is enclosed -in @code{cbase}. Thus @samp{f(cvert([a, cbase(bb), ccc]), -cvert([a^2 + 1, cbase(b^2)]))} displays as - -@example -@group - 2 - a + 1 - a 2 -f(bb , b ) - ccc -@end group -@end example - -@ignore -@starindex -@end ignore -@tindex ctbase -@ignore -@starindex -@end ignore -@tindex cbbase -There are also @code{ctbase} and @code{cbbase} functions which -make the baseline of the vertical composition equal to the top -or bottom line (rather than the baseline) of that component. -Thus @samp{cvert([cbase(a / b)]) + cvert([ctbase(a / b)]) + -cvert([cbbase(a / b)])} gives - -@example -@group - a -a - -- + a + b -b - - b -@end group -@end example - -There should be only one @code{cbase}, @code{ctbase}, or @code{cbbase} -function in a given vertical composition. These functions can also -be written with no arguments: @samp{ctbase()} is a zero-height object -which means the baseline is the top line of the following item, and -@samp{cbbase()} means the baseline is the bottom line of the preceding -item. - -@ignore -@starindex -@end ignore -@tindex crule -The @code{crule} function builds a ``rule,'' or horizontal line, -across a vertical composition. By itself @samp{crule()} uses @samp{-} -characters to build the rule. You can specify any other character, -e.g., @samp{crule("=")}. The argument must be a character code or -vector of exactly one character code. It is repeated to match the -width of the widest item in the stack. For example, a quotient -with a thick line is @samp{cvert([a + 1, cbase(crule("=")), b^2])}: - -@example -@group -a + 1 -===== - 2 - b -@end group -@end example - -@ignore -@starindex -@end ignore -@tindex clvert -@ignore -@starindex -@end ignore -@tindex crvert -Finally, the functions @code{clvert} and @code{crvert} act exactly -like @code{cvert} except that the items are left- or right-justified -in the stack. Thus @samp{clvert([a, bb, ccc]) + crvert([a, bb, ccc])} -gives: - -@example -@group -a + a -bb bb -ccc ccc -@end group -@end example - -Like @code{choriz}, the vertical compositions accept a second argument -which gives the precedence to use when formatting the components. -Vertical compositions do not support separator strings. - -@node Other Compositions, Information about Compositions, Vertical Compositions, Compositions -@subsubsection Other Compositions - -@noindent -@ignore -@starindex -@end ignore -@tindex csup -The @code{csup} function builds a superscripted expression. For -example, @samp{csup(a, b)} looks the same as @samp{a^b} does in Big -language mode. This is essentially a horizontal composition of -@samp{a} and @samp{b}, where @samp{b} is shifted up so that its -bottom line is one above the baseline. - -@ignore -@starindex -@end ignore -@tindex csub -Likewise, the @code{csub} function builds a subscripted expression. -This shifts @samp{b} down so that its top line is one below the -bottom line of @samp{a} (note that this is not quite analogous to -@code{csup}). Other arrangements can be obtained by using -@code{choriz} and @code{cvert} directly. - -@ignore -@starindex -@end ignore -@tindex cflat -The @code{cflat} function formats its argument in ``flat'' mode, -as obtained by @samp{d O}, if the current language mode is normal -or Big. It has no effect in other language modes. For example, -@samp{a^(b/c)} is formatted by Big mode like @samp{csup(a, cflat(b/c))} -to improve its readability. - -@ignore -@starindex -@end ignore -@tindex cspace -The @code{cspace} function creates horizontal space. For example, -@samp{cspace(4)} is effectively the same as @samp{string(" ")}. -A second string (i.e., vector of characters) argument is repeated -instead of the space character. For example, @samp{cspace(4, "ab")} -looks like @samp{abababab}. If the second argument is not a string, -it is formatted in the normal way and then several copies of that -are composed together: @samp{cspace(4, a^2)} yields - -@example -@group - 2 2 2 2 -a a a a -@end group -@end example - -@noindent -If the number argument is zero, this is a zero-width object. - -@ignore -@starindex -@end ignore -@tindex cvspace -The @code{cvspace} function creates vertical space, or a vertical -stack of copies of a certain string or formatted object. The -baseline is the center line of the resulting stack. A numerical -argument of zero will produce an object which contributes zero -height if used in a vertical composition. - -@ignore -@starindex -@end ignore -@tindex ctspace -@ignore -@starindex -@end ignore -@tindex cbspace -There are also @code{ctspace} and @code{cbspace} functions which -create vertical space with the baseline the same as the baseline -of the top or bottom copy, respectively, of the second argument. -Thus @samp{cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)} -displays as: - -@example -@group - a - - -a b -- a a -b + - + - -a b b -- a -b - - b -@end group -@end example - -@node Information about Compositions, User-Defined Compositions, Other Compositions, Compositions -@subsubsection Information about Compositions - -@noindent -The functions in this section are actual functions; they compose their -arguments according to the current language and other display modes, -then return a certain measurement of the composition as an integer. - -@ignore -@starindex -@end ignore -@tindex cwidth -The @code{cwidth} function measures the width, in characters, of a -composition. For example, @samp{cwidth(a + b)} is 5, and -@samp{cwidth(a / b)} is 5 in Normal mode, 1 in Big mode, and 11 in -@TeX{} mode (for @samp{@{a \over b@}}). The argument may involve -the composition functions described in this section. - -@ignore -@starindex -@end ignore -@tindex cheight -The @code{cheight} function measures the height of a composition. -This is the total number of lines in the argument's printed form. - -@ignore -@starindex -@end ignore -@tindex cascent -@ignore -@starindex -@end ignore -@tindex cdescent -The functions @code{cascent} and @code{cdescent} measure the amount -of the height that is above (and including) the baseline, or below -the baseline, respectively. Thus @samp{cascent(@var{x}) + cdescent(@var{x})} -always equals @samp{cheight(@var{x})}. For a one-line formula like -@samp{a + b}, @code{cascent} returns 1 and @code{cdescent} returns 0. -For @samp{a / b} in Big mode, @code{cascent} returns 2 and @code{cdescent} -returns 1. The only formula for which @code{cascent} will return zero -is @samp{cvspace(0)} or equivalents. - -@node User-Defined Compositions, , Information about Compositions, Compositions -@subsubsection User-Defined Compositions - -@noindent -@kindex Z C -@pindex calc-user-define-composition -The @kbd{Z C} (@code{calc-user-define-composition}) command lets you -define the display format for any algebraic function. You provide a -formula containing a certain number of argument variables on the stack. -Any time Calc formats a call to the specified function in the current -language mode and with that number of arguments, Calc effectively -replaces the function call with that formula with the arguments -replaced. - -Calc builds the default argument list by sorting all the variable names -that appear in the formula into alphabetical order. You can edit this -argument list before pressing @key{RET} if you wish. Any variables in -the formula that do not appear in the argument list will be displayed -literally; any arguments that do not appear in the formula will not -affect the display at all. - -You can define formats for built-in functions, for functions you have -defined with @kbd{Z F} (@pxref{Algebraic Definitions}), or for functions -which have no definitions but are being used as purely syntactic objects. -You can define different formats for each language mode, and for each -number of arguments, using a succession of @kbd{Z C} commands. When -Calc formats a function call, it first searches for a format defined -for the current language mode (and number of arguments); if there is -none, it uses the format defined for the Normal language mode. If -neither format exists, Calc uses its built-in standard format for that -function (usually just @samp{@var{func}(@var{args})}). - -If you execute @kbd{Z C} with the number 0 on the stack instead of a -formula, any defined formats for the function in the current language -mode will be removed. The function will revert to its standard format. - -For example, the default format for the binomial coefficient function -@samp{choose(n, m)} in the Big language mode is - -@example -@group - n -( ) - m -@end group -@end example - -@noindent -You might prefer the notation, - -@example -@group - C -n m -@end group -@end example - -@noindent -To define this notation, first make sure you are in Big mode, -then put the formula - -@smallexample -choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1), m])]) -@end smallexample - -@noindent -on the stack and type @kbd{Z C}. Answer the first prompt with -@code{choose}. The second prompt will be the default argument list -of @samp{(C m n)}. Edit this list to be @samp{(n m)} and press -@key{RET}. Now, try it out: For example, turn simplification -off with @kbd{m O} and enter @samp{choose(a,b) + choose(7,3)} -as an algebraic entry. - -@example -@group - C + C -a b 7 3 -@end group -@end example - -As another example, let's define the usual notation for Stirling -numbers of the first kind, @samp{stir1(n, m)}. This is just like -the regular format for binomial coefficients but with square brackets -instead of parentheses. - -@smallexample -choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("]")]) -@end smallexample - -Now type @kbd{Z C stir1 @key{RET}}, edit the argument list to -@samp{(n m)}, and type @key{RET}. - -The formula provided to @kbd{Z C} usually will involve composition -functions, but it doesn't have to. Putting the formula @samp{a + b + c} -onto the stack and typing @kbd{Z C foo @key{RET} @key{RET}} would define -the function @samp{foo(x,y,z)} to display like @samp{x + y + z}. -This ``sum'' will act exactly like a real sum for all formatting -purposes (it will be parenthesized the same, and so on). However -it will be computationally unrelated to a sum. For example, the -formula @samp{2 * foo(1, 2, 3)} will display as @samp{2 (1 + 2 + 3)}. -Operator precedences have caused the ``sum'' to be written in -parentheses, but the arguments have not actually been summed. -(Generally a display format like this would be undesirable, since -it can easily be confused with a real sum.) - -The special function @code{eval} can be used inside a @kbd{Z C} -composition formula to cause all or part of the formula to be -evaluated at display time. For example, if the formula is -@samp{a + eval(b + c)}, then @samp{foo(1, 2, 3)} will be displayed -as @samp{1 + 5}. Evaluation will use the default simplifications, -regardless of the current simplification mode. There are also -@code{evalsimp} and @code{evalextsimp} which simplify as if by -@kbd{a s} and @kbd{a e} (respectively). Note that these ``functions'' -operate only in the context of composition formulas (and also in -rewrite rules, where they serve a similar purpose; @pxref{Rewrite -Rules}). On the stack, a call to @code{eval} will be left in -symbolic form. - -It is not a good idea to use @code{eval} except as a last resort. -It can cause the display of formulas to be extremely slow. For -example, while @samp{eval(a + b)} might seem quite fast and simple, -there are several situations where it could be slow. For example, -@samp{a} and/or @samp{b} could be polar complex numbers, in which -case doing the sum requires trigonometry. Or, @samp{a} could be -the factorial @samp{fact(100)} which is unevaluated because you -have typed @kbd{m O}; @code{eval} will evaluate it anyway to -produce a large, unwieldy integer. - -You can save your display formats permanently using the @kbd{Z P} -command (@pxref{Creating User Keys}). - -@node Syntax Tables, , Compositions, Language Modes -@subsection Syntax Tables - -@noindent -@cindex Syntax tables -@cindex Parsing formulas, customized -Syntax tables do for input what compositions do for output: They -allow you to teach custom notations to Calc's formula parser. -Calc keeps a separate syntax table for each language mode. - -(Note that the Calc ``syntax tables'' discussed here are completely -unrelated to the syntax tables described in the Emacs manual.) - -@kindex Z S -@pindex calc-edit-user-syntax -The @kbd{Z S} (@code{calc-edit-user-syntax}) command edits the -syntax table for the current language mode. If you want your -syntax to work in any language, define it in the Normal language -mode. Type @kbd{C-c C-c} to finish editing the syntax table, or -@kbd{C-x k} to cancel the edit. The @kbd{m m} command saves all -the syntax tables along with the other mode settings; -@pxref{General Mode Commands}. - -@menu -* Syntax Table Basics:: -* Precedence in Syntax Tables:: -* Advanced Syntax Patterns:: -* Conditional Syntax Rules:: -@end menu - -@node Syntax Table Basics, Precedence in Syntax Tables, Syntax Tables, Syntax Tables -@subsubsection Syntax Table Basics - -@noindent -@dfn{Parsing} is the process of converting a raw string of characters, -such as you would type in during algebraic entry, into a Calc formula. -Calc's parser works in two stages. First, the input is broken down -into @dfn{tokens}, such as words, numbers, and punctuation symbols -like @samp{+}, @samp{:=}, and @samp{+/-}. Space between tokens is -ignored (except when it serves to separate adjacent words). Next, -the parser matches this string of tokens against various built-in -syntactic patterns, such as ``an expression followed by @samp{+} -followed by another expression'' or ``a name followed by @samp{(}, -zero or more expressions separated by commas, and @samp{)}.'' - -A @dfn{syntax table} is a list of user-defined @dfn{syntax rules}, -which allow you to specify new patterns to define your own -favorite input notations. Calc's parser always checks the syntax -table for the current language mode, then the table for the Normal -language mode, before it uses its built-in rules to parse an -algebraic formula you have entered. Each syntax rule should go on -its own line; it consists of a @dfn{pattern}, a @samp{:=} symbol, -and a Calc formula with an optional @dfn{condition}. (Syntax rules -resemble algebraic rewrite rules, but the notation for patterns is -completely different.) - -A syntax pattern is a list of tokens, separated by spaces. -Except for a few special symbols, tokens in syntax patterns are -matched literally, from left to right. For example, the rule, - -@example -foo ( ) := 2+3 -@end example - -@noindent -would cause Calc to parse the formula @samp{4+foo()*5} as if it -were @samp{4+(2+3)*5}. Notice that the parentheses were written -as two separate tokens in the rule. As a result, the rule works -for both @samp{foo()} and @w{@samp{foo ( )}}. If we had written -the rule as @samp{foo () := 2+3}, then Calc would treat @samp{()} -as a single, indivisible token, so that @w{@samp{foo( )}} would -not be recognized by the rule. (It would be parsed as a regular -zero-argument function call instead.) In fact, this rule would -also make trouble for the rest of Calc's parser: An unrelated -formula like @samp{bar()} would now be tokenized into @samp{bar ()} -instead of @samp{bar ( )}, so that the standard parser for function -calls would no longer recognize it! - -While it is possible to make a token with a mixture of letters -and punctuation symbols, this is not recommended. It is better to -break it into several tokens, as we did with @samp{foo()} above. - -The symbol @samp{#} in a syntax pattern matches any Calc expression. -On the righthand side, the things that matched the @samp{#}s can -be referred to as @samp{#1}, @samp{#2}, and so on (where @samp{#1} -matches the leftmost @samp{#} in the pattern). For example, these -rules match a user-defined function, prefix operator, infix operator, -and postfix operator, respectively: - -@example -foo ( # ) := myfunc(#1) -foo # := myprefix(#1) -# foo # := myinfix(#1,#2) -# foo := mypostfix(#1) -@end example - -Thus @samp{foo(3)} will parse as @samp{myfunc(3)}, and @samp{2+3 foo} -will parse as @samp{mypostfix(2+3)}. - -It is important to write the first two rules in the order shown, -because Calc tries rules in order from first to last. If the -pattern @samp{foo #} came first, it would match anything that could -match the @samp{foo ( # )} rule, since an expression in parentheses -is itself a valid expression. Thus the @w{@samp{foo ( # )}} rule would -never get to match anything. Likewise, the last two rules must be -written in the order shown or else @samp{3 foo 4} will be parsed as -@samp{mypostfix(3) * 4}. (Of course, the best way to avoid these -ambiguities is not to use the same symbol in more than one way at -the same time! In case you're not convinced, try the following -exercise: How will the above rules parse the input @samp{foo(3,4)}, -if at all? Work it out for yourself, then try it in Calc and see.) - -Calc is quite flexible about what sorts of patterns are allowed. -The only rule is that every pattern must begin with a literal -token (like @samp{foo} in the first two patterns above), or with -a @samp{#} followed by a literal token (as in the last two -patterns). After that, any mixture is allowed, although putting -two @samp{#}s in a row will not be very useful since two -expressions with nothing between them will be parsed as one -expression that uses implicit multiplication. - -As a more practical example, Maple uses the notation -@samp{sum(a(i), i=1..10)} for sums, which Calc's Maple mode doesn't -recognize at present. To handle this syntax, we simply add the -rule, - -@example -sum ( # , # = # .. # ) := sum(#1,#2,#3,#4) -@end example - -@noindent -to the Maple mode syntax table. As another example, C mode can't -read assignment operators like @samp{++} and @samp{*=}. We can -define these operators quite easily: - -@example -# *= # := muleq(#1,#2) -# ++ := postinc(#1) -++ # := preinc(#1) -@end example - -@noindent -To complete the job, we would use corresponding composition functions -and @kbd{Z C} to cause these functions to display in their respective -Maple and C notations. (Note that the C example ignores issues of -operator precedence, which are discussed in the next section.) - -You can enclose any token in quotes to prevent its usual -interpretation in syntax patterns: - -@example -# ":=" # := becomes(#1,#2) -@end example - -Quotes also allow you to include spaces in a token, although once -again it is generally better to use two tokens than one token with -an embedded space. To include an actual quotation mark in a quoted -token, precede it with a backslash. (This also works to include -backslashes in tokens.) - -@example -# "bad token" # "/\"\\" # := silly(#1,#2,#3) -@end example - -@noindent -This will parse @samp{3 bad token 4 /"\ 5} to @samp{silly(3,4,5)}. - -The token @kbd{#} has a predefined meaning in Calc's formula parser; -it is not valid to use @samp{"#"} in a syntax rule. However, longer -tokens that include the @samp{#} character are allowed. Also, while -@samp{"$"} and @samp{"\""} are allowed as tokens, their presence in -the syntax table will prevent those characters from working in their -usual ways (referring to stack entries and quoting strings, -respectively). - -Finally, the notation @samp{%%} anywhere in a syntax table causes -the rest of the line to be ignored as a comment. - -@node Precedence in Syntax Tables, Advanced Syntax Patterns, Syntax Table Basics, Syntax Tables -@subsubsection Precedence - -@noindent -Different operators are generally assigned different @dfn{precedences}. -By default, an operator defined by a rule like - -@example -# foo # := foo(#1,#2) -@end example - -@noindent -will have an extremely low precedence, so that @samp{2*3+4 foo 5 == 6} -will be parsed as @samp{(2*3+4) foo (5 == 6)}. To change the -precedence of an operator, use the notation @samp{#/@var{p}} in -place of @samp{#}, where @var{p} is an integer precedence level. -For example, 185 lies between the precedences for @samp{+} and -@samp{*}, so if we change this rule to - -@example -#/185 foo #/186 := foo(#1,#2) -@end example - -@noindent -then @samp{2+3 foo 4*5} will be parsed as @samp{2+(3 foo (4*5))}. -Also, because we've given the righthand expression slightly higher -precedence, our new operator will be left-associative: -@samp{1 foo 2 foo 3} will be parsed as @samp{(1 foo 2) foo 3}. -By raising the precedence of the lefthand expression instead, we -can create a right-associative operator. - -@xref{Composition Basics}, for a table of precedences of the -standard Calc operators. For the precedences of operators in other -language modes, look in the Calc source file @file{calc-lang.el}. - -@node Advanced Syntax Patterns, Conditional Syntax Rules, Precedence in Syntax Tables, Syntax Tables -@subsubsection Advanced Syntax Patterns - -@noindent -To match a function with a variable number of arguments, you could -write - -@example -foo ( # ) := myfunc(#1) -foo ( # , # ) := myfunc(#1,#2) -foo ( # , # , # ) := myfunc(#1,#2,#3) -@end example - -@noindent -but this isn't very elegant. To match variable numbers of items, -Calc uses some notations inspired regular expressions and the -``extended BNF'' style used by some language designers. - -@example -foo ( @{ # @}*, ) := apply(myfunc,#1) -@end example - -The token @samp{@{} introduces a repeated or optional portion. -One of the three tokens @samp{@}*}, @samp{@}+}, or @samp{@}?} -ends the portion. These will match zero or more, one or more, -or zero or one copies of the enclosed pattern, respectively. -In addition, @samp{@}*} and @samp{@}+} can be followed by a -separator token (with no space in between, as shown above). -Thus @samp{@{ # @}*,} matches nothing, or one expression, or -several expressions separated by commas. - -A complete @samp{@{ ... @}} item matches as a vector of the -items that matched inside it. For example, the above rule will -match @samp{foo(1,2,3)} to get @samp{apply(myfunc,[1,2,3])}. -The Calc @code{apply} function takes a function name and a vector -of arguments and builds a call to the function with those -arguments, so the net result is the formula @samp{myfunc(1,2,3)}. - -If the body of a @samp{@{ ... @}} contains several @samp{#}s -(or nested @samp{@{ ... @}} constructs), then the items will be -strung together into the resulting vector. If the body -does not contain anything but literal tokens, the result will -always be an empty vector. - -@example -foo ( @{ # , # @}+, ) := bar(#1) -foo ( @{ @{ # @}*, @}*; ) := matrix(#1) -@end example - -@noindent -will parse @samp{foo(1, 2, 3, 4)} as @samp{bar([1, 2, 3, 4])}, and -@samp{foo(1, 2; 3, 4)} as @samp{matrix([[1, 2], [3, 4]])}. Also, after -some thought it's easy to see how this pair of rules will parse -@samp{foo(1, 2, 3)} as @samp{matrix([[1, 2, 3]])}, since the first -rule will only match an even number of arguments. The rule - -@example -foo ( # @{ , # , # @}? ) := bar(#1,#2) -@end example - -@noindent -will parse @samp{foo(2,3,4)} as @samp{bar(2,[3,4])}, and -@samp{foo(2)} as @samp{bar(2,[])}. - -The notation @samp{@{ ... @}?.} (note the trailing period) works -just the same as regular @samp{@{ ... @}?}, except that it does not -count as an argument; the following two rules are equivalent: - -@example -foo ( # , @{ also @}? # ) := bar(#1,#3) -foo ( # , @{ also @}?. # ) := bar(#1,#2) -@end example - -@noindent -Note that in the first case the optional text counts as @samp{#2}, -which will always be an empty vector, but in the second case no -empty vector is produced. - -Another variant is @samp{@{ ... @}?$}, which means the body is -optional only at the end of the input formula. All built-in syntax -rules in Calc use this for closing delimiters, so that during -algebraic entry you can type @kbd{[sqrt(2), sqrt(3 @key{RET}}, omitting -the closing parenthesis and bracket. Calc does this automatically -for trailing @samp{)}, @samp{]}, and @samp{>} tokens in syntax -rules, but you can use @samp{@{ ... @}?$} explicitly to get -this effect with any token (such as @samp{"@}"} or @samp{end}). -Like @samp{@{ ... @}?.}, this notation does not count as an -argument. Conversely, you can use quotes, as in @samp{")"}, to -prevent a closing-delimiter token from being automatically treated -as optional. - -Calc's parser does not have full backtracking, which means some -patterns will not work as you might expect: - -@example -foo ( @{ # , @}? # , # ) := bar(#1,#2,#3) -@end example - -@noindent -Here we are trying to make the first argument optional, so that -@samp{foo(2,3)} parses as @samp{bar([],2,3)}. Unfortunately, Calc -first tries to match @samp{2,} against the optional part of the -pattern, finds a match, and so goes ahead to match the rest of the -pattern. Later on it will fail to match the second comma, but it -doesn't know how to go back and try the other alternative at that -point. One way to get around this would be to use two rules: - -@example -foo ( # , # , # ) := bar([#1],#2,#3) -foo ( # , # ) := bar([],#1,#2) -@end example - -More precisely, when Calc wants to match an optional or repeated -part of a pattern, it scans forward attempting to match that part. -If it reaches the end of the optional part without failing, it -``finalizes'' its choice and proceeds. If it fails, though, it -backs up and tries the other alternative. Thus Calc has ``partial'' -backtracking. A fully backtracking parser would go on to make sure -the rest of the pattern matched before finalizing the choice. - -@node Conditional Syntax Rules, , Advanced Syntax Patterns, Syntax Tables -@subsubsection Conditional Syntax Rules - -@noindent -It is possible to attach a @dfn{condition} to a syntax rule. For -example, the rules - -@example -foo ( # ) := ifoo(#1) :: integer(#1) -foo ( # ) := gfoo(#1) -@end example - -@noindent -will parse @samp{foo(3)} as @samp{ifoo(3)}, but will parse -@samp{foo(3.5)} and @samp{foo(x)} as calls to @code{gfoo}. Any -number of conditions may be attached; all must be true for the -rule to succeed. A condition is ``true'' if it evaluates to a -nonzero number. @xref{Logical Operations}, for a list of Calc -functions like @code{integer} that perform logical tests. - -The exact sequence of events is as follows: When Calc tries a -rule, it first matches the pattern as usual. It then substitutes -@samp{#1}, @samp{#2}, etc., in the conditions, if any. Next, the -conditions are simplified and evaluated in order from left to right, -as if by the @w{@kbd{a s}} algebra command (@pxref{Simplifying Formulas}). -Each result is true if it is a nonzero number, or an expression -that can be proven to be nonzero (@pxref{Declarations}). If the -results of all conditions are true, the expression (such as -@samp{ifoo(#1)}) has its @samp{#}s substituted, and that is the -result of the parse. If the result of any condition is false, Calc -goes on to try the next rule in the syntax table. - -Syntax rules also support @code{let} conditions, which operate in -exactly the same way as they do in algebraic rewrite rules. -@xref{Other Features of Rewrite Rules}, for details. A @code{let} -condition is always true, but as a side effect it defines a -variable which can be used in later conditions, and also in the -expression after the @samp{:=} sign: - -@example -foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x) -@end example - -@noindent -The @code{dnumint} function tests if a value is numerically an -integer, i.e., either a true integer or an integer-valued float. -This rule will parse @code{foo} with a half-integer argument, -like @samp{foo(3.5)}, to a call like @samp{hifoo(4.)}. - -The lefthand side of a syntax rule @code{let} must be a simple -variable, not the arbitrary pattern that is allowed in rewrite -rules. - -The @code{matches} function is also treated specially in syntax -rule conditions (again, in the same way as in rewrite rules). -@xref{Matching Commands}. If the matching pattern contains -meta-variables, then those meta-variables may be used in later -conditions and in the result expression. The arguments to -@code{matches} are not evaluated in this situation. - -@example -sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c]) -@end example - -@noindent -This is another way to implement the Maple mode @code{sum} notation. -In this approach, we allow @samp{#2} to equal the whole expression -@samp{i=1..10}. Then, we use @code{matches} to break it apart into -its components. If the expression turns out not to match the pattern, -the syntax rule will fail. Note that @kbd{Z S} always uses Calc's -Normal language mode for editing expressions in syntax rules, so we -must use regular Calc notation for the interval @samp{[b..c]} that -will correspond to the Maple mode interval @samp{1..10}. - -@node Modes Variable, Calc Mode Line, Language Modes, Mode Settings -@section The @code{Modes} Variable - -@noindent -@kindex m g -@pindex calc-get-modes -The @kbd{m g} (@code{calc-get-modes}) command pushes onto the stack -a vector of numbers that describes the various mode settings that -are in effect. With a numeric prefix argument, it pushes only the -@var{n}th mode, i.e., the @var{n}th element of this vector. Keyboard -macros can use the @kbd{m g} command to modify their behavior based -on the current mode settings. - -@cindex @code{Modes} variable -@vindex Modes -The modes vector is also available in the special variable -@code{Modes}. In other words, @kbd{m g} is like @kbd{s r Modes @key{RET}}. -It will not work to store into this variable; in fact, if you do, -@code{Modes} will cease to track the current modes. (The @kbd{m g} -command will continue to work, however.) - -In general, each number in this vector is suitable as a numeric -prefix argument to the associated mode-setting command. (Recall -that the @kbd{~} key takes a number from the stack and gives it as -a numeric prefix to the next command.) - -The elements of the modes vector are as follows: - -@enumerate -@item -Current precision. Default is 12; associated command is @kbd{p}. - -@item -Binary word size. Default is 32; associated command is @kbd{b w}. - -@item -Stack size (not counting the value about to be pushed by @kbd{m g}). -This is zero if @kbd{m g} is executed with an empty stack. - -@item -Number radix. Default is 10; command is @kbd{d r}. - -@item -Floating-point format. This is the number of digits, plus the -constant 0 for normal notation, 10000 for scientific notation, -20000 for engineering notation, or 30000 for fixed-point notation. -These codes are acceptable as prefix arguments to the @kbd{d n} -command, but note that this may lose information: For example, -@kbd{d s} and @kbd{C-u 12 d s} have similar (but not quite -identical) effects if the current precision is 12, but they both -produce a code of 10012, which will be treated by @kbd{d n} as -@kbd{C-u 12 d s}. If the precision then changes, the float format -will still be frozen at 12 significant figures. - -@item -Angular mode. Default is 1 (degrees). Other values are 2 (radians) -and 3 (HMS). The @kbd{m d} command accepts these prefixes. - -@item -Symbolic mode. Value is 0 or 1; default is 0. Command is @kbd{m s}. - -@item -Fraction mode. Value is 0 or 1; default is 0. Command is @kbd{m f}. - -@item -Polar mode. Value is 0 (rectangular) or 1 (polar); default is 0. -Command is @kbd{m p}. - -@item -Matrix/Scalar mode. Default value is @mathit{-1}. Value is 0 for Scalar -mode, @mathit{-2} for Matrix mode, @mathit{-3} for square Matrix mode, -or @var{N} for -@texline @math{N\times N} -@infoline @var{N}x@var{N} -Matrix mode. Command is @kbd{m v}. - -@item -Simplification mode. Default is 1. Value is @mathit{-1} for off (@kbd{m O}), -0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E}, -or 5 for @w{@kbd{m U}}. The @kbd{m D} command accepts these prefixes. - -@item -Infinite mode. Default is @mathit{-1} (off). Value is 1 if the mode is on, -or 0 if the mode is on with positive zeros. Command is @kbd{m i}. -@end enumerate - -For example, the sequence @kbd{M-1 m g @key{RET} 2 + ~ p} increases the -precision by two, leaving a copy of the old precision on the stack. -Later, @kbd{~ p} will restore the original precision using that -stack value. (This sequence might be especially useful inside a -keyboard macro.) - -As another example, @kbd{M-3 m g 1 - ~ @key{DEL}} deletes all but the -oldest (bottommost) stack entry. - -Yet another example: The HP-48 ``round'' command rounds a number -to the current displayed precision. You could roughly emulate this -in Calc with the sequence @kbd{M-5 m g 10000 % ~ c c}. (This -would not work for fixed-point mode, but it wouldn't be hard to -do a full emulation with the help of the @kbd{Z [} and @kbd{Z ]} -programming commands. @xref{Conditionals in Macros}.) - -@node Calc Mode Line, , Modes Variable, Mode Settings -@section The Calc Mode Line - -@noindent -@cindex Mode line indicators -This section is a summary of all symbols that can appear on the -Calc mode line, the highlighted bar that appears under the Calc -stack window (or under an editing window in Embedded mode). - -The basic mode line format is: - -@example ---%%-Calc: 12 Deg @var{other modes} (Calculator) -@end example - -The @samp{%%} is the Emacs symbol for ``read-only''; it shows that -regular Emacs commands are not allowed to edit the stack buffer -as if it were text. - -The word @samp{Calc:} changes to @samp{CalcEmbed:} if Embedded mode -is enabled. The words after this describe the various Calc modes -that are in effect. - -The first mode is always the current precision, an integer. -The second mode is always the angular mode, either @code{Deg}, -@code{Rad}, or @code{Hms}. - -Here is a complete list of the remaining symbols that can appear -on the mode line: - -@table @code -@item Alg -Algebraic mode (@kbd{m a}; @pxref{Algebraic Entry}). - -@item Alg[( -Incomplete algebraic mode (@kbd{C-u m a}). - -@item Alg* -Total algebraic mode (@kbd{m t}). - -@item Symb -Symbolic mode (@kbd{m s}; @pxref{Symbolic Mode}). - -@item Matrix -Matrix mode (@kbd{m v}; @pxref{Matrix Mode}). - -@item Matrix@var{n} -Dimensioned Matrix mode (@kbd{C-u @var{n} m v}; @pxref{Matrix Mode}). - -@item SqMatrix -Square Matrix mode (@kbd{C-u m v}; @pxref{Matrix Mode}). - -@item Scalar -Scalar mode (@kbd{m v}; @pxref{Matrix Mode}). - -@item Polar -Polar complex mode (@kbd{m p}; @pxref{Polar Mode}). - -@item Frac -Fraction mode (@kbd{m f}; @pxref{Fraction Mode}). - -@item Inf -Infinite mode (@kbd{m i}; @pxref{Infinite Mode}). - -@item +Inf -Positive Infinite mode (@kbd{C-u 0 m i}). - -@item NoSimp -Default simplifications off (@kbd{m O}; @pxref{Simplification Modes}). - -@item NumSimp -Default simplifications for numeric arguments only (@kbd{m N}). - -@item BinSimp@var{w} -Binary-integer simplification mode; word size @var{w} (@kbd{m B}, @kbd{b w}). - -@item AlgSimp -Algebraic simplification mode (@kbd{m A}). - -@item ExtSimp -Extended algebraic simplification mode (@kbd{m E}). - -@item UnitSimp -Units simplification mode (@kbd{m U}). - -@item Bin -Current radix is 2 (@kbd{d 2}; @pxref{Radix Modes}). - -@item Oct -Current radix is 8 (@kbd{d 8}). - -@item Hex -Current radix is 16 (@kbd{d 6}). - -@item Radix@var{n} -Current radix is @var{n} (@kbd{d r}). - -@item Zero -Leading zeros (@kbd{d z}; @pxref{Radix Modes}). - -@item Big -Big language mode (@kbd{d B}; @pxref{Normal Language Modes}). - -@item Flat -One-line normal language mode (@kbd{d O}). - -@item Unform -Unformatted language mode (@kbd{d U}). - -@item C -C language mode (@kbd{d C}; @pxref{C FORTRAN Pascal}). - -@item Pascal -Pascal language mode (@kbd{d P}). - -@item Fortran -FORTRAN language mode (@kbd{d F}). - -@item TeX -@TeX{} language mode (@kbd{d T}; @pxref{TeX and LaTeX Language Modes}). - -@item LaTeX -La@TeX{} language mode (@kbd{d L}; @pxref{TeX and LaTeX Language Modes}). - -@item Eqn -@dfn{Eqn} language mode (@kbd{d E}; @pxref{Eqn Language Mode}). - -@item Math -Mathematica language mode (@kbd{d M}; @pxref{Mathematica Language Mode}). - -@item Maple -Maple language mode (@kbd{d W}; @pxref{Maple Language Mode}). - -@item Norm@var{n} -Normal float mode with @var{n} digits (@kbd{d n}; @pxref{Float Formats}). - -@item Fix@var{n} -Fixed point mode with @var{n} digits after the point (@kbd{d f}). - -@item Sci -Scientific notation mode (@kbd{d s}). - -@item Sci@var{n} -Scientific notation with @var{n} digits (@kbd{d s}). - -@item Eng -Engineering notation mode (@kbd{d e}). - -@item Eng@var{n} -Engineering notation with @var{n} digits (@kbd{d e}). - -@item Left@var{n} -Left-justified display indented by @var{n} (@kbd{d <}; @pxref{Justification}). - -@item Right -Right-justified display (@kbd{d >}). - -@item Right@var{n} -Right-justified display with width @var{n} (@kbd{d >}). - -@item Center -Centered display (@kbd{d =}). - -@item Center@var{n} -Centered display with center column @var{n} (@kbd{d =}). - -@item Wid@var{n} -Line breaking with width @var{n} (@kbd{d b}; @pxref{Normal Language Modes}). - -@item Wide -No line breaking (@kbd{d b}). - -@item Break -Selections show deep structure (@kbd{j b}; @pxref{Making Selections}). - -@item Save -Record modes in @file{~/.calc.el} (@kbd{m R}; @pxref{General Mode Commands}). - -@item Local -Record modes in Embedded buffer (@kbd{m R}). - -@item LocEdit -Record modes as editing-only in Embedded buffer (@kbd{m R}). - -@item LocPerm -Record modes as permanent-only in Embedded buffer (@kbd{m R}). - -@item Global -Record modes as global in Embedded buffer (@kbd{m R}). - -@item Manual -Automatic recomputation turned off (@kbd{m C}; @pxref{Automatic -Recomputation}). - -@item Graph -GNUPLOT process is alive in background (@pxref{Graphics}). - -@item Sel -Top-of-stack has a selection (Embedded only; @pxref{Making Selections}). - -@item Dirty -The stack display may not be up-to-date (@pxref{Display Modes}). - -@item Inv -``Inverse'' prefix was pressed (@kbd{I}; @pxref{Inverse and Hyperbolic}). - -@item Hyp -``Hyperbolic'' prefix was pressed (@kbd{H}). - -@item Keep -``Keep-arguments'' prefix was pressed (@kbd{K}). - -@item Narrow -Stack is truncated (@kbd{d t}; @pxref{Truncating the Stack}). -@end table - -In addition, the symbols @code{Active} and @code{~Active} can appear -as minor modes on an Embedded buffer's mode line. @xref{Embedded Mode}. - -@node Arithmetic, Scientific Functions, Mode Settings, Top -@chapter Arithmetic Functions - -@noindent -This chapter describes the Calc commands for doing simple calculations -on numbers, such as addition, absolute value, and square roots. These -commands work by removing the top one or two values from the stack, -performing the desired operation, and pushing the result back onto the -stack. If the operation cannot be performed, the result pushed is a -formula instead of a number, such as @samp{2/0} (because division by zero -is invalid) or @samp{sqrt(x)} (because the argument @samp{x} is a formula). - -Most of the commands described here can be invoked by a single keystroke. -Some of the more obscure ones are two-letter sequences beginning with -the @kbd{f} (``functions'') prefix key. - -@xref{Prefix Arguments}, for a discussion of the effect of numeric -prefix arguments on commands in this chapter which do not otherwise -interpret a prefix argument. - -@menu -* Basic Arithmetic:: -* Integer Truncation:: -* Complex Number Functions:: -* Conversions:: -* Date Arithmetic:: -* Financial Functions:: -* Binary Functions:: -@end menu - -@node Basic Arithmetic, Integer Truncation, Arithmetic, Arithmetic -@section Basic Arithmetic - -@noindent -@kindex + -@pindex calc-plus -@ignore -@mindex @null -@end ignore -@tindex + -The @kbd{+} (@code{calc-plus}) command adds two numbers. The numbers may -be any of the standard Calc data types. The resulting sum is pushed back -onto the stack. - -If both arguments of @kbd{+} are vectors or matrices (of matching dimensions), -the result is a vector or matrix sum. If one argument is a vector and the -other a scalar (i.e., a non-vector), the scalar is added to each of the -elements of the vector to form a new vector. If the scalar is not a -number, the operation is left in symbolic form: Suppose you added @samp{x} -to the vector @samp{[1,2]}. You may want the result @samp{[1+x,2+x]}, or -you may plan to substitute a 2-vector for @samp{x} in the future. Since -the Calculator can't tell which interpretation you want, it makes the -safest assumption. @xref{Reducing and Mapping}, for a way to add @samp{x} -to every element of a vector. - -If either argument of @kbd{+} is a complex number, the result will in general -be complex. If one argument is in rectangular form and the other polar, -the current Polar mode determines the form of the result. If Symbolic -mode is enabled, the sum may be left as a formula if the necessary -conversions for polar addition are non-trivial. - -If both arguments of @kbd{+} are HMS forms, the forms are added according to -the usual conventions of hours-minutes-seconds notation. If one argument -is an HMS form and the other is a number, that number is converted from -degrees or radians (depending on the current Angular mode) to HMS format -and then the two HMS forms are added. - -If one argument of @kbd{+} is a date form, the other can be either a -real number, which advances the date by a certain number of days, or -an HMS form, which advances the date by a certain amount of time. -Subtracting two date forms yields the number of days between them. -Adding two date forms is meaningless, but Calc interprets it as the -subtraction of one date form and the negative of the other. (The -negative of a date form can be understood by remembering that dates -are stored as the number of days before or after Jan 1, 1 AD.) - -If both arguments of @kbd{+} are error forms, the result is an error form -with an appropriately computed standard deviation. If one argument is an -error form and the other is a number, the number is taken to have zero error. -Error forms may have symbolic formulas as their mean and/or error parts; -adding these will produce a symbolic error form result. However, adding an -error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not -work, for the same reasons just mentioned for vectors. Instead you must -write @samp{(a +/- b) + (c +/- 0)}. - -If both arguments of @kbd{+} are modulo forms with equal values of @expr{M}, -or if one argument is a modulo form and the other a plain number, the -result is a modulo form which represents the sum, modulo @expr{M}, of -the two values. - -If both arguments of @kbd{+} are intervals, the result is an interval -which describes all possible sums of the possible input values. If -one argument is a plain number, it is treated as the interval -@w{@samp{[x ..@: x]}}. - -If one argument of @kbd{+} is an infinity and the other is not, the -result is that same infinity. If both arguments are infinite and in -the same direction, the result is the same infinity, but if they are -infinite in different directions the result is @code{nan}. - -@kindex - -@pindex calc-minus -@ignore -@mindex @null -@end ignore -@tindex - -The @kbd{-} (@code{calc-minus}) command subtracts two values. The top -number on the stack is subtracted from the one behind it, so that the -computation @kbd{5 @key{RET} 2 -} produces 3, not @mathit{-3}. All options -available for @kbd{+} are available for @kbd{-} as well. - -@kindex * -@pindex calc-times -@ignore -@mindex @null -@end ignore -@tindex * -The @kbd{*} (@code{calc-times}) command multiplies two numbers. If one -argument is a vector and the other a scalar, the scalar is multiplied by -the elements of the vector to produce a new vector. If both arguments -are vectors, the interpretation depends on the dimensions of the -vectors: If both arguments are matrices, a matrix multiplication is -done. If one argument is a matrix and the other a plain vector, the -vector is interpreted as a row vector or column vector, whichever is -dimensionally correct. If both arguments are plain vectors, the result -is a single scalar number which is the dot product of the two vectors. - -If one argument of @kbd{*} is an HMS form and the other a number, the -HMS form is multiplied by that amount. It is an error to multiply two -HMS forms together, or to attempt any multiplication involving date -forms. Error forms, modulo forms, and intervals can be multiplied; -see the comments for addition of those forms. When two error forms -or intervals are multiplied they are considered to be statistically -independent; thus, @samp{[-2 ..@: 3] * [-2 ..@: 3]} is @samp{[-6 ..@: 9]}, -whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}. - -@kindex / -@pindex calc-divide -@ignore -@mindex @null -@end ignore -@tindex / -The @kbd{/} (@code{calc-divide}) command divides two numbers. - -When combining multiplication and division in an algebraic formula, it -is good style to use parentheses to distinguish between possible -interpretations; the expression @samp{a/b*c} should be written -@samp{(a/b)*c} or @samp{a/(b*c)}, as appropriate. Without the -parentheses, Calc will interpret @samp{a/b*c} as @samp{a/(b*c)}, since -in algebraic entry Calc gives division a lower precedence than -multiplication. (This is not standard across all computer languages, and -Calc may change the precedence depending on the language mode being used. -@xref{Language Modes}.) This default ordering can be changed by setting -the customizable variable @code{calc-multiplication-has-precedence} to -@code{nil} (@pxref{Customizing Calc}); this will give multiplication and -division equal precedences. Note that Calc's default choice of -precedence allows @samp{a b / c d} to be used as a shortcut for -@smallexample -@group -a b ----. -c d -@end group -@end smallexample - -When dividing a scalar @expr{B} by a square matrix @expr{A}, the -computation performed is @expr{B} times the inverse of @expr{A}. This -also occurs if @expr{B} is itself a vector or matrix, in which case the -effect is to solve the set of linear equations represented by @expr{B}. -If @expr{B} is a matrix with the same number of rows as @expr{A}, or a -plain vector (which is interpreted here as a column vector), then the -equation @expr{A X = B} is solved for the vector or matrix @expr{X}. -Otherwise, if @expr{B} is a non-square matrix with the same number of -@emph{columns} as @expr{A}, the equation @expr{X A = B} is solved. If -you wish a vector @expr{B} to be interpreted as a row vector to be -solved as @expr{X A = B}, make it into a one-row matrix with @kbd{C-u 1 -v p} first. To force a left-handed solution with a square matrix -@expr{B}, transpose @expr{A} and @expr{B} before dividing, then -transpose the result. - -HMS forms can be divided by real numbers or by other HMS forms. Error -forms can be divided in any combination of ways. Modulo forms where both -values and the modulo are integers can be divided to get an integer modulo -form result. Intervals can be divided; dividing by an interval that -encompasses zero or has zero as a limit will result in an infinite -interval. - -@kindex ^ -@pindex calc-power -@ignore -@mindex @null -@end ignore -@tindex ^ -The @kbd{^} (@code{calc-power}) command raises a number to a power. If -the power is an integer, an exact result is computed using repeated -multiplications. For non-integer powers, Calc uses Newton's method or -logarithms and exponentials. Square matrices can be raised to integer -powers. If either argument is an error (or interval or modulo) form, -the result is also an error (or interval or modulo) form. - -@kindex I ^ -@tindex nroot -If you press the @kbd{I} (inverse) key first, the @kbd{I ^} command -computes an Nth root: @kbd{125 @key{RET} 3 I ^} computes the number 5. -(This is entirely equivalent to @kbd{125 @key{RET} 1:3 ^}.) - -@kindex \ -@pindex calc-idiv -@tindex idiv -@ignore -@mindex @null -@end ignore -@tindex \ -The @kbd{\} (@code{calc-idiv}) command divides two numbers on the stack -to produce an integer result. It is equivalent to dividing with -@key{/}, then rounding down with @kbd{F} (@code{calc-floor}), only a bit -more convenient and efficient. Also, since it is an all-integer -operation when the arguments are integers, it avoids problems that -@kbd{/ F} would have with floating-point roundoff. - -@kindex % -@pindex calc-mod -@ignore -@mindex @null -@end ignore -@tindex % -The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'') -operation. Mathematically, @samp{a%b = a - (a\b)*b}, and is defined -for all real numbers @expr{a} and @expr{b} (except @expr{b=0}). For -positive @expr{b}, the result will always be between 0 (inclusive) and -@expr{b} (exclusive). Modulo does not work for HMS forms and error forms. -If @expr{a} is a modulo form, its modulo is changed to @expr{b}, which -must be positive real number. - -@kindex : -@pindex calc-fdiv -@tindex fdiv -The @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command -divides the two integers on the top of the stack to produce a fractional -result. This is a convenient shorthand for enabling Fraction mode (with -@kbd{m f}) temporarily and using @samp{/}. Note that during numeric entry -the @kbd{:} key is interpreted as a fraction separator, so to divide 8 by 6 -you would have to type @kbd{8 @key{RET} 6 @key{RET} :}. (Of course, in -this case, it would be much easier simply to enter the fraction directly -as @kbd{8:6 @key{RET}}!) - -@kindex n -@pindex calc-change-sign -The @kbd{n} (@code{calc-change-sign}) command negates the number on the top -of the stack. It works on numbers, vectors and matrices, HMS forms, date -forms, error forms, intervals, and modulo forms. - -@kindex A -@pindex calc-abs -@tindex abs -The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the absolute -value of a number. The result of @code{abs} is always a nonnegative -real number: With a complex argument, it computes the complex magnitude. -With a vector or matrix argument, it computes the Frobenius norm, i.e., -the square root of the sum of the squares of the absolute values of the -elements. The absolute value of an error form is defined by replacing -the mean part with its absolute value and leaving the error part the same. -The absolute value of a modulo form is undefined. The absolute value of -an interval is defined in the obvious way. - -@kindex f A -@pindex calc-abssqr -@tindex abssqr -The @kbd{f A} (@code{calc-abssqr}) [@code{abssqr}] command computes the -absolute value squared of a number, vector or matrix, or error form. - -@kindex f s -@pindex calc-sign -@tindex sign -The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its -argument is positive, @mathit{-1} if its argument is negative, or 0 if its -argument is zero. In algebraic form, you can also write @samp{sign(a,x)} -which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or -zero depending on the sign of @samp{a}. - -@kindex & -@pindex calc-inv -@tindex inv -@cindex Reciprocal -The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the -reciprocal of a number, i.e., @expr{1 / x}. Operating on a square -matrix, it computes the inverse of that matrix. - -@kindex Q -@pindex calc-sqrt -@tindex sqrt -The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] command computes the square -root of a number. For a negative real argument, the result will be a -complex number whose form is determined by the current Polar mode. - -@kindex f h -@pindex calc-hypot -@tindex hypot -The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square -root of the sum of the squares of two numbers. That is, @samp{hypot(a,b)} -is the length of the hypotenuse of a right triangle with sides @expr{a} -and @expr{b}. If the arguments are complex numbers, their squared -magnitudes are used. - -@kindex f Q -@pindex calc-isqrt -@tindex isqrt -The @kbd{f Q} (@code{calc-isqrt}) [@code{isqrt}] command computes the -integer square root of an integer. This is the true square root of the -number, rounded down to an integer. For example, @samp{isqrt(10)} -produces 3. Note that, like @kbd{\} [@code{idiv}], this uses exact -integer arithmetic throughout to avoid roundoff problems. If the input -is a floating-point number or other non-integer value, this is exactly -the same as @samp{floor(sqrt(x))}. - -@kindex f n -@kindex f x -@pindex calc-min -@tindex min -@pindex calc-max -@tindex max -The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max}) -[@code{max}] commands take the minimum or maximum of two real numbers, -respectively. These commands also work on HMS forms, date forms, -intervals, and infinities. (In algebraic expressions, these functions -take any number of arguments and return the maximum or minimum among -all the arguments.) - -@kindex f M -@kindex f X -@pindex calc-mant-part -@tindex mant -@pindex calc-xpon-part -@tindex xpon -The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts -the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X} -(@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part -@expr{e}. The original number is equal to -@texline @math{m \times 10^e}, -@infoline @expr{m * 10^e}, -where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that -@expr{m=e=0} if the original number is zero. For integers -and fractions, @code{mant} returns the number unchanged and @code{xpon} -returns zero. The @kbd{v u} (@code{calc-unpack}) command can also be -used to ``unpack'' a floating-point number; this produces an integer -mantissa and exponent, with the constraint that the mantissa is not -a multiple of ten (again except for the @expr{m=e=0} case). - -@kindex f S -@pindex calc-scale-float -@tindex scf -The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number -by a given power of ten. Thus, @samp{scf(mant(x), xpon(x)) = x} for any -real @samp{x}. The second argument must be an integer, but the first -may actually be any numeric value. For example, @samp{scf(5,-2) = 0.05} -or @samp{1:20} depending on the current Fraction mode. - -@kindex f [ -@kindex f ] -@pindex calc-decrement -@pindex calc-increment -@tindex decr -@tindex incr -The @kbd{f [} (@code{calc-decrement}) [@code{decr}] and @kbd{f ]} -(@code{calc-increment}) [@code{incr}] functions decrease or increase -a number by one unit. For integers, the effect is obvious. For -floating-point numbers, the change is by one unit in the last place. -For example, incrementing @samp{12.3456} when the current precision -is 6 digits yields @samp{12.3457}. If the current precision had been -8 digits, the result would have been @samp{12.345601}. Incrementing -@samp{0.0} produces -@texline @math{10^{-p}}, -@infoline @expr{10^-p}, -where @expr{p} is the current -precision. These operations are defined only on integers and floats. -With numeric prefix arguments, they change the number by @expr{n} units. - -Note that incrementing followed by decrementing, or vice-versa, will -almost but not quite always cancel out. Suppose the precision is -6 digits and the number @samp{9.99999} is on the stack. Incrementing -will produce @samp{10.0000}; decrementing will produce @samp{9.9999}. -One digit has been dropped. This is an unavoidable consequence of the -way floating-point numbers work. - -Incrementing a date/time form adjusts it by a certain number of seconds. -Incrementing a pure date form adjusts it by a certain number of days. - -@node Integer Truncation, Complex Number Functions, Basic Arithmetic, Arithmetic -@section Integer Truncation - -@noindent -There are four commands for truncating a real number to an integer, -differing mainly in their treatment of negative numbers. All of these -commands have the property that if the argument is an integer, the result -is the same integer. An integer-valued floating-point argument is converted -to integer form. - -If you press @kbd{H} (@code{calc-hyperbolic}) first, the result will be -expressed as an integer-valued floating-point number. - -@cindex Integer part of a number -@kindex F -@pindex calc-floor -@tindex floor -@tindex ffloor -@ignore -@mindex @null -@end ignore -@kindex H F -The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command -truncates a real number to the next lower integer, i.e., toward minus -infinity. Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces -@mathit{-4}. - -@kindex I F -@pindex calc-ceiling -@tindex ceil -@tindex fceil -@ignore -@mindex @null -@end ignore -@kindex H I F -The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}] -command truncates toward positive infinity. Thus @kbd{3.6 I F} produces -4, and @kbd{_3.6 I F} produces @mathit{-3}. - -@kindex R -@pindex calc-round -@tindex round -@tindex fround -@ignore -@mindex @null -@end ignore -@kindex H R -The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command -rounds to the nearest integer. When the fractional part is .5 exactly, -this command rounds away from zero. (All other rounding in the -Calculator uses this convention as well.) Thus @kbd{3.5 R} produces 4 -but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @mathit{-4}. - -@kindex I R -@pindex calc-trunc -@tindex trunc -@tindex ftrunc -@ignore -@mindex @null -@end ignore -@kindex H I R -The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}] -command truncates toward zero. In other words, it ``chops off'' -everything after the decimal point. Thus @kbd{3.6 I R} produces 3 and -@kbd{_3.6 I R} produces @mathit{-3}. - -These functions may not be applied meaningfully to error forms, but they -do work for intervals. As a convenience, applying @code{floor} to a -modulo form floors the value part of the form. Applied to a vector, -these functions operate on all elements of the vector one by one. -Applied to a date form, they operate on the internal numerical -representation of dates, converting a date/time form into a pure date. - -@ignore -@starindex -@end ignore -@tindex rounde -@ignore -@starindex -@end ignore -@tindex roundu -@ignore -@starindex -@end ignore -@tindex frounde -@ignore -@starindex -@end ignore -@tindex froundu -There are two more rounding functions which can only be entered in -algebraic notation. The @code{roundu} function is like @code{round} -except that it rounds up, toward plus infinity, when the fractional -part is .5. This distinction matters only for negative arguments. -Also, @code{rounde} rounds to an even number in the case of a tie, -rounding up or down as necessary. For example, @samp{rounde(3.5)} and -@samp{rounde(4.5)} both return 4, but @samp{rounde(5.5)} returns 6. -The advantage of round-to-even is that the net error due to rounding -after a long calculation tends to cancel out to zero. An important -subtle point here is that the number being fed to @code{rounde} will -already have been rounded to the current precision before @code{rounde} -begins. For example, @samp{rounde(2.500001)} with a current precision -of 6 will incorrectly, or at least surprisingly, yield 2 because the -argument will first have been rounded down to @expr{2.5} (which -@code{rounde} sees as an exact tie between 2 and 3). - -Each of these functions, when written in algebraic formulas, allows -a second argument which specifies the number of digits after the -decimal point to keep. For example, @samp{round(123.4567, 2)} will -produce the answer 123.46, and @samp{round(123.4567, -1)} will -produce 120 (i.e., the cutoff is one digit to the @emph{left} of -the decimal point). A second argument of zero is equivalent to -no second argument at all. - -@cindex Fractional part of a number -To compute the fractional part of a number (i.e., the amount which, when -added to `@tfn{floor(}@var{n}@tfn{)}', will produce @var{n}) just take @var{n} -modulo 1 using the @code{%} command. - -Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm), -and @kbd{f Q} (integer square root) commands, which are analogous to -@kbd{/}, @kbd{B}, and @kbd{Q}, respectively, except that they take integer -arguments and return the result rounded down to an integer. - -@node Complex Number Functions, Conversions, Integer Truncation, Arithmetic -@section Complex Number Functions - -@noindent -@kindex J -@pindex calc-conj -@tindex conj -The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the -complex conjugate of a number. For complex number @expr{a+bi}, the -complex conjugate is @expr{a-bi}. If the argument is a real number, -this command leaves it the same. If the argument is a vector or matrix, -this command replaces each element by its complex conjugate. - -@kindex G -@pindex calc-argument -@tindex arg -The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the -``argument'' or polar angle of a complex number. For a number in polar -notation, this is simply the second component of the pair -@texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'. -@infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'. -The result is expressed according to the current angular mode and will -be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees -(inclusive), or the equivalent range in radians. - -@pindex calc-imaginary -The @code{calc-imaginary} command multiplies the number on the -top of the stack by the imaginary number @expr{i = (0,1)}. This -command is not normally bound to a key in Calc, but it is available -on the @key{IMAG} button in Keypad mode. - -@kindex f r -@pindex calc-re -@tindex re -The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number -by its real part. This command has no effect on real numbers. (As an -added convenience, @code{re} applied to a modulo form extracts -the value part.) - -@kindex f i -@pindex calc-im -@tindex im -The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number -by its imaginary part; real numbers are converted to zero. With a vector -or matrix argument, these functions operate element-wise. - -@ignore -@mindex v p -@end ignore -@kindex v p (complex) -@pindex calc-pack -The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on -the stack into a composite object such as a complex number. With -a prefix argument of @mathit{-1}, it produces a rectangular complex number; -with an argument of @mathit{-2}, it produces a polar complex number. -(Also, @pxref{Building Vectors}.) - -@ignore -@mindex v u -@end ignore -@kindex v u (complex) -@pindex calc-unpack -The @kbd{v u} (@code{calc-unpack}) command takes the complex number -(or other composite object) on the top of the stack and unpacks it -into its separate components. - -@node Conversions, Date Arithmetic, Complex Number Functions, Arithmetic -@section Conversions - -@noindent -The commands described in this section convert numbers from one form -to another; they are two-key sequences beginning with the letter @kbd{c}. - -@kindex c f -@pindex calc-float -@tindex pfloat -The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the -number on the top of the stack to floating-point form. For example, -@expr{23} is converted to @expr{23.0}, @expr{3:2} is converted to -@expr{1.5}, and @expr{2.3} is left the same. If the value is a composite -object such as a complex number or vector, each of the components is -converted to floating-point. If the value is a formula, all numbers -in the formula are converted to floating-point. Note that depending -on the current floating-point precision, conversion to floating-point -format may lose information. - -As a special exception, integers which appear as powers or subscripts -are not floated by @kbd{c f}. If you really want to float a power, -you can use a @kbd{j s} command to select the power followed by @kbd{c f}. -Because @kbd{c f} cannot examine the formula outside of the selection, -it does not notice that the thing being floated is a power. -@xref{Selecting Subformulas}. - -The normal @kbd{c f} command is ``pervasive'' in the sense that it -applies to all numbers throughout the formula. The @code{pfloat} -algebraic function never stays around in a formula; @samp{pfloat(a + 1)} -changes to @samp{a + 1.0} as soon as it is evaluated. - -@kindex H c f -@tindex float -With the Hyperbolic flag, @kbd{H c f} [@code{float}] operates -only on the number or vector of numbers at the top level of its -argument. Thus, @samp{float(1)} is 1.0, but @samp{float(a + 1)} -is left unevaluated because its argument is not a number. - -You should use @kbd{H c f} if you wish to guarantee that the final -value, once all the variables have been assigned, is a float; you -would use @kbd{c f} if you wish to do the conversion on the numbers -that appear right now. - -@kindex c F -@pindex calc-fraction -@tindex pfrac -The @kbd{c F} (@code{calc-fraction}) [@code{pfrac}] command converts a -floating-point number into a fractional approximation. By default, it -produces a fraction whose decimal representation is the same as the -input number, to within the current precision. You can also give a -numeric prefix argument to specify a tolerance, either directly, or, -if the prefix argument is zero, by using the number on top of the stack -as the tolerance. If the tolerance is a positive integer, the fraction -is correct to within that many significant figures. If the tolerance is -a non-positive integer, it specifies how many digits fewer than the current -precision to use. If the tolerance is a floating-point number, the -fraction is correct to within that absolute amount. - -@kindex H c F -@tindex frac -The @code{pfrac} function is pervasive, like @code{pfloat}. -There is also a non-pervasive version, @kbd{H c F} [@code{frac}], -which is analogous to @kbd{H c f} discussed above. - -@kindex c d -@pindex calc-to-degrees -@tindex deg -The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a -number into degrees form. The value on the top of the stack may be an -HMS form (interpreted as degrees-minutes-seconds), or a real number which -will be interpreted in radians regardless of the current angular mode. - -@kindex c r -@pindex calc-to-radians -@tindex rad -The @kbd{c r} (@code{calc-to-radians}) [@code{rad}] command converts an -HMS form or angle in degrees into an angle in radians. - -@kindex c h -@pindex calc-to-hms -@tindex hms -The @kbd{c h} (@code{calc-to-hms}) [@code{hms}] command converts a real -number, interpreted according to the current angular mode, to an HMS -form describing the same angle. In algebraic notation, the @code{hms} -function also accepts three arguments: @samp{hms(@var{h}, @var{m}, @var{s})}. -(The three-argument version is independent of the current angular mode.) - -@pindex calc-from-hms -The @code{calc-from-hms} command converts the HMS form on the top of the -stack into a real number according to the current angular mode. - -@kindex c p -@kindex I c p -@pindex calc-polar -@tindex polar -@tindex rect -The @kbd{c p} (@code{calc-polar}) command converts the complex number on -the top of the stack from polar to rectangular form, or from rectangular -to polar form, whichever is appropriate. Real numbers are left the same. -This command is equivalent to the @code{rect} or @code{polar} -functions in algebraic formulas, depending on the direction of -conversion. (It uses @code{polar}, except that if the argument is -already a polar complex number, it uses @code{rect} instead. The -@kbd{I c p} command always uses @code{rect}.) - -@kindex c c -@pindex calc-clean -@tindex pclean -The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the -number on the top of the stack. Floating point numbers are re-rounded -according to the current precision. Polar numbers whose angular -components have strayed from the @mathit{-180} to @mathit{+180} degree range -are normalized. (Note that results will be undesirable if the current -angular mode is different from the one under which the number was -produced!) Integers and fractions are generally unaffected by this -operation. Vectors and formulas are cleaned by cleaning each component -number (i.e., pervasively). - -If the simplification mode is set below the default level, it is raised -to the default level for the purposes of this command. Thus, @kbd{c c} -applies the default simplifications even if their automatic application -is disabled. @xref{Simplification Modes}. - -@cindex Roundoff errors, correcting -A numeric prefix argument to @kbd{c c} sets the floating-point precision -to that value for the duration of the command. A positive prefix (of at -least 3) sets the precision to the specified value; a negative or zero -prefix decreases the precision by the specified amount. - -@kindex c 0-9 -@pindex calc-clean-num -The keystroke sequences @kbd{c 0} through @kbd{c 9} are equivalent -to @kbd{c c} with the corresponding negative prefix argument. If roundoff -errors have changed 2.0 into 1.999999, typing @kbd{c 1} to clip off one -decimal place often conveniently does the trick. - -The @kbd{c c} command with a numeric prefix argument, and the @kbd{c 0} -through @kbd{c 9} commands, also ``clip'' very small floating-point -numbers to zero. If the exponent is less than or equal to the negative -of the specified precision, the number is changed to 0.0. For example, -if the current precision is 12, then @kbd{c 2} changes the vector -@samp{[1e-8, 1e-9, 1e-10, 1e-11]} to @samp{[1e-8, 1e-9, 0, 0]}. -Numbers this small generally arise from roundoff noise. - -If the numbers you are using really are legitimately this small, -you should avoid using the @kbd{c 0} through @kbd{c 9} commands. -(The plain @kbd{c c} command rounds to the current precision but -does not clip small numbers.) - -One more property of @kbd{c 0} through @kbd{c 9}, and of @kbd{c c} with -a prefix argument, is that integer-valued floats are converted to -plain integers, so that @kbd{c 1} on @samp{[1., 1.5, 2., 2.5, 3.]} -produces @samp{[1, 1.5, 2, 2.5, 3]}. This is not done for huge -numbers (@samp{1e100} is technically an integer-valued float, but -you wouldn't want it automatically converted to a 100-digit integer). - -@kindex H c 0-9 -@kindex H c c -@tindex clean -With the Hyperbolic flag, @kbd{H c c} and @kbd{H c 0} through @kbd{H c 9} -operate non-pervasively [@code{clean}]. - -@node Date Arithmetic, Financial Functions, Conversions, Arithmetic -@section Date Arithmetic - -@noindent -@cindex Date arithmetic, additional functions -The commands described in this section perform various conversions -and calculations involving date forms (@pxref{Date Forms}). They -use the @kbd{t} (for time/date) prefix key followed by shifted -letters. - -The simplest date arithmetic is done using the regular @kbd{+} and @kbd{-} -commands. In particular, adding a number to a date form advances the -date form by a certain number of days; adding an HMS form to a date -form advances the date by a certain amount of time; and subtracting two -date forms produces a difference measured in days. The commands -described here provide additional, more specialized operations on dates. - -Many of these commands accept a numeric prefix argument; if you give -plain @kbd{C-u} as the prefix, these commands will instead take the -additional argument from the top of the stack. - -@menu -* Date Conversions:: -* Date Functions:: -* Time Zones:: -* Business Days:: -@end menu - -@node Date Conversions, Date Functions, Date Arithmetic, Date Arithmetic -@subsection Date Conversions - -@noindent -@kindex t D -@pindex calc-date -@tindex date -The @kbd{t D} (@code{calc-date}) [@code{date}] command converts a -date form into a number, measured in days since Jan 1, 1 AD. The -result will be an integer if @var{date} is a pure date form, or a -fraction or float if @var{date} is a date/time form. Or, if its -argument is a number, it converts this number into a date form. - -With a numeric prefix argument, @kbd{t D} takes that many objects -(up to six) from the top of the stack and interprets them in one -of the following ways: - -The @samp{date(@var{year}, @var{month}, @var{day})} function -builds a pure date form out of the specified year, month, and -day, which must all be integers. @var{Year} is a year number, -such as 1991 (@emph{not} the same as 91!). @var{Month} must be -an integer in the range 1 to 12; @var{day} must be in the range -1 to 31. If the specified month has fewer than 31 days and -@var{day} is too large, the equivalent day in the following -month will be used. - -The @samp{date(@var{month}, @var{day})} function builds a -pure date form using the current year, as determined by the -real-time clock. - -The @samp{date(@var{year}, @var{month}, @var{day}, @var{hms})} -function builds a date/time form using an @var{hms} form. - -The @samp{date(@var{year}, @var{month}, @var{day}, @var{hour}, -@var{minute}, @var{second})} function builds a date/time form. -@var{hour} should be an integer in the range 0 to 23; -@var{minute} should be an integer in the range 0 to 59; -@var{second} should be any real number in the range @samp{[0 .. 60)}. -The last two arguments default to zero if omitted. - -@kindex t J -@pindex calc-julian -@tindex julian -@cindex Julian day counts, conversions -The @kbd{t J} (@code{calc-julian}) [@code{julian}] command converts -a date form into a Julian day count, which is the number of days -since noon (GMT) on Jan 1, 4713 BC. A pure date is converted to an -integer Julian count representing noon of that day. A date/time form -is converted to an exact floating-point Julian count, adjusted to -interpret the date form in the current time zone but the Julian -day count in Greenwich Mean Time. A numeric prefix argument allows -you to specify the time zone; @pxref{Time Zones}. Use a prefix of -zero to suppress the time zone adjustment. Note that pure date forms -are never time-zone adjusted. - -This command can also do the opposite conversion, from a Julian day -count (either an integer day, or a floating-point day and time in -the GMT zone), into a pure date form or a date/time form in the -current or specified time zone. - -@kindex t U -@pindex calc-unix-time -@tindex unixtime -@cindex Unix time format, conversions -The @kbd{t U} (@code{calc-unix-time}) [@code{unixtime}] command -converts a date form into a Unix time value, which is the number of -seconds since midnight on Jan 1, 1970, or vice-versa. The numeric result -will be an integer if the current precision is 12 or less; for higher -precisions, the result may be a float with (@var{precision}@minus{}12) -digits after the decimal. Just as for @kbd{t J}, the numeric time -is interpreted in the GMT time zone and the date form is interpreted -in the current or specified zone. Some systems use Unix-like -numbering but with the local time zone; give a prefix of zero to -suppress the adjustment if so. - -@kindex t C -@pindex calc-convert-time-zones -@tindex tzconv -@cindex Time Zones, converting between -The @kbd{t C} (@code{calc-convert-time-zones}) [@code{tzconv}] -command converts a date form from one time zone to another. You -are prompted for each time zone name in turn; you can answer with -any suitable Calc time zone expression (@pxref{Time Zones}). -If you answer either prompt with a blank line, the local time -zone is used for that prompt. You can also answer the first -prompt with @kbd{$} to take the two time zone names from the -stack (and the date to be converted from the third stack level). - -@node Date Functions, Business Days, Date Conversions, Date Arithmetic -@subsection Date Functions - -@noindent -@kindex t N -@pindex calc-now -@tindex now -The @kbd{t N} (@code{calc-now}) [@code{now}] command pushes the -current date and time on the stack as a date form. The time is -reported in terms of the specified time zone; with no numeric prefix -argument, @kbd{t N} reports for the current time zone. - -@kindex t P -@pindex calc-date-part -The @kbd{t P} (@code{calc-date-part}) command extracts one part -of a date form. The prefix argument specifies the part; with no -argument, this command prompts for a part code from 1 to 9. -The various part codes are described in the following paragraphs. - -@tindex year -The @kbd{M-1 t P} [@code{year}] function extracts the year number -from a date form as an integer, e.g., 1991. This and the -following functions will also accept a real number for an -argument, which is interpreted as a standard Calc day number. -Note that this function will never return zero, since the year -1 BC immediately precedes the year 1 AD. - -@tindex month -The @kbd{M-2 t P} [@code{month}] function extracts the month number -from a date form as an integer in the range 1 to 12. - -@tindex day -The @kbd{M-3 t P} [@code{day}] function extracts the day number -from a date form as an integer in the range 1 to 31. - -@tindex hour -The @kbd{M-4 t P} [@code{hour}] function extracts the hour from -a date form as an integer in the range 0 (midnight) to 23. Note -that 24-hour time is always used. This returns zero for a pure -date form. This function (and the following two) also accept -HMS forms as input. - -@tindex minute -The @kbd{M-5 t P} [@code{minute}] function extracts the minute -from a date form as an integer in the range 0 to 59. - -@tindex second -The @kbd{M-6 t P} [@code{second}] function extracts the second -from a date form. If the current precision is 12 or less, -the result is an integer in the range 0 to 59. For higher -precisions, the result may instead be a floating-point number. - -@tindex weekday -The @kbd{M-7 t P} [@code{weekday}] function extracts the weekday -number from a date form as an integer in the range 0 (Sunday) -to 6 (Saturday). - -@tindex yearday -The @kbd{M-8 t P} [@code{yearday}] function extracts the day-of-year -number from a date form as an integer in the range 1 (January 1) -to 366 (December 31 of a leap year). - -@tindex time -The @kbd{M-9 t P} [@code{time}] function extracts the time portion -of a date form as an HMS form. This returns @samp{0@@ 0' 0"} -for a pure date form. - -@kindex t M -@pindex calc-new-month -@tindex newmonth -The @kbd{t M} (@code{calc-new-month}) [@code{newmonth}] command -computes a new date form that represents the first day of the month -specified by the input date. The result is always a pure date -form; only the year and month numbers of the input are retained. -With a numeric prefix argument @var{n} in the range from 1 to 31, -@kbd{t M} computes the @var{n}th day of the month. (If @var{n} -is greater than the actual number of days in the month, or if -@var{n} is zero, the last day of the month is used.) - -@kindex t Y -@pindex calc-new-year -@tindex newyear -The @kbd{t Y} (@code{calc-new-year}) [@code{newyear}] command -computes a new pure date form that represents the first day of -the year specified by the input. The month, day, and time -of the input date form are lost. With a numeric prefix argument -@var{n} in the range from 1 to 366, @kbd{t Y} computes the -@var{n}th day of the year (366 is treated as 365 in non-leap -years). A prefix argument of 0 computes the last day of the -year (December 31). A negative prefix argument from @mathit{-1} to -@mathit{-12} computes the first day of the @var{n}th month of the year. - -@kindex t W -@pindex calc-new-week -@tindex newweek -The @kbd{t W} (@code{calc-new-week}) [@code{newweek}] command -computes a new pure date form that represents the Sunday on or before -the input date. With a numeric prefix argument, it can be made to -use any day of the week as the starting day; the argument must be in -the range from 0 (Sunday) to 6 (Saturday). This function always -subtracts between 0 and 6 days from the input date. - -Here's an example use of @code{newweek}: Find the date of the next -Wednesday after a given date. Using @kbd{M-3 t W} or @samp{newweek(d, 3)} -will give you the @emph{preceding} Wednesday, so @samp{newweek(d+7, 3)} -will give you the following Wednesday. A further look at the definition -of @code{newweek} shows that if the input date is itself a Wednesday, -this formula will return the Wednesday one week in the future. An -exercise for the reader is to modify this formula to yield the same day -if the input is already a Wednesday. Another interesting exercise is -to preserve the time-of-day portion of the input (@code{newweek} resets -the time to midnight; hint:@: how can @code{newweek} be defined in terms -of the @code{weekday} function?). - -@ignore -@starindex -@end ignore -@tindex pwday -The @samp{pwday(@var{date})} function (not on any key) computes the -day-of-month number of the Sunday on or before @var{date}. With -two arguments, @samp{pwday(@var{date}, @var{day})} computes the day -number of the Sunday on or before day number @var{day} of the month -specified by @var{date}. The @var{day} must be in the range from -7 to 31; if the day number is greater than the actual number of days -in the month, the true number of days is used instead. Thus -@samp{pwday(@var{date}, 7)} finds the first Sunday of the month, and -@samp{pwday(@var{date}, 31)} finds the last Sunday of the month. -With a third @var{weekday} argument, @code{pwday} can be made to look -for any day of the week instead of Sunday. - -@kindex t I -@pindex calc-inc-month -@tindex incmonth -The @kbd{t I} (@code{calc-inc-month}) [@code{incmonth}] command -increases a date form by one month, or by an arbitrary number of -months specified by a numeric prefix argument. The time portion, -if any, of the date form stays the same. The day also stays the -same, except that if the new month has fewer days the day -number may be reduced to lie in the valid range. For example, -@samp{incmonth()} produces @samp{}. -Because of this, @kbd{t I t I} and @kbd{M-2 t I} do not always give -the same results (@samp{} versus @samp{} -in this case). - -@ignore -@starindex -@end ignore -@tindex incyear -The @samp{incyear(@var{date}, @var{step})} function increases -a date form by the specified number of years, which may be -any positive or negative integer. Note that @samp{incyear(d, n)} -is equivalent to @w{@samp{incmonth(d, 12*n)}}, but these do not have -simple equivalents in terms of day arithmetic because -months and years have varying lengths. If the @var{step} -argument is omitted, 1 year is assumed. There is no keyboard -command for this function; use @kbd{C-u 12 t I} instead. - -There is no @code{newday} function at all because @kbd{F} [@code{floor}] -serves this purpose. Similarly, instead of @code{incday} and -@code{incweek} simply use @expr{d + n} or @expr{d + 7 n}. - -@xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command -which can adjust a date/time form by a certain number of seconds. - -@node Business Days, Time Zones, Date Functions, Date Arithmetic -@subsection Business Days - -@noindent -Often time is measured in ``business days'' or ``working days,'' -where weekends and holidays are skipped. Calc's normal date -arithmetic functions use calendar days, so that subtracting two -consecutive Mondays will yield a difference of 7 days. By contrast, -subtracting two consecutive Mondays would yield 5 business days -(assuming two-day weekends and the absence of holidays). - -@kindex t + -@kindex t - -@tindex badd -@tindex bsub -@pindex calc-business-days-plus -@pindex calc-business-days-minus -The @kbd{t +} (@code{calc-business-days-plus}) [@code{badd}] -and @kbd{t -} (@code{calc-business-days-minus}) [@code{bsub}] -commands perform arithmetic using business days. For @kbd{t +}, -one argument must be a date form and the other must be a real -number (positive or negative). If the number is not an integer, -then a certain amount of time is added as well as a number of -days; for example, adding 0.5 business days to a time in Friday -evening will produce a time in Monday morning. It is also -possible to add an HMS form; adding @samp{12@@ 0' 0"} also adds -half a business day. For @kbd{t -}, the arguments are either a -date form and a number or HMS form, or two date forms, in which -case the result is the number of business days between the two -dates. - -@cindex @code{Holidays} variable -@vindex Holidays -By default, Calc considers any day that is not a Saturday or -Sunday to be a business day. You can define any number of -additional holidays by editing the variable @code{Holidays}. -(There is an @w{@kbd{s H}} convenience command for editing this -variable.) Initially, @code{Holidays} contains the vector -@samp{[sat, sun]}. Entries in the @code{Holidays} vector may -be any of the following kinds of objects: - -@itemize @bullet -@item -Date forms (pure dates, not date/time forms). These specify -particular days which are to be treated as holidays. - -@item -Intervals of date forms. These specify a range of days, all of -which are holidays (e.g., Christmas week). @xref{Interval Forms}. - -@item -Nested vectors of date forms. Each date form in the vector is -considered to be a holiday. - -@item -Any Calc formula which evaluates to one of the above three things. -If the formula involves the variable @expr{y}, it stands for a -yearly repeating holiday; @expr{y} will take on various year -numbers like 1992. For example, @samp{date(y, 12, 25)} specifies -Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies -Thanksgiving (which is held on the fourth Thursday of November). -If the formula involves the variable @expr{m}, that variable -takes on month numbers from 1 to 12: @samp{date(y, m, 15)} is -a holiday that takes place on the 15th of every month. - -@item -A weekday name, such as @code{sat} or @code{sun}. This is really -a variable whose name is a three-letter, lower-case day name. - -@item -An interval of year numbers (integers). This specifies the span of -years over which this holiday list is to be considered valid. Any -business-day arithmetic that goes outside this range will result -in an error message. Use this if you are including an explicit -list of holidays, rather than a formula to generate them, and you -want to make sure you don't accidentally go beyond the last point -where the holidays you entered are complete. If there is no -limiting interval in the @code{Holidays} vector, the default -@samp{[1 .. 2737]} is used. (This is the absolute range of years -for which Calc's business-day algorithms will operate.) - -@item -An interval of HMS forms. This specifies the span of hours that -are to be considered one business day. For example, if this -range is @samp{[9@@ 0' 0" .. 17@@ 0' 0"]} (i.e., 9am to 5pm), then -the business day is only eight hours long, so that @kbd{1.5 t +} -on @samp{<4:00pm Fri Dec 13, 1991>} will add one business day and -four business hours to produce @samp{<12:00pm Tue Dec 17, 1991>}. -Likewise, @kbd{t -} will now express differences in time as -fractions of an eight-hour day. Times before 9am will be treated -as 9am by business date arithmetic, and times at or after 5pm will -be treated as 4:59:59pm. If there is no HMS interval in @code{Holidays}, -the full 24-hour day @samp{[0@ 0' 0" .. 24@ 0' 0"]} is assumed. -(Regardless of the type of bounds you specify, the interval is -treated as inclusive on the low end and exclusive on the high end, -so that the work day goes from 9am up to, but not including, 5pm.) -@end itemize - -If the @code{Holidays} vector is empty, then @kbd{t +} and -@kbd{t -} will act just like @kbd{+} and @kbd{-} because there will -then be no difference between business days and calendar days. - -Calc expands the intervals and formulas you give into a complete -list of holidays for internal use. This is done mainly to make -sure it can detect multiple holidays. (For example, -@samp{} is both New Year's Day and a Sunday, but -Calc's algorithms take care to count it only once when figuring -the number of holidays between two dates.) - -Since the complete list of holidays for all the years from 1 to -2737 would be huge, Calc actually computes only the part of the -list between the smallest and largest years that have been involved -in business-day calculations so far. Normally, you won't have to -worry about this. Keep in mind, however, that if you do one -calculation for 1992, and another for 1792, even if both involve -only a small range of years, Calc will still work out all the -holidays that fall in that 200-year span. - -If you add a (positive) number of days to a date form that falls on a -weekend or holiday, the date form is treated as if it were the most -recent business day. (Thus adding one business day to a Friday, -Saturday, or Sunday will all yield the following Monday.) If you -subtract a number of days from a weekend or holiday, the date is -effectively on the following business day. (So subtracting one business -day from Saturday, Sunday, or Monday yields the preceding Friday.) The -difference between two dates one or both of which fall on holidays -equals the number of actual business days between them. These -conventions are consistent in the sense that, if you add @var{n} -business days to any date, the difference between the result and the -original date will come out to @var{n} business days. (It can't be -completely consistent though; a subtraction followed by an addition -might come out a bit differently, since @kbd{t +} is incapable of -producing a date that falls on a weekend or holiday.) - -@ignore -@starindex -@end ignore -@tindex holiday -There is a @code{holiday} function, not on any keys, that takes -any date form and returns 1 if that date falls on a weekend or -holiday, as defined in @code{Holidays}, or 0 if the date is a -business day. - -@node Time Zones, , Business Days, Date Arithmetic -@subsection Time Zones - -@noindent -@cindex Time zones -@cindex Daylight saving time -Time zones and daylight saving time are a complicated business. -The conversions to and from Julian and Unix-style dates automatically -compute the correct time zone and daylight saving adjustment to use, -provided they can figure out this information. This section describes -Calc's time zone adjustment algorithm in detail, in case you want to -do conversions in different time zones or in case Calc's algorithms -can't determine the right correction to use. - -Adjustments for time zones and daylight saving time are done by -@kbd{t U}, @kbd{t J}, @kbd{t N}, and @kbd{t C}, but not by any other -commands. In particular, @samp{ - } evaluates -to exactly 30 days even though there is a daylight-saving -transition in between. This is also true for Julian pure dates: -@samp{julian() - julian()}. But Julian -and Unix date/times will adjust for daylight saving time: using Calc's -default daylight saving time rule (see the explanation below), -@samp{julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)} -evaluates to @samp{29.95833} (that's 29 days and 23 hours) -because one hour was lost when daylight saving commenced on -April 7, 1991. - -In brief, the idiom @samp{julian(@var{date1}) - julian(@var{date2})} -computes the actual number of 24-hour periods between two dates, whereas -@samp{@var{date1} - @var{date2}} computes the number of calendar -days between two dates without taking daylight saving into account. - -@pindex calc-time-zone -@ignore -@starindex -@end ignore -@tindex tzone -The @code{calc-time-zone} [@code{tzone}] command converts the time -zone specified by its numeric prefix argument into a number of -seconds difference from Greenwich mean time (GMT). If the argument -is a number, the result is simply that value multiplied by 3600. -Typical arguments for North America are 5 (Eastern) or 8 (Pacific). If -Daylight Saving time is in effect, one hour should be subtracted from -the normal difference. - -If you give a prefix of plain @kbd{C-u}, @code{calc-time-zone} (like other -date arithmetic commands that include a time zone argument) takes the -zone argument from the top of the stack. (In the case of @kbd{t J} -and @kbd{t U}, the normal argument is then taken from the second-to-top -stack position.) This allows you to give a non-integer time zone -adjustment. The time-zone argument can also be an HMS form, or -it can be a variable which is a time zone name in upper- or lower-case. -For example @samp{tzone(PST) = tzone(8)} and @samp{tzone(pdt) = tzone(7)} -(for Pacific standard and daylight saving times, respectively). - -North American and European time zone names are defined as follows; -note that for each time zone there is one name for standard time, -another for daylight saving time, and a third for ``generalized'' time -in which the daylight saving adjustment is computed from context. - -@smallexample -@group -YST PST MST CST EST AST NST GMT WET MET MEZ - 9 8 7 6 5 4 3.5 0 -1 -2 -2 - -YDT PDT MDT CDT EDT ADT NDT BST WETDST METDST MESZ - 8 7 6 5 4 3 2.5 -1 -2 -3 -3 - -YGT PGT MGT CGT EGT AGT NGT BGT WEGT MEGT MEGZ -9/8 8/7 7/6 6/5 5/4 4/3 3.5/2.5 0/-1 -1/-2 -2/-3 -2/-3 -@end group -@end smallexample - -@vindex math-tzone-names -To define time zone names that do not appear in the above table, -you must modify the Lisp variable @code{math-tzone-names}. This -is a list of lists describing the different time zone names; its -structure is best explained by an example. The three entries for -Pacific Time look like this: - -@smallexample -@group -( ( "PST" 8 0 ) ; Name as an upper-case string, then standard - ( "PDT" 8 -1 ) ; adjustment, then daylight saving adjustment. - ( "PGT" 8 "PST" "PDT" ) ) ; Generalized time zone. -@end group -@end smallexample - -@cindex @code{TimeZone} variable -@vindex TimeZone -With no arguments, @code{calc-time-zone} or @samp{tzone()} will by -default get the time zone and daylight saving information from the -calendar (@pxref{Daylight Saving,Calendar/Diary,The Calendar and the Diary, -emacs,The GNU Emacs Manual}). To use a different time zone, or if the -calendar does not give the desired result, you can set the Calc variable -@code{TimeZone} (which is by default @code{nil}) to an appropriate -time zone name. (The easiest way to do this is to edit the -@code{TimeZone} variable using Calc's @kbd{s T} command, then use the -@kbd{s p} (@code{calc-permanent-variable}) command to save the value of -@code{TimeZone} permanently.) -If the time zone given by @code{TimeZone} is a generalized time zone, -e.g., @code{EGT}, Calc examines the date being converted to tell whether -to use standard or daylight saving time. But if the current time zone -is explicit, e.g., @code{EST} or @code{EDT}, then that adjustment is -used exactly and Calc's daylight saving algorithm is not consulted. -The special time zone name @code{local} -is equivalent to no argument; i.e., it uses the information obtained -from the calendar. - -The @kbd{t J} and @code{t U} commands with no numeric prefix -arguments do the same thing as @samp{tzone()}; namely, use the -information from the calendar if @code{TimeZone} is @code{nil}, -otherwise use the time zone given by @code{TimeZone}. - -@vindex math-daylight-savings-hook -@findex math-std-daylight-savings -When Calc computes the daylight saving information itself (i.e., when -the @code{TimeZone} variable is set), it will by default consider -daylight saving time to begin at 2 a.m.@: on the second Sunday of March -(for years from 2007 on) or on the last Sunday in April (for years -before 2007), and to end at 2 a.m.@: on the first Sunday of -November. (for years from 2007 on) or the last Sunday in October (for -years before 2007). These are the rules that have been in effect in -much of North America since 1966 and take into account the rule change -that began in 2007. If you are in a country that uses different rules -for computing daylight saving time, you have two choices: Write your own -daylight saving hook, or control time zones explicitly by setting the -@code{TimeZone} variable and/or always giving a time-zone argument for -the conversion functions. - -The Lisp variable @code{math-daylight-savings-hook} holds the -name of a function that is used to compute the daylight saving -adjustment for a given date. The default is -@code{math-std-daylight-savings}, which computes an adjustment -(either 0 or @mathit{-1}) using the North American rules given above. - -The daylight saving hook function is called with four arguments: -The date, as a floating-point number in standard Calc format; -a six-element list of the date decomposed into year, month, day, -hour, minute, and second, respectively; a string which contains -the generalized time zone name in upper-case, e.g., @code{"WEGT"}; -and a special adjustment to be applied to the hour value when -converting into a generalized time zone (see below). - -@findex math-prev-weekday-in-month -The Lisp function @code{math-prev-weekday-in-month} is useful for -daylight saving computations. This is an internal version of -the user-level @code{pwday} function described in the previous -section. It takes four arguments: The floating-point date value, -the corresponding six-element date list, the day-of-month number, -and the weekday number (0-6). - -The default daylight saving hook ignores the time zone name, but a -more sophisticated hook could use different algorithms for different -time zones. It would also be possible to use different algorithms -depending on the year number, but the default hook always uses the -algorithm for 1987 and later. Here is a listing of the default -daylight saving hook: - -@smallexample -(defun math-std-daylight-savings (date dt zone bump) - (cond ((< (nth 1 dt) 4) 0) - ((= (nth 1 dt) 4) - (let ((sunday (math-prev-weekday-in-month date dt 7 0))) - (cond ((< (nth 2 dt) sunday) 0) - ((= (nth 2 dt) sunday) - (if (>= (nth 3 dt) (+ 3 bump)) -1 0)) - (t -1)))) - ((< (nth 1 dt) 10) -1) - ((= (nth 1 dt) 10) - (let ((sunday (math-prev-weekday-in-month date dt 31 0))) - (cond ((< (nth 2 dt) sunday) -1) - ((= (nth 2 dt) sunday) - (if (>= (nth 3 dt) (+ 2 bump)) 0 -1)) - (t 0)))) - (t 0)) -) -@end smallexample - -@noindent -The @code{bump} parameter is equal to zero when Calc is converting -from a date form in a generalized time zone into a GMT date value. -It is @mathit{-1} when Calc is converting in the other direction. The -adjustments shown above ensure that the conversion behaves correctly -and reasonably around the 2 a.m.@: transition in each direction. - -There is a ``missing'' hour between 2 a.m.@: and 3 a.m.@: at the -beginning of daylight saving time; converting a date/time form that -falls in this hour results in a time value for the following hour, -from 3 a.m.@: to 4 a.m. At the end of daylight saving time, the -hour from 1 a.m.@: to 2 a.m.@: repeats itself; converting a date/time -form that falls in this hour results in a time value for the first -manifestation of that time (@emph{not} the one that occurs one hour -later). - -If @code{math-daylight-savings-hook} is @code{nil}, then the -daylight saving adjustment is always taken to be zero. - -In algebraic formulas, @samp{tzone(@var{zone}, @var{date})} -computes the time zone adjustment for a given zone name at a -given date. The @var{date} is ignored unless @var{zone} is a -generalized time zone. If @var{date} is a date form, the -daylight saving computation is applied to it as it appears. -If @var{date} is a numeric date value, it is adjusted for the -daylight-saving version of @var{zone} before being given to -the daylight saving hook. This odd-sounding rule ensures -that the daylight-saving computation is always done in -local time, not in the GMT time that a numeric @var{date} -is typically represented in. - -@ignore -@starindex -@end ignore -@tindex dsadj -The @samp{dsadj(@var{date}, @var{zone})} function computes the -daylight saving adjustment that is appropriate for @var{date} in -time zone @var{zone}. If @var{zone} is explicitly in or not in -daylight saving time (e.g., @code{PDT} or @code{PST}) the -@var{date} is ignored. If @var{zone} is a generalized time zone, -the algorithms described above are used. If @var{zone} is omitted, -the computation is done for the current time zone. - -@xref{Reporting Bugs}, for the address of Calc's author, if you -should wish to contribute your improved versions of -@code{math-tzone-names} and @code{math-daylight-savings-hook} -to the Calc distribution. - -@node Financial Functions, Binary Functions, Date Arithmetic, Arithmetic -@section Financial Functions - -@noindent -Calc's financial or business functions use the @kbd{b} prefix -key followed by a shifted letter. (The @kbd{b} prefix followed by -a lower-case letter is used for operations on binary numbers.) - -Note that the rate and the number of intervals given to these -functions must be on the same time scale, e.g., both months or -both years. Mixing an annual interest rate with a time expressed -in months will give you very wrong answers! - -It is wise to compute these functions to a higher precision than -you really need, just to make sure your answer is correct to the -last penny; also, you may wish to check the definitions at the end -of this section to make sure the functions have the meaning you expect. - -@menu -* Percentages:: -* Future Value:: -* Present Value:: -* Related Financial Functions:: -* Depreciation Functions:: -* Definitions of Financial Functions:: -@end menu - -@node Percentages, Future Value, Financial Functions, Financial Functions -@subsection Percentages - -@kindex M-% -@pindex calc-percent -@tindex % -@tindex percent -The @kbd{M-%} (@code{calc-percent}) command takes a percentage value, -say 5.4, and converts it to an equivalent actual number. For example, -@kbd{5.4 M-%} enters 0.054 on the stack. (That's the @key{META} or -@key{ESC} key combined with @kbd{%}.) - -Actually, @kbd{M-%} creates a formula of the form @samp{5.4%}. -You can enter @samp{5.4%} yourself during algebraic entry. The -@samp{%} operator simply means, ``the preceding value divided by -100.'' The @samp{%} operator has very high precedence, so that -@samp{1+8%} is interpreted as @samp{1+(8%)}, not as @samp{(1+8)%}. -(The @samp{%} operator is just a postfix notation for the -@code{percent} function, just like @samp{20!} is the notation for -@samp{fact(20)}, or twenty-factorial.) - -The formula @samp{5.4%} would normally evaluate immediately to -0.054, but the @kbd{M-%} command suppresses evaluation as it puts -the formula onto the stack. However, the next Calc command that -uses the formula @samp{5.4%} will evaluate it as its first step. -The net effect is that you get to look at @samp{5.4%} on the stack, -but Calc commands see it as @samp{0.054}, which is what they expect. - -In particular, @samp{5.4%} and @samp{0.054} are suitable values -for the @var{rate} arguments of the various financial functions, -but the number @samp{5.4} is probably @emph{not} suitable---it -represents a rate of 540 percent! - -The key sequence @kbd{M-% *} effectively means ``percent-of.'' -For example, @kbd{68 @key{RET} 25 M-% *} computes 17, which is 25% of -68 (and also 68% of 25, which comes out to the same thing). - -@kindex c % -@pindex calc-convert-percent -The @kbd{c %} (@code{calc-convert-percent}) command converts the -value on the top of the stack from numeric to percentage form. -For example, if 0.08 is on the stack, @kbd{c %} converts it to -@samp{8%}. The quantity is the same, it's just represented -differently. (Contrast this with @kbd{M-%}, which would convert -this number to @samp{0.08%}.) The @kbd{=} key is a convenient way -to convert a formula like @samp{8%} back to numeric form, 0.08. - -To compute what percentage one quantity is of another quantity, -use @kbd{/ c %}. For example, @w{@kbd{17 @key{RET} 68 / c %}} displays -@samp{25%}. - -@kindex b % -@pindex calc-percent-change -@tindex relch -The @kbd{b %} (@code{calc-percent-change}) [@code{relch}] command -calculates the percentage change from one number to another. -For example, @kbd{40 @key{RET} 50 b %} produces the answer @samp{25%}, -since 50 is 25% larger than 40. A negative result represents a -decrease: @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is -20% smaller than 50. (The answers are different in magnitude -because, in the first case, we're increasing by 25% of 40, but -in the second case, we're decreasing by 20% of 50.) The effect -of @kbd{40 @key{RET} 50 b %} is to compute @expr{(50-40)/40}, converting -the answer to percentage form as if by @kbd{c %}. - -@node Future Value, Present Value, Percentages, Financial Functions -@subsection Future Value - -@noindent -@kindex b F -@pindex calc-fin-fv -@tindex fv -The @kbd{b F} (@code{calc-fin-fv}) [@code{fv}] command computes -the future value of an investment. It takes three arguments -from the stack: @samp{fv(@var{rate}, @var{n}, @var{payment})}. -If you give payments of @var{payment} every year for @var{n} -years, and the money you have paid earns interest at @var{rate} per -year, then this function tells you what your investment would be -worth at the end of the period. (The actual interval doesn't -have to be years, as long as @var{n} and @var{rate} are expressed -in terms of the same intervals.) This function assumes payments -occur at the @emph{end} of each interval. - -@kindex I b F -@tindex fvb -The @kbd{I b F} [@code{fvb}] command does the same computation, -but assuming your payments are at the beginning of each interval. -Suppose you plan to deposit $1000 per year in a savings account -earning 5.4% interest, starting right now. How much will be -in the account after five years? @code{fvb(5.4%, 5, 1000) = 5870.73}. -Thus you will have earned $870 worth of interest over the years. -Using the stack, this calculation would have been -@kbd{5.4 M-% 5 @key{RET} 1000 I b F}. Note that the rate is expressed -as a number between 0 and 1, @emph{not} as a percentage. - -@kindex H b F -@tindex fvl -The @kbd{H b F} [@code{fvl}] command computes the future value -of an initial lump sum investment. Suppose you could deposit -those five thousand dollars in the bank right now; how much would -they be worth in five years? @code{fvl(5.4%, 5, 5000) = 6503.89}. - -The algebraic functions @code{fv} and @code{fvb} accept an optional -fourth argument, which is used as an initial lump sum in the sense -of @code{fvl}. In other words, @code{fv(@var{rate}, @var{n}, -@var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment}) -+ fvl(@var{rate}, @var{n}, @var{initial})}. - -To illustrate the relationships between these functions, we could -do the @code{fvb} calculation ``by hand'' using @code{fvl}. The -final balance will be the sum of the contributions of our five -deposits at various times. The first deposit earns interest for -five years: @code{fvl(5.4%, 5, 1000) = 1300.78}. The second -deposit only earns interest for four years: @code{fvl(5.4%, 4, 1000) = -1234.13}. And so on down to the last deposit, which earns one -year's interest: @code{fvl(5.4%, 1, 1000) = 1054.00}. The sum of -these five values is, sure enough, $5870.73, just as was computed -by @code{fvb} directly. - -What does @code{fv(5.4%, 5, 1000) = 5569.96} mean? The payments -are now at the ends of the periods. The end of one year is the same -as the beginning of the next, so what this really means is that we've -lost the payment at year zero (which contributed $1300.78), but we're -now counting the payment at year five (which, since it didn't have -a chance to earn interest, counts as $1000). Indeed, @expr{5569.96 = -5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error). - -@node Present Value, Related Financial Functions, Future Value, Financial Functions -@subsection Present Value - -@noindent -@kindex b P -@pindex calc-fin-pv -@tindex pv -The @kbd{b P} (@code{calc-fin-pv}) [@code{pv}] command computes -the present value of an investment. Like @code{fv}, it takes -three arguments: @code{pv(@var{rate}, @var{n}, @var{payment})}. -It computes the present value of a series of regular payments. -Suppose you have the chance to make an investment that will -pay $2000 per year over the next four years; as you receive -these payments you can put them in the bank at 9% interest. -You want to know whether it is better to make the investment, or -to keep the money in the bank where it earns 9% interest right -from the start. The calculation @code{pv(9%, 4, 2000)} gives the -result 6479.44. If your initial investment must be less than this, -say, $6000, then the investment is worthwhile. But if you had to -put up $7000, then it would be better just to leave it in the bank. - -Here is the interpretation of the result of @code{pv}: You are -trying to compare the return from the investment you are -considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with -the return from leaving the money in the bank, which is -@code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money -you would have to put up in advance. The @code{pv} function -finds the break-even point, @expr{x = 6479.44}, at which -@code{fvl(9%, 4, 6479.44)} is also equal to 9146.26. This is -the largest amount you should be willing to invest. - -@kindex I b P -@tindex pvb -The @kbd{I b P} [@code{pvb}] command solves the same problem, -but with payments occurring at the beginning of each interval. -It has the same relationship to @code{fvb} as @code{pv} has -to @code{fv}. For example @code{pvb(9%, 4, 2000) = 7062.59}, -a larger number than @code{pv} produced because we get to start -earning interest on the return from our investment sooner. - -@kindex H b P -@tindex pvl -The @kbd{H b P} [@code{pvl}] command computes the present value of -an investment that will pay off in one lump sum at the end of the -period. For example, if we get our $8000 all at the end of the -four years, @code{pvl(9%, 4, 8000) = 5667.40}. This is much -less than @code{pv} reported, because we don't earn any interest -on the return from this investment. Note that @code{pvl} and -@code{fvl} are simple inverses: @code{fvl(9%, 4, 5667.40) = 8000}. - -You can give an optional fourth lump-sum argument to @code{pv} -and @code{pvb}; this is handled in exactly the same way as the -fourth argument for @code{fv} and @code{fvb}. - -@kindex b N -@pindex calc-fin-npv -@tindex npv -The @kbd{b N} (@code{calc-fin-npv}) [@code{npv}] command computes -the net present value of a series of irregular investments. -The first argument is the interest rate. The second argument is -a vector which represents the expected return from the investment -at the end of each interval. For example, if the rate represents -a yearly interest rate, then the vector elements are the return -from the first year, second year, and so on. - -Thus, @code{npv(9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44}. -Obviously this function is more interesting when the payments are -not all the same! - -The @code{npv} function can actually have two or more arguments. -Multiple arguments are interpreted in the same way as for the -vector statistical functions like @code{vsum}. -@xref{Single-Variable Statistics}. Basically, if there are several -payment arguments, each either a vector or a plain number, all these -values are collected left-to-right into the complete list of payments. -A numeric prefix argument on the @kbd{b N} command says how many -payment values or vectors to take from the stack. - -@kindex I b N -@tindex npvb -The @kbd{I b N} [@code{npvb}] command computes the net present -value where payments occur at the beginning of each interval -rather than at the end. - -@node Related Financial Functions, Depreciation Functions, Present Value, Financial Functions -@subsection Related Financial Functions - -@noindent -The functions in this section are basically inverses of the -present value functions with respect to the various arguments. - -@kindex b M -@pindex calc-fin-pmt -@tindex pmt -The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes -the amount of periodic payment necessary to amortize a loan. -Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the -value of @var{payment} such that @code{pv(@var{rate}, @var{n}, -@var{payment}) = @var{amount}}. - -@kindex I b M -@tindex pmtb -The @kbd{I b M} [@code{pmtb}] command does the same computation -but using @code{pvb} instead of @code{pv}. Like @code{pv} and -@code{pvb}, these functions can also take a fourth argument which -represents an initial lump-sum investment. - -@kindex H b M -The @kbd{H b M} key just invokes the @code{fvl} function, which is -the inverse of @code{pvl}. There is no explicit @code{pmtl} function. - -@kindex b # -@pindex calc-fin-nper -@tindex nper -The @kbd{b #} (@code{calc-fin-nper}) [@code{nper}] command computes -the number of regular payments necessary to amortize a loan. -Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals -the value of @var{n} such that @code{pv(@var{rate}, @var{n}, -@var{payment}) = @var{amount}}. If @var{payment} is too small -ever to amortize a loan for @var{amount} at interest rate @var{rate}, -the @code{nper} function is left in symbolic form. - -@kindex I b # -@tindex nperb -The @kbd{I b #} [@code{nperb}] command does the same computation -but using @code{pvb} instead of @code{pv}. You can give a fourth -lump-sum argument to these functions, but the computation will be -rather slow in the four-argument case. - -@kindex H b # -@tindex nperl -The @kbd{H b #} [@code{nperl}] command does the same computation -using @code{pvl}. By exchanging @var{payment} and @var{amount} you -can also get the solution for @code{fvl}. For example, -@code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a -bank account earning 8%, it will take nine years to grow to $2000. - -@kindex b T -@pindex calc-fin-rate -@tindex rate -The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes -the rate of return on an investment. This is also an inverse of @code{pv}: -@code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of -@var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) = -@var{amount}}. The result is expressed as a formula like @samp{6.3%}. - -@kindex I b T -@kindex H b T -@tindex rateb -@tindex ratel -The @kbd{I b T} [@code{rateb}] and @kbd{H b T} [@code{ratel}] -commands solve the analogous equations with @code{pvb} or @code{pvl} -in place of @code{pv}. Also, @code{rate} and @code{rateb} can -accept an optional fourth argument just like @code{pv} and @code{pvb}. -To redo the above example from a different perspective, -@code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an -interest rate of 8% in order to double your account in nine years. - -@kindex b I -@pindex calc-fin-irr -@tindex irr -The @kbd{b I} (@code{calc-fin-irr}) [@code{irr}] command is the -analogous function to @code{rate} but for net present value. -Its argument is a vector of payments. Thus @code{irr(@var{payments})} -computes the @var{rate} such that @code{npv(@var{rate}, @var{payments}) = 0}; -this rate is known as the @dfn{internal rate of return}. - -@kindex I b I -@tindex irrb -The @kbd{I b I} [@code{irrb}] command computes the internal rate of -return assuming payments occur at the beginning of each period. - -@node Depreciation Functions, Definitions of Financial Functions, Related Financial Functions, Financial Functions -@subsection Depreciation Functions - -@noindent -The functions in this section calculate @dfn{depreciation}, which is -the amount of value that a possession loses over time. These functions -are characterized by three parameters: @var{cost}, the original cost -of the asset; @var{salvage}, the value the asset will have at the end -of its expected ``useful life''; and @var{life}, the number of years -(or other periods) of the expected useful life. - -There are several methods for calculating depreciation that differ in -the way they spread the depreciation over the lifetime of the asset. - -@kindex b S -@pindex calc-fin-sln -@tindex sln -The @kbd{b S} (@code{calc-fin-sln}) [@code{sln}] command computes the -``straight-line'' depreciation. In this method, the asset depreciates -by the same amount every year (or period). For example, -@samp{sln(12000, 2000, 5)} returns 2000. The asset costs $12000 -initially and will be worth $2000 after five years; it loses $2000 -per year. - -@kindex b Y -@pindex calc-fin-syd -@tindex syd -The @kbd{b Y} (@code{calc-fin-syd}) [@code{syd}] command computes the -accelerated ``sum-of-years'-digits'' depreciation. Here the depreciation -is higher during the early years of the asset's life. Since the -depreciation is different each year, @kbd{b Y} takes a fourth @var{period} -parameter which specifies which year is requested, from 1 to @var{life}. -If @var{period} is outside this range, the @code{syd} function will -return zero. - -@kindex b D -@pindex calc-fin-ddb -@tindex ddb -The @kbd{b D} (@code{calc-fin-ddb}) [@code{ddb}] command computes an -accelerated depreciation using the double-declining balance method. -It also takes a fourth @var{period} parameter. - -For symmetry, the @code{sln} function will accept a @var{period} -parameter as well, although it will ignore its value except that the -return value will as usual be zero if @var{period} is out of range. - -For example, pushing the vector @expr{[1,2,3,4,5]} (perhaps with @kbd{v x 5}) -and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$), -ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare -the three depreciation methods: - -@example -@group -[ [ 2000, 3333, 4800 ] - [ 2000, 2667, 2880 ] - [ 2000, 2000, 1728 ] - [ 2000, 1333, 592 ] - [ 2000, 667, 0 ] ] -@end group -@end example - -@noindent -(Values have been rounded to nearest integers in this figure.) -We see that @code{sln} depreciates by the same amount each year, -@kbd{syd} depreciates more at the beginning and less at the end, -and @kbd{ddb} weights the depreciation even more toward the beginning. - -Summing columns with @kbd{V R : +} yields @expr{[10000, 10000, 10000]}; -the total depreciation in any method is (by definition) the -difference between the cost and the salvage value. - -@node Definitions of Financial Functions, , Depreciation Functions, Financial Functions -@subsection Definitions - -@noindent -For your reference, here are the actual formulas used to compute -Calc's financial functions. - -Calc will not evaluate a financial function unless the @var{rate} or -@var{n} argument is known. However, @var{payment} or @var{amount} can -be a variable. Calc expands these functions according to the -formulas below for symbolic arguments only when you use the @kbd{a "} -(@code{calc-expand-formula}) command, or when taking derivatives or -integrals or solving equations involving the functions. - -@ifnottex -These formulas are shown using the conventions of Big display -mode (@kbd{d B}); for example, the formula for @code{fv} written -linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}. - -@example - n - (1 + rate) - 1 -fv(rate, n, pmt) = pmt * --------------- - rate - - n - ((1 + rate) - 1) (1 + rate) -fvb(rate, n, pmt) = pmt * ---------------------------- - rate - - n -fvl(rate, n, pmt) = pmt * (1 + rate) - - -n - 1 - (1 + rate) -pv(rate, n, pmt) = pmt * ---------------- - rate - - -n - (1 - (1 + rate) ) (1 + rate) -pvb(rate, n, pmt) = pmt * ----------------------------- - rate - - -n -pvl(rate, n, pmt) = pmt * (1 + rate) - - -1 -2 -3 -npv(rate, [a, b, c]) = a*(1 + rate) + b*(1 + rate) + c*(1 + rate) - - -1 -2 -npvb(rate, [a, b, c]) = a + b*(1 + rate) + c*(1 + rate) - - -n - (amt - x * (1 + rate) ) * rate -pmt(rate, n, amt, x) = ------------------------------- - -n - 1 - (1 + rate) - - -n - (amt - x * (1 + rate) ) * rate -pmtb(rate, n, amt, x) = ------------------------------- - -n - (1 - (1 + rate) ) (1 + rate) - - amt * rate -nper(rate, pmt, amt) = - log(1 - ------------, 1 + rate) - pmt - - amt * rate -nperb(rate, pmt, amt) = - log(1 - ---------------, 1 + rate) - pmt * (1 + rate) - - amt -nperl(rate, pmt, amt) = - log(---, 1 + rate) - pmt - - 1/n - pmt -ratel(n, pmt, amt) = ------ - 1 - 1/n - amt - - cost - salv -sln(cost, salv, life) = ----------- - life - - (cost - salv) * (life - per + 1) -syd(cost, salv, life, per) = -------------------------------- - life * (life + 1) / 2 - - book * 2 -ddb(cost, salv, life, per) = --------, book = cost - depreciation so far - life -@end example -@end ifnottex -@tex -\turnoffactive -$$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$ -$$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$ -$$ \code{fvl}(r, n, p) = p (1 + r)^n $$ -$$ \code{pv}(r, n, p) = p { 1 - (1 + r)^{-n} \over r } $$ -$$ \code{pvb}(r, n, p) = p { (1 - (1 + r)^{-n}) (1 + r) \over r } $$ -$$ \code{pvl}(r, n, p) = p (1 + r)^{-n} $$ -$$ \code{npv}(r, [a,b,c]) = a (1 + r)^{-1} + b (1 + r)^{-2} + c (1 + r)^{-3} $$ -$$ \code{npvb}(r, [a,b,c]) = a + b (1 + r)^{-1} + c (1 + r)^{-2} $$ -$$ \code{pmt}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over 1 - (1 + r)^{-n} }$$ -$$ \code{pmtb}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over - (1 - (1 + r)^{-n}) (1 + r) } $$ -$$ \code{nper}(r, p, a) = -\code{log}(1 - { a r \over p }, 1 + r) $$ -$$ \code{nperb}(r, p, a) = -\code{log}(1 - { a r \over p (1 + r) }, 1 + r) $$ -$$ \code{nperl}(r, p, a) = -\code{log}({a \over p}, 1 + r) $$ -$$ \code{ratel}(n, p, a) = { p^{1/n} \over a^{1/n} } - 1 $$ -$$ \code{sln}(c, s, l) = { c - s \over l } $$ -$$ \code{syd}(c, s, l, p) = { (c - s) (l - p + 1) \over l (l+1) / 2 } $$ -$$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$ -@end tex - -@noindent -In @code{pmt} and @code{pmtb}, @expr{x=0} if omitted. - -These functions accept any numeric objects, including error forms, -intervals, and even (though not very usefully) complex numbers. The -above formulas specify exactly the behavior of these functions with -all sorts of inputs. - -Note that if the first argument to the @code{log} in @code{nper} is -negative, @code{nper} leaves itself in symbolic form rather than -returning a (financially meaningless) complex number. - -@samp{rate(num, pmt, amt)} solves the equation -@samp{pv(rate, num, pmt) = amt} for @samp{rate} using @kbd{H a R} -(@code{calc-find-root}), with the interval @samp{[.01% .. 100%]} -for an initial guess. The @code{rateb} function is the same except -that it uses @code{pvb}. Note that @code{ratel} can be solved -directly; its formula is shown in the above list. - -Similarly, @samp{irr(pmts)} solves the equation @samp{npv(rate, pmts) = 0} -for @samp{rate}. - -If you give a fourth argument to @code{nper} or @code{nperb}, Calc -will also use @kbd{H a R} to solve the equation using an initial -guess interval of @samp{[0 .. 100]}. - -A fourth argument to @code{fv} simply sums the two components -calculated from the above formulas for @code{fv} and @code{fvl}. -The same is true of @code{fvb}, @code{pv}, and @code{pvb}. - -The @kbd{ddb} function is computed iteratively; the ``book'' value -starts out equal to @var{cost}, and decreases according to the above -formula for the specified number of periods. If the book value -would decrease below @var{salvage}, it only decreases to @var{salvage} -and the depreciation is zero for all subsequent periods. The @code{ddb} -function returns the amount the book value decreased in the specified -period. - -@node Binary Functions, , Financial Functions, Arithmetic -@section Binary Number Functions - -@noindent -The commands in this chapter all use two-letter sequences beginning with -the @kbd{b} prefix. - -@cindex Binary numbers -The ``binary'' operations actually work regardless of the currently -displayed radix, although their results make the most sense in a radix -like 2, 8, or 16 (as obtained by the @kbd{d 2}, @kbd{d 8}, or @w{@kbd{d 6}} -commands, respectively). You may also wish to enable display of leading -zeros with @kbd{d z}. @xref{Radix Modes}. - -@cindex Word size for binary operations -The Calculator maintains a current @dfn{word size} @expr{w}, an -arbitrary positive or negative integer. For a positive word size, all -of the binary operations described here operate modulo @expr{2^w}. In -particular, negative arguments are converted to positive integers modulo -@expr{2^w} by all binary functions. - -If the word size is negative, binary operations produce 2's complement -integers from -@texline @math{-2^{-w-1}} -@infoline @expr{-(2^(-w-1))} -to -@texline @math{2^{-w-1}-1} -@infoline @expr{2^(-w-1)-1} -inclusive. Either mode accepts inputs in any range; the sign of -@expr{w} affects only the results produced. - -@kindex b c -@pindex calc-clip -@tindex clip -The @kbd{b c} (@code{calc-clip}) -[@code{clip}] command can be used to clip a number by reducing it modulo -@expr{2^w}. The commands described in this chapter automatically clip -their results to the current word size. Note that other operations like -addition do not use the current word size, since integer addition -generally is not ``binary.'' (However, @pxref{Simplification Modes}, -@code{calc-bin-simplify-mode}.) For example, with a word size of 8 -bits @kbd{b c} converts a number to the range 0 to 255; with a word -size of @mathit{-8} @kbd{b c} converts to the range @mathit{-128} to 127. - -@kindex b w -@pindex calc-word-size -The default word size is 32 bits. All operations except the shifts and -rotates allow you to specify a different word size for that one -operation by giving a numeric prefix argument: @kbd{C-u 8 b c} clips the -top of stack to the range 0 to 255 regardless of the current word size. -To set the word size permanently, use @kbd{b w} (@code{calc-word-size}). -This command displays a prompt with the current word size; press @key{RET} -immediately to keep this word size, or type a new word size at the prompt. - -When the binary operations are written in symbolic form, they take an -optional second (or third) word-size parameter. When a formula like -@samp{and(a,b)} is finally evaluated, the word size current at that time -will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of -@mathit{-8} will always be used. A symbolic binary function will be left -in symbolic form unless the all of its argument(s) are integers or -integer-valued floats. - -If either or both arguments are modulo forms for which @expr{M} is a -power of two, that power of two is taken as the word size unless a -numeric prefix argument overrides it. The current word size is never -consulted when modulo-power-of-two forms are involved. - -@kindex b a -@pindex calc-and -@tindex and -The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise -AND of the two numbers on the top of the stack. In other words, for each -of the @expr{w} binary digits of the two numbers (pairwise), the corresponding -bit of the result is 1 if and only if both input bits are 1: -@samp{and(2#1100, 2#1010) = 2#1000}. - -@kindex b o -@pindex calc-or -@tindex or -The @kbd{b o} (@code{calc-or}) [@code{or}] command computes the bitwise -inclusive OR of two numbers. A bit is 1 if either of the input bits, or -both, are 1: @samp{or(2#1100, 2#1010) = 2#1110}. - -@kindex b x -@pindex calc-xor -@tindex xor -The @kbd{b x} (@code{calc-xor}) [@code{xor}] command computes the bitwise -exclusive OR of two numbers. A bit is 1 if exactly one of the input bits -is 1: @samp{xor(2#1100, 2#1010) = 2#0110}. - -@kindex b d -@pindex calc-diff -@tindex diff -The @kbd{b d} (@code{calc-diff}) [@code{diff}] command computes the bitwise -difference of two numbers; this is defined by @samp{diff(a,b) = and(a,not(b))}, -so that @samp{diff(2#1100, 2#1010) = 2#0100}. - -@kindex b n -@pindex calc-not -@tindex not -The @kbd{b n} (@code{calc-not}) [@code{not}] command computes the bitwise -NOT of a number. A bit is 1 if the input bit is 0 and vice-versa. - -@kindex b l -@pindex calc-lshift-binary -@tindex lsh -The @kbd{b l} (@code{calc-lshift-binary}) [@code{lsh}] command shifts a -number left by one bit, or by the number of bits specified in the numeric -prefix argument. A negative prefix argument performs a logical right shift, -in which zeros are shifted in on the left. In symbolic form, @samp{lsh(a)} -is short for @samp{lsh(a,1)}, which in turn is short for @samp{lsh(a,n,w)}. -Bits shifted ``off the end,'' according to the current word size, are lost. - -@kindex H b l -@kindex H b r -@ignore -@mindex @idots -@end ignore -@kindex H b L -@ignore -@mindex @null -@end ignore -@kindex H b R -@ignore -@mindex @null -@end ignore -@kindex H b t -The @kbd{H b l} command also does a left shift, but it takes two arguments -from the stack (the value to shift, and, at top-of-stack, the number of -bits to shift). This version interprets the prefix argument just like -the regular binary operations, i.e., as a word size. The Hyperbolic flag -has a similar effect on the rest of the binary shift and rotate commands. - -@kindex b r -@pindex calc-rshift-binary -@tindex rsh -The @kbd{b r} (@code{calc-rshift-binary}) [@code{rsh}] command shifts a -number right by one bit, or by the number of bits specified in the numeric -prefix argument: @samp{rsh(a,n) = lsh(a,-n)}. - -@kindex b L -@pindex calc-lshift-arith -@tindex ash -The @kbd{b L} (@code{calc-lshift-arith}) [@code{ash}] command shifts a -number left. It is analogous to @code{lsh}, except that if the shift -is rightward (the prefix argument is negative), an arithmetic shift -is performed as described below. - -@kindex b R -@pindex calc-rshift-arith -@tindex rash -The @kbd{b R} (@code{calc-rshift-arith}) [@code{rash}] command performs -an ``arithmetic'' shift to the right, in which the leftmost bit (according -to the current word size) is duplicated rather than shifting in zeros. -This corresponds to dividing by a power of two where the input is interpreted -as a signed, twos-complement number. (The distinction between the @samp{rsh} -and @samp{rash} operations is totally independent from whether the word -size is positive or negative.) With a negative prefix argument, this -performs a standard left shift. - -@kindex b t -@pindex calc-rotate-binary -@tindex rot -The @kbd{b t} (@code{calc-rotate-binary}) [@code{rot}] command rotates a -number one bit to the left. The leftmost bit (according to the current -word size) is dropped off the left and shifted in on the right. With a -numeric prefix argument, the number is rotated that many bits to the left -or right. - -@xref{Set Operations}, for the @kbd{b p} and @kbd{b u} commands that -pack and unpack binary integers into sets. (For example, @kbd{b u} -unpacks the number @samp{2#11001} to the set of bit-numbers -@samp{[0, 3, 4]}.) Type @kbd{b u V #} to count the number of ``1'' -bits in a binary integer. - -Another interesting use of the set representation of binary integers -is to reverse the bits in, say, a 32-bit integer. Type @kbd{b u} to -unpack; type @kbd{31 @key{TAB} -} to replace each bit-number in the set -with 31 minus that bit-number; type @kbd{b p} to pack the set back -into a binary integer. - -@node Scientific Functions, Matrix Functions, Arithmetic, Top -@chapter Scientific Functions - -@noindent -The functions described here perform trigonometric and other transcendental -calculations. They generally produce floating-point answers correct to the -full current precision. The @kbd{H} (Hyperbolic) and @kbd{I} (Inverse) -flag keys must be used to get some of these functions from the keyboard. - -@kindex P -@pindex calc-pi -@cindex @code{pi} variable -@vindex pi -@kindex H P -@cindex @code{e} variable -@vindex e -@kindex I P -@cindex @code{gamma} variable -@vindex gamma -@cindex Gamma constant, Euler's -@cindex Euler's gamma constant -@kindex H I P -@cindex @code{phi} variable -@cindex Phi, golden ratio -@cindex Golden ratio -One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes -the value of @cpi{} (at the current precision) onto the stack. With the -Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms. -With the Inverse flag, it pushes Euler's constant -@texline @math{\gamma} -@infoline @expr{gamma} -(about 0.5772). With both Inverse and Hyperbolic, it -pushes the ``golden ratio'' -@texline @math{\phi} -@infoline @expr{phi} -(about 1.618). (At present, Euler's constant is not available -to unlimited precision; Calc knows only the first 100 digits.) -In Symbolic mode, these commands push the -actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi}, -respectively, instead of their values; @pxref{Symbolic Mode}. - -@ignore -@mindex Q -@end ignore -@ignore -@mindex I Q -@end ignore -@kindex I Q -@tindex sqr -The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] function is described elsewhere; -@pxref{Basic Arithmetic}. With the Inverse flag [@code{sqr}], this command -computes the square of the argument. - -@xref{Prefix Arguments}, for a discussion of the effect of numeric -prefix arguments on commands in this chapter which do not otherwise -interpret a prefix argument. - -@menu -* Logarithmic Functions:: -* Trigonometric and Hyperbolic Functions:: -* Advanced Math Functions:: -* Branch Cuts:: -* Random Numbers:: -* Combinatorial Functions:: -* Probability Distribution Functions:: -@end menu - -@node Logarithmic Functions, Trigonometric and Hyperbolic Functions, Scientific Functions, Scientific Functions -@section Logarithmic Functions - -@noindent -@kindex L -@pindex calc-ln -@tindex ln -@ignore -@mindex @null -@end ignore -@kindex I E -The shift-@kbd{L} (@code{calc-ln}) [@code{ln}] command computes the natural -logarithm of the real or complex number on the top of the stack. With -the Inverse flag it computes the exponential function instead, although -this is redundant with the @kbd{E} command. - -@kindex E -@pindex calc-exp -@tindex exp -@ignore -@mindex @null -@end ignore -@kindex I L -The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the -exponential, i.e., @expr{e} raised to the power of the number on the stack. -The meanings of the Inverse and Hyperbolic flags follow from those for -the @code{calc-ln} command. - -@kindex H L -@kindex H E -@pindex calc-log10 -@tindex log10 -@tindex exp10 -@ignore -@mindex @null -@end ignore -@kindex H I L -@ignore -@mindex @null -@end ignore -@kindex H I E -The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common -(base-10) logarithm of a number. (With the Inverse flag [@code{exp10}], -it raises ten to a given power.) Note that the common logarithm of a -complex number is computed by taking the natural logarithm and dividing -by -@texline @math{\ln10}. -@infoline @expr{ln(10)}. - -@kindex B -@kindex I B -@pindex calc-log -@tindex log -@tindex alog -The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm -to any base. For example, @kbd{1024 @key{RET} 2 B} produces 10, since -@texline @math{2^{10} = 1024}. -@infoline @expr{2^10 = 1024}. -In certain cases like @samp{log(3,9)}, the result -will be either @expr{1:2} or @expr{0.5} depending on the current Fraction -mode setting. With the Inverse flag [@code{alog}], this command is -similar to @kbd{^} except that the order of the arguments is reversed. - -@kindex f I -@pindex calc-ilog -@tindex ilog -The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the -integer logarithm of a number to any base. The number and the base must -themselves be positive integers. This is the true logarithm, rounded -down to an integer. Thus @kbd{ilog(x,10)} is 3 for all @expr{x} in the -range from 1000 to 9999. If both arguments are positive integers, exact -integer arithmetic is used; otherwise, this is equivalent to -@samp{floor(log(x,b))}. - -@kindex f E -@pindex calc-expm1 -@tindex expm1 -The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes -@texline @math{e^x - 1}, -@infoline @expr{exp(x)-1}, -but using an algorithm that produces a more accurate -answer when the result is close to zero, i.e., when -@texline @math{e^x} -@infoline @expr{exp(x)} -is close to one. - -@kindex f L -@pindex calc-lnp1 -@tindex lnp1 -The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes -@texline @math{\ln(x+1)}, -@infoline @expr{ln(x+1)}, -producing a more accurate answer when @expr{x} is close to zero. - -@node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions -@section Trigonometric/Hyperbolic Functions - -@noindent -@kindex S -@pindex calc-sin -@tindex sin -The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine -of an angle or complex number. If the input is an HMS form, it is interpreted -as degrees-minutes-seconds; otherwise, the input is interpreted according -to the current angular mode. It is best to use Radians mode when operating -on complex numbers. - -Calc's ``units'' mechanism includes angular units like @code{deg}, -@code{rad}, and @code{grad}. While @samp{sin(45 deg)} is not evaluated -all the time, the @kbd{u s} (@code{calc-simplify-units}) command will -simplify @samp{sin(45 deg)} by taking the sine of 45 degrees, regardless -of the current angular mode. @xref{Basic Operations on Units}. - -Also, the symbolic variable @code{pi} is not ordinarily recognized in -arguments to trigonometric functions, as in @samp{sin(3 pi / 4)}, but -the @kbd{a s} (@code{calc-simplify}) command recognizes many such -formulas when the current angular mode is Radians @emph{and} Symbolic -mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}. -@xref{Symbolic Mode}. Beware, this simplification occurs even if you -have stored a different value in the variable @samp{pi}; this is one -reason why changing built-in variables is a bad idea. Arguments of -the form @expr{x} plus a multiple of @cpiover{2} are also simplified. -Calc includes similar formulas for @code{cos} and @code{tan}. - -The @kbd{a s} command knows all angles which are integer multiples of -@cpiover{12}, @cpiover{10}, or @cpiover{8} radians. In Degrees mode, -analogous simplifications occur for integer multiples of 15 or 18 -degrees, and for arguments plus multiples of 90 degrees. - -@kindex I S -@pindex calc-arcsin -@tindex arcsin -With the Inverse flag, @code{calc-sin} computes an arcsine. This is also -available as the @code{calc-arcsin} command or @code{arcsin} algebraic -function. The returned argument is converted to degrees, radians, or HMS -notation depending on the current angular mode. - -@kindex H S -@pindex calc-sinh -@tindex sinh -@kindex H I S -@pindex calc-arcsinh -@tindex arcsinh -With the Hyperbolic flag, @code{calc-sin} computes the hyperbolic -sine, also available as @code{calc-sinh} [@code{sinh}]. With the -Hyperbolic and Inverse flags, it computes the hyperbolic arcsine -(@code{calc-arcsinh}) [@code{arcsinh}]. - -@kindex C -@pindex calc-cos -@tindex cos -@ignore -@mindex @idots -@end ignore -@kindex I C -@pindex calc-arccos -@ignore -@mindex @null -@end ignore -@tindex arccos -@ignore -@mindex @null -@end ignore -@kindex H C -@pindex calc-cosh -@ignore -@mindex @null -@end ignore -@tindex cosh -@ignore -@mindex @null -@end ignore -@kindex H I C -@pindex calc-arccosh -@ignore -@mindex @null -@end ignore -@tindex arccosh -@ignore -@mindex @null -@end ignore -@kindex T -@pindex calc-tan -@ignore -@mindex @null -@end ignore -@tindex tan -@ignore -@mindex @null -@end ignore -@kindex I T -@pindex calc-arctan -@ignore -@mindex @null -@end ignore -@tindex arctan -@ignore -@mindex @null -@end ignore -@kindex H T -@pindex calc-tanh -@ignore -@mindex @null -@end ignore -@tindex tanh -@ignore -@mindex @null -@end ignore -@kindex H I T -@pindex calc-arctanh -@ignore -@mindex @null -@end ignore -@tindex arctanh -The shift-@kbd{C} (@code{calc-cos}) [@code{cos}] command computes the cosine -of an angle or complex number, and shift-@kbd{T} (@code{calc-tan}) [@code{tan}] -computes the tangent, along with all the various inverse and hyperbolic -variants of these functions. - -@kindex f T -@pindex calc-arctan2 -@tindex arctan2 -The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two -numbers from the stack and computes the arc tangent of their ratio. The -result is in the full range from @mathit{-180} (exclusive) to @mathit{+180} -(inclusive) degrees, or the analogous range in radians. A similar -result would be obtained with @kbd{/} followed by @kbd{I T}, but the -value would only be in the range from @mathit{-90} to @mathit{+90} degrees -since the division loses information about the signs of the two -components, and an error might result from an explicit division by zero -which @code{arctan2} would avoid. By (arbitrary) definition, -@samp{arctan2(0,0)=0}. - -@pindex calc-sincos -@ignore -@starindex -@end ignore -@tindex sincos -@ignore -@starindex -@end ignore -@ignore -@mindex arc@idots -@end ignore -@tindex arcsincos -The @code{calc-sincos} [@code{sincos}] command computes the sine and -cosine of a number, returning them as a vector of the form -@samp{[@var{cos}, @var{sin}]}. -With the Inverse flag [@code{arcsincos}], this command takes a two-element -vector as an argument and computes @code{arctan2} of the elements. -(This command does not accept the Hyperbolic flag.) - -@pindex calc-sec -@tindex sec -@pindex calc-csc -@tindex csc -@pindex calc-cot -@tindex cot -@pindex calc-sech -@tindex sech -@pindex calc-csch -@tindex csch -@pindex calc-coth -@tindex coth -The remaining trigonometric functions, @code{calc-sec} [@code{sec}], -@code{calc-csc} [@code{csc}] and @code{calc-sec} [@code{sec}], are also -available. With the Hyperbolic flag, these compute their hyperbolic -counterparts, which are also available separately as @code{calc-sech} -[@code{sech}], @code{calc-csch} [@code{csch}] and @code{calc-sech} -[@code{sech}]. (These commmands do not accept the Inverse flag.) - -@node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions -@section Advanced Mathematical Functions - -@noindent -Calc can compute a variety of less common functions that arise in -various branches of mathematics. All of the functions described in -this section allow arbitrary complex arguments and, except as noted, -will work to arbitrarily large precisions. They can not at present -handle error forms or intervals as arguments. - -NOTE: These functions are still experimental. In particular, their -accuracy is not guaranteed in all domains. It is advisable to set the -current precision comfortably higher than you actually need when -using these functions. Also, these functions may be impractically -slow for some values of the arguments. - -@kindex f g -@pindex calc-gamma -@tindex gamma -The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler -gamma function. For positive integer arguments, this is related to the -factorial function: @samp{gamma(n+1) = fact(n)}. For general complex -arguments the gamma function can be defined by the following definite -integral: -@texline @math{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}. -@infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}. -(The actual implementation uses far more efficient computational methods.) - -@kindex f G -@tindex gammaP -@ignore -@mindex @idots -@end ignore -@kindex I f G -@ignore -@mindex @null -@end ignore -@kindex H f G -@ignore -@mindex @null -@end ignore -@kindex H I f G -@pindex calc-inc-gamma -@ignore -@mindex @null -@end ignore -@tindex gammaQ -@ignore -@mindex @null -@end ignore -@tindex gammag -@ignore -@mindex @null -@end ignore -@tindex gammaG -The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes -the incomplete gamma function, denoted @samp{P(a,x)}. This is defined by -the integral, -@texline @math{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}. -@infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}. -This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the -definition of the normal gamma function). - -Several other varieties of incomplete gamma function are defined. -The complement of @expr{P(a,x)}, called @expr{Q(a,x) = 1-P(a,x)} by -some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command. -You can think of this as taking the other half of the integral, from -@expr{x} to infinity. - -@ifnottex -The functions corresponding to the integrals that define @expr{P(a,x)} -and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)} -factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively -(where @expr{g} and @expr{G} represent the lower- and upper-case Greek -letter gamma). You can obtain these using the @kbd{H f G} [@code{gammag}] -and @kbd{H I f G} [@code{gammaG}] commands. -@end ifnottex -@tex -\turnoffactive -The functions corresponding to the integrals that define $P(a,x)$ -and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$ -factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively. -You can obtain these using the \kbd{H f G} [\code{gammag}] and -\kbd{I H f G} [\code{gammaG}] commands. -@end tex - -@kindex f b -@pindex calc-beta -@tindex beta -The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the -Euler beta function, which is defined in terms of the gamma function as -@texline @math{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)}, -@infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)}, -or by -@texline @math{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}. -@infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}. - -@kindex f B -@kindex H f B -@pindex calc-inc-beta -@tindex betaI -@tindex betaB -The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes -the incomplete beta function @expr{I(x,a,b)}. It is defined by -@texline @math{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}. -@infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}. -Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding -un-normalized version [@code{betaB}]. - -@kindex f e -@kindex I f e -@pindex calc-erf -@tindex erf -@tindex erfc -The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the -error function -@texline @math{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}. -@infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}. -The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}] -is the corresponding integral from @samp{x} to infinity; the sum -@texline @math{\hbox{erf}(x) + \hbox{erfc}(x) = 1}. -@infoline @expr{erf(x) + erfc(x) = 1}. - -@kindex f j -@kindex f y -@pindex calc-bessel-J -@pindex calc-bessel-Y -@tindex besJ -@tindex besY -The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y} -(@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel -functions of the first and second kinds, respectively. -In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter -@expr{n} is often an integer, but is not required to be one. -Calc's implementation of the Bessel functions currently limits the -precision to 8 digits, and may not be exact even to that precision. -Use with care! - -@node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions -@section Branch Cuts and Principal Values - -@noindent -@cindex Branch cuts -@cindex Principal values -All of the logarithmic, trigonometric, and other scientific functions are -defined for complex numbers as well as for reals. -This section describes the values -returned in cases where the general result is a family of possible values. -Calc follows section 12.5.3 of Steele's @dfn{Common Lisp, the Language}, -second edition, in these matters. This section will describe each -function briefly; for a more detailed discussion (including some nifty -diagrams), consult Steele's book. - -Note that the branch cuts for @code{arctan} and @code{arctanh} were -changed between the first and second editions of Steele. Versions of -Calc starting with 2.00 follow the second edition. - -The new branch cuts exactly match those of the HP-28/48 calculators. -They also match those of Mathematica 1.2, except that Mathematica's -@code{arctan} cut is always in the right half of the complex plane, -and its @code{arctanh} cut is always in the top half of the plane. -Calc's cuts are continuous with quadrants I and III for @code{arctan}, -or II and IV for @code{arctanh}. - -Note: The current implementations of these functions with complex arguments -are designed with proper behavior around the branch cuts in mind, @emph{not} -efficiency or accuracy. You may need to increase the floating precision -and wait a while to get suitable answers from them. - -For @samp{sqrt(a+bi)}: When @expr{a<0} and @expr{b} is small but positive -or zero, the result is close to the @expr{+i} axis. For @expr{b} small and -negative, the result is close to the @expr{-i} axis. The result always lies -in the right half of the complex plane. - -For @samp{ln(a+bi)}: The real part is defined as @samp{ln(abs(a+bi))}. -The imaginary part is defined as @samp{arg(a+bi) = arctan2(b,a)}. -Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the -negative real axis. - -The following table describes these branch cuts in another way. -If the real and imaginary parts of @expr{z} are as shown, then -the real and imaginary parts of @expr{f(z)} will be as shown. -Here @code{eps} stands for a small positive value; each -occurrence of @code{eps} may stand for a different small value. - -@smallexample - z sqrt(z) ln(z) ----------------------------------------- - +, 0 +, 0 any, 0 - -, 0 0, + any, pi - -, +eps +eps, + +eps, + - -, -eps +eps, - +eps, - -@end smallexample - -For @samp{z1^z2}: This is defined by @samp{exp(ln(z1)*z2)}. -One interesting consequence of this is that @samp{(-8)^1:3} does -not evaluate to @mathit{-2} as you might expect, but to the complex -number @expr{(1., 1.732)}. Both of these are valid cube roots -of @mathit{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps -less-obvious root for the sake of mathematical consistency. - -For @samp{arcsin(z)}: This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}. -The branch cuts are on the real axis, less than @mathit{-1} and greater than 1. - -For @samp{arccos(z)}: This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))}, -or equivalently by @samp{pi/2 - arcsin(z)}. The branch cuts are on -the real axis, less than @mathit{-1} and greater than 1. - -For @samp{arctan(z)}: This is defined by -@samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}. The branch cuts are on the -imaginary axis, below @expr{-i} and above @expr{i}. - -For @samp{arcsinh(z)}: This is defined by @samp{ln(z + sqrt(1+z^2))}. -The branch cuts are on the imaginary axis, below @expr{-i} and -above @expr{i}. - -For @samp{arccosh(z)}: This is defined by -@samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}. The branch cut is on the -real axis less than 1. - -For @samp{arctanh(z)}: This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}. -The branch cuts are on the real axis, less than @mathit{-1} and greater than 1. - -The following tables for @code{arcsin}, @code{arccos}, and -@code{arctan} assume the current angular mode is Radians. The -hyperbolic functions operate independently of the angular mode. - -@smallexample - z arcsin(z) arccos(z) -------------------------------------------------------- - (-1..1), 0 (-pi/2..pi/2), 0 (0..pi), 0 - (-1..1), +eps (-pi/2..pi/2), +eps (0..pi), -eps - (-1..1), -eps (-pi/2..pi/2), -eps (0..pi), +eps - <-1, 0 -pi/2, + pi, - - <-1, +eps -pi/2 + eps, + pi - eps, - - <-1, -eps -pi/2 + eps, - pi - eps, + - >1, 0 pi/2, - 0, + - >1, +eps pi/2 - eps, + +eps, - - >1, -eps pi/2 - eps, - +eps, + -@end smallexample - -@smallexample - z arccosh(z) arctanh(z) ------------------------------------------------------ - (-1..1), 0 0, (0..pi) any, 0 - (-1..1), +eps +eps, (0..pi) any, +eps - (-1..1), -eps +eps, (-pi..0) any, -eps - <-1, 0 +, pi -, pi/2 - <-1, +eps +, pi - eps -, pi/2 - eps - <-1, -eps +, -pi + eps -, -pi/2 + eps - >1, 0 +, 0 +, -pi/2 - >1, +eps +, +eps +, pi/2 - eps - >1, -eps +, -eps +, -pi/2 + eps -@end smallexample - -@smallexample - z arcsinh(z) arctan(z) ------------------------------------------------------ - 0, (-1..1) 0, (-pi/2..pi/2) 0, any - 0, <-1 -, -pi/2 -pi/2, - - +eps, <-1 +, -pi/2 + eps pi/2 - eps, - - -eps, <-1 -, -pi/2 + eps -pi/2 + eps, - - 0, >1 +, pi/2 pi/2, + - +eps, >1 +, pi/2 - eps pi/2 - eps, + - -eps, >1 -, pi/2 - eps -pi/2 + eps, + -@end smallexample - -Finally, the following identities help to illustrate the relationship -between the complex trigonometric and hyperbolic functions. They -are valid everywhere, including on the branch cuts. - -@smallexample -sin(i*z) = i*sinh(z) arcsin(i*z) = i*arcsinh(z) -cos(i*z) = cosh(z) arcsinh(i*z) = i*arcsin(z) -tan(i*z) = i*tanh(z) arctan(i*z) = i*arctanh(z) -sinh(i*z) = i*sin(z) cosh(i*z) = cos(z) -@end smallexample - -The ``advanced math'' functions (gamma, Bessel, etc.@:) are also defined -for general complex arguments, but their branch cuts and principal values -are not rigorously specified at present. - -@node Random Numbers, Combinatorial Functions, Branch Cuts, Scientific Functions -@section Random Numbers - -@noindent -@kindex k r -@pindex calc-random -@tindex random -The @kbd{k r} (@code{calc-random}) [@code{random}] command produces -random numbers of various sorts. - -Given a positive numeric prefix argument @expr{M}, it produces a random -integer @expr{N} in the range -@texline @math{0 \le N < M}. -@infoline @expr{0 <= N < M}. -Each of the @expr{M} values appears with equal probability. - -With no numeric prefix argument, the @kbd{k r} command takes its argument -from the stack instead. Once again, if this is a positive integer @expr{M} -the result is a random integer less than @expr{M}. However, note that -while numeric prefix arguments are limited to six digits or so, an @expr{M} -taken from the stack can be arbitrarily large. If @expr{M} is negative, -the result is a random integer in the range -@texline @math{M < N \le 0}. -@infoline @expr{M < N <= 0}. - -If the value on the stack is a floating-point number @expr{M}, the result -is a random floating-point number @expr{N} in the range -@texline @math{0 \le N < M} -@infoline @expr{0 <= N < M} -or -@texline @math{M < N \le 0}, -@infoline @expr{M < N <= 0}, -according to the sign of @expr{M}. - -If @expr{M} is zero, the result is a Gaussian-distributed random real -number; the distribution has a mean of zero and a standard deviation -of one. The algorithm used generates random numbers in pairs; thus, -every other call to this function will be especially fast. - -If @expr{M} is an error form -@texline @math{m} @code{+/-} @math{\sigma} -@infoline @samp{m +/- s} -where @var{m} and -@texline @math{\sigma} -@infoline @var{s} -are both real numbers, the result uses a Gaussian distribution with mean -@var{m} and standard deviation -@texline @math{\sigma}. -@infoline @var{s}. - -If @expr{M} is an interval form, the lower and upper bounds specify the -acceptable limits of the random numbers. If both bounds are integers, -the result is a random integer in the specified range. If either bound -is floating-point, the result is a random real number in the specified -range. If the interval is open at either end, the result will be sure -not to equal that end value. (This makes a big difference for integer -intervals, but for floating-point intervals it's relatively minor: -with a precision of 6, @samp{random([1.0..2.0))} will return any of one -million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may -additionally return 2.00000, but the probability of this happening is -extremely small.) - -If @expr{M} is a vector, the result is one element taken at random from -the vector. All elements of the vector are given equal probabilities. - -@vindex RandSeed -The sequence of numbers produced by @kbd{k r} is completely random by -default, i.e., the sequence is seeded each time you start Calc using -the current time and other information. You can get a reproducible -sequence by storing a particular ``seed value'' in the Calc variable -@code{RandSeed}. Any integer will do for a seed; integers of from 1 -to 12 digits are good. If you later store a different integer into -@code{RandSeed}, Calc will switch to a different pseudo-random -sequence. If you ``unstore'' @code{RandSeed}, Calc will re-seed itself -from the current time. If you store the same integer that you used -before back into @code{RandSeed}, you will get the exact same sequence -of random numbers as before. - -@pindex calc-rrandom -The @code{calc-rrandom} command (not on any key) produces a random real -number between zero and one. It is equivalent to @samp{random(1.0)}. - -@kindex k a -@pindex calc-random-again -The @kbd{k a} (@code{calc-random-again}) command produces another random -number, re-using the most recent value of @expr{M}. With a numeric -prefix argument @var{n}, it produces @var{n} more random numbers using -that value of @expr{M}. - -@kindex k h -@pindex calc-shuffle -@tindex shuffle -The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several -random values with no duplicates. The value on the top of the stack -specifies the set from which the random values are drawn, and may be any -of the @expr{M} formats described above. The numeric prefix argument -gives the length of the desired list. (If you do not provide a numeric -prefix argument, the length of the list is taken from the top of the -stack, and @expr{M} from second-to-top.) - -If @expr{M} is a floating-point number, zero, or an error form (so -that the random values are being drawn from the set of real numbers) -there is little practical difference between using @kbd{k h} and using -@kbd{k r} several times. But if the set of possible values consists -of just a few integers, or the elements of a vector, then there is -a very real chance that multiple @kbd{k r}'s will produce the same -number more than once. The @kbd{k h} command produces a vector whose -elements are always distinct. (Actually, there is a slight exception: -If @expr{M} is a vector, no given vector element will be drawn more -than once, but if several elements of @expr{M} are equal, they may -each make it into the result vector.) - -One use of @kbd{k h} is to rearrange a list at random. This happens -if the prefix argument is equal to the number of values in the list: -@kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list -@samp{[2.5, 1, 1.5, 3, 2]}. As a convenient feature, if the argument -@var{n} is negative it is replaced by the size of the set represented -by @expr{M}. Naturally, this is allowed only when @expr{M} specifies -a small discrete set of possibilities. - -To do the equivalent of @kbd{k h} but with duplications allowed, -given @expr{M} on the stack and with @var{n} just entered as a numeric -prefix, use @kbd{v b} to build a vector of copies of @expr{M}, then use -@kbd{V M k r} to ``map'' the normal @kbd{k r} function over the -elements of this vector. @xref{Matrix Functions}. - -@menu -* Random Number Generator:: (Complete description of Calc's algorithm) -@end menu - -@node Random Number Generator, , Random Numbers, Random Numbers -@subsection Random Number Generator - -Calc's random number generator uses several methods to ensure that -the numbers it produces are highly random. Knuth's @emph{Art of -Computer Programming}, Volume II, contains a thorough description -of the theory of random number generators and their measurement and -characterization. - -If @code{RandSeed} has no stored value, Calc calls Emacs' built-in -@code{random} function to get a stream of random numbers, which it -then treats in various ways to avoid problems inherent in the simple -random number generators that many systems use to implement @code{random}. - -When Calc's random number generator is first invoked, it ``seeds'' -the low-level random sequence using the time of day, so that the -random number sequence will be different every time you use Calc. - -Since Emacs Lisp doesn't specify the range of values that will be -returned by its @code{random} function, Calc exercises the function -several times to estimate the range. When Calc subsequently uses -the @code{random} function, it takes only 10 bits of the result -near the most-significant end. (It avoids at least the bottom -four bits, preferably more, and also tries to avoid the top two -bits.) This strategy works well with the linear congruential -generators that are typically used to implement @code{random}. - -If @code{RandSeed} contains an integer, Calc uses this integer to -seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A, -computing -@texline @math{X_{n-55} - X_{n-24}}. -@infoline @expr{X_n-55 - X_n-24}). -This method expands the seed -value into a large table which is maintained internally; the variable -@code{RandSeed} is changed from, e.g., 42 to the vector @expr{[42]} -to indicate that the seed has been absorbed into this table. When -@code{RandSeed} contains a vector, @kbd{k r} and related commands -continue to use the same internal table as last time. There is no -way to extract the complete state of the random number generator -so that you can restart it from any point; you can only restart it -from the same initial seed value. A simple way to restart from the -same seed is to type @kbd{s r RandSeed} to get the seed vector, -@kbd{v u} to unpack it back into a number, then @kbd{s t RandSeed} -to reseed the generator with that number. - -Calc uses a ``shuffling'' method as described in algorithm 3.2.2B -of Knuth. It fills a table with 13 random 10-bit numbers. Then, -to generate a new random number, it uses the previous number to -index into the table, picks the value it finds there as the new -random number, then replaces that table entry with a new value -obtained from a call to the base random number generator (either -the additive congruential generator or the @code{random} function -supplied by the system). If there are any flaws in the base -generator, shuffling will tend to even them out. But if the system -provides an excellent @code{random} function, shuffling will not -damage its randomness. - -To create a random integer of a certain number of digits, Calc -builds the integer three decimal digits at a time. For each group -of three digits, Calc calls its 10-bit shuffling random number generator -(which returns a value from 0 to 1023); if the random value is 1000 -or more, Calc throws it out and tries again until it gets a suitable -value. - -To create a random floating-point number with precision @var{p}, Calc -simply creates a random @var{p}-digit integer and multiplies by -@texline @math{10^{-p}}. -@infoline @expr{10^-p}. -The resulting random numbers should be very clean, but note -that relatively small numbers will have few significant random digits. -In other words, with a precision of 12, you will occasionally get -numbers on the order of -@texline @math{10^{-9}} -@infoline @expr{10^-9} -or -@texline @math{10^{-10}}, -@infoline @expr{10^-10}, -but those numbers will only have two or three random digits since they -correspond to small integers times -@texline @math{10^{-12}}. -@infoline @expr{10^-12}. - -To create a random integer in the interval @samp{[0 .. @var{m})}, Calc -counts the digits in @var{m}, creates a random integer with three -additional digits, then reduces modulo @var{m}. Unless @var{m} is a -power of ten the resulting values will be very slightly biased toward -the lower numbers, but this bias will be less than 0.1%. (For example, -if @var{m} is 42, Calc will reduce a random integer less than 100000 -modulo 42 to get a result less than 42. It is easy to show that the -numbers 40 and 41 will be only 2380/2381 as likely to result from this -modulo operation as numbers 39 and below.) If @var{m} is a power of -ten, however, the numbers should be completely unbiased. - -The Gaussian random numbers generated by @samp{random(0.0)} use the -``polar'' method described in Knuth section 3.4.1C. This method -generates a pair of Gaussian random numbers at a time, so only every -other call to @samp{random(0.0)} will require significant calculations. - -@node Combinatorial Functions, Probability Distribution Functions, Random Numbers, Scientific Functions -@section Combinatorial Functions - -@noindent -Commands relating to combinatorics and number theory begin with the -@kbd{k} key prefix. - -@kindex k g -@pindex calc-gcd -@tindex gcd -The @kbd{k g} (@code{calc-gcd}) [@code{gcd}] command computes the -Greatest Common Divisor of two integers. It also accepts fractions; -the GCD of two fractions is defined by taking the GCD of the -numerators, and the LCM of the denominators. This definition is -consistent with the idea that @samp{a / gcd(a,x)} should yield an -integer for any @samp{a} and @samp{x}. For other types of arguments, -the operation is left in symbolic form. - -@kindex k l -@pindex calc-lcm -@tindex lcm -The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the -Least Common Multiple of two integers or fractions. The product of -the LCM and GCD of two numbers is equal to the product of the -numbers. - -@kindex k E -@pindex calc-extended-gcd -@tindex egcd -The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes -the GCD of two integers @expr{x} and @expr{y} and returns a vector -@expr{[g, a, b]} where -@texline @math{g = \gcd(x,y) = a x + b y}. -@infoline @expr{g = gcd(x,y) = a x + b y}. - -@kindex ! -@pindex calc-factorial -@tindex fact -@ignore -@mindex @null -@end ignore -@tindex ! -The @kbd{!} (@code{calc-factorial}) [@code{fact}] command computes the -factorial of the number at the top of the stack. If the number is an -integer, the result is an exact integer. If the number is an -integer-valued float, the result is a floating-point approximation. If -the number is a non-integral real number, the generalized factorial is used, -as defined by the Euler Gamma function. Please note that computation of -large factorials can be slow; using floating-point format will help -since fewer digits must be maintained. The same is true of many of -the commands in this section. - -@kindex k d -@pindex calc-double-factorial -@tindex dfact -@ignore -@mindex @null -@end ignore -@tindex !! -The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command -computes the ``double factorial'' of an integer. For an even integer, -this is the product of even integers from 2 to @expr{N}. For an odd -integer, this is the product of odd integers from 3 to @expr{N}. If -the argument is an integer-valued float, the result is a floating-point -approximation. This function is undefined for negative even integers. -The notation @expr{N!!} is also recognized for double factorials. - -@kindex k c -@pindex calc-choose -@tindex choose -The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the -binomial coefficient @expr{N}-choose-@expr{M}, where @expr{M} is the number -on the top of the stack and @expr{N} is second-to-top. If both arguments -are integers, the result is an exact integer. Otherwise, the result is a -floating-point approximation. The binomial coefficient is defined for all -real numbers by -@texline @math{N! \over M! (N-M)!\,}. -@infoline @expr{N! / M! (N-M)!}. - -@kindex H k c -@pindex calc-perm -@tindex perm -@ifnottex -The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the -number-of-permutations function @expr{N! / (N-M)!}. -@end ifnottex -@tex -The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the -number-of-perm\-utations function $N! \over (N-M)!\,$. -@end tex - -@kindex k b -@kindex H k b -@pindex calc-bernoulli-number -@tindex bern -The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command -computes a given Bernoulli number. The value at the top of the stack -is a nonnegative integer @expr{n} that specifies which Bernoulli number -is desired. The @kbd{H k b} command computes a Bernoulli polynomial, -taking @expr{n} from the second-to-top position and @expr{x} from the -top of the stack. If @expr{x} is a variable or formula the result is -a polynomial in @expr{x}; if @expr{x} is a number the result is a number. - -@kindex k e -@kindex H k e -@pindex calc-euler-number -@tindex euler -The @kbd{k e} (@code{calc-euler-number}) [@code{euler}] command similarly -computes an Euler number, and @w{@kbd{H k e}} computes an Euler polynomial. -Bernoulli and Euler numbers occur in the Taylor expansions of several -functions. - -@kindex k s -@kindex H k s -@pindex calc-stirling-number -@tindex stir1 -@tindex stir2 -The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command -computes a Stirling number of the first -@texline kind@tie{}@math{n \brack m}, -@infoline kind, -given two integers @expr{n} and @expr{m} on the stack. The @kbd{H k s} -[@code{stir2}] command computes a Stirling number of the second -@texline kind@tie{}@math{n \brace m}. -@infoline kind. -These are the number of @expr{m}-cycle permutations of @expr{n} objects, -and the number of ways to partition @expr{n} objects into @expr{m} -non-empty sets, respectively. - -@kindex k p -@pindex calc-prime-test -@cindex Primes -The @kbd{k p} (@code{calc-prime-test}) command checks if the integer on -the top of the stack is prime. For integers less than eight million, the -answer is always exact and reasonably fast. For larger integers, a -probabilistic method is used (see Knuth vol. II, section 4.5.4, algorithm P). -The number is first checked against small prime factors (up to 13). Then, -any number of iterations of the algorithm are performed. Each step either -discovers that the number is non-prime, or substantially increases the -certainty that the number is prime. After a few steps, the chance that -a number was mistakenly described as prime will be less than one percent. -(Indeed, this is a worst-case estimate of the probability; in practice -even a single iteration is quite reliable.) After the @kbd{k p} command, -the number will be reported as definitely prime or non-prime if possible, -or otherwise ``probably'' prime with a certain probability of error. - -@ignore -@starindex -@end ignore -@tindex prime -The normal @kbd{k p} command performs one iteration of the primality -test. Pressing @kbd{k p} repeatedly for the same integer will perform -additional iterations. Also, @kbd{k p} with a numeric prefix performs -the specified number of iterations. There is also an algebraic function -@samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @expr{n} -is (probably) prime and 0 if not. - -@kindex k f -@pindex calc-prime-factors -@tindex prfac -The @kbd{k f} (@code{calc-prime-factors}) [@code{prfac}] command -attempts to decompose an integer into its prime factors. For numbers up -to 25 million, the answer is exact although it may take some time. The -result is a vector of the prime factors in increasing order. For larger -inputs, prime factors above 5000 may not be found, in which case the -last number in the vector will be an unfactored integer greater than 25 -million (with a warning message). For negative integers, the first -element of the list will be @mathit{-1}. For inputs @mathit{-1}, @mathit{0}, and -@mathit{1}, the result is a list of the same number. - -@kindex k n -@pindex calc-next-prime -@ignore -@mindex nextpr@idots -@end ignore -@tindex nextprime -The @kbd{k n} (@code{calc-next-prime}) [@code{nextprime}] command finds -the next prime above a given number. Essentially, it searches by calling -@code{calc-prime-test} on successive integers until it finds one that -passes the test. This is quite fast for integers less than eight million, -but once the probabilistic test comes into play the search may be rather -slow. Ordinarily this command stops for any prime that passes one iteration -of the primality test. With a numeric prefix argument, a number must pass -the specified number of iterations before the search stops. (This only -matters when searching above eight million.) You can always use additional -@kbd{k p} commands to increase your certainty that the number is indeed -prime. - -@kindex I k n -@pindex calc-prev-prime -@ignore -@mindex prevpr@idots -@end ignore -@tindex prevprime -The @kbd{I k n} (@code{calc-prev-prime}) [@code{prevprime}] command -analogously finds the next prime less than a given number. - -@kindex k t -@pindex calc-totient -@tindex totient -The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the -Euler ``totient'' -@texline function@tie{}@math{\phi(n)}, -@infoline function, -the number of integers less than @expr{n} which -are relatively prime to @expr{n}. - -@kindex k m -@pindex calc-moebius -@tindex moebius -The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the -@texline M@"obius @math{\mu} -@infoline Moebius ``mu'' -function. If the input number is a product of @expr{k} -distinct factors, this is @expr{(-1)^k}. If the input number has any -duplicate factors (i.e., can be divided by the same prime more than once), -the result is zero. - -@node Probability Distribution Functions, , Combinatorial Functions, Scientific Functions -@section Probability Distribution Functions - -@noindent -The functions in this section compute various probability distributions. -For continuous distributions, this is the integral of the probability -density function from @expr{x} to infinity. (These are the ``upper -tail'' distribution functions; there are also corresponding ``lower -tail'' functions which integrate from minus infinity to @expr{x}.) -For discrete distributions, the upper tail function gives the sum -from @expr{x} to infinity; the lower tail function gives the sum -from minus infinity up to, but not including,@w{ }@expr{x}. - -To integrate from @expr{x} to @expr{y}, just use the distribution -function twice and subtract. For example, the probability that a -Gaussian random variable with mean 2 and standard deviation 1 will -lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)} -(``the probability that it is greater than 2.5, but not greater than 2.8''), -or equivalently @samp{ltpn(2.8,2,1) - ltpn(2.5,2,1)}. - -@kindex k B -@kindex I k B -@pindex calc-utpb -@tindex utpb -@tindex ltpb -The @kbd{k B} (@code{calc-utpb}) [@code{utpb}] function uses the -binomial distribution. Push the parameters @var{n}, @var{p}, and -then @var{x} onto the stack; the result (@samp{utpb(x,n,p)}) is the -probability that an event will occur @var{x} or more times out -of @var{n} trials, if its probability of occurring in any given -trial is @var{p}. The @kbd{I k B} [@code{ltpb}] function is -the probability that the event will occur fewer than @var{x} times. - -The other probability distribution functions similarly take the -form @kbd{k @var{X}} (@code{calc-utp@var{x}}) [@code{utp@var{x}}] -and @kbd{I k @var{X}} [@code{ltp@var{x}}], for various letters -@var{x}. The arguments to the algebraic functions are the value of -the random variable first, then whatever other parameters define the -distribution. Note these are among the few Calc functions where the -order of the arguments in algebraic form differs from the order of -arguments as found on the stack. (The random variable comes last on -the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5 -k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to -recover the original arguments but substitute a new value for @expr{x}.) - -@kindex k C -@pindex calc-utpc -@tindex utpc -@ignore -@mindex @idots -@end ignore -@kindex I k C -@ignore -@mindex @null -@end ignore -@tindex ltpc -The @samp{utpc(x,v)} function uses the chi-square distribution with -@texline @math{\nu} -@infoline @expr{v} -degrees of freedom. It is the probability that a model is -correct if its chi-square statistic is @expr{x}. - -@kindex k F -@pindex calc-utpf -@tindex utpf -@ignore -@mindex @idots -@end ignore -@kindex I k F -@ignore -@mindex @null -@end ignore -@tindex ltpf -The @samp{utpf(F,v1,v2)} function uses the F distribution, used in -various statistical tests. The parameters -@texline @math{\nu_1} -@infoline @expr{v1} -and -@texline @math{\nu_2} -@infoline @expr{v2} -are the degrees of freedom in the numerator and denominator, -respectively, used in computing the statistic @expr{F}. - -@kindex k N -@pindex calc-utpn -@tindex utpn -@ignore -@mindex @idots -@end ignore -@kindex I k N -@ignore -@mindex @null -@end ignore -@tindex ltpn -The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution -with mean @expr{m} and standard deviation -@texline @math{\sigma}. -@infoline @expr{s}. -It is the probability that such a normal-distributed random variable -would exceed @expr{x}. - -@kindex k P -@pindex calc-utpp -@tindex utpp -@ignore -@mindex @idots -@end ignore -@kindex I k P -@ignore -@mindex @null -@end ignore -@tindex ltpp -The @samp{utpp(n,x)} function uses a Poisson distribution with -mean @expr{x}. It is the probability that @expr{n} or more such -Poisson random events will occur. - -@kindex k T -@pindex calc-ltpt -@tindex utpt -@ignore -@mindex @idots -@end ignore -@kindex I k T -@ignore -@mindex @null -@end ignore -@tindex ltpt -The @samp{utpt(t,v)} function uses the Student's ``t'' distribution -with -@texline @math{\nu} -@infoline @expr{v} -degrees of freedom. It is the probability that a -t-distributed random variable will be greater than @expr{t}. -(Note: This computes the distribution function -@texline @math{A(t|\nu)} -@infoline @expr{A(t|v)} -where -@texline @math{A(0|\nu) = 1} -@infoline @expr{A(0|v) = 1} -and -@texline @math{A(\infty|\nu) \to 0}. -@infoline @expr{A(inf|v) -> 0}. -The @code{UTPT} operation on the HP-48 uses a different definition which -returns half of Calc's value: @samp{UTPT(t,v) = .5*utpt(t,v)}.) - -While Calc does not provide inverses of the probability distribution -functions, the @kbd{a R} command can be used to solve for the inverse. -Since the distribution functions are monotonic, @kbd{a R} is guaranteed -to be able to find a solution given any initial guess. -@xref{Numerical Solutions}. - -@node Matrix Functions, Algebra, Scientific Functions, Top -@chapter Vector/Matrix Functions - -@noindent -Many of the commands described here begin with the @kbd{v} prefix. -(For convenience, the shift-@kbd{V} prefix is equivalent to @kbd{v}.) -The commands usually apply to both plain vectors and matrices; some -apply only to matrices or only to square matrices. If the argument -has the wrong dimensions the operation is left in symbolic form. - -Vectors are entered and displayed using @samp{[a,b,c]} notation. -Matrices are vectors of which all elements are vectors of equal length. -(Though none of the standard Calc commands use this concept, a -three-dimensional matrix or rank-3 tensor could be defined as a -vector of matrices, and so on.) - -@menu -* Packing and Unpacking:: -* Building Vectors:: -* Extracting Elements:: -* Manipulating Vectors:: -* Vector and Matrix Arithmetic:: -* Set Operations:: -* Statistical Operations:: -* Reducing and Mapping:: -* Vector and Matrix Formats:: -@end menu - -@node Packing and Unpacking, Building Vectors, Matrix Functions, Matrix Functions -@section Packing and Unpacking - -@noindent -Calc's ``pack'' and ``unpack'' commands collect stack entries to build -composite objects such as vectors and complex numbers. They are -described in this chapter because they are most often used to build -vectors. - -@kindex v p -@pindex calc-pack -The @kbd{v p} (@code{calc-pack}) [@code{pack}] command collects several -elements from the stack into a matrix, complex number, HMS form, error -form, etc. It uses a numeric prefix argument to specify the kind of -object to be built; this argument is referred to as the ``packing mode.'' -If the packing mode is a nonnegative integer, a vector of that -length is created. For example, @kbd{C-u 5 v p} will pop the top -five stack elements and push back a single vector of those five -elements. (@kbd{C-u 0 v p} simply creates an empty vector.) - -The same effect can be had by pressing @kbd{[} to push an incomplete -vector on the stack, using @key{TAB} (@code{calc-roll-down}) to sneak -the incomplete object up past a certain number of elements, and -then pressing @kbd{]} to complete the vector. - -Negative packing modes create other kinds of composite objects: - -@table @cite -@item -1 -Two values are collected to build a complex number. For example, -@kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number -@expr{(5, 7)}. The result is always a rectangular complex -number. The two input values must both be real numbers, -i.e., integers, fractions, or floats. If they are not, Calc -will instead build a formula like @samp{a + (0, 1) b}. (The -other packing modes also create a symbolic answer if the -components are not suitable.) - -@item -2 -Two values are collected to build a polar complex number. -The first is the magnitude; the second is the phase expressed -in either degrees or radians according to the current angular -mode. - -@item -3 -Three values are collected into an HMS form. The first -two values (hours and minutes) must be integers or -integer-valued floats. The third value may be any real -number. - -@item -4 -Two values are collected into an error form. The inputs -may be real numbers or formulas. - -@item -5 -Two values are collected into a modulo form. The inputs -must be real numbers. - -@item -6 -Two values are collected into the interval @samp{[a .. b]}. -The inputs may be real numbers, HMS or date forms, or formulas. - -@item -7 -Two values are collected into the interval @samp{[a .. b)}. - -@item -8 -Two values are collected into the interval @samp{(a .. b]}. - -@item -9 -Two values are collected into the interval @samp{(a .. b)}. - -@item -10 -Two integer values are collected into a fraction. - -@item -11 -Two values are collected into a floating-point number. -The first is the mantissa; the second, which must be an -integer, is the exponent. The result is the mantissa -times ten to the power of the exponent. - -@item -12 -This is treated the same as @mathit{-11} by the @kbd{v p} command. -When unpacking, @mathit{-12} specifies that a floating-point mantissa -is desired. - -@item -13 -A real number is converted into a date form. - -@item -14 -Three numbers (year, month, day) are packed into a pure date form. - -@item -15 -Six numbers are packed into a date/time form. -@end table - -With any of the two-input negative packing modes, either or both -of the inputs may be vectors. If both are vectors of the same -length, the result is another vector made by packing corresponding -elements of the input vectors. If one input is a vector and the -other is a plain number, the number is packed along with each vector -element to produce a new vector. For example, @kbd{C-u -4 v p} -could be used to convert a vector of numbers and a vector of errors -into a single vector of error forms; @kbd{C-u -5 v p} could convert -a vector of numbers and a single number @var{M} into a vector of -numbers modulo @var{M}. - -If you don't give a prefix argument to @kbd{v p}, it takes -the packing mode from the top of the stack. The elements to -be packed then begin at stack level 2. Thus -@kbd{1 @key{RET} 2 @key{RET} 4 n v p} is another way to -enter the error form @samp{1 +/- 2}. - -If the packing mode taken from the stack is a vector, the result is a -matrix with the dimensions specified by the elements of the vector, -which must each be integers. For example, if the packing mode is -@samp{[2, 3]}, then six numbers will be taken from the stack and -returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}. - -If any elements of the vector are negative, other kinds of -packing are done at that level as described above. For -example, @samp{[2, 3, -4]} takes 12 objects and creates a -@texline @math{2\times3} -@infoline 2x3 -matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}. -Also, @samp{[-4, -10]} will convert four integers into an -error form consisting of two fractions: @samp{a:b +/- c:d}. - -@ignore -@starindex -@end ignore -@tindex pack -There is an equivalent algebraic function, -@samp{pack(@var{mode}, @var{items})} where @var{mode} is a -packing mode (an integer or a vector of integers) and @var{items} -is a vector of objects to be packed (re-packed, really) according -to that mode. For example, @samp{pack([3, -4], [a,b,c,d,e,f])} -yields @samp{[a +/- b, @w{c +/- d}, e +/- f]}. The function is -left in symbolic form if the packing mode is invalid, or if the -number of data items does not match the number of items required -by the mode. - -@kindex v u -@pindex calc-unpack -The @kbd{v u} (@code{calc-unpack}) command takes the vector, complex -number, HMS form, or other composite object on the top of the stack and -``unpacks'' it, pushing each of its elements onto the stack as separate -objects. Thus, it is the ``inverse'' of @kbd{v p}. If the value -at the top of the stack is a formula, @kbd{v u} unpacks it by pushing -each of the arguments of the top-level operator onto the stack. - -You can optionally give a numeric prefix argument to @kbd{v u} -to specify an explicit (un)packing mode. If the packing mode is -negative and the input is actually a vector or matrix, the result -will be two or more similar vectors or matrices of the elements. -For example, given the vector @samp{[@w{a +/- b}, c^2, d +/- 7]}, -the result of @kbd{C-u -4 v u} will be the two vectors -@samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}. - -Note that the prefix argument can have an effect even when the input is -not a vector. For example, if the input is the number @mathit{-5}, then -@kbd{c-u -1 v u} yields @mathit{-5} and 0 (the components of @mathit{-5} -when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5 -and 180 (assuming Degrees mode); and @kbd{C-u -10 v u} yields @mathit{-5} -and 1 (the numerator and denominator of @mathit{-5}, viewed as a rational -number). Plain @kbd{v u} with this input would complain that the input -is not a composite object. - -Unpacking mode @mathit{-11} converts a float into an integer mantissa and -an integer exponent, where the mantissa is not divisible by 10 -(except that 0.0 is represented by a mantissa and exponent of 0). -Unpacking mode @mathit{-12} converts a float into a floating-point mantissa -and integer exponent, where the mantissa (for non-zero numbers) -is guaranteed to lie in the range [1 .. 10). In both cases, -the mantissa is shifted left or right (and the exponent adjusted -to compensate) in order to satisfy these constraints. - -Positive unpacking modes are treated differently than for @kbd{v p}. -A mode of 1 is much like plain @kbd{v u} with no prefix argument, -except that in addition to the components of the input object, -a suitable packing mode to re-pack the object is also pushed. -Thus, @kbd{C-u 1 v u} followed by @kbd{v p} will re-build the -original object. - -A mode of 2 unpacks two levels of the object; the resulting -re-packing mode will be a vector of length 2. This might be used -to unpack a matrix, say, or a vector of error forms. Higher -unpacking modes unpack the input even more deeply. - -@ignore -@starindex -@end ignore -@tindex unpack -There are two algebraic functions analogous to @kbd{v u}. -The @samp{unpack(@var{mode}, @var{item})} function unpacks the -@var{item} using the given @var{mode}, returning the result as -a vector of components. Here the @var{mode} must be an -integer, not a vector. For example, @samp{unpack(-4, a +/- b)} -returns @samp{[a, b]}, as does @samp{unpack(1, a +/- b)}. - -@ignore -@starindex -@end ignore -@tindex unpackt -The @code{unpackt} function is like @code{unpack} but instead -of returning a simple vector of items, it returns a vector of -two things: The mode, and the vector of items. For example, -@samp{unpackt(1, 2:3 +/- 1:4)} returns @samp{[-4, [2:3, 1:4]]}, -and @samp{unpackt(2, 2:3 +/- 1:4)} returns @samp{[[-4, -10], [2, 3, 1, 4]]}. -The identity for re-building the original object is -@samp{apply(pack, unpackt(@var{n}, @var{x})) = @var{x}}. (The -@code{apply} function builds a function call given the function -name and a vector of arguments.) - -@cindex Numerator of a fraction, extracting -Subscript notation is a useful way to extract a particular part -of an object. For example, to get the numerator of a rational -number, you can use @samp{unpack(-10, @var{x})_1}. - -@node Building Vectors, Extracting Elements, Packing and Unpacking, Matrix Functions -@section Building Vectors - -@noindent -Vectors and matrices can be added, -subtracted, multiplied, and divided; @pxref{Basic Arithmetic}. - -@kindex | -@pindex calc-concat -@ignore -@mindex @null -@end ignore -@tindex | -The @kbd{|} (@code{calc-concat}) [@code{vconcat}] command ``concatenates'' two vectors -into one. For example, after @kbd{@w{[ 1 , 2 ]} [ 3 , 4 ] |}, the stack -will contain the single vector @samp{[1, 2, 3, 4]}. If the arguments -are matrices, the rows of the first matrix are concatenated with the -rows of the second. (In other words, two matrices are just two vectors -of row-vectors as far as @kbd{|} is concerned.) - -If either argument to @kbd{|} is a scalar (a non-vector), it is treated -like a one-element vector for purposes of concatenation: @kbd{1 [ 2 , 3 ] |} -produces the vector @samp{[1, 2, 3]}. Likewise, if one argument is a -matrix and the other is a plain vector, the vector is treated as a -one-row matrix. - -@kindex H | -@tindex append -The @kbd{H |} (@code{calc-append}) [@code{append}] command concatenates -two vectors without any special cases. Both inputs must be vectors. -Whether or not they are matrices is not taken into account. If either -argument is a scalar, the @code{append} function is left in symbolic form. -See also @code{cons} and @code{rcons} below. - -@kindex I | -@kindex H I | -The @kbd{I |} and @kbd{H I |} commands are similar, but they use their -two stack arguments in the opposite order. Thus @kbd{I |} is equivalent -to @kbd{@key{TAB} |}, but possibly more convenient and also a bit faster. - -@kindex v d -@pindex calc-diag -@tindex diag -The @kbd{v d} (@code{calc-diag}) [@code{diag}] function builds a diagonal -square matrix. The optional numeric prefix gives the number of rows -and columns in the matrix. If the value at the top of the stack is a -vector, the elements of the vector are used as the diagonal elements; the -prefix, if specified, must match the size of the vector. If the value on -the stack is a scalar, it is used for each element on the diagonal, and -the prefix argument is required. - -To build a constant square matrix, e.g., a -@texline @math{3\times3} -@infoline 3x3 -matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero -matrix first and then add a constant value to that matrix. (Another -alternative would be to use @kbd{v b} and @kbd{v a}; see below.) - -@kindex v i -@pindex calc-ident -@tindex idn -The @kbd{v i} (@code{calc-ident}) [@code{idn}] function builds an identity -matrix of the specified size. It is a convenient form of @kbd{v d} -where the diagonal element is always one. If no prefix argument is given, -this command prompts for one. - -In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)}, -except that @expr{a} is required to be a scalar (non-vector) quantity. -If @expr{n} is omitted, @samp{idn(a)} represents @expr{a} times an -identity matrix of unknown size. Calc can operate algebraically on -such generic identity matrices, and if one is combined with a matrix -whose size is known, it is converted automatically to an identity -matrix of a suitable matching size. The @kbd{v i} command with an -argument of zero creates a generic identity matrix, @samp{idn(1)}. -Note that in dimensioned Matrix mode (@pxref{Matrix Mode}), generic -identity matrices are immediately expanded to the current default -dimensions. - -@kindex v x -@pindex calc-index -@tindex index -The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector -of consecutive integers from 1 to @var{n}, where @var{n} is the numeric -prefix argument. If you do not provide a prefix argument, you will be -prompted to enter a suitable number. If @var{n} is negative, the result -is a vector of negative integers from @var{n} to @mathit{-1}. - -With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes -three values from the stack: @var{n}, @var{start}, and @var{incr} (with -@var{incr} at top-of-stack). Counting starts at @var{start} and increases -by @var{incr} for successive vector elements. If @var{start} or @var{n} -is in floating-point format, the resulting vector elements will also be -floats. Note that @var{start} and @var{incr} may in fact be any kind -of numbers or formulas. - -When @var{start} and @var{incr} are specified, a negative @var{n} has a -different interpretation: It causes a geometric instead of arithmetic -sequence to be generated. For example, @samp{index(-3, a, b)} produces -@samp{[a, a b, a b^2]}. If you omit @var{incr} in the algebraic form, -@samp{index(@var{n}, @var{start})}, the default value for @var{incr} -is one for positive @var{n} or two for negative @var{n}. - -@kindex v b -@pindex calc-build-vector -@tindex cvec -The @kbd{v b} (@code{calc-build-vector}) [@code{cvec}] function builds a -vector of @var{n} copies of the value on the top of the stack, where @var{n} -is the numeric prefix argument. In algebraic formulas, @samp{cvec(x,n,m)} -can also be used to build an @var{n}-by-@var{m} matrix of copies of @var{x}. -(Interactively, just use @kbd{v b} twice: once to build a row, then again -to build a matrix of copies of that row.) - -@kindex v h -@kindex I v h -@pindex calc-head -@pindex calc-tail -@tindex head -@tindex tail -The @kbd{v h} (@code{calc-head}) [@code{head}] function returns the first -element of a vector. The @kbd{I v h} (@code{calc-tail}) [@code{tail}] -function returns the vector with its first element removed. In both -cases, the argument must be a non-empty vector. - -@kindex v k -@pindex calc-cons -@tindex cons -The @kbd{v k} (@code{calc-cons}) [@code{cons}] function takes a value @var{h} -and a vector @var{t} from the stack, and produces the vector whose head is -@var{h} and whose tail is @var{t}. This is similar to @kbd{|}, except -if @var{h} is itself a vector, @kbd{|} will concatenate the two vectors -whereas @code{cons} will insert @var{h} at the front of the vector @var{t}. - -@kindex H v h -@tindex rhead -@ignore -@mindex @idots -@end ignore -@kindex H I v h -@ignore -@mindex @null -@end ignore -@kindex H v k -@ignore -@mindex @null -@end ignore -@tindex rtail -@ignore -@mindex @null -@end ignore -@tindex rcons -Each of these three functions also accepts the Hyperbolic flag [@code{rhead}, -@code{rtail}, @code{rcons}] in which case @var{t} instead represents -the @emph{last} single element of the vector, with @var{h} -representing the remainder of the vector. Thus the vector -@samp{[a, b, c, d] = cons(a, [b, c, d]) = rcons([a, b, c], d)}. -Also, @samp{head([a, b, c, d]) = a}, @samp{tail([a, b, c, d]) = [b, c, d]}, -@samp{rhead([a, b, c, d]) = [a, b, c]}, and @samp{rtail([a, b, c, d]) = d}. - -@node Extracting Elements, Manipulating Vectors, Building Vectors, Matrix Functions -@section Extracting Vector Elements - -@noindent -@kindex v r -@pindex calc-mrow -@tindex mrow -The @kbd{v r} (@code{calc-mrow}) [@code{mrow}] command extracts one row of -the matrix on the top of the stack, or one element of the plain vector on -the top of the stack. The row or element is specified by the numeric -prefix argument; the default is to prompt for the row or element number. -The matrix or vector is replaced by the specified row or element in the -form of a vector or scalar, respectively. - -@cindex Permutations, applying -With a prefix argument of @kbd{C-u} only, @kbd{v r} takes the index of -the element or row from the top of the stack, and the vector or matrix -from the second-to-top position. If the index is itself a vector of -integers, the result is a vector of the corresponding elements of the -input vector, or a matrix of the corresponding rows of the input matrix. -This command can be used to obtain any permutation of a vector. - -With @kbd{C-u}, if the index is an interval form with integer components, -it is interpreted as a range of indices and the corresponding subvector or -submatrix is returned. - -@cindex Subscript notation -@kindex a _ -@pindex calc-subscript -@tindex subscr -@tindex _ -Subscript notation in algebraic formulas (@samp{a_b}) stands for the -Calc function @code{subscr}, which is synonymous with @code{mrow}. -Thus, @samp{[x, y, z]_k} produces @expr{x}, @expr{y}, or @expr{z} if -@expr{k} is one, two, or three, respectively. A double subscript -(@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will -access the element at row @expr{i}, column @expr{j} of a matrix. -The @kbd{a _} (@code{calc-subscript}) command creates a subscript -formula @samp{a_b} out of two stack entries. (It is on the @kbd{a} -``algebra'' prefix because subscripted variables are often used -purely as an algebraic notation.) - -@tindex mrrow -Given a negative prefix argument, @kbd{v r} instead deletes one row or -element from the matrix or vector on the top of the stack. Thus -@kbd{C-u 2 v r} replaces a matrix with its second row, but @kbd{C-u -2 v r} -replaces the matrix with the same matrix with its second row removed. -In algebraic form this function is called @code{mrrow}. - -@tindex getdiag -Given a prefix argument of zero, @kbd{v r} extracts the diagonal elements -of a square matrix in the form of a vector. In algebraic form this -function is called @code{getdiag}. - -@kindex v c -@pindex calc-mcol -@tindex mcol -@tindex mrcol -The @kbd{v c} (@code{calc-mcol}) [@code{mcol} or @code{mrcol}] command is -the analogous operation on columns of a matrix. Given a plain vector -it extracts (or removes) one element, just like @kbd{v r}. If the -index in @kbd{C-u v c} is an interval or vector and the argument is a -matrix, the result is a submatrix with only the specified columns -retained (and possibly permuted in the case of a vector index). - -To extract a matrix element at a given row and column, use @kbd{v r} to -extract the row as a vector, then @kbd{v c} to extract the column element -from that vector. In algebraic formulas, it is often more convenient to -use subscript notation: @samp{m_i_j} gives row @expr{i}, column @expr{j} -of matrix @expr{m}. - -@kindex v s -@pindex calc-subvector -@tindex subvec -The @kbd{v s} (@code{calc-subvector}) [@code{subvec}] command extracts -a subvector of a vector. The arguments are the vector, the starting -index, and the ending index, with the ending index in the top-of-stack -position. The starting index indicates the first element of the vector -to take. The ending index indicates the first element @emph{past} the -range to be taken. Thus, @samp{subvec([a, b, c, d, e], 2, 4)} produces -the subvector @samp{[b, c]}. You could get the same result using -@samp{mrow([a, b, c, d, e], @w{[2 .. 4)})}. - -If either the start or the end index is zero or negative, it is -interpreted as relative to the end of the vector. Thus -@samp{subvec([a, b, c, d, e], 2, -2)} also produces @samp{[b, c]}. In -the algebraic form, the end index can be omitted in which case it -is taken as zero, i.e., elements from the starting element to the -end of the vector are used. The infinity symbol, @code{inf}, also -has this effect when used as the ending index. - -@kindex I v s -@tindex rsubvec -With the Inverse flag, @kbd{I v s} [@code{rsubvec}] removes a subvector -from a vector. The arguments are interpreted the same as for the -normal @kbd{v s} command. Thus, @samp{rsubvec([a, b, c, d, e], 2, 4)} -produces @samp{[a, d, e]}. It is always true that @code{subvec} and -@code{rsubvec} return complementary parts of the input vector. - -@xref{Selecting Subformulas}, for an alternative way to operate on -vectors one element at a time. - -@node Manipulating Vectors, Vector and Matrix Arithmetic, Extracting Elements, Matrix Functions -@section Manipulating Vectors - -@noindent -@kindex v l -@pindex calc-vlength -@tindex vlen -The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the -length of a vector. The length of a non-vector is considered to be zero. -Note that matrices are just vectors of vectors for the purposes of this -command. - -@kindex H v l -@tindex mdims -With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector -of the dimensions of a vector, matrix, or higher-order object. For -example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since -its argument is a -@texline @math{2\times3} -@infoline 2x3 -matrix. - -@kindex v f -@pindex calc-vector-find -@tindex find -The @kbd{v f} (@code{calc-vector-find}) [@code{find}] command searches -along a vector for the first element equal to a given target. The target -is on the top of the stack; the vector is in the second-to-top position. -If a match is found, the result is the index of the matching element. -Otherwise, the result is zero. The numeric prefix argument, if given, -allows you to select any starting index for the search. - -@kindex v a -@pindex calc-arrange-vector -@tindex arrange -@cindex Arranging a matrix -@cindex Reshaping a matrix -@cindex Flattening a matrix -The @kbd{v a} (@code{calc-arrange-vector}) [@code{arrange}] command -rearranges a vector to have a certain number of columns and rows. The -numeric prefix argument specifies the number of columns; if you do not -provide an argument, you will be prompted for the number of columns. -The vector or matrix on the top of the stack is @dfn{flattened} into a -plain vector. If the number of columns is nonzero, this vector is -then formed into a matrix by taking successive groups of @var{n} elements. -If the number of columns does not evenly divide the number of elements -in the vector, the last row will be short and the result will not be -suitable for use as a matrix. For example, with the matrix -@samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces -@samp{[[1, 2, 3, 4]]} (a -@texline @math{1\times4} -@infoline 1x4 -matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a -@texline @math{4\times1} -@infoline 4x1 -matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original -@texline @math{2\times2} -@infoline 2x2 -matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a -matrix), and @kbd{v a 0} produces the flattened list -@samp{[1, 2, @w{3, 4}]}. - -@cindex Sorting data -@kindex V S -@kindex I V S -@pindex calc-sort -@tindex sort -@tindex rsort -The @kbd{V S} (@code{calc-sort}) [@code{sort}] command sorts the elements of -a vector into increasing order. Real numbers, real infinities, and -constant interval forms come first in this ordering; next come other -kinds of numbers, then variables (in alphabetical order), then finally -come formulas and other kinds of objects; these are sorted according -to a kind of lexicographic ordering with the useful property that -one vector is less or greater than another if the first corresponding -unequal elements are less or greater, respectively. Since quoted strings -are stored by Calc internally as vectors of ASCII character codes -(@pxref{Strings}), this means vectors of strings are also sorted into -alphabetical order by this command. - -The @kbd{I V S} [@code{rsort}] command sorts a vector into decreasing order. - -@cindex Permutation, inverse of -@cindex Inverse of permutation -@cindex Index tables -@cindex Rank tables -@kindex V G -@kindex I V G -@pindex calc-grade -@tindex grade -@tindex rgrade -The @kbd{V G} (@code{calc-grade}) [@code{grade}, @code{rgrade}] command -produces an index table or permutation vector which, if applied to the -input vector (as the index of @kbd{C-u v r}, say), would sort the vector. -A permutation vector is just a vector of integers from 1 to @var{n}, where -each integer occurs exactly once. One application of this is to sort a -matrix of data rows using one column as the sort key; extract that column, -grade it with @kbd{V G}, then use the result to reorder the original matrix -with @kbd{C-u v r}. Another interesting property of the @code{V G} command -is that, if the input is itself a permutation vector, the result will -be the inverse of the permutation. The inverse of an index table is -a rank table, whose @var{k}th element says where the @var{k}th original -vector element will rest when the vector is sorted. To get a rank -table, just use @kbd{V G V G}. - -With the Inverse flag, @kbd{I V G} produces an index table that would -sort the input into decreasing order. Note that @kbd{V S} and @kbd{V G} -use a ``stable'' sorting algorithm, i.e., any two elements which are equal -will not be moved out of their original order. Generally there is no way -to tell with @kbd{V S}, since two elements which are equal look the same, -but with @kbd{V G} this can be an important issue. In the matrix-of-rows -example, suppose you have names and telephone numbers as two columns and -you wish to sort by phone number primarily, and by name when the numbers -are equal. You can sort the data matrix by names first, and then again -by phone numbers. Because the sort is stable, any two rows with equal -phone numbers will remain sorted by name even after the second sort. - -@cindex Histograms -@kindex V H -@pindex calc-histogram -@ignore -@mindex histo@idots -@end ignore -@tindex histogram -The @kbd{V H} (@code{calc-histogram}) [@code{histogram}] command builds a -histogram of a vector of numbers. Vector elements are assumed to be -integers or real numbers in the range [0..@var{n}) for some ``number of -bins'' @var{n}, which is the numeric prefix argument given to the -command. The result is a vector of @var{n} counts of how many times -each value appeared in the original vector. Non-integers in the input -are rounded down to integers. Any vector elements outside the specified -range are ignored. (You can tell if elements have been ignored by noting -that the counts in the result vector don't add up to the length of the -input vector.) - -@kindex H V H -With the Hyperbolic flag, @kbd{H V H} pulls two vectors from the stack. -The second-to-top vector is the list of numbers as before. The top -vector is an equal-sized list of ``weights'' to attach to the elements -of the data vector. For example, if the first data element is 4.2 and -the first weight is 10, then 10 will be added to bin 4 of the result -vector. Without the hyperbolic flag, every element has a weight of one. - -@kindex v t -@pindex calc-transpose -@tindex trn -The @kbd{v t} (@code{calc-transpose}) [@code{trn}] command computes -the transpose of the matrix at the top of the stack. If the argument -is a plain vector, it is treated as a row vector and transposed into -a one-column matrix. - -@kindex v v -@pindex calc-reverse-vector -@tindex rev -The @kbd{v v} (@code{calc-reverse-vector}) [@code{rev}] command reverses -a vector end-for-end. Given a matrix, it reverses the order of the rows. -(To reverse the columns instead, just use @kbd{v t v v v t}. The same -principle can be used to apply other vector commands to the columns of -a matrix.) - -@kindex v m -@pindex calc-mask-vector -@tindex vmask -The @kbd{v m} (@code{calc-mask-vector}) [@code{vmask}] command uses -one vector as a mask to extract elements of another vector. The mask -is in the second-to-top position; the target vector is on the top of -the stack. These vectors must have the same length. The result is -the same as the target vector, but with all elements which correspond -to zeros in the mask vector deleted. Thus, for example, -@samp{vmask([1, 0, 1, 0, 1], [a, b, c, d, e])} produces @samp{[a, c, e]}. -@xref{Logical Operations}. - -@kindex v e -@pindex calc-expand-vector -@tindex vexp -The @kbd{v e} (@code{calc-expand-vector}) [@code{vexp}] command -expands a vector according to another mask vector. The result is a -vector the same length as the mask, but with nonzero elements replaced -by successive elements from the target vector. The length of the target -vector is normally the number of nonzero elements in the mask. If the -target vector is longer, its last few elements are lost. If the target -vector is shorter, the last few nonzero mask elements are left -unreplaced in the result. Thus @samp{vexp([2, 0, 3, 0, 7], [a, b])} -produces @samp{[a, 0, b, 0, 7]}. - -@kindex H v e -With the Hyperbolic flag, @kbd{H v e} takes a filler value from the -top of the stack; the mask and target vectors come from the third and -second elements of the stack. This filler is used where the mask is -zero: @samp{vexp([2, 0, 3, 0, 7], [a, b], z)} produces -@samp{[a, z, c, z, 7]}. If the filler value is itself a vector, -then successive values are taken from it, so that the effect is to -interleave two vectors according to the mask: -@samp{vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])} produces -@samp{[a, x, b, 7, y, 0]}. - -Another variation on the masking idea is to combine @samp{[a, b, c, d, e]} -with the mask @samp{[1, 0, 1, 0, 1]} to produce @samp{[a, 0, c, 0, e]}. -You can accomplish this with @kbd{V M a &}, mapping the logical ``and'' -operation across the two vectors. @xref{Logical Operations}. Note that -the @code{? :} operation also discussed there allows other types of -masking using vectors. - -@node Vector and Matrix Arithmetic, Set Operations, Manipulating Vectors, Matrix Functions -@section Vector and Matrix Arithmetic - -@noindent -Basic arithmetic operations like addition and multiplication are defined -for vectors and matrices as well as for numbers. Division of matrices, in -the sense of multiplying by the inverse, is supported. (Division by a -matrix actually uses LU-decomposition for greater accuracy and speed.) -@xref{Basic Arithmetic}. - -The following functions are applied element-wise if their arguments are -vectors or matrices: @code{change-sign}, @code{conj}, @code{arg}, -@code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean}, -@code{float}, @code{frac}. @xref{Function Index}. - -@kindex V J -@pindex calc-conj-transpose -@tindex ctrn -The @kbd{V J} (@code{calc-conj-transpose}) [@code{ctrn}] command computes -the conjugate transpose of its argument, i.e., @samp{conj(trn(x))}. - -@ignore -@mindex A -@end ignore -@kindex A (vectors) -@pindex calc-abs (vectors) -@ignore -@mindex abs -@end ignore -@tindex abs (vectors) -The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the -Frobenius norm of a vector or matrix argument. This is the square -root of the sum of the squares of the absolute values of the -elements of the vector or matrix. If the vector is interpreted as -a point in two- or three-dimensional space, this is the distance -from that point to the origin. - -@kindex v n -@pindex calc-rnorm -@tindex rnorm -The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes -the row norm, or infinity-norm, of a vector or matrix. For a plain -vector, this is the maximum of the absolute values of the elements. -For a matrix, this is the maximum of the row-absolute-value-sums, -i.e., of the sums of the absolute values of the elements along the -various rows. - -@kindex V N -@pindex calc-cnorm -@tindex cnorm -The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes -the column norm, or one-norm, of a vector or matrix. For a plain -vector, this is the sum of the absolute values of the elements. -For a matrix, this is the maximum of the column-absolute-value-sums. -General @expr{k}-norms for @expr{k} other than one or infinity are -not provided. - -@kindex V C -@pindex calc-cross -@tindex cross -The @kbd{V C} (@code{calc-cross}) [@code{cross}] command computes the -right-handed cross product of two vectors, each of which must have -exactly three elements. - -@ignore -@mindex & -@end ignore -@kindex & (matrices) -@pindex calc-inv (matrices) -@ignore -@mindex inv -@end ignore -@tindex inv (matrices) -The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the -inverse of a square matrix. If the matrix is singular, the inverse -operation is left in symbolic form. Matrix inverses are recorded so -that once an inverse (or determinant) of a particular matrix has been -computed, the inverse and determinant of the matrix can be recomputed -quickly in the future. - -If the argument to @kbd{&} is a plain number @expr{x}, this -command simply computes @expr{1/x}. This is okay, because the -@samp{/} operator also does a matrix inversion when dividing one -by a matrix. - -@kindex V D -@pindex calc-mdet -@tindex det -The @kbd{V D} (@code{calc-mdet}) [@code{det}] command computes the -determinant of a square matrix. - -@kindex V L -@pindex calc-mlud -@tindex lud -The @kbd{V L} (@code{calc-mlud}) [@code{lud}] command computes the -LU decomposition of a matrix. The result is a list of three matrices -which, when multiplied together left-to-right, form the original matrix. -The first is a permutation matrix that arises from pivoting in the -algorithm, the second is lower-triangular with ones on the diagonal, -and the third is upper-triangular. - -@kindex V T -@pindex calc-mtrace -@tindex tr -The @kbd{V T} (@code{calc-mtrace}) [@code{tr}] command computes the -trace of a square matrix. This is defined as the sum of the diagonal -elements of the matrix. - -@node Set Operations, Statistical Operations, Vector and Matrix Arithmetic, Matrix Functions -@section Set Operations using Vectors - -@noindent -@cindex Sets, as vectors -Calc includes several commands which interpret vectors as @dfn{sets} of -objects. A set is a collection of objects; any given object can appear -only once in the set. Calc stores sets as vectors of objects in -sorted order. Objects in a Calc set can be any of the usual things, -such as numbers, variables, or formulas. Two set elements are considered -equal if they are identical, except that numerically equal numbers like -the integer 4 and the float 4.0 are considered equal even though they -are not ``identical.'' Variables are treated like plain symbols without -attached values by the set operations; subtracting the set @samp{[b]} -from @samp{[a, b]} always yields the set @samp{[a]} even though if -the variables @samp{a} and @samp{b} both equaled 17, you might -expect the answer @samp{[]}. - -If a set contains interval forms, then it is assumed to be a set of -real numbers. In this case, all set operations require the elements -of the set to be only things that are allowed in intervals: Real -numbers, plus and minus infinity, HMS forms, and date forms. If -there are variables or other non-real objects present in a real set, -all set operations on it will be left in unevaluated form. - -If the input to a set operation is a plain number or interval form -@var{a}, it is treated like the one-element vector @samp{[@var{a}]}. -The result is always a vector, except that if the set consists of a -single interval, the interval itself is returned instead. - -@xref{Logical Operations}, for the @code{in} function which tests if -a certain value is a member of a given set. To test if the set @expr{A} -is a subset of the set @expr{B}, use @samp{vdiff(A, B) = []}. - -@kindex V + -@pindex calc-remove-duplicates -@tindex rdup -The @kbd{V +} (@code{calc-remove-duplicates}) [@code{rdup}] command -converts an arbitrary vector into set notation. It works by sorting -the vector as if by @kbd{V S}, then removing duplicates. (For example, -@kbd{[a, 5, 4, a, 4.0]} is sorted to @samp{[4, 4.0, 5, a, a]} and then -reduced to @samp{[4, 5, a]}). Overlapping intervals are merged as -necessary. You rarely need to use @kbd{V +} explicitly, since all the -other set-based commands apply @kbd{V +} to their inputs before using -them. - -@kindex V V -@pindex calc-set-union -@tindex vunion -The @kbd{V V} (@code{calc-set-union}) [@code{vunion}] command computes -the union of two sets. An object is in the union of two sets if and -only if it is in either (or both) of the input sets. (You could -accomplish the same thing by concatenating the sets with @kbd{|}, -then using @kbd{V +}.) - -@kindex V ^ -@pindex calc-set-intersect -@tindex vint -The @kbd{V ^} (@code{calc-set-intersect}) [@code{vint}] command computes -the intersection of two sets. An object is in the intersection if -and only if it is in both of the input sets. Thus if the input -sets are disjoint, i.e., if they share no common elements, the result -will be the empty vector @samp{[]}. Note that the characters @kbd{V} -and @kbd{^} were chosen to be close to the conventional mathematical -notation for set -@texline union@tie{}(@math{A \cup B}) -@infoline union -and -@texline intersection@tie{}(@math{A \cap B}). -@infoline intersection. - -@kindex V - -@pindex calc-set-difference -@tindex vdiff -The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes -the difference between two sets. An object is in the difference -@expr{A - B} if and only if it is in @expr{A} but not in @expr{B}. -Thus subtracting @samp{[y,z]} from a set will remove the elements -@samp{y} and @samp{z} if they are present. You can also think of this -as a general @dfn{set complement} operator; if @expr{A} is the set of -all possible values, then @expr{A - B} is the ``complement'' of @expr{B}. -Obviously this is only practical if the set of all possible values in -your problem is small enough to list in a Calc vector (or simple -enough to express in a few intervals). - -@kindex V X -@pindex calc-set-xor -@tindex vxor -The @kbd{V X} (@code{calc-set-xor}) [@code{vxor}] command computes -the ``exclusive-or,'' or ``symmetric difference'' of two sets. -An object is in the symmetric difference of two sets if and only -if it is in one, but @emph{not} both, of the sets. Objects that -occur in both sets ``cancel out.'' - -@kindex V ~ -@pindex calc-set-complement -@tindex vcompl -The @kbd{V ~} (@code{calc-set-complement}) [@code{vcompl}] command -computes the complement of a set with respect to the real numbers. -Thus @samp{vcompl(x)} is equivalent to @samp{vdiff([-inf .. inf], x)}. -For example, @samp{vcompl([2, (3 .. 4]])} evaluates to -@samp{[[-inf .. 2), (2 .. 3], (4 .. inf]]}. - -@kindex V F -@pindex calc-set-floor -@tindex vfloor -The @kbd{V F} (@code{calc-set-floor}) [@code{vfloor}] command -reinterprets a set as a set of integers. Any non-integer values, -and intervals that do not enclose any integers, are removed. Open -intervals are converted to equivalent closed intervals. Successive -integers are converted into intervals of integers. For example, the -complement of the set @samp{[2, 6, 7, 8]} is messy, but if you wanted -the complement with respect to the set of integers you could type -@kbd{V ~ V F} to get @samp{[[-inf .. 1], [3 .. 5], [9 .. inf]]}. - -@kindex V E -@pindex calc-set-enumerate -@tindex venum -The @kbd{V E} (@code{calc-set-enumerate}) [@code{venum}] command -converts a set of integers into an explicit vector. Intervals in -the set are expanded out to lists of all integers encompassed by -the intervals. This only works for finite sets (i.e., sets which -do not involve @samp{-inf} or @samp{inf}). - -@kindex V : -@pindex calc-set-span -@tindex vspan -The @kbd{V :} (@code{calc-set-span}) [@code{vspan}] command converts any -set of reals into an interval form that encompasses all its elements. -The lower limit will be the smallest element in the set; the upper -limit will be the largest element. For an empty set, @samp{vspan([])} -returns the empty interval @w{@samp{[0 .. 0)}}. - -@kindex V # -@pindex calc-set-cardinality -@tindex vcard -The @kbd{V #} (@code{calc-set-cardinality}) [@code{vcard}] command counts -the number of integers in a set. The result is the length of the vector -that would be produced by @kbd{V E}, although the computation is much -more efficient than actually producing that vector. - -@cindex Sets, as binary numbers -Another representation for sets that may be more appropriate in some -cases is binary numbers. If you are dealing with sets of integers -in the range 0 to 49, you can use a 50-bit binary number where a -particular bit is 1 if the corresponding element is in the set. -@xref{Binary Functions}, for a list of commands that operate on -binary numbers. Note that many of the above set operations have -direct equivalents in binary arithmetic: @kbd{b o} (@code{calc-or}), -@kbd{b a} (@code{calc-and}), @kbd{b d} (@code{calc-diff}), -@kbd{b x} (@code{calc-xor}), and @kbd{b n} (@code{calc-not}), -respectively. You can use whatever representation for sets is most -convenient to you. - -@kindex b p -@kindex b u -@pindex calc-pack-bits -@pindex calc-unpack-bits -@tindex vpack -@tindex vunpack -The @kbd{b u} (@code{calc-unpack-bits}) [@code{vunpack}] command -converts an integer that represents a set in binary into a set -in vector/interval notation. For example, @samp{vunpack(67)} -returns @samp{[[0 .. 1], 6]}. If the input is negative, the set -it represents is semi-infinite: @samp{vunpack(-4) = [2 .. inf)}. -Use @kbd{V E} afterwards to expand intervals to individual -values if you wish. Note that this command uses the @kbd{b} -(binary) prefix key. - -The @kbd{b p} (@code{calc-pack-bits}) [@code{vpack}] command -converts the other way, from a vector or interval representing -a set of nonnegative integers into a binary integer describing -the same set. The set may include positive infinity, but must -not include any negative numbers. The input is interpreted as a -set of integers in the sense of @kbd{V F} (@code{vfloor}). Beware -that a simple input like @samp{[100]} can result in a huge integer -representation -@texline (@math{2^{100}}, a 31-digit integer, in this case). -@infoline (@expr{2^100}, a 31-digit integer, in this case). - -@node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions -@section Statistical Operations on Vectors - -@noindent -@cindex Statistical functions -The commands in this section take vectors as arguments and compute -various statistical measures on the data stored in the vectors. The -references used in the definitions of these functions are Bevington's -@emph{Data Reduction and Error Analysis for the Physical Sciences}, -and @emph{Numerical Recipes} by Press, Flannery, Teukolsky and -Vetterling. - -The statistical commands use the @kbd{u} prefix key followed by -a shifted letter or other character. - -@xref{Manipulating Vectors}, for a description of @kbd{V H} -(@code{calc-histogram}). - -@xref{Curve Fitting}, for the @kbd{a F} command for doing -least-squares fits to statistical data. - -@xref{Probability Distribution Functions}, for several common -probability distribution functions. - -@menu -* Single-Variable Statistics:: -* Paired-Sample Statistics:: -@end menu - -@node Single-Variable Statistics, Paired-Sample Statistics, Statistical Operations, Statistical Operations -@subsection Single-Variable Statistics - -@noindent -These functions do various statistical computations on single -vectors. Given a numeric prefix argument, they actually pop -@var{n} objects from the stack and combine them into a data -vector. Each object may be either a number or a vector; if a -vector, any sub-vectors inside it are ``flattened'' as if by -@kbd{v a 0}; @pxref{Manipulating Vectors}. By default one object -is popped, which (in order to be useful) is usually a vector. - -If an argument is a variable name, and the value stored in that -variable is a vector, then the stored vector is used. This method -has the advantage that if your data vector is large, you can avoid -the slow process of manipulating it directly on the stack. - -These functions are left in symbolic form if any of their arguments -are not numbers or vectors, e.g., if an argument is a formula, or -a non-vector variable. However, formulas embedded within vector -arguments are accepted; the result is a symbolic representation -of the computation, based on the assumption that the formula does -not itself represent a vector. All varieties of numbers such as -error forms and interval forms are acceptable. - -Some of the functions in this section also accept a single error form -or interval as an argument. They then describe a property of the -normal or uniform (respectively) statistical distribution described -by the argument. The arguments are interpreted in the same way as -the @var{M} argument of the random number function @kbd{k r}. In -particular, an interval with integer limits is considered an integer -distribution, so that @samp{[2 .. 6)} is the same as @samp{[2 .. 5]}. -An interval with at least one floating-point limit is a continuous -distribution: @samp{[2.0 .. 6.0)} is @emph{not} the same as -@samp{[2.0 .. 5.0]}! - -@kindex u # -@pindex calc-vector-count -@tindex vcount -The @kbd{u #} (@code{calc-vector-count}) [@code{vcount}] command -computes the number of data values represented by the inputs. -For example, @samp{vcount(1, [2, 3], [[4, 5], [], x, y])} returns 7. -If the argument is a single vector with no sub-vectors, this -simply computes the length of the vector. - -@kindex u + -@kindex u * -@pindex calc-vector-sum -@pindex calc-vector-prod -@tindex vsum -@tindex vprod -@cindex Summations (statistical) -The @kbd{u +} (@code{calc-vector-sum}) [@code{vsum}] command -computes the sum of the data values. The @kbd{u *} -(@code{calc-vector-prod}) [@code{vprod}] command computes the -product of the data values. If the input is a single flat vector, -these are the same as @kbd{V R +} and @kbd{V R *} -(@pxref{Reducing and Mapping}). - -@kindex u X -@kindex u N -@pindex calc-vector-max -@pindex calc-vector-min -@tindex vmax -@tindex vmin -The @kbd{u X} (@code{calc-vector-max}) [@code{vmax}] command -computes the maximum of the data values, and the @kbd{u N} -(@code{calc-vector-min}) [@code{vmin}] command computes the minimum. -If the argument is an interval, this finds the minimum or maximum -value in the interval. (Note that @samp{vmax([2..6)) = 5} as -described above.) If the argument is an error form, this returns -plus or minus infinity. - -@kindex u M -@pindex calc-vector-mean -@tindex vmean -@cindex Mean of data values -The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command -computes the average (arithmetic mean) of the data values. -If the inputs are error forms -@texline @math{x \pm \sigma}, -@infoline @samp{x +/- s}, -this is the weighted mean of the @expr{x} values with weights -@texline @math{1 /\sigma^2}. -@infoline @expr{1 / s^2}. -@tex -\turnoffactive -$$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over - \displaystyle \sum { 1 \over \sigma_i^2 } } $$ -@end tex -If the inputs are not error forms, this is simply the sum of the -values divided by the count of the values. - -Note that a plain number can be considered an error form with -error -@texline @math{\sigma = 0}. -@infoline @expr{s = 0}. -If the input to @kbd{u M} is a mixture of -plain numbers and error forms, the result is the mean of the -plain numbers, ignoring all values with non-zero errors. (By the -above definitions it's clear that a plain number effectively -has an infinite weight, next to which an error form with a finite -weight is completely negligible.) - -This function also works for distributions (error forms or -intervals). The mean of an error form `@var{a} @tfn{+/-} @var{b}' is simply -@expr{a}. The mean of an interval is the mean of the minimum -and maximum values of the interval. - -@kindex I u M -@pindex calc-vector-mean-error -@tindex vmeane -The @kbd{I u M} (@code{calc-vector-mean-error}) [@code{vmeane}] -command computes the mean of the data points expressed as an -error form. This includes the estimated error associated with -the mean. If the inputs are error forms, the error is the square -root of the reciprocal of the sum of the reciprocals of the squares -of the input errors. (I.e., the variance is the reciprocal of the -sum of the reciprocals of the variances.) -@tex -\turnoffactive -$$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$ -@end tex -If the inputs are plain -numbers, the error is equal to the standard deviation of the values -divided by the square root of the number of values. (This works -out to be equivalent to calculating the standard deviation and -then assuming each value's error is equal to this standard -deviation.) -@tex -\turnoffactive -$$ \sigma_\mu^2 = {\sigma^2 \over N} $$ -@end tex - -@kindex H u M -@pindex calc-vector-median -@tindex vmedian -@cindex Median of data values -The @kbd{H u M} (@code{calc-vector-median}) [@code{vmedian}] -command computes the median of the data values. The values are -first sorted into numerical order; the median is the middle -value after sorting. (If the number of data values is even, -the median is taken to be the average of the two middle values.) -The median function is different from the other functions in -this section in that the arguments must all be real numbers; -variables are not accepted even when nested inside vectors. -(Otherwise it is not possible to sort the data values.) If -any of the input values are error forms, their error parts are -ignored. - -The median function also accepts distributions. For both normal -(error form) and uniform (interval) distributions, the median is -the same as the mean. - -@kindex H I u M -@pindex calc-vector-harmonic-mean -@tindex vhmean -@cindex Harmonic mean -The @kbd{H I u M} (@code{calc-vector-harmonic-mean}) [@code{vhmean}] -command computes the harmonic mean of the data values. This is -defined as the reciprocal of the arithmetic mean of the reciprocals -of the values. -@tex -\turnoffactive -$$ { N \over \displaystyle \sum {1 \over x_i} } $$ -@end tex - -@kindex u G -@pindex calc-vector-geometric-mean -@tindex vgmean -@cindex Geometric mean -The @kbd{u G} (@code{calc-vector-geometric-mean}) [@code{vgmean}] -command computes the geometric mean of the data values. This -is the @var{n}th root of the product of the values. This is also -equal to the @code{exp} of the arithmetic mean of the logarithms -of the data values. -@tex -\turnoffactive -$$ \exp \left ( \sum { \ln x_i } \right ) = - \left ( \prod { x_i } \right)^{1 / N} $$ -@end tex - -@kindex H u G -@tindex agmean -The @kbd{H u G} [@code{agmean}] command computes the ``arithmetic-geometric -mean'' of two numbers taken from the stack. This is computed by -replacing the two numbers with their arithmetic mean and geometric -mean, then repeating until the two values converge. -@tex -\turnoffactive -$$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$ -@end tex - -@cindex Root-mean-square -Another commonly used mean, the RMS (root-mean-square), can be computed -for a vector of numbers simply by using the @kbd{A} command. - -@kindex u S -@pindex calc-vector-sdev -@tindex vsdev -@cindex Standard deviation -@cindex Sample statistics -The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command -computes the standard -@texline deviation@tie{}@math{\sigma} -@infoline deviation -of the data values. If the values are error forms, the errors are used -as weights just as for @kbd{u M}. This is the @emph{sample} standard -deviation, whose value is the square root of the sum of the squares of -the differences between the values and the mean of the @expr{N} values, -divided by @expr{N-1}. -@tex -\turnoffactive -$$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$ -@end tex - -This function also applies to distributions. The standard deviation -of a single error form is simply the error part. The standard deviation -of a continuous interval happens to equal the difference between the -limits, divided by -@texline @math{\sqrt{12}}. -@infoline @expr{sqrt(12)}. -The standard deviation of an integer interval is the same as the -standard deviation of a vector of those integers. - -@kindex I u S -@pindex calc-vector-pop-sdev -@tindex vpsdev -@cindex Population statistics -The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}] -command computes the @emph{population} standard deviation. -It is defined by the same formula as above but dividing -by @expr{N} instead of by @expr{N-1}. The population standard -deviation is used when the input represents the entire set of -data values in the distribution; the sample standard deviation -is used when the input represents a sample of the set of all -data values, so that the mean computed from the input is itself -only an estimate of the true mean. -@tex -\turnoffactive -$$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$ -@end tex - -For error forms and continuous intervals, @code{vpsdev} works -exactly like @code{vsdev}. For integer intervals, it computes the -population standard deviation of the equivalent vector of integers. - -@kindex H u S -@kindex H I u S -@pindex calc-vector-variance -@pindex calc-vector-pop-variance -@tindex vvar -@tindex vpvar -@cindex Variance of data values -The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and -@kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}] -commands compute the variance of the data values. The variance -is the -@texline square@tie{}@math{\sigma^2} -@infoline square -of the standard deviation, i.e., the sum of the -squares of the deviations of the data values from the mean. -(This definition also applies when the argument is a distribution.) - -@ignore -@starindex -@end ignore -@tindex vflat -The @code{vflat} algebraic function returns a vector of its -arguments, interpreted in the same way as the other functions -in this section. For example, @samp{vflat(1, [2, [3, 4]], 5)} -returns @samp{[1, 2, 3, 4, 5]}. - -@node Paired-Sample Statistics, , Single-Variable Statistics, Statistical Operations -@subsection Paired-Sample Statistics - -@noindent -The functions in this section take two arguments, which must be -vectors of equal size. The vectors are each flattened in the same -way as by the single-variable statistical functions. Given a numeric -prefix argument of 1, these functions instead take one object from -the stack, which must be an -@texline @math{N\times2} -@infoline Nx2 -matrix of data values. Once again, variable names can be used in place -of actual vectors and matrices. - -@kindex u C -@pindex calc-vector-covariance -@tindex vcov -@cindex Covariance -The @kbd{u C} (@code{calc-vector-covariance}) [@code{vcov}] command -computes the sample covariance of two vectors. The covariance -of vectors @var{x} and @var{y} is the sum of the products of the -differences between the elements of @var{x} and the mean of @var{x} -times the differences between the corresponding elements of @var{y} -and the mean of @var{y}, all divided by @expr{N-1}. Note that -the variance of a vector is just the covariance of the vector -with itself. Once again, if the inputs are error forms the -errors are used as weight factors. If both @var{x} and @var{y} -are composed of error forms, the error for a given data point -is taken as the square root of the sum of the squares of the two -input errors. -@tex -\turnoffactive -$$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$ -$$ \sigma_{x\!y}^2 = - {\displaystyle {1 \over N-1} - \sum {(x_i - \mu_x) (y_i - \mu_y) \over \sigma_i^2} - \over \displaystyle {1 \over N} \sum {1 \over \sigma_i^2}} -$$ -@end tex - -@kindex I u C -@pindex calc-vector-pop-covariance -@tindex vpcov -The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}] -command computes the population covariance, which is the same as the -sample covariance computed by @kbd{u C} except dividing by @expr{N} -instead of @expr{N-1}. - -@kindex H u C -@pindex calc-vector-correlation -@tindex vcorr -@cindex Correlation coefficient -@cindex Linear correlation -The @kbd{H u C} (@code{calc-vector-correlation}) [@code{vcorr}] -command computes the linear correlation coefficient of two vectors. -This is defined by the covariance of the vectors divided by the -product of their standard deviations. (There is no difference -between sample or population statistics here.) -@tex -\turnoffactive -$$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$ -@end tex - -@node Reducing and Mapping, Vector and Matrix Formats, Statistical Operations, Matrix Functions -@section Reducing and Mapping Vectors - -@noindent -The commands in this section allow for more general operations on the -elements of vectors. - -@kindex V A -@pindex calc-apply -@tindex apply -The simplest of these operations is @kbd{V A} (@code{calc-apply}) -[@code{apply}], which applies a given operator to the elements of a vector. -For example, applying the hypothetical function @code{f} to the vector -@w{@samp{[1, 2, 3]}} would produce the function call @samp{f(1, 2, 3)}. -Applying the @code{+} function to the vector @samp{[a, b]} gives -@samp{a + b}. Applying @code{+} to the vector @samp{[a, b, c]} is an -error, since the @code{+} function expects exactly two arguments. - -While @kbd{V A} is useful in some cases, you will usually find that either -@kbd{V R} or @kbd{V M}, described below, is closer to what you want. - -@menu -* Specifying Operators:: -* Mapping:: -* Reducing:: -* Nesting and Fixed Points:: -* Generalized Products:: -@end menu - -@node Specifying Operators, Mapping, Reducing and Mapping, Reducing and Mapping -@subsection Specifying Operators - -@noindent -Commands in this section (like @kbd{V A}) prompt you to press the key -corresponding to the desired operator. Press @kbd{?} for a partial -list of the available operators. Generally, an operator is any key or -sequence of keys that would normally take one or more arguments from -the stack and replace them with a result. For example, @kbd{V A H C} -uses the hyperbolic cosine operator, @code{cosh}. (Since @code{cosh} -expects one argument, @kbd{V A H C} requires a vector with a single -element as its argument.) - -You can press @kbd{x} at the operator prompt to select any algebraic -function by name to use as the operator. This includes functions you -have defined yourself using the @kbd{Z F} command. (@xref{Algebraic -Definitions}.) If you give a name for which no function has been -defined, the result is left in symbolic form, as in @samp{f(1, 2, 3)}. -Calc will prompt for the number of arguments the function takes if it -can't figure it out on its own (say, because you named a function that -is currently undefined). It is also possible to type a digit key before -the function name to specify the number of arguments, e.g., -@kbd{V M 3 x f @key{RET}} calls @code{f} with three arguments even if it -looks like it ought to have only two. This technique may be necessary -if the function allows a variable number of arguments. For example, -the @kbd{v e} [@code{vexp}] function accepts two or three arguments; -if you want to map with the three-argument version, you will have to -type @kbd{V M 3 v e}. - -It is also possible to apply any formula to a vector by treating that -formula as a function. When prompted for the operator to use, press -@kbd{'} (the apostrophe) and type your formula as an algebraic entry. -You will then be prompted for the argument list, which defaults to a -list of all variables that appear in the formula, sorted into alphabetic -order. For example, suppose you enter the formula @w{@samp{x + 2y^x}}. -The default argument list would be @samp{(x y)}, which means that if -this function is applied to the arguments @samp{[3, 10]} the result will -be @samp{3 + 2*10^3}. (If you plan to use a certain formula in this -way often, you might consider defining it as a function with @kbd{Z F}.) - -Another way to specify the arguments to the formula you enter is with -@kbd{$}, @kbd{$$}, and so on. For example, @kbd{V A ' $$ + 2$^$$} -has the same effect as the previous example. The argument list is -automatically taken to be @samp{($$ $)}. (The order of the arguments -may seem backwards, but it is analogous to the way normal algebraic -entry interacts with the stack.) - -If you press @kbd{$} at the operator prompt, the effect is similar to -the apostrophe except that the relevant formula is taken from top-of-stack -instead. The actual vector arguments of the @kbd{V A $} or related command -then start at the second-to-top stack position. You will still be -prompted for an argument list. - -@cindex Nameless functions -@cindex Generic functions -A function can be written without a name using the notation @samp{<#1 - #2>}, -which means ``a function of two arguments that computes the first -argument minus the second argument.'' The symbols @samp{#1} and @samp{#2} -are placeholders for the arguments. You can use any names for these -placeholders if you wish, by including an argument list followed by a -colon: @samp{}. When you type @kbd{V A ' $$ + 2$^$$ @key{RET}}, -Calc builds the nameless function @samp{<#1 + 2 #2^#1>} as the function -to map across the vectors. When you type @kbd{V A ' x + 2y^x @key{RET} @key{RET}}, -Calc builds the nameless function @w{@samp{}}. In both -cases, Calc also writes the nameless function to the Trail so that you -can get it back later if you wish. - -If there is only one argument, you can write @samp{#} in place of @samp{#1}. -(Note that @samp{< >} notation is also used for date forms. Calc tells -that @samp{<@var{stuff}>} is a nameless function by the presence of -@samp{#} signs inside @var{stuff}, or by the fact that @var{stuff} -begins with a list of variables followed by a colon.) - -You can type a nameless function directly to @kbd{V A '}, or put one on -the stack and use it with @w{@kbd{V A $}}. Calc will not prompt for an -argument list in this case, since the nameless function specifies the -argument list as well as the function itself. In @kbd{V A '}, you can -omit the @samp{< >} marks if you use @samp{#} notation for the arguments, -so that @kbd{V A ' #1+#2 @key{RET}} is the same as @kbd{V A ' <#1+#2> @key{RET}}, -which in turn is the same as @kbd{V A ' $$+$ @key{RET}}. - -@cindex Lambda expressions -@ignore -@starindex -@end ignore -@tindex lambda -The internal format for @samp{} is @samp{lambda(x, y, x + y)}. -(The word @code{lambda} derives from Lisp notation and the theory of -functions.) The internal format for @samp{<#1 + #2>} is @samp{lambda(ArgA, -ArgB, ArgA + ArgB)}. Note that there is no actual Calc function called -@code{lambda}; the whole point is that the @code{lambda} expression is -used in its symbolic form, not evaluated for an answer until it is applied -to specific arguments by a command like @kbd{V A} or @kbd{V M}. - -(Actually, @code{lambda} does have one special property: Its arguments -are never evaluated; for example, putting @samp{<(2/3) #>} on the stack -will not simplify the @samp{2/3} until the nameless function is actually -called.) - -@tindex add -@tindex sub -@ignore -@mindex @idots -@end ignore -@tindex mul -@ignore -@mindex @null -@end ignore -@tindex div -@ignore -@mindex @null -@end ignore -@tindex pow -@ignore -@mindex @null -@end ignore -@tindex neg -@ignore -@mindex @null -@end ignore -@tindex mod -@ignore -@mindex @null -@end ignore -@tindex vconcat -As usual, commands like @kbd{V A} have algebraic function name equivalents. -For example, @kbd{V A k g} with an argument of @samp{v} is equivalent to -@samp{apply(gcd, v)}. The first argument specifies the operator name, -and is either a variable whose name is the same as the function name, -or a nameless function like @samp{<#^3+1>}. Operators that are normally -written as algebraic symbols have the names @code{add}, @code{sub}, -@code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and -@code{vconcat}. - -@ignore -@starindex -@end ignore -@tindex call -The @code{call} function builds a function call out of several arguments: -@samp{call(gcd, x, y)} is the same as @samp{apply(gcd, [x, y])}, which -in turn is the same as @samp{gcd(x, y)}. The first argument of @code{call}, -like the other functions described here, may be either a variable naming a -function, or a nameless function (@samp{call(<#1+2#2>, x, y)} is the same -as @samp{x + 2y}). - -(Experts will notice that it's not quite proper to use a variable to name -a function, since the name @code{gcd} corresponds to the Lisp variable -@code{var-gcd} but to the Lisp function @code{calcFunc-gcd}. Calc -automatically makes this translation, so you don't have to worry -about it.) - -@node Mapping, Reducing, Specifying Operators, Reducing and Mapping -@subsection Mapping - -@noindent -@kindex V M -@pindex calc-map -@tindex map -The @kbd{V M} (@code{calc-map}) [@code{map}] command applies a given -operator elementwise to one or more vectors. For example, mapping -@code{A} [@code{abs}] produces a vector of the absolute values of the -elements in the input vector. Mapping @code{+} pops two vectors from -the stack, which must be of equal length, and produces a vector of the -pairwise sums of the elements. If either argument is a non-vector, it -is duplicated for each element of the other vector. For example, -@kbd{[1,2,3] 2 V M ^} squares the elements of the specified vector. -With the 2 listed first, it would have computed a vector of powers of -two. Mapping a user-defined function pops as many arguments from the -stack as the function requires. If you give an undefined name, you will -be prompted for the number of arguments to use. - -If any argument to @kbd{V M} is a matrix, the operator is normally mapped -across all elements of the matrix. For example, given the matrix -@expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to -produce another -@texline @math{3\times2} -@infoline 3x2 -matrix, @expr{[[1, 2, 3], [4, 5, 6]]}. - -@tindex mapr -The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the -operator prompt) maps by rows instead. For example, @kbd{V M _ A} views -the above matrix as a vector of two 3-element row vectors. It produces -a new vector which contains the absolute values of those row vectors, -namely @expr{[3.74, 8.77]}. (Recall, the absolute value of a vector is -defined as the square root of the sum of the squares of the elements.) -Some operators accept vectors and return new vectors; for example, -@kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row -of the matrix to get a new matrix, @expr{[[3, -2, 1], [-6, 5, -4]]}. - -Sometimes a vector of vectors (representing, say, strings, sets, or lists) -happens to look like a matrix. If so, remember to use @kbd{V M _} if you -want to map a function across the whole strings or sets rather than across -their individual elements. - -@tindex mapc -The command @kbd{V M :} [@code{mapc}] maps by columns. Basically, it -transposes the input matrix, maps by rows, and then, if the result is a -matrix, transposes again. For example, @kbd{V M : A} takes the absolute -values of the three columns of the matrix, treating each as a 2-vector, -and @kbd{V M : v v} reverses the columns to get the matrix -@expr{[[-4, 5, -6], [1, -2, 3]]}. - -(The symbols @kbd{_} and @kbd{:} were chosen because they had row-like -and column-like appearances, and were not already taken by useful -operators. Also, they appear shifted on most keyboards so they are easy -to type after @kbd{V M}.) - -The @kbd{_} and @kbd{:} modifiers have no effect on arguments that are -not matrices (so if none of the arguments are matrices, they have no -effect at all). If some of the arguments are matrices and others are -plain numbers, the plain numbers are held constant for all rows of the -matrix (so that @kbd{2 V M _ ^} squares every row of a matrix; squaring -a vector takes a dot product of the vector with itself). - -If some of the arguments are vectors with the same lengths as the -rows (for @kbd{V M _}) or columns (for @kbd{V M :}) of the matrix -arguments, those vectors are also held constant for every row or -column. - -Sometimes it is useful to specify another mapping command as the operator -to use with @kbd{V M}. For example, @kbd{V M _ V A +} applies @kbd{V A +} -to each row of the input matrix, which in turn adds the two values on that -row. If you give another vector-operator command as the operator for -@kbd{V M}, it automatically uses map-by-rows mode if you don't specify -otherwise; thus @kbd{V M V A +} is equivalent to @kbd{V M _ V A +}. (If -you really want to map-by-elements another mapping command, you can use -a triple-nested mapping command: @kbd{V M V M V A +} means to map -@kbd{V M V A +} over the rows of the matrix; in turn, @kbd{V A +} is -mapped over the elements of each row.) - -@tindex mapa -@tindex mapd -Previous versions of Calc had ``map across'' and ``map down'' modes -that are now considered obsolete; the old ``map across'' is now simply -@kbd{V M V A}, and ``map down'' is now @kbd{V M : V A}. The algebraic -functions @code{mapa} and @code{mapd} are still supported, though. -Note also that, while the old mapping modes were persistent (once you -set the mode, it would apply to later mapping commands until you reset -it), the new @kbd{:} and @kbd{_} modifiers apply only to the current -mapping command. The default @kbd{V M} always means map-by-elements. - -@xref{Algebraic Manipulation}, for the @kbd{a M} command, which is like -@kbd{V M} but for equations and inequalities instead of vectors. -@xref{Storing Variables}, for the @kbd{s m} command which modifies a -variable's stored value using a @kbd{V M}-like operator. - -@node Reducing, Nesting and Fixed Points, Mapping, Reducing and Mapping -@subsection Reducing - -@noindent -@kindex V R -@pindex calc-reduce -@tindex reduce -The @kbd{V R} (@code{calc-reduce}) [@code{reduce}] command applies a given -binary operator across all the elements of a vector. A binary operator is -a function such as @code{+} or @code{max} which takes two arguments. For -example, reducing @code{+} over a vector computes the sum of the elements -of the vector. Reducing @code{-} computes the first element minus each of -the remaining elements. Reducing @code{max} computes the maximum element -and so on. In general, reducing @code{f} over the vector @samp{[a, b, c, d]} -produces @samp{f(f(f(a, b), c), d)}. - -@kindex I V R -@tindex rreduce -The @kbd{I V R} [@code{rreduce}] command is similar to @kbd{V R} except -that works from right to left through the vector. For example, plain -@kbd{V R -} on the vector @samp{[a, b, c, d]} produces @samp{a - b - c - d} -but @kbd{I V R -} on the same vector produces @samp{a - (b - (c - d))}, -or @samp{a - b + c - d}. This ``alternating sum'' occurs frequently -in power series expansions. - -@kindex V U -@tindex accum -The @kbd{V U} (@code{calc-accumulate}) [@code{accum}] command does an -accumulation operation. Here Calc does the corresponding reduction -operation, but instead of producing only the final result, it produces -a vector of all the intermediate results. Accumulating @code{+} over -the vector @samp{[a, b, c, d]} produces the vector -@samp{[a, a + b, a + b + c, a + b + c + d]}. - -@kindex I V U -@tindex raccum -The @kbd{I V U} [@code{raccum}] command does a right-to-left accumulation. -For example, @kbd{I V U -} on the vector @samp{[a, b, c, d]} produces the -vector @samp{[a - b + c - d, b - c + d, c - d, d]}. - -@tindex reducea -@tindex rreducea -@tindex reduced -@tindex rreduced -As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise. For -example, given the matrix @expr{[[a, b, c], [d, e, f]]}, @kbd{V R +} will -compute @expr{a + b + c + d + e + f}. You can type @kbd{V R _} or -@kbd{V R :} to modify this behavior. The @kbd{V R _} [@code{reducea}] -command reduces ``across'' the matrix; it reduces each row of the matrix -as a vector, then collects the results. Thus @kbd{V R _ +} of this -matrix would produce @expr{[a + b + c, d + e + f]}. Similarly, @kbd{V R :} -[@code{reduced}] reduces down; @kbd{V R : +} would produce @expr{[a + d, -b + e, c + f]}. - -@tindex reducer -@tindex rreducer -There is a third ``by rows'' mode for reduction that is occasionally -useful; @kbd{V R =} [@code{reducer}] simply reduces the operator over -the rows of the matrix themselves. Thus @kbd{V R = +} on the above -matrix would get the same result as @kbd{V R : +}, since adding two -row vectors is equivalent to adding their elements. But @kbd{V R = *} -would multiply the two rows (to get a single number, their dot product), -while @kbd{V R : *} would produce a vector of the products of the columns. - -These three matrix reduction modes work with @kbd{V R} and @kbd{I V R}, -but they are not currently supported with @kbd{V U} or @kbd{I V U}. - -@tindex reducec -@tindex rreducec -The obsolete reduce-by-columns function, @code{reducec}, is still -supported but there is no way to get it through the @kbd{V R} command. - -The commands @kbd{C-x * :} and @kbd{C-x * _} are equivalent to typing -@kbd{C-x * r} to grab a rectangle of data into Calc, and then typing -@kbd{V R : +} or @kbd{V R _ +}, respectively, to sum the columns or -rows of the matrix. @xref{Grabbing From Buffers}. - -@node Nesting and Fixed Points, Generalized Products, Reducing, Reducing and Mapping -@subsection Nesting and Fixed Points - -@noindent -@kindex H V R -@tindex nest -The @kbd{H V R} [@code{nest}] command applies a function to a given -argument repeatedly. It takes two values, @samp{a} and @samp{n}, from -the stack, where @samp{n} must be an integer. It then applies the -function nested @samp{n} times; if the function is @samp{f} and @samp{n} -is 3, the result is @samp{f(f(f(a)))}. The number @samp{n} may be -negative if Calc knows an inverse for the function @samp{f}; for -example, @samp{nest(sin, a, -2)} returns @samp{arcsin(arcsin(a))}. - -@kindex H V U -@tindex anest -The @kbd{H V U} [@code{anest}] command is an accumulating version of -@code{nest}: It returns a vector of @samp{n+1} values, e.g., -@samp{[a, f(a), f(f(a)), f(f(f(a)))]}. If @samp{n} is negative and -@samp{F} is the inverse of @samp{f}, then the result is of the -form @samp{[a, F(a), F(F(a)), F(F(F(a)))]}. - -@kindex H I V R -@tindex fixp -@cindex Fixed points -The @kbd{H I V R} [@code{fixp}] command is like @kbd{H V R}, except -that it takes only an @samp{a} value from the stack; the function is -applied until it reaches a ``fixed point,'' i.e., until the result -no longer changes. - -@kindex H I V U -@tindex afixp -The @kbd{H I V U} [@code{afixp}] command is an accumulating @code{fixp}. -The first element of the return vector will be the initial value @samp{a}; -the last element will be the final result that would have been returned -by @code{fixp}. - -For example, 0.739085 is a fixed point of the cosine function (in radians): -@samp{cos(0.739085) = 0.739085}. You can find this value by putting, say, -1.0 on the stack and typing @kbd{H I V U C}. (We use the accumulating -version so we can see the intermediate results: @samp{[1, 0.540302, 0.857553, -0.65329, ...]}. With a precision of six, this command will take 36 steps -to converge to 0.739085.) - -Newton's method for finding roots is a classic example of iteration -to a fixed point. To find the square root of five starting with an -initial guess, Newton's method would look for a fixed point of the -function @samp{(x + 5/x) / 2}. Putting a guess of 1 on the stack -and typing @kbd{H I V R ' ($ + 5/$)/2 @key{RET}} quickly yields the result -2.23607. This is equivalent to using the @kbd{a R} (@code{calc-find-root}) -command to find a root of the equation @samp{x^2 = 5}. - -These examples used numbers for @samp{a} values. Calc keeps applying -the function until two successive results are equal to within the -current precision. For complex numbers, both the real parts and the -imaginary parts must be equal to within the current precision. If -@samp{a} is a formula (say, a variable name), then the function is -applied until two successive results are exactly the same formula. -It is up to you to ensure that the function will eventually converge; -if it doesn't, you may have to press @kbd{C-g} to stop the Calculator. - -The algebraic @code{fixp} function takes two optional arguments, @samp{n} -and @samp{tol}. The first is the maximum number of steps to be allowed, -and must be either an integer or the symbol @samp{inf} (infinity, the -default). The second is a convergence tolerance. If a tolerance is -specified, all results during the calculation must be numbers, not -formulas, and the iteration stops when the magnitude of the difference -between two successive results is less than or equal to the tolerance. -(This implies that a tolerance of zero iterates until the results are -exactly equal.) - -Putting it all together, @samp{fixp(<(# + A/#)/2>, B, 20, 1e-10)} -computes the square root of @samp{A} given the initial guess @samp{B}, -stopping when the result is correct within the specified tolerance, or -when 20 steps have been taken, whichever is sooner. - -@node Generalized Products, , Nesting and Fixed Points, Reducing and Mapping -@subsection Generalized Products - -@kindex V O -@pindex calc-outer-product -@tindex outer -The @kbd{V O} (@code{calc-outer-product}) [@code{outer}] command applies -a given binary operator to all possible pairs of elements from two -vectors, to produce a matrix. For example, @kbd{V O *} with @samp{[a, b]} -and @samp{[x, y, z]} on the stack produces a multiplication table: -@samp{[[a x, a y, a z], [b x, b y, b z]]}. Element @var{r},@var{c} of -the result matrix is obtained by applying the operator to element @var{r} -of the lefthand vector and element @var{c} of the righthand vector. - -@kindex V I -@pindex calc-inner-product -@tindex inner -The @kbd{V I} (@code{calc-inner-product}) [@code{inner}] command computes -the generalized inner product of two vectors or matrices, given a -``multiplicative'' operator and an ``additive'' operator. These can each -actually be any binary operators; if they are @samp{*} and @samp{+}, -respectively, the result is a standard matrix multiplication. Element -@var{r},@var{c} of the result matrix is obtained by mapping the -multiplicative operator across row @var{r} of the lefthand matrix and -column @var{c} of the righthand matrix, and then reducing with the additive -operator. Just as for the standard @kbd{*} command, this can also do a -vector-matrix or matrix-vector inner product, or a vector-vector -generalized dot product. - -Since @kbd{V I} requires two operators, it prompts twice. In each case, -you can use any of the usual methods for entering the operator. If you -use @kbd{$} twice to take both operator formulas from the stack, the -first (multiplicative) operator is taken from the top of the stack -and the second (additive) operator is taken from second-to-top. - -@node Vector and Matrix Formats, , Reducing and Mapping, Matrix Functions -@section Vector and Matrix Display Formats - -@noindent -Commands for controlling vector and matrix display use the @kbd{v} prefix -instead of the usual @kbd{d} prefix. But they are display modes; in -particular, they are influenced by the @kbd{I} and @kbd{H} prefix keys -in the same way (@pxref{Display Modes}). Matrix display is also -influenced by the @kbd{d O} (@code{calc-flat-language}) mode; -@pxref{Normal Language Modes}. - -@kindex V < -@pindex calc-matrix-left-justify -@kindex V = -@pindex calc-matrix-center-justify -@kindex V > -@pindex calc-matrix-right-justify -The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >} -(@code{calc-matrix-right-justify}), and @w{@kbd{v =}} -(@code{calc-matrix-center-justify}) control whether matrix elements -are justified to the left, right, or center of their columns. - -@kindex V [ -@pindex calc-vector-brackets -@kindex V @{ -@pindex calc-vector-braces -@kindex V ( -@pindex calc-vector-parens -The @kbd{v [} (@code{calc-vector-brackets}) command turns the square -brackets that surround vectors and matrices displayed in the stack on -and off. The @kbd{v @{} (@code{calc-vector-braces}) and @kbd{v (} -(@code{calc-vector-parens}) commands use curly braces or parentheses, -respectively, instead of square brackets. For example, @kbd{v @{} might -be used in preparation for yanking a matrix into a buffer running -Mathematica. (In fact, the Mathematica language mode uses this mode; -@pxref{Mathematica Language Mode}.) Note that, regardless of the -display mode, either brackets or braces may be used to enter vectors, -and parentheses may never be used for this purpose. - -@kindex V ] -@pindex calc-matrix-brackets -The @kbd{v ]} (@code{calc-matrix-brackets}) command controls the -``big'' style display of matrices. It prompts for a string of code -letters; currently implemented letters are @code{R}, which enables -brackets on each row of the matrix; @code{O}, which enables outer -brackets in opposite corners of the matrix; and @code{C}, which -enables commas or semicolons at the ends of all rows but the last. -The default format is @samp{RO}. (Before Calc 2.00, the format -was fixed at @samp{ROC}.) Here are some example matrices: - -@example -@group -[ [ 123, 0, 0 ] [ [ 123, 0, 0 ], - [ 0, 123, 0 ] [ 0, 123, 0 ], - [ 0, 0, 123 ] ] [ 0, 0, 123 ] ] - - RO ROC - -@end group -@end example -@noindent -@example -@group - [ 123, 0, 0 [ 123, 0, 0 ; - 0, 123, 0 0, 123, 0 ; - 0, 0, 123 ] 0, 0, 123 ] - - O OC - -@end group -@end example -@noindent -@example -@group - [ 123, 0, 0 ] 123, 0, 0 - [ 0, 123, 0 ] 0, 123, 0 - [ 0, 0, 123 ] 0, 0, 123 - - R @r{blank} -@end group -@end example - -@noindent -Note that of the formats shown here, @samp{RO}, @samp{ROC}, and -@samp{OC} are all recognized as matrices during reading, while -the others are useful for display only. - -@kindex V , -@pindex calc-vector-commas -The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and -off in vector and matrix display. - -In vectors of length one, and in all vectors when commas have been -turned off, Calc adds extra parentheses around formulas that might -otherwise be ambiguous. For example, @samp{[a b]} could be a vector -of the one formula @samp{a b}, or it could be a vector of two -variables with commas turned off. Calc will display the former -case as @samp{[(a b)]}. You can disable these extra parentheses -(to make the output less cluttered at the expense of allowing some -ambiguity) by adding the letter @code{P} to the control string you -give to @kbd{v ]} (as described above). - -@kindex V . -@pindex calc-full-vectors -The @kbd{v .} (@code{calc-full-vectors}) command turns abbreviated -display of long vectors on and off. In this mode, vectors of six -or more elements, or matrices of six or more rows or columns, will -be displayed in an abbreviated form that displays only the first -three elements and the last element: @samp{[a, b, c, ..., z]}. -When very large vectors are involved this will substantially -improve Calc's display speed. - -@kindex t . -@pindex calc-full-trail-vectors -The @kbd{t .} (@code{calc-full-trail-vectors}) command controls a -similar mode for recording vectors in the Trail. If you turn on -this mode, vectors of six or more elements and matrices of six or -more rows or columns will be abbreviated when they are put in the -Trail. The @kbd{t y} (@code{calc-trail-yank}) command will be -unable to recover those vectors. If you are working with very -large vectors, this mode will improve the speed of all operations -that involve the trail. - -@kindex V / -@pindex calc-break-vectors -The @kbd{v /} (@code{calc-break-vectors}) command turns multi-line -vector display on and off. Normally, matrices are displayed with one -row per line but all other types of vectors are displayed in a single -line. This mode causes all vectors, whether matrices or not, to be -displayed with a single element per line. Sub-vectors within the -vectors will still use the normal linear form. - -@node Algebra, Units, Matrix Functions, Top -@chapter Algebra - -@noindent -This section covers the Calc features that help you work with -algebraic formulas. First, the general sub-formula selection -mechanism is described; this works in conjunction with any Calc -commands. Then, commands for specific algebraic operations are -described. Finally, the flexible @dfn{rewrite rule} mechanism -is discussed. - -The algebraic commands use the @kbd{a} key prefix; selection -commands use the @kbd{j} (for ``just a letter that wasn't used -for anything else'') prefix. - -@xref{Editing Stack Entries}, to see how to manipulate formulas -using regular Emacs editing commands. - -When doing algebraic work, you may find several of the Calculator's -modes to be helpful, including Algebraic Simplification mode (@kbd{m A}) -or No-Simplification mode (@kbd{m O}), -Algebraic entry mode (@kbd{m a}), Fraction mode (@kbd{m f}), and -Symbolic mode (@kbd{m s}). @xref{Mode Settings}, for discussions -of these modes. You may also wish to select Big display mode (@kbd{d B}). -@xref{Normal Language Modes}. - -@menu -* Selecting Subformulas:: -* Algebraic Manipulation:: -* Simplifying Formulas:: -* Polynomials:: -* Calculus:: -* Solving Equations:: -* Numerical Solutions:: -* Curve Fitting:: -* Summations:: -* Logical Operations:: -* Rewrite Rules:: -@end menu - -@node Selecting Subformulas, Algebraic Manipulation, Algebra, Algebra -@section Selecting Sub-Formulas - -@noindent -@cindex Selections -@cindex Sub-formulas -@cindex Parts of formulas -When working with an algebraic formula it is often necessary to -manipulate a portion of the formula rather than the formula as a -whole. Calc allows you to ``select'' a portion of any formula on -the stack. Commands which would normally operate on that stack -entry will now operate only on the sub-formula, leaving the -surrounding part of the stack entry alone. - -One common non-algebraic use for selection involves vectors. To work -on one element of a vector in-place, simply select that element as a -``sub-formula'' of the vector. - -@menu -* Making Selections:: -* Changing Selections:: -* Displaying Selections:: -* Operating on Selections:: -* Rearranging with Selections:: -@end menu - -@node Making Selections, Changing Selections, Selecting Subformulas, Selecting Subformulas -@subsection Making Selections - -@noindent -@kindex j s -@pindex calc-select-here -To select a sub-formula, move the Emacs cursor to any character in that -sub-formula, and press @w{@kbd{j s}} (@code{calc-select-here}). Calc will -highlight the smallest portion of the formula that contains that -character. By default the sub-formula is highlighted by blanking out -all of the rest of the formula with dots. Selection works in any -display mode but is perhaps easiest in Big mode (@kbd{d B}). -Suppose you enter the following formula: - -@smallexample -@group - 3 ___ - (a + b) + V c -1: --------------- - 2 x + 1 -@end group -@end smallexample - -@noindent -(by typing @kbd{' ((a+b)^3 + sqrt(c)) / (2x+1)}). If you move the -cursor to the letter @samp{b} and press @w{@kbd{j s}}, the display changes -to - -@smallexample -@group - . ... - .. . b. . . . -1* ............... - . . . . -@end group -@end smallexample - -@noindent -Every character not part of the sub-formula @samp{b} has been changed -to a dot. The @samp{*} next to the line number is to remind you that -the formula has a portion of it selected. (In this case, it's very -obvious, but it might not always be. If Embedded mode is enabled, -the word @samp{Sel} also appears in the mode line because the stack -may not be visible. @pxref{Embedded Mode}.) - -If you had instead placed the cursor on the parenthesis immediately to -the right of the @samp{b}, the selection would have been: - -@smallexample -@group - . ... - (a + b) . . . -1* ............... - . . . . -@end group -@end smallexample - -@noindent -The portion selected is always large enough to be considered a complete -formula all by itself, so selecting the parenthesis selects the whole -formula that it encloses. Putting the cursor on the @samp{+} sign -would have had the same effect. - -(Strictly speaking, the Emacs cursor is really the manifestation of -the Emacs ``point,'' which is a position @emph{between} two characters -in the buffer. So purists would say that Calc selects the smallest -sub-formula which contains the character to the right of ``point.'') - -If you supply a numeric prefix argument @var{n}, the selection is -expanded to the @var{n}th enclosing sub-formula. Thus, positioning -the cursor on the @samp{b} and typing @kbd{C-u 1 j s} will select -@samp{a + b}; typing @kbd{C-u 2 j s} will select @samp{(a + b)^3}, -and so on. - -If the cursor is not on any part of the formula, or if you give a -numeric prefix that is too large, the entire formula is selected. - -If the cursor is on the @samp{.} line that marks the top of the stack -(i.e., its normal ``rest position''), this command selects the entire -formula at stack level 1. Most selection commands similarly operate -on the formula at the top of the stack if you haven't positioned the -cursor on any stack entry. - -@kindex j a -@pindex calc-select-additional -The @kbd{j a} (@code{calc-select-additional}) command enlarges the -current selection to encompass the cursor. To select the smallest -sub-formula defined by two different points, move to the first and -press @kbd{j s}, then move to the other and press @kbd{j a}. This -is roughly analogous to using @kbd{C-@@} (@code{set-mark-command}) to -select the two ends of a region of text during normal Emacs editing. - -@kindex j o -@pindex calc-select-once -The @kbd{j o} (@code{calc-select-once}) command selects a formula in -exactly the same way as @kbd{j s}, except that the selection will -last only as long as the next command that uses it. For example, -@kbd{j o 1 +} is a handy way to add one to the sub-formula indicated -by the cursor. - -(A somewhat more precise definition: The @kbd{j o} command sets a flag -such that the next command involving selected stack entries will clear -the selections on those stack entries afterwards. All other selection -commands except @kbd{j a} and @kbd{j O} clear this flag.) - -@kindex j S -@kindex j O -@pindex calc-select-here-maybe -@pindex calc-select-once-maybe -The @kbd{j S} (@code{calc-select-here-maybe}) and @kbd{j O} -(@code{calc-select-once-maybe}) commands are equivalent to @kbd{j s} -and @kbd{j o}, respectively, except that if the formula already -has a selection they have no effect. This is analogous to the -behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection}; -@pxref{Selections with Rewrite Rules}) and is mainly intended to be -used in keyboard macros that implement your own selection-oriented -commands. - -Selection of sub-formulas normally treats associative terms like -@samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula. -If you place the cursor anywhere inside @samp{a + b - c + d} except -on one of the variable names and use @kbd{j s}, you will select the -entire four-term sum. - -@kindex j b -@pindex calc-break-selections -The @kbd{j b} (@code{calc-break-selections}) command controls a mode -in which the ``deep structure'' of these associative formulas shows -through. Calc actually stores the above formulas as @samp{((a + b) - c) + d} -and @samp{x * (y * z)}. (Note that for certain obscure reasons, Calc -treats multiplication as right-associative.) Once you have enabled -@kbd{j b} mode, selecting with the cursor on the @samp{-} sign would -only select the @samp{a + b - c} portion, which makes sense when the -deep structure of the sum is considered. There is no way to select -the @samp{b - c + d} portion; although this might initially look -like just as legitimate a sub-formula as @samp{a + b - c}, the deep -structure shows that it isn't. The @kbd{d U} command can be used -to view the deep structure of any formula (@pxref{Normal Language Modes}). - -When @kbd{j b} mode has not been enabled, the deep structure is -generally hidden by the selection commands---what you see is what -you get. - -@kindex j u -@pindex calc-unselect -The @kbd{j u} (@code{calc-unselect}) command unselects the formula -that the cursor is on. If there was no selection in the formula, -this command has no effect. With a numeric prefix argument, it -unselects the @var{n}th stack element rather than using the cursor -position. - -@kindex j c -@pindex calc-clear-selections -The @kbd{j c} (@code{calc-clear-selections}) command unselects all -stack elements. - -@node Changing Selections, Displaying Selections, Making Selections, Selecting Subformulas -@subsection Changing Selections - -@noindent -@kindex j m -@pindex calc-select-more -Once you have selected a sub-formula, you can expand it using the -@w{@kbd{j m}} (@code{calc-select-more}) command. If @samp{a + b} is -selected, pressing @w{@kbd{j m}} repeatedly works as follows: - -@smallexample -@group - 3 ... 3 ___ 3 ___ - (a + b) . . . (a + b) + V c (a + b) + V c -1* ............... 1* ............... 1* --------------- - . . . . . . . . 2 x + 1 -@end group -@end smallexample - -@noindent -In the last example, the entire formula is selected. This is roughly -the same as having no selection at all, but because there are subtle -differences the @samp{*} character is still there on the line number. - -With a numeric prefix argument @var{n}, @kbd{j m} expands @var{n} -times (or until the entire formula is selected). Note that @kbd{j s} -with argument @var{n} is equivalent to plain @kbd{j s} followed by -@kbd{j m} with argument @var{n}. If @w{@kbd{j m}} is used when there -is no current selection, it is equivalent to @w{@kbd{j s}}. - -Even though @kbd{j m} does not explicitly use the location of the -cursor within the formula, it nevertheless uses the cursor to determine -which stack element to operate on. As usual, @kbd{j m} when the cursor -is not on any stack element operates on the top stack element. - -@kindex j l -@pindex calc-select-less -The @kbd{j l} (@code{calc-select-less}) command reduces the current -selection around the cursor position. That is, it selects the -immediate sub-formula of the current selection which contains the -cursor, the opposite of @kbd{j m}. If the cursor is not inside the -current selection, the command de-selects the formula. - -@kindex j 1-9 -@pindex calc-select-part -The @kbd{j 1} through @kbd{j 9} (@code{calc-select-part}) commands -select the @var{n}th sub-formula of the current selection. They are -like @kbd{j l} (@code{calc-select-less}) except they use counting -rather than the cursor position to decide which sub-formula to select. -For example, if the current selection is @kbd{a + b + c} or -@kbd{f(a, b, c)} or @kbd{[a, b, c]}, then @kbd{j 1} selects @samp{a}, -@kbd{j 2} selects @samp{b}, and @kbd{j 3} selects @samp{c}; in each of -these cases, @kbd{j 4} through @kbd{j 9} would be errors. - -If there is no current selection, @kbd{j 1} through @kbd{j 9} select -the @var{n}th top-level sub-formula. (In other words, they act as if -the entire stack entry were selected first.) To select the @var{n}th -sub-formula where @var{n} is greater than nine, you must instead invoke -@w{@kbd{j 1}} with @var{n} as a numeric prefix argument. - -@kindex j n -@kindex j p -@pindex calc-select-next -@pindex calc-select-previous -The @kbd{j n} (@code{calc-select-next}) and @kbd{j p} -(@code{calc-select-previous}) commands change the current selection -to the next or previous sub-formula at the same level. For example, -if @samp{b} is selected in @w{@samp{2 + a*b*c + x}}, then @kbd{j n} -selects @samp{c}. Further @kbd{j n} commands would be in error because, -even though there is something to the right of @samp{c} (namely, @samp{x}), -it is not at the same level; in this case, it is not a term of the -same product as @samp{b} and @samp{c}. However, @kbd{j m} (to select -the whole product @samp{a*b*c} as a term of the sum) followed by -@w{@kbd{j n}} would successfully select the @samp{x}. - -Similarly, @kbd{j p} moves the selection from the @samp{b} in this -sample formula to the @samp{a}. Both commands accept numeric prefix -arguments to move several steps at a time. - -It is interesting to compare Calc's selection commands with the -Emacs Info system's commands for navigating through hierarchically -organized documentation. Calc's @kbd{j n} command is completely -analogous to Info's @kbd{n} command. Likewise, @kbd{j p} maps to -@kbd{p}, @kbd{j 2} maps to @kbd{2}, and Info's @kbd{u} is like @kbd{j m}. -(Note that @kbd{j u} stands for @code{calc-unselect}, not ``up''.) -The Info @kbd{m} command is somewhat similar to Calc's @kbd{j s} and -@kbd{j l}; in each case, you can jump directly to a sub-component -of the hierarchy simply by pointing to it with the cursor. - -@node Displaying Selections, Operating on Selections, Changing Selections, Selecting Subformulas -@subsection Displaying Selections - -@noindent -@kindex j d -@pindex calc-show-selections -The @kbd{j d} (@code{calc-show-selections}) command controls how -selected sub-formulas are displayed. One of the alternatives is -illustrated in the above examples; if we press @kbd{j d} we switch -to the other style in which the selected portion itself is obscured -by @samp{#} signs: - -@smallexample -@group - 3 ... # ___ - (a + b) . . . ## # ## + V c -1* ............... 1* --------------- - . . . . 2 x + 1 -@end group -@end smallexample - -@node Operating on Selections, Rearranging with Selections, Displaying Selections, Selecting Subformulas -@subsection Operating on Selections - -@noindent -Once a selection is made, all Calc commands that manipulate items -on the stack will operate on the selected portions of the items -instead. (Note that several stack elements may have selections -at once, though there can be only one selection at a time in any -given stack element.) - -@kindex j e -@pindex calc-enable-selections -The @kbd{j e} (@code{calc-enable-selections}) command disables the -effect that selections have on Calc commands. The current selections -still exist, but Calc commands operate on whole stack elements anyway. -This mode can be identified by the fact that the @samp{*} markers on -the line numbers are gone, even though selections are visible. To -reactivate the selections, press @kbd{j e} again. - -To extract a sub-formula as a new formula, simply select the -sub-formula and press @key{RET}. This normally duplicates the top -stack element; here it duplicates only the selected portion of that -element. - -To replace a sub-formula with something different, you can enter the -new value onto the stack and press @key{TAB}. This normally exchanges -the top two stack elements; here it swaps the value you entered into -the selected portion of the formula, returning the old selected -portion to the top of the stack. - -@smallexample -@group - 3 ... ... ___ - (a + b) . . . 17 x y . . . 17 x y + V c -2* ............... 2* ............. 2: ------------- - . . . . . . . . 2 x + 1 - - 3 3 -1: 17 x y 1: (a + b) 1: (a + b) -@end group -@end smallexample - -In this example we select a sub-formula of our original example, -enter a new formula, @key{TAB} it into place, then deselect to see -the complete, edited formula. - -If you want to swap whole formulas around even though they contain -selections, just use @kbd{j e} before and after. - -@kindex j ' -@pindex calc-enter-selection -The @kbd{j '} (@code{calc-enter-selection}) command is another way -to replace a selected sub-formula. This command does an algebraic -entry just like the regular @kbd{'} key. When you press @key{RET}, -the formula you type replaces the original selection. You can use -the @samp{$} symbol in the formula to refer to the original -selection. If there is no selection in the formula under the cursor, -the cursor is used to make a temporary selection for the purposes of -the command. Thus, to change a term of a formula, all you have to -do is move the Emacs cursor to that term and press @kbd{j '}. - -@kindex j ` -@pindex calc-edit-selection -The @kbd{j `} (@code{calc-edit-selection}) command is a similar -analogue of the @kbd{`} (@code{calc-edit}) command. It edits the -selected sub-formula in a separate buffer. If there is no -selection, it edits the sub-formula indicated by the cursor. - -To delete a sub-formula, press @key{DEL}. This generally replaces -the sub-formula with the constant zero, but in a few suitable contexts -it uses the constant one instead. The @key{DEL} key automatically -deselects and re-simplifies the entire formula afterwards. Thus: - -@smallexample -@group - ### - 17 x y + # # 17 x y 17 # y 17 y -1* ------------- 1: ------- 1* ------- 1: ------- - 2 x + 1 2 x + 1 2 x + 1 2 x + 1 -@end group -@end smallexample - -In this example, we first delete the @samp{sqrt(c)} term; Calc -accomplishes this by replacing @samp{sqrt(c)} with zero and -resimplifying. We then delete the @kbd{x} in the numerator; -since this is part of a product, Calc replaces it with @samp{1} -and resimplifies. - -If you select an element of a vector and press @key{DEL}, that -element is deleted from the vector. If you delete one side of -an equation or inequality, only the opposite side remains. - -@kindex j @key{DEL} -@pindex calc-del-selection -The @kbd{j @key{DEL}} (@code{calc-del-selection}) command is like -@key{DEL} but with the auto-selecting behavior of @kbd{j '} and -@kbd{j `}. It deletes the selected portion of the formula -indicated by the cursor, or, in the absence of a selection, it -deletes the sub-formula indicated by the cursor position. - -@kindex j @key{RET} -@pindex calc-grab-selection -(There is also an auto-selecting @kbd{j @key{RET}} (@code{calc-copy-selection}) -command.) - -Normal arithmetic operations also apply to sub-formulas. Here we -select the denominator, press @kbd{5 -} to subtract five from the -denominator, press @kbd{n} to negate the denominator, then -press @kbd{Q} to take the square root. - -@smallexample -@group - .. . .. . .. . .. . -1* ....... 1* ....... 1* ....... 1* .......... - 2 x + 1 2 x - 4 4 - 2 x _________ - V 4 - 2 x -@end group -@end smallexample - -Certain types of operations on selections are not allowed. For -example, for an arithmetic function like @kbd{-} no more than one of -the arguments may be a selected sub-formula. (As the above example -shows, the result of the subtraction is spliced back into the argument -which had the selection; if there were more than one selection involved, -this would not be well-defined.) If you try to subtract two selections, -the command will abort with an error message. - -Operations on sub-formulas sometimes leave the formula as a whole -in an ``un-natural'' state. Consider negating the @samp{2 x} term -of our sample formula by selecting it and pressing @kbd{n} -(@code{calc-change-sign}). - -@smallexample -@group - .. . .. . -1* .......... 1* ........... - ......... .......... - . . . 2 x . . . -2 x -@end group -@end smallexample - -Unselecting the sub-formula reveals that the minus sign, which would -normally have cancelled out with the subtraction automatically, has -not been able to do so because the subtraction was not part of the -selected portion. Pressing @kbd{=} (@code{calc-evaluate}) or doing -any other mathematical operation on the whole formula will cause it -to be simplified. - -@smallexample -@group - 17 y 17 y -1: ----------- 1: ---------- - __________ _________ - V 4 - -2 x V 4 + 2 x -@end group -@end smallexample - -@node Rearranging with Selections, , Operating on Selections, Selecting Subformulas -@subsection Rearranging Formulas using Selections - -@noindent -@kindex j R -@pindex calc-commute-right -The @kbd{j R} (@code{calc-commute-right}) command moves the selected -sub-formula to the right in its surrounding formula. Generally the -selection is one term of a sum or product; the sum or product is -rearranged according to the commutative laws of algebra. - -As with @kbd{j '} and @kbd{j @key{DEL}}, the term under the cursor is used -if there is no selection in the current formula. All commands described -in this section share this property. In this example, we place the -cursor on the @samp{a} and type @kbd{j R}, then repeat. - -@smallexample -1: a + b - c 1: b + a - c 1: b - c + a -@end smallexample - -@noindent -Note that in the final step above, the @samp{a} is switched with -the @samp{c} but the signs are adjusted accordingly. When moving -terms of sums and products, @kbd{j R} will never change the -mathematical meaning of the formula. - -The selected term may also be an element of a vector or an argument -of a function. The term is exchanged with the one to its right. -In this case, the ``meaning'' of the vector or function may of -course be drastically changed. - -@smallexample -1: [a, b, c] 1: [b, a, c] 1: [b, c, a] - -1: f(a, b, c) 1: f(b, a, c) 1: f(b, c, a) -@end smallexample - -@kindex j L -@pindex calc-commute-left -The @kbd{j L} (@code{calc-commute-left}) command is like @kbd{j R} -except that it swaps the selected term with the one to its left. - -With numeric prefix arguments, these commands move the selected -term several steps at a time. It is an error to try to move a -term left or right past the end of its enclosing formula. -With numeric prefix arguments of zero, these commands move the -selected term as far as possible in the given direction. - -@kindex j D -@pindex calc-sel-distribute -The @kbd{j D} (@code{calc-sel-distribute}) command mixes the selected -sum or product into the surrounding formula using the distributive -law. For example, in @samp{a * (b - c)} with the @samp{b - c} -selected, the result is @samp{a b - a c}. This also distributes -products or quotients into surrounding powers, and can also do -transformations like @samp{exp(a + b)} to @samp{exp(a) exp(b)}, -where @samp{a + b} is the selected term, and @samp{ln(a ^ b)} -to @samp{ln(a) b}, where @samp{a ^ b} is the selected term. - -For multiple-term sums or products, @kbd{j D} takes off one term -at a time: @samp{a * (b + c - d)} goes to @samp{a * (c - d) + a b} -with the @samp{c - d} selected so that you can type @kbd{j D} -repeatedly to expand completely. The @kbd{j D} command allows a -numeric prefix argument which specifies the maximum number of -times to expand at once; the default is one time only. - -@vindex DistribRules -The @kbd{j D} command is implemented using rewrite rules. -@xref{Selections with Rewrite Rules}. The rules are stored in -the Calc variable @code{DistribRules}. A convenient way to view -these rules is to use @kbd{s e} (@code{calc-edit-variable}) which -displays and edits the stored value of a variable. Press @kbd{C-c C-c} -to return from editing mode; be careful not to make any actual changes -or else you will affect the behavior of future @kbd{j D} commands! - -To extend @kbd{j D} to handle new cases, just edit @code{DistribRules} -as described above. You can then use the @kbd{s p} command to save -this variable's value permanently for future Calc sessions. -@xref{Operations on Variables}. - -@kindex j M -@pindex calc-sel-merge -@vindex MergeRules -The @kbd{j M} (@code{calc-sel-merge}) command is the complement -of @kbd{j D}; given @samp{a b - a c} with either @samp{a b} or -@samp{a c} selected, the result is @samp{a * (b - c)}. Once -again, @kbd{j M} can also merge calls to functions like @code{exp} -and @code{ln}; examine the variable @code{MergeRules} to see all -the relevant rules. - -@kindex j C -@pindex calc-sel-commute -@vindex CommuteRules -The @kbd{j C} (@code{calc-sel-commute}) command swaps the arguments -of the selected sum, product, or equation. It always behaves as -if @kbd{j b} mode were in effect, i.e., the sum @samp{a + b + c} is -treated as the nested sums @samp{(a + b) + c} by this command. -If you put the cursor on the first @samp{+}, the result is -@samp{(b + a) + c}; if you put the cursor on the second @samp{+}, the -result is @samp{c + (a + b)} (which the default simplifications -will rearrange to @samp{(c + a) + b}). The relevant rules are stored -in the variable @code{CommuteRules}. - -You may need to turn default simplifications off (with the @kbd{m O} -command) in order to get the full benefit of @kbd{j C}. For example, -commuting @samp{a - b} produces @samp{-b + a}, but the default -simplifications will ``simplify'' this right back to @samp{a - b} if -you don't turn them off. The same is true of some of the other -manipulations described in this section. - -@kindex j N -@pindex calc-sel-negate -@vindex NegateRules -The @kbd{j N} (@code{calc-sel-negate}) command replaces the selected -term with the negative of that term, then adjusts the surrounding -formula in order to preserve the meaning. For example, given -@samp{exp(a - b)} where @samp{a - b} is selected, the result is -@samp{1 / exp(b - a)}. By contrast, selecting a term and using the -regular @kbd{n} (@code{calc-change-sign}) command negates the -term without adjusting the surroundings, thus changing the meaning -of the formula as a whole. The rules variable is @code{NegateRules}. - -@kindex j & -@pindex calc-sel-invert -@vindex InvertRules -The @kbd{j &} (@code{calc-sel-invert}) command is similar to @kbd{j N} -except it takes the reciprocal of the selected term. For example, -given @samp{a - ln(b)} with @samp{b} selected, the result is -@samp{a + ln(1/b)}. The rules variable is @code{InvertRules}. - -@kindex j E -@pindex calc-sel-jump-equals -@vindex JumpRules -The @kbd{j E} (@code{calc-sel-jump-equals}) command moves the -selected term from one side of an equation to the other. Given -@samp{a + b = c + d} with @samp{c} selected, the result is -@samp{a + b - c = d}. This command also works if the selected -term is part of a @samp{*}, @samp{/}, or @samp{^} formula. The -relevant rules variable is @code{JumpRules}. - -@kindex j I -@kindex H j I -@pindex calc-sel-isolate -The @kbd{j I} (@code{calc-sel-isolate}) command isolates the -selected term on its side of an equation. It uses the @kbd{a S} -(@code{calc-solve-for}) command to solve the equation, and the -Hyperbolic flag affects it in the same way. @xref{Solving Equations}. -When it applies, @kbd{j I} is often easier to use than @kbd{j E}. -It understands more rules of algebra, and works for inequalities -as well as equations. - -@kindex j * -@kindex j / -@pindex calc-sel-mult-both-sides -@pindex calc-sel-div-both-sides -The @kbd{j *} (@code{calc-sel-mult-both-sides}) command prompts for a -formula using algebraic entry, then multiplies both sides of the -selected quotient or equation by that formula. It simplifies each -side with @kbd{a s} (@code{calc-simplify}) before re-forming the -quotient or equation. You can suppress this simplification by -providing any numeric prefix argument. There is also a @kbd{j /} -(@code{calc-sel-div-both-sides}) which is similar to @kbd{j *} but -dividing instead of multiplying by the factor you enter. - -As a special feature, if the numerator of the quotient is 1, then -the denominator is expanded at the top level using the distributive -law (i.e., using the @kbd{C-u -1 a x} command). Suppose the -formula on the stack is @samp{1 / (sqrt(a) + 1)}, and you wish -to eliminate the square root in the denominator by multiplying both -sides by @samp{sqrt(a) - 1}. Calc's default simplifications would -change the result @samp{(sqrt(a) - 1) / (sqrt(a) - 1) (sqrt(a) + 1)} -right back to the original form by cancellation; Calc expands the -denominator to @samp{sqrt(a) (sqrt(a) - 1) + sqrt(a) - 1} to prevent -this. (You would now want to use an @kbd{a x} command to expand -the rest of the way, whereupon the denominator would cancel out to -the desired form, @samp{a - 1}.) When the numerator is not 1, this -initial expansion is not necessary because Calc's default -simplifications will not notice the potential cancellation. - -If the selection is an inequality, @kbd{j *} and @kbd{j /} will -accept any factor, but will warn unless they can prove the factor -is either positive or negative. (In the latter case the direction -of the inequality will be switched appropriately.) @xref{Declarations}, -for ways to inform Calc that a given variable is positive or -negative. If Calc can't tell for sure what the sign of the factor -will be, it will assume it is positive and display a warning -message. - -For selections that are not quotients, equations, or inequalities, -these commands pull out a multiplicative factor: They divide (or -multiply) by the entered formula, simplify, then multiply (or divide) -back by the formula. - -@kindex j + -@kindex j - -@pindex calc-sel-add-both-sides -@pindex calc-sel-sub-both-sides -The @kbd{j +} (@code{calc-sel-add-both-sides}) and @kbd{j -} -(@code{calc-sel-sub-both-sides}) commands analogously add to or -subtract from both sides of an equation or inequality. For other -types of selections, they extract an additive factor. A numeric -prefix argument suppresses simplification of the intermediate -results. - -@kindex j U -@pindex calc-sel-unpack -The @kbd{j U} (@code{calc-sel-unpack}) command replaces the -selected function call with its argument. For example, given -@samp{a + sin(x^2)} with @samp{sin(x^2)} selected, the result -is @samp{a + x^2}. (The @samp{x^2} will remain selected; if you -wanted to change the @code{sin} to @code{cos}, just press @kbd{C} -now to take the cosine of the selected part.) - -@kindex j v -@pindex calc-sel-evaluate -The @kbd{j v} (@code{calc-sel-evaluate}) command performs the -normal default simplifications on the selected sub-formula. -These are the simplifications that are normally done automatically -on all results, but which may have been partially inhibited by -previous selection-related operations, or turned off altogether -by the @kbd{m O} command. This command is just an auto-selecting -version of the @w{@kbd{a v}} command (@pxref{Algebraic Manipulation}). - -With a numeric prefix argument of 2, @kbd{C-u 2 j v} applies -the @kbd{a s} (@code{calc-simplify}) command to the selected -sub-formula. With a prefix argument of 3 or more, e.g., @kbd{C-u j v} -applies the @kbd{a e} (@code{calc-simplify-extended}) command. -@xref{Simplifying Formulas}. With a negative prefix argument -it simplifies at the top level only, just as with @kbd{a v}. -Here the ``top'' level refers to the top level of the selected -sub-formula. - -@kindex j " -@pindex calc-sel-expand-formula -The @kbd{j "} (@code{calc-sel-expand-formula}) command is to @kbd{a "} -(@pxref{Algebraic Manipulation}) what @kbd{j v} is to @kbd{a v}. - -You can use the @kbd{j r} (@code{calc-rewrite-selection}) command -to define other algebraic operations on sub-formulas. @xref{Rewrite Rules}. - -@node Algebraic Manipulation, Simplifying Formulas, Selecting Subformulas, Algebra -@section Algebraic Manipulation - -@noindent -The commands in this section perform general-purpose algebraic -manipulations. They work on the whole formula at the top of the -stack (unless, of course, you have made a selection in that -formula). - -Many algebra commands prompt for a variable name or formula. If you -answer the prompt with a blank line, the variable or formula is taken -from top-of-stack, and the normal argument for the command is taken -from the second-to-top stack level. - -@kindex a v -@pindex calc-alg-evaluate -The @kbd{a v} (@code{calc-alg-evaluate}) command performs the normal -default simplifications on a formula; for example, @samp{a - -b} is -changed to @samp{a + b}. These simplifications are normally done -automatically on all Calc results, so this command is useful only if -you have turned default simplifications off with an @kbd{m O} -command. @xref{Simplification Modes}. - -It is often more convenient to type @kbd{=}, which is like @kbd{a v} -but which also substitutes stored values for variables in the formula. -Use @kbd{a v} if you want the variables to ignore their stored values. - -If you give a numeric prefix argument of 2 to @kbd{a v}, it simplifies -as if in Algebraic Simplification mode. This is equivalent to typing -@kbd{a s}; @pxref{Simplifying Formulas}. If you give a numeric prefix -of 3 or more, it uses Extended Simplification mode (@kbd{a e}). - -If you give a negative prefix argument @mathit{-1}, @mathit{-2}, or @mathit{-3}, -it simplifies in the corresponding mode but only works on the top-level -function call of the formula. For example, @samp{(2 + 3) * (2 + 3)} will -simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas -@samp{2 + 3}. As another example, typing @kbd{V R +} to sum the vector -@samp{[1, 2, 3, 4]} produces the formula @samp{reduce(add, [1, 2, 3, 4])} -in No-Simplify mode. Using @kbd{a v} will evaluate this all the way to -10; using @kbd{C-u - a v} will evaluate it only to @samp{1 + 2 + 3 + 4}. -(@xref{Reducing and Mapping}.) - -@tindex evalv -@tindex evalvn -The @kbd{=} command corresponds to the @code{evalv} function, and -the related @kbd{N} command, which is like @kbd{=} but temporarily -disables Symbolic mode (@kbd{m s}) during the evaluation, corresponds -to the @code{evalvn} function. (These commands interpret their prefix -arguments differently than @kbd{a v}; @kbd{=} treats the prefix as -the number of stack elements to evaluate at once, and @kbd{N} treats -it as a temporary different working precision.) - -The @code{evalvn} function can take an alternate working precision -as an optional second argument. This argument can be either an -integer, to set the precision absolutely, or a vector containing -a single integer, to adjust the precision relative to the current -precision. Note that @code{evalvn} with a larger than current -precision will do the calculation at this higher precision, but the -result will as usual be rounded back down to the current precision -afterward. For example, @samp{evalvn(pi - 3.1415)} at a precision -of 12 will return @samp{9.265359e-5}; @samp{evalvn(pi - 3.1415, 30)} -will return @samp{9.26535897932e-5} (computing a 25-digit result which -is then rounded down to 12); and @samp{evalvn(pi - 3.1415, [-2])} -will return @samp{9.2654e-5}. - -@kindex a " -@pindex calc-expand-formula -The @kbd{a "} (@code{calc-expand-formula}) command expands functions -into their defining formulas wherever possible. For example, -@samp{deg(x^2)} is changed to @samp{180 x^2 / pi}. Most functions, -like @code{sin} and @code{gcd}, are not defined by simple formulas -and so are unaffected by this command. One important class of -functions which @emph{can} be expanded is the user-defined functions -created by the @kbd{Z F} command. @xref{Algebraic Definitions}. -Other functions which @kbd{a "} can expand include the probability -distribution functions, most of the financial functions, and the -hyperbolic and inverse hyperbolic functions. A numeric prefix argument -affects @kbd{a "} in the same way as it does @kbd{a v}: A positive -argument expands all functions in the formula and then simplifies in -various ways; a negative argument expands and simplifies only the -top-level function call. - -@kindex a M -@pindex calc-map-equation -@tindex mapeq -The @kbd{a M} (@code{calc-map-equation}) [@code{mapeq}] command applies -a given function or operator to one or more equations. It is analogous -to @kbd{V M}, which operates on vectors instead of equations. -@pxref{Reducing and Mapping}. For example, @kbd{a M S} changes -@samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with -@samp{x = y+1} and @expr{6} on the stack produces @samp{x+6 = y+7}. -With two equations on the stack, @kbd{a M +} would add the lefthand -sides together and the righthand sides together to get the two -respective sides of a new equation. - -Mapping also works on inequalities. Mapping two similar inequalities -produces another inequality of the same type. Mapping an inequality -with an equation produces an inequality of the same type. Mapping a -@samp{<=} with a @samp{<} or @samp{!=} (not-equal) produces a @samp{<}. -If inequalities with opposite direction (e.g., @samp{<} and @samp{>}) -are mapped, the direction of the second inequality is reversed to -match the first: Using @kbd{a M +} on @samp{a < b} and @samp{a > 2} -reverses the latter to get @samp{2 < a}, which then allows the -combination @samp{a + 2 < b + a}, which the @kbd{a s} command can -then simplify to get @samp{2 < b}. - -Using @kbd{a M *}, @kbd{a M /}, @kbd{a M n}, or @kbd{a M &} to negate -or invert an inequality will reverse the direction of the inequality. -Other adjustments to inequalities are @emph{not} done automatically; -@kbd{a M S} will change @w{@samp{x < y}} to @samp{sin(x) < sin(y)} even -though this is not true for all values of the variables. - -@kindex H a M -@tindex mapeqp -With the Hyperbolic flag, @kbd{H a M} [@code{mapeqp}] does a plain -mapping operation without reversing the direction of any inequalities. -Thus, @kbd{H a M &} would change @kbd{x > 2} to @kbd{1/x > 0.5}. -(This change is mathematically incorrect, but perhaps you were -fixing an inequality which was already incorrect.) - -@kindex I a M -@tindex mapeqr -With the Inverse flag, @kbd{I a M} [@code{mapeqr}] always reverses -the direction of the inequality. You might use @kbd{I a M C} to -change @samp{x < y} to @samp{cos(x) > cos(y)} if you know you are -working with small positive angles. - -@kindex a b -@pindex calc-substitute -@tindex subst -The @kbd{a b} (@code{calc-substitute}) [@code{subst}] command substitutes -all occurrences -of some variable or sub-expression of an expression with a new -sub-expression. For example, substituting @samp{sin(x)} with @samp{cos(y)} -in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces -@samp{2 cos(y)^2 + x cos(y) + @w{sin(2 x)}}. -Note that this is a purely structural substitution; the lone @samp{x} and -the @samp{sin(2 x)} stayed the same because they did not look like -@samp{sin(x)}. @xref{Rewrite Rules}, for a more general method for -doing substitutions. - -The @kbd{a b} command normally prompts for two formulas, the old -one and the new one. If you enter a blank line for the first -prompt, all three arguments are taken from the stack (new, then old, -then target expression). If you type an old formula but then enter a -blank line for the new one, the new formula is taken from top-of-stack -and the target from second-to-top. If you answer both prompts, the -target is taken from top-of-stack as usual. - -Note that @kbd{a b} has no understanding of commutativity or -associativity. The pattern @samp{x+y} will not match the formula -@samp{y+x}. Also, @samp{y+z} will not match inside the formula @samp{x+y+z} -because the @samp{+} operator is left-associative, so the ``deep -structure'' of that formula is @samp{(x+y) + z}. Use @kbd{d U} -(@code{calc-unformatted-language}) mode to see the true structure of -a formula. The rewrite rule mechanism, discussed later, does not have -these limitations. - -As an algebraic function, @code{subst} takes three arguments: -Target expression, old, new. Note that @code{subst} is always -evaluated immediately, even if its arguments are variables, so if -you wish to put a call to @code{subst} onto the stack you must -turn the default simplifications off first (with @kbd{m O}). - -@node Simplifying Formulas, Polynomials, Algebraic Manipulation, Algebra -@section Simplifying Formulas - -@noindent -@kindex a s -@pindex calc-simplify -@tindex simplify -The @kbd{a s} (@code{calc-simplify}) [@code{simplify}] command applies -various algebraic rules to simplify a formula. This includes rules which -are not part of the default simplifications because they may be too slow -to apply all the time, or may not be desirable all of the time. For -example, non-adjacent terms of sums are combined, as in @samp{a + b + 2 a} -to @samp{b + 3 a}, and some formulas like @samp{sin(arcsin(x))} are -simplified to @samp{x}. - -The sections below describe all the various kinds of algebraic -simplifications Calc provides in full detail. None of Calc's -simplification commands are designed to pull rabbits out of hats; -they simply apply certain specific rules to put formulas into -less redundant or more pleasing forms. Serious algebra in Calc -must be done manually, usually with a combination of selections -and rewrite rules. @xref{Rearranging with Selections}. -@xref{Rewrite Rules}. - -@xref{Simplification Modes}, for commands to control what level of -simplification occurs automatically. Normally only the ``default -simplifications'' occur. - -@menu -* Default Simplifications:: -* Algebraic Simplifications:: -* Unsafe Simplifications:: -* Simplification of Units:: -@end menu - -@node Default Simplifications, Algebraic Simplifications, Simplifying Formulas, Simplifying Formulas -@subsection Default Simplifications - -@noindent -@cindex Default simplifications -This section describes the ``default simplifications,'' those which are -normally applied to all results. For example, if you enter the variable -@expr{x} on the stack twice and push @kbd{+}, Calc's default -simplifications automatically change @expr{x + x} to @expr{2 x}. - -The @kbd{m O} command turns off the default simplifications, so that -@expr{x + x} will remain in this form unless you give an explicit -``simplify'' command like @kbd{=} or @kbd{a v}. @xref{Algebraic -Manipulation}. The @kbd{m D} command turns the default simplifications -back on. - -The most basic default simplification is the evaluation of functions. -For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@tfn{sqrt}(9)} -is evaluated to @expr{3}. Evaluation does not occur if the arguments -to a function are somehow of the wrong type @expr{@tfn{tan}([2,3,4])}), -range (@expr{@tfn{tan}(90)}), or number (@expr{@tfn{tan}(3,5)}), -or if the function name is not recognized (@expr{@tfn{f}(5)}), or if -Symbolic mode (@pxref{Symbolic Mode}) prevents evaluation -(@expr{@tfn{sqrt}(2)}). - -Calc simplifies (evaluates) the arguments to a function before it -simplifies the function itself. Thus @expr{@tfn{sqrt}(5+4)} is -simplified to @expr{@tfn{sqrt}(9)} before the @code{sqrt} function -itself is applied. There are very few exceptions to this rule: -@code{quote}, @code{lambda}, and @code{condition} (the @code{::} -operator) do not evaluate their arguments, @code{if} (the @code{? :} -operator) does not evaluate all of its arguments, and @code{evalto} -does not evaluate its lefthand argument. - -Most commands apply the default simplifications to all arguments they -take from the stack, perform a particular operation, then simplify -the result before pushing it back on the stack. In the common special -case of regular arithmetic commands like @kbd{+} and @kbd{Q} [@code{sqrt}], -the arguments are simply popped from the stack and collected into a -suitable function call, which is then simplified (the arguments being -simplified first as part of the process, as described above). - -The default simplifications are too numerous to describe completely -here, but this section will describe the ones that apply to the -major arithmetic operators. This list will be rather technical in -nature, and will probably be interesting to you only if you are -a serious user of Calc's algebra facilities. - -@tex -\bigskip -@end tex - -As well as the simplifications described here, if you have stored -any rewrite rules in the variable @code{EvalRules} then these rules -will also be applied before any built-in default simplifications. -@xref{Automatic Rewrites}, for details. - -@tex -\bigskip -@end tex - -And now, on with the default simplifications: - -Arithmetic operators like @kbd{+} and @kbd{*} always take two -arguments in Calc's internal form. Sums and products of three or -more terms are arranged by the associative law of algebra into -a left-associative form for sums, @expr{((a + b) + c) + d}, and -a right-associative form for products, @expr{a * (b * (c * d))}. -Formulas like @expr{(a + b) + (c + d)} are rearranged to -left-associative form, though this rarely matters since Calc's -algebra commands are designed to hide the inner structure of -sums and products as much as possible. Sums and products in -their proper associative form will be written without parentheses -in the examples below. - -Sums and products are @emph{not} rearranged according to the -commutative law (@expr{a + b} to @expr{b + a}) except in a few -special cases described below. Some algebra programs always -rearrange terms into a canonical order, which enables them to -see that @expr{a b + b a} can be simplified to @expr{2 a b}. -Calc assumes you have put the terms into the order you want -and generally leaves that order alone, with the consequence -that formulas like the above will only be simplified if you -explicitly give the @kbd{a s} command. @xref{Algebraic -Simplifications}. - -Differences @expr{a - b} are treated like sums @expr{a + (-b)} -for purposes of simplification; one of the default simplifications -is to rewrite @expr{a + (-b)} or @expr{(-b) + a}, where @expr{-b} -represents a ``negative-looking'' term, into @expr{a - b} form. -``Negative-looking'' means negative numbers, negated formulas like -@expr{-x}, and products or quotients in which either term is -negative-looking. - -Other simplifications involving negation are @expr{-(-x)} to @expr{x}; -@expr{-(a b)} or @expr{-(a/b)} where either @expr{a} or @expr{b} is -negative-looking, simplified by negating that term, or else where -@expr{a} or @expr{b} is any number, by negating that number; -@expr{-(a + b)} to @expr{-a - b}, and @expr{-(b - a)} to @expr{a - b}. -(This, and rewriting @expr{(-b) + a} to @expr{a - b}, are the only -cases where the order of terms in a sum is changed by the default -simplifications.) - -The distributive law is used to simplify sums in some cases: -@expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents -a number or an implicit 1 or @mathit{-1} (as in @expr{x} or @expr{-x}) -and similarly for @expr{b}. Use the @kbd{a c}, @w{@kbd{a f}}, or -@kbd{j M} commands to merge sums with non-numeric coefficients -using the distributive law. - -The distributive law is only used for sums of two terms, or -for adjacent terms in a larger sum. Thus @expr{a + b + b + c} -is simplified to @expr{a + 2 b + c}, but @expr{a + b + c + b} -is not simplified. The reason is that comparing all terms of a -sum with one another would require time proportional to the -square of the number of terms; Calc relegates potentially slow -operations like this to commands that have to be invoked -explicitly, like @kbd{a s}. - -Finally, @expr{a + 0} and @expr{0 + a} are simplified to @expr{a}. -A consequence of the above rules is that @expr{0 - a} is simplified -to @expr{-a}. - -@tex -\bigskip -@end tex - -The products @expr{1 a} and @expr{a 1} are simplified to @expr{a}; -@expr{(-1) a} and @expr{a (-1)} are simplified to @expr{-a}; -@expr{0 a} and @expr{a 0} are simplified to @expr{0}, except that -in Matrix mode where @expr{a} is not provably scalar the result -is the generic zero matrix @samp{idn(0)}, and that if @expr{a} is -infinite the result is @samp{nan}. - -Also, @expr{(-a) b} and @expr{a (-b)} are simplified to @expr{-(a b)}, -where this occurs for negated formulas but not for regular negative -numbers. - -Products are commuted only to move numbers to the front: -@expr{a b 2} is commuted to @expr{2 a b}. - -The product @expr{a (b + c)} is distributed over the sum only if -@expr{a} and at least one of @expr{b} and @expr{c} are numbers: -@expr{2 (x + 3)} goes to @expr{2 x + 6}. The formula -@expr{(-a) (b - c)}, where @expr{-a} is a negative number, is -rewritten to @expr{a (c - b)}. - -The distributive law of products and powers is used for adjacent -terms of the product: @expr{x^a x^b} goes to -@texline @math{x^{a+b}} -@infoline @expr{x^(a+b)} -where @expr{a} is a number, or an implicit 1 (as in @expr{x}), -or the implicit one-half of @expr{@tfn{sqrt}(x)}, and similarly for -@expr{b}. The result is written using @samp{sqrt} or @samp{1/sqrt} -if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively. -If the sum of the powers is zero, the product is simplified to -@expr{1} or to @samp{idn(1)} if Matrix mode is enabled. - -The product of a negative power times anything but another negative -power is changed to use division: -@texline @math{x^{-2} y} -@infoline @expr{x^(-2) y} -goes to @expr{y / x^2} unless Matrix mode is -in effect and neither @expr{x} nor @expr{y} are scalar (in which -case it is considered unsafe to rearrange the order of the terms). - -Finally, @expr{a (b/c)} is rewritten to @expr{(a b)/c}, and also -@expr{(a/b) c} is changed to @expr{(a c)/b} unless in Matrix mode. - -@tex -\bigskip -@end tex - -Simplifications for quotients are analogous to those for products. -The quotient @expr{0 / x} is simplified to @expr{0}, with the same -exceptions that were noted for @expr{0 x}. Likewise, @expr{x / 1} -and @expr{x / (-1)} are simplified to @expr{x} and @expr{-x}, -respectively. - -The quotient @expr{x / 0} is left unsimplified or changed to an -infinite quantity, as directed by the current infinite mode. -@xref{Infinite Mode}. - -The expression -@texline @math{a / b^{-c}} -@infoline @expr{a / b^(-c)} -is changed to @expr{a b^c}, where @expr{-c} is any negative-looking -power. Also, @expr{1 / b^c} is changed to -@texline @math{b^{-c}} -@infoline @expr{b^(-c)} -for any power @expr{c}. - -Also, @expr{(-a) / b} and @expr{a / (-b)} go to @expr{-(a/b)}; -@expr{(a/b) / c} goes to @expr{a / (b c)}; and @expr{a / (b/c)} -goes to @expr{(a c) / b} unless Matrix mode prevents this -rearrangement. Similarly, @expr{a / (b:c)} is simplified to -@expr{(c:b) a} for any fraction @expr{b:c}. - -The distributive law is applied to @expr{(a + b) / c} only if -@expr{c} and at least one of @expr{a} and @expr{b} are numbers. -Quotients of powers and square roots are distributed just as -described for multiplication. - -Quotients of products cancel only in the leading terms of the -numerator and denominator. In other words, @expr{a x b / a y b} -is cancelled to @expr{x b / y b} but not to @expr{x / y}. Once -again this is because full cancellation can be slow; use @kbd{a s} -to cancel all terms of the quotient. - -Quotients of negative-looking values are simplified according -to @expr{(-a) / (-b)} to @expr{a / b}, @expr{(-a) / (b - c)} -to @expr{a / (c - b)}, and @expr{(a - b) / (-c)} to @expr{(b - a) / c}. - -@tex -\bigskip -@end tex - -The formula @expr{x^0} is simplified to @expr{1}, or to @samp{idn(1)} -in Matrix mode. The formula @expr{0^x} is simplified to @expr{0} -unless @expr{x} is a negative number, complex number or zero. -If @expr{x} is negative, complex or @expr{0.0}, @expr{0^x} is an -infinity or an unsimplified formula according to the current infinite -mode. The expression @expr{0^0} is simplified to @expr{1}. - -Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c} -are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c} -is an integer, or if either @expr{a} or @expr{b} are nonnegative -real numbers. Powers of powers @expr{(a^b)^c} are simplified to -@texline @math{a^{b c}} -@infoline @expr{a^(b c)} -only when @expr{c} is an integer and @expr{b c} also -evaluates to an integer. Without these restrictions these simplifications -would not be safe because of problems with principal values. -(In other words, -@texline @math{((-3)^{1/2})^2} -@infoline @expr{((-3)^1:2)^2} -is safe to simplify, but -@texline @math{((-3)^2)^{1/2}} -@infoline @expr{((-3)^2)^1:2} -is not.) @xref{Declarations}, for ways to inform Calc that your -variables satisfy these requirements. - -As a special case of this rule, @expr{@tfn{sqrt}(x)^n} is simplified to -@texline @math{x^{n/2}} -@infoline @expr{x^(n/2)} -only for even integers @expr{n}. - -If @expr{a} is known to be real, @expr{b} is an even integer, and -@expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is -simplified to @expr{@tfn{abs}(a^(b c))}. - -Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an -even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer, -for any negative-looking expression @expr{-a}. - -Square roots @expr{@tfn{sqrt}(x)} generally act like one-half powers -@texline @math{x^{1:2}} -@infoline @expr{x^1:2} -for the purposes of the above-listed simplifications. - -Also, note that -@texline @math{1 / x^{1:2}} -@infoline @expr{1 / x^1:2} -is changed to -@texline @math{x^{-1:2}}, -@infoline @expr{x^(-1:2)}, -but @expr{1 / @tfn{sqrt}(x)} is left alone. - -@tex -\bigskip -@end tex - -Generic identity matrices (@pxref{Matrix Mode}) are simplified by the -following rules: @expr{@tfn{idn}(a) + b} to @expr{a + b} if @expr{b} -is provably scalar, or expanded out if @expr{b} is a matrix; -@expr{@tfn{idn}(a) + @tfn{idn}(b)} to @expr{@tfn{idn}(a + b)}; -@expr{-@tfn{idn}(a)} to @expr{@tfn{idn}(-a)}; @expr{a @tfn{idn}(b)} to -@expr{@tfn{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b} -if @expr{a} is provably non-scalar; @expr{@tfn{idn}(a) @tfn{idn}(b)} to -@expr{@tfn{idn}(a b)}; analogous simplifications for quotients involving -@code{idn}; and @expr{@tfn{idn}(a)^n} to @expr{@tfn{idn}(a^n)} where -@expr{n} is an integer. - -@tex -\bigskip -@end tex - -The @code{floor} function and other integer truncation functions -vanish if the argument is provably integer-valued, so that -@expr{@tfn{floor}(@tfn{round}(x))} simplifies to @expr{@tfn{round}(x)}. -Also, combinations of @code{float}, @code{floor} and its friends, -and @code{ffloor} and its friends, are simplified in appropriate -ways. @xref{Integer Truncation}. - -The expression @expr{@tfn{abs}(-x)} changes to @expr{@tfn{abs}(x)}. -The expression @expr{@tfn{abs}(@tfn{abs}(x))} changes to -@expr{@tfn{abs}(x)}; in fact, @expr{@tfn{abs}(x)} changes to @expr{x} or -@expr{-x} if @expr{x} is provably nonnegative or nonpositive -(@pxref{Declarations}). - -While most functions do not recognize the variable @code{i} as an -imaginary number, the @code{arg} function does handle the two cases -@expr{@tfn{arg}(@tfn{i})} and @expr{@tfn{arg}(-@tfn{i})} just for convenience. - -The expression @expr{@tfn{conj}(@tfn{conj}(x))} simplifies to @expr{x}. -Various other expressions involving @code{conj}, @code{re}, and -@code{im} are simplified, especially if some of the arguments are -provably real or involve the constant @code{i}. For example, -@expr{@tfn{conj}(a + b i)} is changed to -@expr{@tfn{conj}(a) - @tfn{conj}(b) i}, or to @expr{a - b i} if @expr{a} -and @expr{b} are known to be real. - -Functions like @code{sin} and @code{arctan} generally don't have -any default simplifications beyond simply evaluating the functions -for suitable numeric arguments and infinity. The @kbd{a s} command -described in the next section does provide some simplifications for -these functions, though. - -One important simplification that does occur is that -@expr{@tfn{ln}(@tfn{e})} is simplified to 1, and @expr{@tfn{ln}(@tfn{e}^x)} is -simplified to @expr{x} for any @expr{x}. This occurs even if you have -stored a different value in the Calc variable @samp{e}; but this would -be a bad idea in any case if you were also using natural logarithms! - -Among the logical functions, @tfn{!(@var{a} <= @var{b})} changes to -@tfn{@var{a} > @var{b}} and so on. Equations and inequalities where both sides -are either negative-looking or zero are simplified by negating both sides -and reversing the inequality. While it might seem reasonable to simplify -@expr{!!x} to @expr{x}, this would not be valid in general because -@expr{!!2} is 1, not 2. - -Most other Calc functions have few if any default simplifications -defined, aside of course from evaluation when the arguments are -suitable numbers. - -@node Algebraic Simplifications, Unsafe Simplifications, Default Simplifications, Simplifying Formulas -@subsection Algebraic Simplifications - -@noindent -@cindex Algebraic simplifications -The @kbd{a s} command makes simplifications that may be too slow to -do all the time, or that may not be desirable all of the time. -If you find these simplifications are worthwhile, you can type -@kbd{m A} to have Calc apply them automatically. - -This section describes all simplifications that are performed by -the @kbd{a s} command. Note that these occur in addition to the -default simplifications; even if the default simplifications have -been turned off by an @kbd{m O} command, @kbd{a s} will turn them -back on temporarily while it simplifies the formula. - -There is a variable, @code{AlgSimpRules}, in which you can put rewrites -to be applied by @kbd{a s}. Its use is analogous to @code{EvalRules}, -but without the special restrictions. Basically, the simplifier does -@samp{@w{a r} AlgSimpRules} with an infinite repeat count on the whole -expression being simplified, then it traverses the expression applying -the built-in rules described below. If the result is different from -the original expression, the process repeats with the default -simplifications (including @code{EvalRules}), then @code{AlgSimpRules}, -then the built-in simplifications, and so on. - -@tex -\bigskip -@end tex - -Sums are simplified in two ways. Constant terms are commuted to the -end of the sum, so that @expr{a + 2 + b} changes to @expr{a + b + 2}. -The only exception is that a constant will not be commuted away -from the first position of a difference, i.e., @expr{2 - x} is not -commuted to @expr{-x + 2}. - -Also, terms of sums are combined by the distributive law, as in -@expr{x + y + 2 x} to @expr{y + 3 x}. This always occurs for -adjacent terms, but @kbd{a s} compares all pairs of terms including -non-adjacent ones. - -@tex -\bigskip -@end tex - -Products are sorted into a canonical order using the commutative -law. For example, @expr{b c a} is commuted to @expr{a b c}. -This allows easier comparison of products; for example, the default -simplifications will not change @expr{x y + y x} to @expr{2 x y}, -but @kbd{a s} will; it first rewrites the sum to @expr{x y + x y}, -and then the default simplifications are able to recognize a sum -of identical terms. - -The canonical ordering used to sort terms of products has the -property that real-valued numbers, interval forms and infinities -come first, and are sorted into increasing order. The @kbd{V S} -command uses the same ordering when sorting a vector. - -Sorting of terms of products is inhibited when Matrix mode is -turned on; in this case, Calc will never exchange the order of -two terms unless it knows at least one of the terms is a scalar. - -Products of powers are distributed by comparing all pairs of -terms, using the same method that the default simplifications -use for adjacent terms of products. - -Even though sums are not sorted, the commutative law is still -taken into account when terms of a product are being compared. -Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}. -A subtle point is that @expr{(x - y) (y - x)} will @emph{not} -be simplified to @expr{-(x - y)^2}; Calc does not notice that -one term can be written as a constant times the other, even if -that constant is @mathit{-1}. - -A fraction times any expression, @expr{(a:b) x}, is changed to -a quotient involving integers: @expr{a x / b}. This is not -done for floating-point numbers like @expr{0.5}, however. This -is one reason why you may find it convenient to turn Fraction mode -on while doing algebra; @pxref{Fraction Mode}. - -@tex -\bigskip -@end tex - -Quotients are simplified by comparing all terms in the numerator -with all terms in the denominator for possible cancellation using -the distributive law. For example, @expr{a x^2 b / c x^3 d} will -cancel @expr{x^2} from the top and bottom to get @expr{a b / c x d}. -(The terms in the denominator will then be rearranged to @expr{c d x} -as described above.) If there is any common integer or fractional -factor in the numerator and denominator, it is cancelled out; -for example, @expr{(4 x + 6) / 8 x} simplifies to @expr{(2 x + 3) / 4 x}. - -Non-constant common factors are not found even by @kbd{a s}. To -cancel the factor @expr{a} in @expr{(a x + a) / a^2} you could first -use @kbd{j M} on the product @expr{a x} to Merge the numerator to -@expr{a (1+x)}, which can then be simplified successfully. - -@tex -\bigskip -@end tex - -Integer powers of the variable @code{i} are simplified according -to the identity @expr{i^2 = -1}. If you store a new value other -than the complex number @expr{(0,1)} in @code{i}, this simplification -will no longer occur. This is done by @kbd{a s} instead of by default -in case someone (unwisely) uses the name @code{i} for a variable -unrelated to complex numbers; it would be unfortunate if Calc -quietly and automatically changed this formula for reasons the -user might not have been thinking of. - -Square roots of integer or rational arguments are simplified in -several ways. (Note that these will be left unevaluated only in -Symbolic mode.) First, square integer or rational factors are -pulled out so that @expr{@tfn{sqrt}(8)} is rewritten as -@texline @math{2\,@tfn{sqrt}(2)}. -@infoline @expr{2 sqrt(2)}. -Conceptually speaking this implies factoring the argument into primes -and moving pairs of primes out of the square root, but for reasons of -efficiency Calc only looks for primes up to 29. - -Square roots in the denominator of a quotient are moved to the -numerator: @expr{1 / @tfn{sqrt}(3)} changes to @expr{@tfn{sqrt}(3) / 3}. -The same effect occurs for the square root of a fraction: -@expr{@tfn{sqrt}(2:3)} changes to @expr{@tfn{sqrt}(6) / 3}. - -@tex -\bigskip -@end tex - -The @code{%} (modulo) operator is simplified in several ways -when the modulus @expr{M} is a positive real number. First, if -the argument is of the form @expr{x + n} for some real number -@expr{n}, then @expr{n} is itself reduced modulo @expr{M}. For -example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}. - -If the argument is multiplied by a constant, and this constant -has a common integer divisor with the modulus, then this factor is -cancelled out. For example, @samp{12 x % 15} is changed to -@samp{3 (4 x % 5)} by factoring out 3. Also, @samp{(12 x + 1) % 15} -is changed to @samp{3 ((4 x + 1:3) % 5)}. While these forms may -not seem ``simpler,'' they allow Calc to discover useful information -about modulo forms in the presence of declarations. - -If the modulus is 1, then Calc can use @code{int} declarations to -evaluate the expression. For example, the idiom @samp{x % 2} is -often used to check whether a number is odd or even. As described -above, @w{@samp{2 n % 2}} and @samp{(2 n + 1) % 2} are simplified to -@samp{2 (n % 1)} and @samp{2 ((n + 1:2) % 1)}, respectively; Calc -can simplify these to 0 and 1 (respectively) if @code{n} has been -declared to be an integer. - -@tex -\bigskip -@end tex - -Trigonometric functions are simplified in several ways. Whenever a -products of two trigonometric functions can be replaced by a single -function, the replacement is made; for example, -@expr{@tfn{tan}(x) @tfn{cos}(x)} is simplified to @expr{@tfn{sin}(x)}. -Reciprocals of trigonometric functions are replaced by their reciprocal -function; for example, @expr{1/@tfn{sec}(x)} is simplified to -@expr{@tfn{cos}(x)}. The corresponding simplifications for the -hyperbolic functions are also handled. - -Trigonometric functions of their inverse functions are -simplified. The expression @expr{@tfn{sin}(@tfn{arcsin}(x))} is -simplified to @expr{x}, and similarly for @code{cos} and @code{tan}. -Trigonometric functions of inverses of different trigonometric -functions can also be simplified, as in @expr{@tfn{sin}(@tfn{arccos}(x))} -to @expr{@tfn{sqrt}(1 - x^2)}. - -If the argument to @code{sin} is negative-looking, it is simplified to -@expr{-@tfn{sin}(x)}, and similarly for @code{cos} and @code{tan}. -Finally, certain special values of the argument are recognized; -@pxref{Trigonometric and Hyperbolic Functions}. - -Hyperbolic functions of their inverses and of negative-looking -arguments are also handled, as are exponentials of inverse -hyperbolic functions. - -No simplifications for inverse trigonometric and hyperbolic -functions are known, except for negative arguments of @code{arcsin}, -@code{arctan}, @code{arcsinh}, and @code{arctanh}. Note that -@expr{@tfn{arcsin}(@tfn{sin}(x))} can @emph{not} safely change to -@expr{x}, since this only correct within an integer multiple of -@texline @math{2 \pi} -@infoline @expr{2 pi} -radians or 360 degrees. However, @expr{@tfn{arcsinh}(@tfn{sinh}(x))} is -simplified to @expr{x} if @expr{x} is known to be real. - -Several simplifications that apply to logarithms and exponentials -are that @expr{@tfn{exp}(@tfn{ln}(x))}, -@texline @tfn{e}@math{^{\ln(x)}}, -@infoline @expr{e^@tfn{ln}(x)}, -and -@texline @math{10^{{\rm log10}(x)}} -@infoline @expr{10^@tfn{log10}(x)} -all reduce to @expr{x}. Also, @expr{@tfn{ln}(@tfn{exp}(x))}, etc., can -reduce to @expr{x} if @expr{x} is provably real. The form -@expr{@tfn{exp}(x)^y} is simplified to @expr{@tfn{exp}(x y)}. If @expr{x} -is a suitable multiple of -@texline @math{\pi i} -@infoline @expr{pi i} -(as described above for the trigonometric functions), then -@expr{@tfn{exp}(x)} or @expr{e^x} will be expanded. Finally, -@expr{@tfn{ln}(x)} is simplified to a form involving @code{pi} and -@code{i} where @expr{x} is provably negative, positive imaginary, or -negative imaginary. - -The error functions @code{erf} and @code{erfc} are simplified when -their arguments are negative-looking or are calls to the @code{conj} -function. - -@tex -\bigskip -@end tex - -Equations and inequalities are simplified by cancelling factors -of products, quotients, or sums on both sides. Inequalities -change sign if a negative multiplicative factor is cancelled. -Non-constant multiplicative factors as in @expr{a b = a c} are -cancelled from equations only if they are provably nonzero (generally -because they were declared so; @pxref{Declarations}). Factors -are cancelled from inequalities only if they are nonzero and their -sign is known. - -Simplification also replaces an equation or inequality with -1 or 0 (``true'' or ``false'') if it can through the use of -declarations. If @expr{x} is declared to be an integer greater -than 5, then @expr{x < 3}, @expr{x = 3}, and @expr{x = 7.5} are -all simplified to 0, but @expr{x > 3} is simplified to 1. -By a similar analysis, @expr{abs(x) >= 0} is simplified to 1, -as is @expr{x^2 >= 0} if @expr{x} is known to be real. - -@node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas -@subsection ``Unsafe'' Simplifications - -@noindent -@cindex Unsafe simplifications -@cindex Extended simplification -@kindex a e -@pindex calc-simplify-extended -@ignore -@mindex esimpl@idots -@end ignore -@tindex esimplify -The @kbd{a e} (@code{calc-simplify-extended}) [@code{esimplify}] command -is like @kbd{a s} -except that it applies some additional simplifications which are not -``safe'' in all cases. Use this only if you know the values in your -formula lie in the restricted ranges for which these simplifications -are valid. The symbolic integrator uses @kbd{a e}; -one effect of this is that the integrator's results must be used with -caution. Where an integral table will often attach conditions like -``for positive @expr{a} only,'' Calc (like most other symbolic -integration programs) will simply produce an unqualified result. - -Because @kbd{a e}'s simplifications are unsafe, it is sometimes better -to type @kbd{C-u -3 a v}, which does extended simplification only -on the top level of the formula without affecting the sub-formulas. -In fact, @kbd{C-u -3 j v} allows you to target extended simplification -to any specific part of a formula. - -The variable @code{ExtSimpRules} contains rewrites to be applied by -the @kbd{a e} command. These are applied in addition to -@code{EvalRules} and @code{AlgSimpRules}. (The @kbd{a r AlgSimpRules} -step described above is simply followed by an @kbd{a r ExtSimpRules} step.) - -Following is a complete list of ``unsafe'' simplifications performed -by @kbd{a e}. - -@tex -\bigskip -@end tex - -Inverse trigonometric or hyperbolic functions, called with their -corresponding non-inverse functions as arguments, are simplified -by @kbd{a e}. For example, @expr{@tfn{arcsin}(@tfn{sin}(x))} changes -to @expr{x}. Also, @expr{@tfn{arcsin}(@tfn{cos}(x))} and -@expr{@tfn{arccos}(@tfn{sin}(x))} both change to @expr{@tfn{pi}/2 - x}. -These simplifications are unsafe because they are valid only for -values of @expr{x} in a certain range; outside that range, values -are folded down to the 360-degree range that the inverse trigonometric -functions always produce. - -Powers of powers @expr{(x^a)^b} are simplified to -@texline @math{x^{a b}} -@infoline @expr{x^(a b)} -for all @expr{a} and @expr{b}. These results will be valid only -in a restricted range of @expr{x}; for example, in -@texline @math{(x^2)^{1:2}} -@infoline @expr{(x^2)^1:2} -the powers cancel to get @expr{x}, which is valid for positive values -of @expr{x} but not for negative or complex values. - -Similarly, @expr{@tfn{sqrt}(x^a)} and @expr{@tfn{sqrt}(x)^a} are both -simplified (possibly unsafely) to -@texline @math{x^{a/2}}. -@infoline @expr{x^(a/2)}. - -Forms like @expr{@tfn{sqrt}(1 - sin(x)^2)} are simplified to, e.g., -@expr{@tfn{cos}(x)}. Calc has identities of this sort for @code{sin}, -@code{cos}, @code{tan}, @code{sinh}, and @code{cosh}. - -Arguments of square roots are partially factored to look for -squared terms that can be extracted. For example, -@expr{@tfn{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to -@expr{a b @tfn{sqrt}(a+b)}. - -The simplifications of @expr{@tfn{ln}(@tfn{exp}(x))}, -@expr{@tfn{ln}(@tfn{e}^x)}, and @expr{@tfn{log10}(10^x)} to @expr{x} are also -unsafe because of problems with principal values (although these -simplifications are safe if @expr{x} is known to be real). - -Common factors are cancelled from products on both sides of an -equation, even if those factors may be zero: @expr{a x / b x} -to @expr{a / b}. Such factors are never cancelled from -inequalities: Even @kbd{a e} is not bold enough to reduce -@expr{a x < b x} to @expr{a < b} (or @expr{a > b}, depending -on whether you believe @expr{x} is positive or negative). -The @kbd{a M /} command can be used to divide a factor out of -both sides of an inequality. - -@node Simplification of Units, , Unsafe Simplifications, Simplifying Formulas -@subsection Simplification of Units - -@noindent -The simplifications described in this section are applied by the -@kbd{u s} (@code{calc-simplify-units}) command. These are in addition -to the regular @kbd{a s} (but not @kbd{a e}) simplifications described -earlier. @xref{Basic Operations on Units}. - -The variable @code{UnitSimpRules} contains rewrites to be applied by -the @kbd{u s} command. These are applied in addition to @code{EvalRules} -and @code{AlgSimpRules}. - -Scalar mode is automatically put into effect when simplifying units. -@xref{Matrix Mode}. - -Sums @expr{a + b} involving units are simplified by extracting the -units of @expr{a} as if by the @kbd{u x} command (call the result -@expr{u_a}), then simplifying the expression @expr{b / u_a} -using @kbd{u b} and @kbd{u s}. If the result has units then the sum -is inconsistent and is left alone. Otherwise, it is rewritten -in terms of the units @expr{u_a}. - -If units auto-ranging mode is enabled, products or quotients in -which the first argument is a number which is out of range for the -leading unit are modified accordingly. - -When cancelling and combining units in products and quotients, -Calc accounts for unit names that differ only in the prefix letter. -For example, @samp{2 km m} is simplified to @samp{2000 m^2}. -However, compatible but different units like @code{ft} and @code{in} -are not combined in this way. - -Quotients @expr{a / b} are simplified in three additional ways. First, -if @expr{b} is a number or a product beginning with a number, Calc -computes the reciprocal of this number and moves it to the numerator. - -Second, for each pair of unit names from the numerator and denominator -of a quotient, if the units are compatible (e.g., they are both -units of area) then they are replaced by the ratio between those -units. For example, in @samp{3 s in N / kg cm} the units -@samp{in / cm} will be replaced by @expr{2.54}. - -Third, if the units in the quotient exactly cancel out, so that -a @kbd{u b} command on the quotient would produce a dimensionless -number for an answer, then the quotient simplifies to that number. - -For powers and square roots, the ``unsafe'' simplifications -@expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c}, -and @expr{(a^b)^c} to -@texline @math{a^{b c}} -@infoline @expr{a^(b c)} -are done if the powers are real numbers. (These are safe in the context -of units because all numbers involved can reasonably be assumed to be -real.) - -Also, if a unit name is raised to a fractional power, and the -base units in that unit name all occur to powers which are a -multiple of the denominator of the power, then the unit name -is expanded out into its base units, which can then be simplified -according to the previous paragraph. For example, @samp{acre^1.5} -is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre} -is defined in terms of @samp{m^2}, and that the 2 in the power of -@code{m} is a multiple of 2 in @expr{3:2}. Thus, @code{acre^1.5} is -replaced by approximately -@texline @math{(4046 m^2)^{1.5}} -@infoline @expr{(4046 m^2)^1.5}, -which is then changed to -@texline @math{4046^{1.5} \, (m^2)^{1.5}}, -@infoline @expr{4046^1.5 (m^2)^1.5}, -then to @expr{257440 m^3}. - -The functions @code{float}, @code{frac}, @code{clean}, @code{abs}, -as well as @code{floor} and the other integer truncation functions, -applied to unit names or products or quotients involving units, are -simplified. For example, @samp{round(1.6 in)} is changed to -@samp{round(1.6) round(in)}; the lefthand term evaluates to 2, -and the righthand term simplifies to @code{in}. - -The functions @code{sin}, @code{cos}, and @code{tan} with arguments -that have angular units like @code{rad} or @code{arcmin} are -simplified by converting to base units (radians), then evaluating -with the angular mode temporarily set to radians. - -@node Polynomials, Calculus, Simplifying Formulas, Algebra -@section Polynomials - -A @dfn{polynomial} is a sum of terms which are coefficients times -various powers of a ``base'' variable. For example, @expr{2 x^2 + 3 x - 4} -is a polynomial in @expr{x}. Some formulas can be considered -polynomials in several different variables: @expr{1 + 2 x + 3 y + 4 x y^2} -is a polynomial in both @expr{x} and @expr{y}. Polynomial coefficients -are often numbers, but they may in general be any formulas not -involving the base variable. - -@kindex a f -@pindex calc-factor -@tindex factor -The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a -polynomial into a product of terms. For example, the polynomial -@expr{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}. As another -example, @expr{a c + b d + b c + a d} is factored into the product -@expr{(a + b) (c + d)}. - -Calc currently has three algorithms for factoring. Formulas which are -linear in several variables, such as the second example above, are -merged according to the distributive law. Formulas which are -polynomials in a single variable, with constant integer or fractional -coefficients, are factored into irreducible linear and/or quadratic -terms. The first example above factors into three linear terms -(@expr{x}, @expr{x+1}, and @expr{x+1} again). Finally, formulas -which do not fit the above criteria are handled by the algebraic -rewrite mechanism. - -Calc's polynomial factorization algorithm works by using the general -root-finding command (@w{@kbd{a P}}) to solve for the roots of the -polynomial. It then looks for roots which are rational numbers -or complex-conjugate pairs, and converts these into linear and -quadratic terms, respectively. Because it uses floating-point -arithmetic, it may be unable to find terms that involve large -integers (whose number of digits approaches the current precision). -Also, irreducible factors of degree higher than quadratic are not -found, and polynomials in more than one variable are not treated. -(A more robust factorization algorithm may be included in a future -version of Calc.) - -@vindex FactorRules -@ignore -@starindex -@end ignore -@tindex thecoefs -@ignore -@starindex -@end ignore -@ignore -@mindex @idots -@end ignore -@tindex thefactors -The rewrite-based factorization method uses rules stored in the variable -@code{FactorRules}. @xref{Rewrite Rules}, for a discussion of the -operation of rewrite rules. The default @code{FactorRules} are able -to factor quadratic forms symbolically into two linear terms, -@expr{(a x + b) (c x + d)}. You can edit these rules to include other -cases if you wish. To use the rules, Calc builds the formula -@samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial -base variable and @code{a}, @code{b}, etc., are polynomial coefficients -(which may be numbers or formulas). The constant term is written first, -i.e., in the @code{a} position. When the rules complete, they should have -changed the formula into the form @samp{thefactors(x, [f1, f2, f3, ...])} -where each @code{fi} should be a factored term, e.g., @samp{x - ai}. -Calc then multiplies these terms together to get the complete -factored form of the polynomial. If the rules do not change the -@code{thecoefs} call to a @code{thefactors} call, @kbd{a f} leaves the -polynomial alone on the assumption that it is unfactorable. (Note that -the function names @code{thecoefs} and @code{thefactors} are used only -as placeholders; there are no actual Calc functions by those names.) - -@kindex H a f -@tindex factors -The @kbd{H a f} [@code{factors}] command also factors a polynomial, -but it returns a list of factors instead of an expression which is the -product of the factors. Each factor is represented by a sub-vector -of the factor, and the power with which it appears. For example, -@expr{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @expr{(x + 7) x^2 (x - 3)^2} -in @kbd{a f}, or to @expr{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}. -If there is an overall numeric factor, it always comes first in the list. -The functions @code{factor} and @code{factors} allow a second argument -when written in algebraic form; @samp{factor(x,v)} factors @expr{x} with -respect to the specific variable @expr{v}. The default is to factor with -respect to all the variables that appear in @expr{x}. - -@kindex a c -@pindex calc-collect -@tindex collect -The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a -formula as a -polynomial in a given variable, ordered in decreasing powers of that -variable. For example, given @expr{1 + 2 x + 3 y + 4 x y^2} on -the stack, @kbd{a c x} would produce @expr{(2 + 4 y^2) x + (1 + 3 y)}, -and @kbd{a c y} would produce @expr{(4 x) y^2 + 3 y + (1 + 2 x)}. -The polynomial will be expanded out using the distributive law as -necessary: Collecting @expr{x} in @expr{(x - 1)^3} produces -@expr{x^3 - 3 x^2 + 3 x - 1}. Terms not involving @expr{x} will -not be expanded. - -The ``variable'' you specify at the prompt can actually be any -expression: @kbd{a c ln(x+1)} will collect together all terms multiplied -by @samp{ln(x+1)} or integer powers thereof. If @samp{x} also appears -in the formula in a context other than @samp{ln(x+1)}, @kbd{a c} will -treat those occurrences as unrelated to @samp{ln(x+1)}, i.e., as constants. - -@kindex a x -@pindex calc-expand -@tindex expand -The @kbd{a x} (@code{calc-expand}) [@code{expand}] command expands an -expression by applying the distributive law everywhere. It applies to -products, quotients, and powers involving sums. By default, it fully -distributes all parts of the expression. With a numeric prefix argument, -the distributive law is applied only the specified number of times, then -the partially expanded expression is left on the stack. - -The @kbd{a x} and @kbd{j D} commands are somewhat redundant. Use -@kbd{a x} if you want to expand all products of sums in your formula. -Use @kbd{j D} if you want to expand a particular specified term of -the formula. There is an exactly analogous correspondence between -@kbd{a f} and @kbd{j M}. (The @kbd{j D} and @kbd{j M} commands -also know many other kinds of expansions, such as -@samp{exp(a + b) = exp(a) exp(b)}, which @kbd{a x} and @kbd{a f} -do not do.) - -Calc's automatic simplifications will sometimes reverse a partial -expansion. For example, the first step in expanding @expr{(x+1)^3} is -to write @expr{(x+1) (x+1)^2}. If @kbd{a x} stops there and tries -to put this formula onto the stack, though, Calc will automatically -simplify it back to @expr{(x+1)^3} form. The solution is to turn -simplification off first (@pxref{Simplification Modes}), or to run -@kbd{a x} without a numeric prefix argument so that it expands all -the way in one step. - -@kindex a a -@pindex calc-apart -@tindex apart -The @kbd{a a} (@code{calc-apart}) [@code{apart}] command expands a -rational function by partial fractions. A rational function is the -quotient of two polynomials; @code{apart} pulls this apart into a -sum of rational functions with simple denominators. In algebraic -notation, the @code{apart} function allows a second argument that -specifies which variable to use as the ``base''; by default, Calc -chooses the base variable automatically. - -@kindex a n -@pindex calc-normalize-rat -@tindex nrat -The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command -attempts to arrange a formula into a quotient of two polynomials. -For example, given @expr{1 + (a + b/c) / d}, the result would be -@expr{(b + a c + c d) / c d}. The quotient is reduced, so that -@kbd{a n} will simplify @expr{(x^2 + 2x + 1) / (x^2 - 1)} by dividing -out the common factor @expr{x + 1}, yielding @expr{(x + 1) / (x - 1)}. - -@kindex a \ -@pindex calc-poly-div -@tindex pdiv -The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides -two polynomials @expr{u} and @expr{v}, yielding a new polynomial -@expr{q}. If several variables occur in the inputs, the inputs are -considered multivariate polynomials. (Calc divides by the variable -with the largest power in @expr{u} first, or, in the case of equal -powers, chooses the variables in alphabetical order.) For example, -dividing @expr{x^2 + 3 x + 2} by @expr{x + 2} yields @expr{x + 1}. -The remainder from the division, if any, is reported at the bottom -of the screen and is also placed in the Trail along with the quotient. - -Using @code{pdiv} in algebraic notation, you can specify the particular -variable to be used as the base: @code{pdiv(@var{a},@var{b},@var{x})}. -If @code{pdiv} is given only two arguments (as is always the case with -the @kbd{a \} command), then it does a multivariate division as outlined -above. - -@kindex a % -@pindex calc-poly-rem -@tindex prem -The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides -two polynomials and keeps the remainder @expr{r}. The quotient -@expr{q} is discarded. For any formulas @expr{a} and @expr{b}, the -results of @kbd{a \} and @kbd{a %} satisfy @expr{a = q b + r}. -(This is analogous to plain @kbd{\} and @kbd{%}, which compute the -integer quotient and remainder from dividing two numbers.) - -@kindex a / -@kindex H a / -@pindex calc-poly-div-rem -@tindex pdivrem -@tindex pdivide -The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command -divides two polynomials and reports both the quotient and the -remainder as a vector @expr{[q, r]}. The @kbd{H a /} [@code{pdivide}] -command divides two polynomials and constructs the formula -@expr{q + r/b} on the stack. (Naturally if the remainder is zero, -this will immediately simplify to @expr{q}.) - -@kindex a g -@pindex calc-poly-gcd -@tindex pgcd -The @kbd{a g} (@code{calc-poly-gcd}) [@code{pgcd}] command computes -the greatest common divisor of two polynomials. (The GCD actually -is unique only to within a constant multiplier; Calc attempts to -choose a GCD which will be unsurprising.) For example, the @kbd{a n} -command uses @kbd{a g} to take the GCD of the numerator and denominator -of a quotient, then divides each by the result using @kbd{a \}. (The -definition of GCD ensures that this division can take place without -leaving a remainder.) - -While the polynomials used in operations like @kbd{a /} and @kbd{a g} -often have integer coefficients, this is not required. Calc can also -deal with polynomials over the rationals or floating-point reals. -Polynomials with modulo-form coefficients are also useful in many -applications; if you enter @samp{(x^2 + 3 x - 1) mod 5}, Calc -automatically transforms this into a polynomial over the field of -integers mod 5: @samp{(1 mod 5) x^2 + (3 mod 5) x + (4 mod 5)}. - -Congratulations and thanks go to Ove Ewerlid -(@code{ewerlid@@mizar.DoCS.UU.SE}), who contributed many of the -polynomial routines used in the above commands. - -@xref{Decomposing Polynomials}, for several useful functions for -extracting the individual coefficients of a polynomial. - -@node Calculus, Solving Equations, Polynomials, Algebra -@section Calculus - -@noindent -The following calculus commands do not automatically simplify their -inputs or outputs using @code{calc-simplify}. You may find it helps -to do this by hand by typing @kbd{a s} or @kbd{a e}. It may also help -to use @kbd{a x} and/or @kbd{a c} to arrange a result in the most -readable way. - -@menu -* Differentiation:: -* Integration:: -* Customizing the Integrator:: -* Numerical Integration:: -* Taylor Series:: -@end menu - -@node Differentiation, Integration, Calculus, Calculus -@subsection Differentiation - -@noindent -@kindex a d -@kindex H a d -@pindex calc-derivative -@tindex deriv -@tindex tderiv -The @kbd{a d} (@code{calc-derivative}) [@code{deriv}] command computes -the derivative of the expression on the top of the stack with respect to -some variable, which it will prompt you to enter. Normally, variables -in the formula other than the specified differentiation variable are -considered constant, i.e., @samp{deriv(y,x)} is reduced to zero. With -the Hyperbolic flag, the @code{tderiv} (total derivative) operation is used -instead, in which derivatives of variables are not reduced to zero -unless those variables are known to be ``constant,'' i.e., independent -of any other variables. (The built-in special variables like @code{pi} -are considered constant, as are variables that have been declared -@code{const}; @pxref{Declarations}.) - -With a numeric prefix argument @var{n}, this command computes the -@var{n}th derivative. - -When working with trigonometric functions, it is best to switch to -Radians mode first (with @w{@kbd{m r}}). The derivative of @samp{sin(x)} -in degrees is @samp{(pi/180) cos(x)}, probably not the expected -answer! - -If you use the @code{deriv} function directly in an algebraic formula, -you can write @samp{deriv(f,x,x0)} which represents the derivative -of @expr{f} with respect to @expr{x}, evaluated at the point -@texline @math{x=x_0}. -@infoline @expr{x=x0}. - -If the formula being differentiated contains functions which Calc does -not know, the derivatives of those functions are produced by adding -primes (apostrophe characters). For example, @samp{deriv(f(2x), x)} -produces @samp{2 f'(2 x)}, where the function @code{f'} represents the -derivative of @code{f}. - -For functions you have defined with the @kbd{Z F} command, Calc expands -the functions according to their defining formulas unless you have -also defined @code{f'} suitably. For example, suppose we define -@samp{sinc(x) = sin(x)/x} using @kbd{Z F}. If we then differentiate -the formula @samp{sinc(2 x)}, the formula will be expanded to -@samp{sin(2 x) / (2 x)} and differentiated. However, if we also -define @samp{sinc'(x) = dsinc(x)}, say, then Calc will write the -result as @samp{2 dsinc(2 x)}. @xref{Algebraic Definitions}. - -For multi-argument functions @samp{f(x,y,z)}, the derivative with respect -to the first argument is written @samp{f'(x,y,z)}; derivatives with -respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}. -Various higher-order derivatives can be formed in the obvious way, e.g., -@samp{f'@var{}'(x)} (the second derivative of @code{f}) or -@samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each -argument once). - -@node Integration, Customizing the Integrator, Differentiation, Calculus -@subsection Integration - -@noindent -@kindex a i -@pindex calc-integral -@tindex integ -The @kbd{a i} (@code{calc-integral}) [@code{integ}] command computes the -indefinite integral of the expression on the top of the stack with -respect to a prompted-for variable. The integrator is not guaranteed to -work for all integrable functions, but it is able to integrate several -large classes of formulas. In particular, any polynomial or rational -function (a polynomial divided by a polynomial) is acceptable. -(Rational functions don't have to be in explicit quotient form, however; -@texline @math{x/(1+x^{-2})} -@infoline @expr{x/(1+x^-2)} -is not strictly a quotient of polynomials, but it is equivalent to -@expr{x^3/(x^2+1)}, which is.) Also, square roots of terms involving -@expr{x} and @expr{x^2} may appear in rational functions being -integrated. Finally, rational functions involving trigonometric or -hyperbolic functions can be integrated. - -With an argument (@kbd{C-u a i}), this command will compute the definite -integral of the expression on top of the stack. In this case, the -command will again prompt for an integration variable, then prompt for a -lower limit and an upper limit. - -@ifnottex -If you use the @code{integ} function directly in an algebraic formula, -you can also write @samp{integ(f,x,v)} which expresses the resulting -indefinite integral in terms of variable @code{v} instead of @code{x}. -With four arguments, @samp{integ(f(x),x,a,b)} represents a definite -integral from @code{a} to @code{b}. -@end ifnottex -@tex -If you use the @code{integ} function directly in an algebraic formula, -you can also write @samp{integ(f,x,v)} which expresses the resulting -indefinite integral in terms of variable @code{v} instead of @code{x}. -With four arguments, @samp{integ(f(x),x,a,b)} represents a definite -integral $\int_a^b f(x) \, dx$. -@end tex - -Please note that the current implementation of Calc's integrator sometimes -produces results that are significantly more complex than they need to -be. For example, the integral Calc finds for -@texline @math{1/(x+\sqrt{x^2+1})} -@infoline @expr{1/(x+sqrt(x^2+1))} -is several times more complicated than the answer Mathematica -returns for the same input, although the two forms are numerically -equivalent. Also, any indefinite integral should be considered to have -an arbitrary constant of integration added to it, although Calc does not -write an explicit constant of integration in its result. For example, -Calc's solution for -@texline @math{1/(1+\tan x)} -@infoline @expr{1/(1+tan(x))} -differs from the solution given in the @emph{CRC Math Tables} by a -constant factor of -@texline @math{\pi i / 2} -@infoline @expr{pi i / 2}, -due to a different choice of constant of integration. - -The Calculator remembers all the integrals it has done. If conditions -change in a way that would invalidate the old integrals, say, a switch -from Degrees to Radians mode, then they will be thrown out. If you -suspect this is not happening when it should, use the -@code{calc-flush-caches} command; @pxref{Caches}. - -@vindex IntegLimit -Calc normally will pursue integration by substitution or integration by -parts up to 3 nested times before abandoning an approach as fruitless. -If the integrator is taking too long, you can lower this limit by storing -a number (like 2) in the variable @code{IntegLimit}. (The @kbd{s I} -command is a convenient way to edit @code{IntegLimit}.) If this variable -has no stored value or does not contain a nonnegative integer, a limit -of 3 is used. The lower this limit is, the greater the chance that Calc -will be unable to integrate a function it could otherwise handle. Raising -this limit allows the Calculator to solve more integrals, though the time -it takes may grow exponentially. You can monitor the integrator's actions -by creating an Emacs buffer called @code{*Trace*}. If such a buffer -exists, the @kbd{a i} command will write a log of its actions there. - -If you want to manipulate integrals in a purely symbolic way, you can -set the integration nesting limit to 0 to prevent all but fast -table-lookup solutions of integrals. You might then wish to define -rewrite rules for integration by parts, various kinds of substitutions, -and so on. @xref{Rewrite Rules}. - -@node Customizing the Integrator, Numerical Integration, Integration, Calculus -@subsection Customizing the Integrator - -@noindent -@vindex IntegRules -Calc has two built-in rewrite rules called @code{IntegRules} and -@code{IntegAfterRules} which you can edit to define new integration -methods. @xref{Rewrite Rules}. At each step of the integration process, -Calc wraps the current integrand in a call to the fictitious function -@samp{integtry(@var{expr},@var{var})}, where @var{expr} is the -integrand and @var{var} is the integration variable. If your rules -rewrite this to be a plain formula (not a call to @code{integtry}), then -Calc will use this formula as the integral of @var{expr}. For example, -the rule @samp{integtry(mysin(x),x) := -mycos(x)} would define a rule to -integrate a function @code{mysin} that acts like the sine function. -Then, putting @samp{4 mysin(2y+1)} on the stack and typing @kbd{a i y} -will produce the integral @samp{-2 mycos(2y+1)}. Note that Calc has -automatically made various transformations on the integral to allow it -to use your rule; integral tables generally give rules for -@samp{mysin(a x + b)}, but you don't need to use this much generality -in your @code{IntegRules}. - -@cindex Exponential integral Ei(x) -@ignore -@starindex -@end ignore -@tindex Ei -As a more serious example, the expression @samp{exp(x)/x} cannot be -integrated in terms of the standard functions, so the ``exponential -integral'' function -@texline @math{{\rm Ei}(x)} -@infoline @expr{Ei(x)} -was invented to describe it. -We can get Calc to do this integral in terms of a made-up @code{Ei} -function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]} -to @code{IntegRules}. Now entering @samp{exp(2x)/x} on the stack -and typing @kbd{a i x} yields @samp{Ei(2 x)}. This new rule will -work with Calc's various built-in integration methods (such as -integration by substitution) to solve a variety of other problems -involving @code{Ei}: For example, now Calc will also be able to -integrate @samp{exp(exp(x))} and @samp{ln(ln(x))} (to get @samp{Ei(exp(x))} -and @samp{x ln(ln(x)) - Ei(ln(x))}, respectively). - -Your rule may do further integration by calling @code{integ}. For -example, @samp{integtry(twice(u),x) := twice(integ(u))} allows Calc -to integrate @samp{twice(sin(x))} to get @samp{twice(-cos(x))}. -Note that @code{integ} was called with only one argument. This notation -is allowed only within @code{IntegRules}; it means ``integrate this -with respect to the same integration variable.'' If Calc is unable -to integrate @code{u}, the integration that invoked @code{IntegRules} -also fails. Thus integrating @samp{twice(f(x))} fails, returning the -unevaluated integral @samp{integ(twice(f(x)), x)}. It is still valid -to call @code{integ} with two or more arguments, however; in this case, -if @code{u} is not integrable, @code{twice} itself will still be -integrated: If the above rule is changed to @samp{... := twice(integ(u,x))}, -then integrating @samp{twice(f(x))} will yield @samp{twice(integ(f(x),x))}. - -If a rule instead produces the formula @samp{integsubst(@var{sexpr}, -@var{svar})}, either replacing the top-level @code{integtry} call or -nested anywhere inside the expression, then Calc will apply the -substitution @samp{@var{u} = @var{sexpr}(@var{svar})} to try to -integrate the original @var{expr}. For example, the rule -@samp{sqrt(a) := integsubst(sqrt(x),x)} says that if Calc ever finds -a square root in the integrand, it should attempt the substitution -@samp{u = sqrt(x)}. (This particular rule is unnecessary because -Calc always tries ``obvious'' substitutions where @var{sexpr} actually -appears in the integrand.) The variable @var{svar} may be the same -as the @var{var} that appeared in the call to @code{integtry}, but -it need not be. - -When integrating according to an @code{integsubst}, Calc uses the -equation solver to find the inverse of @var{sexpr} (if the integrand -refers to @var{var} anywhere except in subexpressions that exactly -match @var{sexpr}). It uses the differentiator to find the derivative -of @var{sexpr} and/or its inverse (it has two methods that use one -derivative or the other). You can also specify these items by adding -extra arguments to the @code{integsubst} your rules construct; the -general form is @samp{integsubst(@var{sexpr}, @var{svar}, @var{sinv}, -@var{sprime})}, where @var{sinv} is the inverse of @var{sexpr} (still -written as a function of @var{svar}), and @var{sprime} is the -derivative of @var{sexpr} with respect to @var{svar}. If you don't -specify these things, and Calc is not able to work them out on its -own with the information it knows, then your substitution rule will -work only in very specific, simple cases. - -Calc applies @code{IntegRules} as if by @kbd{C-u 1 a r IntegRules}; -in other words, Calc stops rewriting as soon as any rule in your rule -set succeeds. (If it weren't for this, the @samp{integsubst(sqrt(x),x)} -example above would keep on adding layers of @code{integsubst} calls -forever!) - -@vindex IntegSimpRules -Another set of rules, stored in @code{IntegSimpRules}, are applied -every time the integrator uses @kbd{a s} to simplify an intermediate -result. For example, putting the rule @samp{twice(x) := 2 x} into -@code{IntegSimpRules} would tell Calc to convert the @code{twice} -function into a form it knows whenever integration is attempted. - -One more way to influence the integrator is to define a function with -the @kbd{Z F} command (@pxref{Algebraic Definitions}). Calc's -integrator automatically expands such functions according to their -defining formulas, even if you originally asked for the function to -be left unevaluated for symbolic arguments. (Certain other Calc -systems, such as the differentiator and the equation solver, also -do this.) - -@vindex IntegAfterRules -Sometimes Calc is able to find a solution to your integral, but it -expresses the result in a way that is unnecessarily complicated. If -this happens, you can either use @code{integsubst} as described -above to try to hint at a more direct path to the desired result, or -you can use @code{IntegAfterRules}. This is an extra rule set that -runs after the main integrator returns its result; basically, Calc does -an @kbd{a r IntegAfterRules} on the result before showing it to you. -(It also does an @kbd{a s}, without @code{IntegSimpRules}, after that -to further simplify the result.) For example, Calc's integrator -sometimes produces expressions of the form @samp{ln(1+x) - ln(1-x)}; -the default @code{IntegAfterRules} rewrite this into the more readable -form @samp{2 arctanh(x)}. Note that, unlike @code{IntegRules}, -@code{IntegSimpRules} and @code{IntegAfterRules} are applied any number -of times until no further changes are possible. Rewriting by -@code{IntegAfterRules} occurs only after the main integrator has -finished, not at every step as for @code{IntegRules} and -@code{IntegSimpRules}. - -@node Numerical Integration, Taylor Series, Customizing the Integrator, Calculus -@subsection Numerical Integration - -@noindent -@kindex a I -@pindex calc-num-integral -@tindex ninteg -If you want a purely numerical answer to an integration problem, you can -use the @kbd{a I} (@code{calc-num-integral}) [@code{ninteg}] command. This -command prompts for an integration variable, a lower limit, and an -upper limit. Except for the integration variable, all other variables -that appear in the integrand formula must have stored values. (A stored -value, if any, for the integration variable itself is ignored.) - -Numerical integration works by evaluating your formula at many points in -the specified interval. Calc uses an ``open Romberg'' method; this means -that it does not evaluate the formula actually at the endpoints (so that -it is safe to integrate @samp{sin(x)/x} from zero, for example). Also, -the Romberg method works especially well when the function being -integrated is fairly smooth. If the function is not smooth, Calc will -have to evaluate it at quite a few points before it can accurately -determine the value of the integral. - -Integration is much faster when the current precision is small. It is -best to set the precision to the smallest acceptable number of digits -before you use @kbd{a I}. If Calc appears to be taking too long, press -@kbd{C-g} to halt it and try a lower precision. If Calc still appears -to need hundreds of evaluations, check to make sure your function is -well-behaved in the specified interval. - -It is possible for the lower integration limit to be @samp{-inf} (minus -infinity). Likewise, the upper limit may be plus infinity. Calc -internally transforms the integral into an equivalent one with finite -limits. However, integration to or across singularities is not supported: -The integral of @samp{1/sqrt(x)} from 0 to 1 exists (it can be found -by Calc's symbolic integrator, for example), but @kbd{a I} will fail -because the integrand goes to infinity at one of the endpoints. - -@node Taylor Series, , Numerical Integration, Calculus -@subsection Taylor Series - -@noindent -@kindex a t -@pindex calc-taylor -@tindex taylor -The @kbd{a t} (@code{calc-taylor}) [@code{taylor}] command computes a -power series expansion or Taylor series of a function. You specify the -variable and the desired number of terms. You may give an expression of -the form @samp{@var{var} = @var{a}} or @samp{@var{var} - @var{a}} instead -of just a variable to produce a Taylor expansion about the point @var{a}. -You may specify the number of terms with a numeric prefix argument; -otherwise the command will prompt you for the number of terms. Note that -many series expansions have coefficients of zero for some terms, so you -may appear to get fewer terms than you asked for. - -If the @kbd{a i} command is unable to find a symbolic integral for a -function, you can get an approximation by integrating the function's -Taylor series. - -@node Solving Equations, Numerical Solutions, Calculus, Algebra -@section Solving Equations - -@noindent -@kindex a S -@pindex calc-solve-for -@tindex solve -@cindex Equations, solving -@cindex Solving equations -The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges -an equation to solve for a specific variable. An equation is an -expression of the form @expr{L = R}. For example, the command @kbd{a S x} -will rearrange @expr{y = 3x + 6} to the form, @expr{x = y/3 - 2}. If the -input is not an equation, it is treated like an equation of the -form @expr{X = 0}. - -This command also works for inequalities, as in @expr{y < 3x + 6}. -Some inequalities cannot be solved where the analogous equation could -be; for example, solving -@texline @math{a < b \, c} -@infoline @expr{a < b c} -for @expr{b} is impossible -without knowing the sign of @expr{c}. In this case, @kbd{a S} will -produce the result -@texline @math{b \mathbin{\hbox{\code{!=}}} a/c} -@infoline @expr{b != a/c} -(using the not-equal-to operator) to signify that the direction of the -inequality is now unknown. The inequality -@texline @math{a \le b \, c} -@infoline @expr{a <= b c} -is not even partially solved. @xref{Declarations}, for a way to tell -Calc that the signs of the variables in a formula are in fact known. - -Two useful commands for working with the result of @kbd{a S} are -@kbd{a .} (@pxref{Logical Operations}), which converts @expr{x = y/3 - 2} -to @expr{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates -another formula with @expr{x} set equal to @expr{y/3 - 2}. - -@menu -* Multiple Solutions:: -* Solving Systems of Equations:: -* Decomposing Polynomials:: -@end menu - -@node Multiple Solutions, Solving Systems of Equations, Solving Equations, Solving Equations -@subsection Multiple Solutions - -@noindent -@kindex H a S -@tindex fsolve -Some equations have more than one solution. The Hyperbolic flag -(@code{H a S}) [@code{fsolve}] tells the solver to report the fully -general family of solutions. It will invent variables @code{n1}, -@code{n2}, @dots{}, which represent independent arbitrary integers, and -@code{s1}, @code{s2}, @dots{}, which represent independent arbitrary -signs (either @mathit{+1} or @mathit{-1}). If you don't use the Hyperbolic -flag, Calc will use zero in place of all arbitrary integers, and plus -one in place of all arbitrary signs. Note that variables like @code{n1} -and @code{s1} are not given any special interpretation in Calc except by -the equation solver itself. As usual, you can use the @w{@kbd{s l}} -(@code{calc-let}) command to obtain solutions for various actual values -of these variables. - -For example, @kbd{' x^2 = y @key{RET} H a S x @key{RET}} solves to -get @samp{x = s1 sqrt(y)}, indicating that the two solutions to the -equation are @samp{sqrt(y)} and @samp{-sqrt(y)}. Another way to -think about it is that the square-root operation is really a -two-valued function; since every Calc function must return a -single result, @code{sqrt} chooses to return the positive result. -Then @kbd{H a S} doctors this result using @code{s1} to indicate -the full set of possible values of the mathematical square-root. - -There is a similar phenomenon going the other direction: Suppose -we solve @samp{sqrt(y) = x} for @code{y}. Calc squares both sides -to get @samp{y = x^2}. This is correct, except that it introduces -some dubious solutions. Consider solving @samp{sqrt(y) = -3}: -Calc will report @expr{y = 9} as a valid solution, which is true -in the mathematical sense of square-root, but false (there is no -solution) for the actual Calc positive-valued @code{sqrt}. This -happens for both @kbd{a S} and @kbd{H a S}. - -@cindex @code{GenCount} variable -@vindex GenCount -@ignore -@starindex -@end ignore -@tindex an -@ignore -@starindex -@end ignore -@tindex as -If you store a positive integer in the Calc variable @code{GenCount}, -then Calc will generate formulas of the form @samp{as(@var{n})} for -arbitrary signs, and @samp{an(@var{n})} for arbitrary integers, -where @var{n} represents successive values taken by incrementing -@code{GenCount} by one. While the normal arbitrary sign and -integer symbols start over at @code{s1} and @code{n1} with each -new Calc command, the @code{GenCount} approach will give each -arbitrary value a name that is unique throughout the entire Calc -session. Also, the arbitrary values are function calls instead -of variables, which is advantageous in some cases. For example, -you can make a rewrite rule that recognizes all arbitrary signs -using a pattern like @samp{as(n)}. The @kbd{s l} command only works -on variables, but you can use the @kbd{a b} (@code{calc-substitute}) -command to substitute actual values for function calls like @samp{as(3)}. - -The @kbd{s G} (@code{calc-edit-GenCount}) command is a convenient -way to create or edit this variable. Press @kbd{C-c C-c} to finish. - -If you have not stored a value in @code{GenCount}, or if the value -in that variable is not a positive integer, the regular -@code{s1}/@code{n1} notation is used. - -@kindex I a S -@kindex H I a S -@tindex finv -@tindex ffinv -With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression -on top of the stack as a function of the specified variable and solves -to find the inverse function, written in terms of the same variable. -For example, @kbd{I a S x} inverts @expr{2x + 6} to @expr{x/2 - 3}. -You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a -fully general inverse, as described above. - -@kindex a P -@pindex calc-poly-roots -@tindex roots -Some equations, specifically polynomials, have a known, finite number -of solutions. The @kbd{a P} (@code{calc-poly-roots}) [@code{roots}] -command uses @kbd{H a S} to solve an equation in general form, then, for -all arbitrary-sign variables like @code{s1}, and all arbitrary-integer -variables like @code{n1} for which @code{n1} only usefully varies over -a finite range, it expands these variables out to all their possible -values. The results are collected into a vector, which is returned. -For example, @samp{roots(x^4 = 1, x)} returns the four solutions -@samp{[1, -1, (0, 1), (0, -1)]}. Generally an @var{n}th degree -polynomial will always have @var{n} roots on the complex plane. -(If you have given a @code{real} declaration for the solution -variable, then only the real-valued solutions, if any, will be -reported; @pxref{Declarations}.) - -Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver -symbolic solutions if the polynomial has symbolic coefficients. Also -note that Calc's solver is not able to get exact symbolic solutions -to all polynomials. Polynomials containing powers up to @expr{x^4} -can always be solved exactly; polynomials of higher degree sometimes -can be: @expr{x^6 + x^3 + 1} is converted to @expr{(x^3)^2 + (x^3) + 1}, -which can be solved for @expr{x^3} using the quadratic equation, and then -for @expr{x} by taking cube roots. But in many cases, like -@expr{x^6 + x + 1}, Calc does not know how to rewrite the polynomial -into a form it can solve. The @kbd{a P} command can still deliver a -list of numerical roots, however, provided that Symbolic mode (@kbd{m s}) -is not turned on. (If you work with Symbolic mode on, recall that the -@kbd{N} (@code{calc-eval-num}) key is a handy way to reevaluate the -formula on the stack with Symbolic mode temporarily off.) Naturally, -@kbd{a P} can only provide numerical roots if the polynomial coefficients -are all numbers (real or complex). - -@node Solving Systems of Equations, Decomposing Polynomials, Multiple Solutions, Solving Equations -@subsection Solving Systems of Equations - -@noindent -@cindex Systems of equations, symbolic -You can also use the commands described above to solve systems of -simultaneous equations. Just create a vector of equations, then -specify a vector of variables for which to solve. (You can omit -the surrounding brackets when entering the vector of variables -at the prompt.) - -For example, putting @samp{[x + y = a, x - y = b]} on the stack -and typing @kbd{a S x,y @key{RET}} produces the vector of solutions -@samp{[x = a - (a-b)/2, y = (a-b)/2]}. The result vector will -have the same length as the variables vector, and the variables -will be listed in the same order there. Note that the solutions -are not always simplified as far as possible; the solution for -@expr{x} here could be improved by an application of the @kbd{a n} -command. - -Calc's algorithm works by trying to eliminate one variable at a -time by solving one of the equations for that variable and then -substituting into the other equations. Calc will try all the -possibilities, but you can speed things up by noting that Calc -first tries to eliminate the first variable with the first -equation, then the second variable with the second equation, -and so on. It also helps to put the simpler (e.g., more linear) -equations toward the front of the list. Calc's algorithm will -solve any system of linear equations, and also many kinds of -nonlinear systems. - -@ignore -@starindex -@end ignore -@tindex elim -Normally there will be as many variables as equations. If you -give fewer variables than equations (an ``over-determined'' system -of equations), Calc will find a partial solution. For example, -typing @kbd{a S y @key{RET}} with the above system of equations -would produce @samp{[y = a - x]}. There are now several ways to -express this solution in terms of the original variables; Calc uses -the first one that it finds. You can control the choice by adding -variable specifiers of the form @samp{elim(@var{v})} to the -variables list. This says that @var{v} should be eliminated from -the equations; the variable will not appear at all in the solution. -For example, typing @kbd{a S y,elim(x)} would yield -@samp{[y = a - (b+a)/2]}. - -If the variables list contains only @code{elim} specifiers, -Calc simply eliminates those variables from the equations -and then returns the resulting set of equations. For example, -@kbd{a S elim(x)} produces @samp{[a - 2 y = b]}. Every variable -eliminated will reduce the number of equations in the system -by one. - -Again, @kbd{a S} gives you one solution to the system of -equations. If there are several solutions, you can use @kbd{H a S} -to get a general family of solutions, or, if there is a finite -number of solutions, you can use @kbd{a P} to get a list. (In -the latter case, the result will take the form of a matrix where -the rows are different solutions and the columns correspond to the -variables you requested.) - -Another way to deal with certain kinds of overdetermined systems of -equations is the @kbd{a F} command, which does least-squares fitting -to satisfy the equations. @xref{Curve Fitting}. - -@node Decomposing Polynomials, , Solving Systems of Equations, Solving Equations -@subsection Decomposing Polynomials - -@noindent -@ignore -@starindex -@end ignore -@tindex poly -The @code{poly} function takes a polynomial and a variable as -arguments, and returns a vector of polynomial coefficients (constant -coefficient first). For example, @samp{poly(x^3 + 2 x, x)} returns -@expr{[0, 2, 0, 1]}. If the input is not a polynomial in @expr{x}, -the call to @code{poly} is left in symbolic form. If the input does -not involve the variable @expr{x}, the input is returned in a list -of length one, representing a polynomial with only a constant -coefficient. The call @samp{poly(x, x)} returns the vector @expr{[0, 1]}. -The last element of the returned vector is guaranteed to be nonzero; -note that @samp{poly(0, x)} returns the empty vector @expr{[]}. -Note also that @expr{x} may actually be any formula; for example, -@samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @expr{[3, -1, 1]}. - -@cindex Coefficients of polynomial -@cindex Degree of polynomial -To get the @expr{x^k} coefficient of polynomial @expr{p}, use -@samp{poly(p, x)_(k+1)}. To get the degree of polynomial @expr{p}, -use @samp{vlen(poly(p, x)) - 1}. For example, @samp{poly((x+1)^4, x)} -returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)} -gives the @expr{x^2} coefficient of this polynomial, 6. - -@ignore -@starindex -@end ignore -@tindex gpoly -One important feature of the solver is its ability to recognize -formulas which are ``essentially'' polynomials. This ability is -made available to the user through the @code{gpoly} function, which -is used just like @code{poly}: @samp{gpoly(@var{expr}, @var{var})}. -If @var{expr} is a polynomial in some term which includes @var{var}, then -this function will return a vector @samp{[@var{x}, @var{c}, @var{a}]} -where @var{x} is the term that depends on @var{var}, @var{c} is a -vector of polynomial coefficients (like the one returned by @code{poly}), -and @var{a} is a multiplier which is usually 1. Basically, -@samp{@var{expr} = @var{a}*(@var{c}_1 + @var{c}_2 @var{x} + -@var{c}_3 @var{x}^2 + ...)}. The last element of @var{c} is -guaranteed to be non-zero, and @var{c} will not equal @samp{[1]} -(i.e., the trivial decomposition @var{expr} = @var{x} is not -considered a polynomial). One side effect is that @samp{gpoly(x, x)} -and @samp{gpoly(6, x)}, both of which might be expected to recognize -their arguments as polynomials, will not because the decomposition -is considered trivial. - -For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]}, -since the expanded form of this polynomial is @expr{4 - 4 x + x^2}. - -The term @var{x} may itself be a polynomial in @var{var}. This is -done to reduce the size of the @var{c} vector. For example, -@samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]}, -since a quadratic polynomial in @expr{x^2} is easier to solve than -a quartic polynomial in @expr{x}. - -A few more examples of the kinds of polynomials @code{gpoly} can -discover: - -@smallexample -sin(x) - 1 [sin(x), [-1, 1], 1] -x + 1/x - 1 [x, [1, -1, 1], 1/x] -x + 1/x [x^2, [1, 1], 1/x] -x^3 + 2 x [x^2, [2, 1], x] -x + x^2:3 + sqrt(x) [x^1:6, [1, 1, 0, 1], x^1:2] -x^(2a) + 2 x^a + 5 [x^a, [5, 2, 1], 1] -(exp(-x) + exp(x)) / 2 [e^(2 x), [0.5, 0.5], e^-x] -@end smallexample - -The @code{poly} and @code{gpoly} functions accept a third integer argument -which specifies the largest degree of polynomial that is acceptable. -If this is @expr{n}, then only @var{c} vectors of length @expr{n+1} -or less will be returned. Otherwise, the @code{poly} or @code{gpoly} -call will remain in symbolic form. For example, the equation solver -can handle quartics and smaller polynomials, so it calls -@samp{gpoly(@var{expr}, @var{var}, 4)} to discover whether @var{expr} -can be treated by its linear, quadratic, cubic, or quartic formulas. - -@ignore -@starindex -@end ignore -@tindex pdeg -The @code{pdeg} function computes the degree of a polynomial; -@samp{pdeg(p,x)} is the highest power of @code{x} that appears in -@code{p}. This is the same as @samp{vlen(poly(p,x))-1}, but is -much more efficient. If @code{p} is constant with respect to @code{x}, -then @samp{pdeg(p,x) = 0}. If @code{p} is not a polynomial in @code{x} -(e.g., @samp{pdeg(2 cos(x), x)}, the function remains unevaluated. -It is possible to omit the second argument @code{x}, in which case -@samp{pdeg(p)} returns the highest total degree of any term of the -polynomial, counting all variables that appear in @code{p}. Note -that @code{pdeg(c) = pdeg(c,x) = 0} for any nonzero constant @code{c}; -the degree of the constant zero is considered to be @code{-inf} -(minus infinity). - -@ignore -@starindex -@end ignore -@tindex plead -The @code{plead} function finds the leading term of a polynomial. -Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))}, -though again more efficient. In particular, @samp{plead((2x+1)^10, x)} -returns 1024 without expanding out the list of coefficients. The -value of @code{plead(p,x)} will be zero only if @expr{p = 0}. - -@ignore -@starindex -@end ignore -@tindex pcont -The @code{pcont} function finds the @dfn{content} of a polynomial. This -is the greatest common divisor of all the coefficients of the polynomial. -With two arguments, @code{pcont(p,x)} effectively uses @samp{poly(p,x)} -to get a list of coefficients, then uses @code{pgcd} (the polynomial -GCD function) to combine these into an answer. For example, -@samp{pcont(4 x y^2 + 6 x^2 y, x)} is @samp{2 y}. The content is -basically the ``biggest'' polynomial that can be divided into @code{p} -exactly. The sign of the content is the same as the sign of the leading -coefficient. - -With only one argument, @samp{pcont(p)} computes the numerical -content of the polynomial, i.e., the @code{gcd} of the numerical -coefficients of all the terms in the formula. Note that @code{gcd} -is defined on rational numbers as well as integers; it computes -the @code{gcd} of the numerators and the @code{lcm} of the -denominators. Thus @samp{pcont(4:3 x y^2 + 6 x^2 y)} returns 2:3. -Dividing the polynomial by this number will clear all the -denominators, as well as dividing by any common content in the -numerators. The numerical content of a polynomial is negative only -if all the coefficients in the polynomial are negative. - -@ignore -@starindex -@end ignore -@tindex pprim -The @code{pprim} function finds the @dfn{primitive part} of a -polynomial, which is simply the polynomial divided (using @code{pdiv} -if necessary) by its content. If the input polynomial has rational -coefficients, the result will have integer coefficients in simplest -terms. - -@node Numerical Solutions, Curve Fitting, Solving Equations, Algebra -@section Numerical Solutions - -@noindent -Not all equations can be solved symbolically. The commands in this -section use numerical algorithms that can find a solution to a specific -instance of an equation to any desired accuracy. Note that the -numerical commands are slower than their algebraic cousins; it is a -good idea to try @kbd{a S} before resorting to these commands. - -(@xref{Curve Fitting}, for some other, more specialized, operations -on numerical data.) - -@menu -* Root Finding:: -* Minimization:: -* Numerical Systems of Equations:: -@end menu - -@node Root Finding, Minimization, Numerical Solutions, Numerical Solutions -@subsection Root Finding - -@noindent -@kindex a R -@pindex calc-find-root -@tindex root -@cindex Newton's method -@cindex Roots of equations -@cindex Numerical root-finding -The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a -numerical solution (or @dfn{root}) of an equation. (This command treats -inequalities the same as equations. If the input is any other kind -of formula, it is interpreted as an equation of the form @expr{X = 0}.) - -The @kbd{a R} command requires an initial guess on the top of the -stack, and a formula in the second-to-top position. It prompts for a -solution variable, which must appear in the formula. All other variables -that appear in the formula must have assigned values, i.e., when -a value is assigned to the solution variable and the formula is -evaluated with @kbd{=}, it should evaluate to a number. Any assigned -value for the solution variable itself is ignored and unaffected by -this command. - -When the command completes, the initial guess is replaced on the stack -by a vector of two numbers: The value of the solution variable that -solves the equation, and the difference between the lefthand and -righthand sides of the equation at that value. Ordinarily, the second -number will be zero or very nearly zero. (Note that Calc uses a -slightly higher precision while finding the root, and thus the second -number may be slightly different from the value you would compute from -the equation yourself.) - -The @kbd{v h} (@code{calc-head}) command is a handy way to extract -the first element of the result vector, discarding the error term. - -The initial guess can be a real number, in which case Calc searches -for a real solution near that number, or a complex number, in which -case Calc searches the whole complex plane near that number for a -solution, or it can be an interval form which restricts the search -to real numbers inside that interval. - -Calc tries to use @kbd{a d} to take the derivative of the equation. -If this succeeds, it uses Newton's method. If the equation is not -differentiable Calc uses a bisection method. (If Newton's method -appears to be going astray, Calc switches over to bisection if it -can, or otherwise gives up. In this case it may help to try again -with a slightly different initial guess.) If the initial guess is a -complex number, the function must be differentiable. - -If the formula (or the difference between the sides of an equation) -is negative at one end of the interval you specify and positive at -the other end, the root finder is guaranteed to find a root. -Otherwise, Calc subdivides the interval into small parts looking for -positive and negative values to bracket the root. When your guess is -an interval, Calc will not look outside that interval for a root. - -@kindex H a R -@tindex wroot -The @kbd{H a R} [@code{wroot}] command is similar to @kbd{a R}, except -that if the initial guess is an interval for which the function has -the same sign at both ends, then rather than subdividing the interval -Calc attempts to widen it to enclose a root. Use this mode if -you are not sure if the function has a root in your interval. - -If the function is not differentiable, and you give a simple number -instead of an interval as your initial guess, Calc uses this widening -process even if you did not type the Hyperbolic flag. (If the function -@emph{is} differentiable, Calc uses Newton's method which does not -require a bounding interval in order to work.) - -If Calc leaves the @code{root} or @code{wroot} function in symbolic -form on the stack, it will normally display an explanation for why -no root was found. If you miss this explanation, press @kbd{w} -(@code{calc-why}) to get it back. - -@node Minimization, Numerical Systems of Equations, Root Finding, Numerical Solutions -@subsection Minimization - -@noindent -@kindex a N -@kindex H a N -@kindex a X -@kindex H a X -@pindex calc-find-minimum -@pindex calc-find-maximum -@tindex minimize -@tindex maximize -@cindex Minimization, numerical -The @kbd{a N} (@code{calc-find-minimum}) [@code{minimize}] command -finds a minimum value for a formula. It is very similar in operation -to @kbd{a R} (@code{calc-find-root}): You give the formula and an initial -guess on the stack, and are prompted for the name of a variable. The guess -may be either a number near the desired minimum, or an interval enclosing -the desired minimum. The function returns a vector containing the -value of the variable which minimizes the formula's value, along -with the minimum value itself. - -Note that this command looks for a @emph{local} minimum. Many functions -have more than one minimum; some, like -@texline @math{x \sin x}, -@infoline @expr{x sin(x)}, -have infinitely many. In fact, there is no easy way to define the -``global'' minimum of -@texline @math{x \sin x} -@infoline @expr{x sin(x)} -but Calc can still locate any particular local minimum -for you. Calc basically goes downhill from the initial guess until it -finds a point at which the function's value is greater both to the left -and to the right. Calc does not use derivatives when minimizing a function. - -If your initial guess is an interval and it looks like the minimum -occurs at one or the other endpoint of the interval, Calc will return -that endpoint only if that endpoint is closed; thus, minimizing @expr{17 x} -over @expr{[2..3]} will return @expr{[2, 38]}, but minimizing over -@expr{(2..3]} would report no minimum found. In general, you should -use closed intervals to find literally the minimum value in that -range of @expr{x}, or open intervals to find the local minimum, if -any, that happens to lie in that range. - -Most functions are smooth and flat near their minimum values. Because -of this flatness, if the current precision is, say, 12 digits, the -variable can only be determined meaningfully to about six digits. Thus -you should set the precision to twice as many digits as you need in your -answer. - -@ignore -@mindex wmin@idots -@end ignore -@tindex wminimize -@ignore -@mindex wmax@idots -@end ignore -@tindex wmaximize -The @kbd{H a N} [@code{wminimize}] command, analogously to @kbd{H a R}, -expands the guess interval to enclose a minimum rather than requiring -that the minimum lie inside the interval you supply. - -The @kbd{a X} (@code{calc-find-maximum}) [@code{maximize}] and -@kbd{H a X} [@code{wmaximize}] commands effectively minimize the -negative of the formula you supply. - -The formula must evaluate to a real number at all points inside the -interval (or near the initial guess if the guess is a number). If -the initial guess is a complex number the variable will be minimized -over the complex numbers; if it is real or an interval it will -be minimized over the reals. - -@node Numerical Systems of Equations, , Minimization, Numerical Solutions -@subsection Systems of Equations - -@noindent -@cindex Systems of equations, numerical -The @kbd{a R} command can also solve systems of equations. In this -case, the equation should instead be a vector of equations, the -guess should instead be a vector of numbers (intervals are not -supported), and the variable should be a vector of variables. You -can omit the brackets while entering the list of variables. Each -equation must be differentiable by each variable for this mode to -work. The result will be a vector of two vectors: The variable -values that solved the system of equations, and the differences -between the sides of the equations with those variable values. -There must be the same number of equations as variables. Since -only plain numbers are allowed as guesses, the Hyperbolic flag has -no effect when solving a system of equations. - -It is also possible to minimize over many variables with @kbd{a N} -(or maximize with @kbd{a X}). Once again the variable name should -be replaced by a vector of variables, and the initial guess should -be an equal-sized vector of initial guesses. But, unlike the case of -multidimensional @kbd{a R}, the formula being minimized should -still be a single formula, @emph{not} a vector. Beware that -multidimensional minimization is currently @emph{very} slow. - -@node Curve Fitting, Summations, Numerical Solutions, Algebra -@section Curve Fitting - -@noindent -The @kbd{a F} command fits a set of data to a @dfn{model formula}, -such as @expr{y = m x + b} where @expr{m} and @expr{b} are parameters -to be determined. For a typical set of measured data there will be -no single @expr{m} and @expr{b} that exactly fit the data; in this -case, Calc chooses values of the parameters that provide the closest -possible fit. The model formula can be entered in various ways after -the key sequence @kbd{a F} is pressed. - -If the letter @kbd{P} is pressed after @kbd{a F} but before the model -description is entered, the data as well as the model formula will be -plotted after the formula is determined. This will be indicated by a -``P'' in the minibuffer after the help message. - -@menu -* Linear Fits:: -* Polynomial and Multilinear Fits:: -* Error Estimates for Fits:: -* Standard Nonlinear Models:: -* Curve Fitting Details:: -* Interpolation:: -@end menu - -@node Linear Fits, Polynomial and Multilinear Fits, Curve Fitting, Curve Fitting -@subsection Linear Fits - -@noindent -@kindex a F -@pindex calc-curve-fit -@tindex fit -@cindex Linear regression -@cindex Least-squares fits -The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts -to fit a set of data (@expr{x} and @expr{y} vectors of numbers) to a -straight line, polynomial, or other function of @expr{x}. For the -moment we will consider only the case of fitting to a line, and we -will ignore the issue of whether or not the model was in fact a good -fit for the data. - -In a standard linear least-squares fit, we have a set of @expr{(x,y)} -data points that we wish to fit to the model @expr{y = m x + b} -by adjusting the parameters @expr{m} and @expr{b} to make the @expr{y} -values calculated from the formula be as close as possible to the actual -@expr{y} values in the data set. (In a polynomial fit, the model is -instead, say, @expr{y = a x^3 + b x^2 + c x + d}. In a multilinear fit, -we have data points of the form @expr{(x_1,x_2,x_3,y)} and our model is -@expr{y = a x_1 + b x_2 + c x_3 + d}. These will be discussed later.) - -In the model formula, variables like @expr{x} and @expr{x_2} are called -the @dfn{independent variables}, and @expr{y} is the @dfn{dependent -variable}. Variables like @expr{m}, @expr{a}, and @expr{b} are called -the @dfn{parameters} of the model. - -The @kbd{a F} command takes the data set to be fitted from the stack. -By default, it expects the data in the form of a matrix. For example, -for a linear or polynomial fit, this would be a -@texline @math{2\times N} -@infoline 2xN -matrix where the first row is a list of @expr{x} values and the second -row has the corresponding @expr{y} values. For the multilinear fit -shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2}, -@expr{x_3}, and @expr{y}, respectively). - -If you happen to have an -@texline @math{N\times2} -@infoline Nx2 -matrix instead of a -@texline @math{2\times N} -@infoline 2xN -matrix, just press @kbd{v t} first to transpose the matrix. - -After you type @kbd{a F}, Calc prompts you to select a model. For a -linear fit, press the digit @kbd{1}. - -Calc then prompts for you to name the variables. By default it chooses -high letters like @expr{x} and @expr{y} for independent variables and -low letters like @expr{a} and @expr{b} for parameters. (The dependent -variable doesn't need a name.) The two kinds of variables are separated -by a semicolon. Since you generally care more about the names of the -independent variables than of the parameters, Calc also allows you to -name only those and let the parameters use default names. - -For example, suppose the data matrix - -@ifnottex -@example -@group -[ [ 1, 2, 3, 4, 5 ] - [ 5, 7, 9, 11, 13 ] ] -@end group -@end example -@end ifnottex -@tex -\turnoffactive -\turnoffactive -\beforedisplay -$$ \pmatrix{ 1 & 2 & 3 & 4 & 5 \cr - 5 & 7 & 9 & 11 & 13 } -$$ -\afterdisplay -@end tex - -@noindent -is on the stack and we wish to do a simple linear fit. Type -@kbd{a F}, then @kbd{1} for the model, then @key{RET} to use -the default names. The result will be the formula @expr{3. + 2. x} -on the stack. Calc has created the model expression @kbd{a + b x}, -then found the optimal values of @expr{a} and @expr{b} to fit the -data. (In this case, it was able to find an exact fit.) Calc then -substituted those values for @expr{a} and @expr{b} in the model -formula. - -The @kbd{a F} command puts two entries in the trail. One is, as -always, a copy of the result that went to the stack; the other is -a vector of the actual parameter values, written as equations: -@expr{[a = 3, b = 2]}, in case you'd rather read them in a list -than pick them out of the formula. (You can type @kbd{t y} -to move this vector to the stack; see @ref{Trail Commands}. - -Specifying a different independent variable name will affect the -resulting formula: @kbd{a F 1 k @key{RET}} produces @kbd{3 + 2 k}. -Changing the parameter names (say, @kbd{a F 1 k;b,m @key{RET}}) will affect -the equations that go into the trail. - -@tex -\bigskip -@end tex - -To see what happens when the fit is not exact, we could change -the number 13 in the data matrix to 14 and try the fit again. -The result is: - -@example -2.6 + 2.2 x -@end example - -Evaluating this formula, say with @kbd{v x 5 @key{RET} @key{TAB} V M $ @key{RET}}, shows -a reasonably close match to the y-values in the data. - -@example -[4.8, 7., 9.2, 11.4, 13.6] -@end example - -Since there is no line which passes through all the @var{n} data points, -Calc has chosen a line that best approximates the data points using -the method of least squares. The idea is to define the @dfn{chi-square} -error measure - -@ifnottex -@example -chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N) -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$ -\afterdisplay -@end tex - -@noindent -which is clearly zero if @expr{a + b x} exactly fits all data points, -and increases as various @expr{a + b x_i} values fail to match the -corresponding @expr{y_i} values. There are several reasons why the -summand is squared, one of them being to ensure that -@texline @math{\chi^2 \ge 0}. -@infoline @expr{chi^2 >= 0}. -Least-squares fitting simply chooses the values of @expr{a} and @expr{b} -for which the error -@texline @math{\chi^2} -@infoline @expr{chi^2} -is as small as possible. - -Other kinds of models do the same thing but with a different model -formula in place of @expr{a + b x_i}. - -@tex -\bigskip -@end tex - -A numeric prefix argument causes the @kbd{a F} command to take the -data in some other form than one big matrix. A positive argument @var{n} -will take @var{N} items from the stack, corresponding to the @var{n} rows -of a data matrix. In the linear case, @var{n} must be 2 since there -is always one independent variable and one dependent variable. - -A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two -items from the stack, an @var{n}-row matrix of @expr{x} values, and a -vector of @expr{y} values. If there is only one independent variable, -the @expr{x} values can be either a one-row matrix or a plain vector, -in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix. - -@node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting -@subsection Polynomial and Multilinear Fits - -@noindent -To fit the data to higher-order polynomials, just type one of the -digits @kbd{2} through @kbd{9} when prompted for a model. For example, -we could fit the original data matrix from the previous section -(with 13, not 14) to a parabola instead of a line by typing -@kbd{a F 2 @key{RET}}. - -@example -2.00000000001 x - 1.5e-12 x^2 + 2.99999999999 -@end example - -Note that since the constant and linear terms are enough to fit the -data exactly, it's no surprise that Calc chose a tiny contribution -for @expr{x^2}. (The fact that it's not exactly zero is due only -to roundoff error. Since our data are exact integers, we could get -an exact answer by typing @kbd{m f} first to get Fraction mode. -Then the @expr{x^2} term would vanish altogether. Usually, though, -the data being fitted will be approximate floats so Fraction mode -won't help.) - -Doing the @kbd{a F 2} fit on the data set with 14 instead of 13 -gives a much larger @expr{x^2} contribution, as Calc bends the -line slightly to improve the fit. - -@example -0.142857142855 x^2 + 1.34285714287 x + 3.59999999998 -@end example - -An important result from the theory of polynomial fitting is that it -is always possible to fit @var{n} data points exactly using a polynomial -of degree @mathit{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}. -Using the modified (14) data matrix, a model number of 4 gives -a polynomial that exactly matches all five data points: - -@example -0.04167 x^4 - 0.4167 x^3 + 1.458 x^2 - 0.08333 x + 4. -@end example - -The actual coefficients we get with a precision of 12, like -@expr{0.0416666663588}, clearly suffer from loss of precision. -It is a good idea to increase the working precision to several -digits beyond what you need when you do a fitting operation. -Or, if your data are exact, use Fraction mode to get exact -results. - -You can type @kbd{i} instead of a digit at the model prompt to fit -the data exactly to a polynomial. This just counts the number of -columns of the data matrix to choose the degree of the polynomial -automatically. - -Fitting data ``exactly'' to high-degree polynomials is not always -a good idea, though. High-degree polynomials have a tendency to -wiggle uncontrollably in between the fitting data points. Also, -if the exact-fit polynomial is going to be used to interpolate or -extrapolate the data, it is numerically better to use the @kbd{a p} -command described below. @xref{Interpolation}. - -@tex -\bigskip -@end tex - -Another generalization of the linear model is to assume the -@expr{y} values are a sum of linear contributions from several -@expr{x} values. This is a @dfn{multilinear} fit, and it is also -selected by the @kbd{1} digit key. (Calc decides whether the fit -is linear or multilinear by counting the rows in the data matrix.) - -Given the data matrix, - -@example -@group -[ [ 1, 2, 3, 4, 5 ] - [ 7, 2, 3, 5, 2 ] - [ 14.5, 15, 18.5, 22.5, 24 ] ] -@end group -@end example - -@noindent -the command @kbd{a F 1 @key{RET}} will call the first row @expr{x} and the -second row @expr{y}, and will fit the values in the third row to the -model @expr{a + b x + c y}. - -@example -8. + 3. x + 0.5 y -@end example - -Calc can do multilinear fits with any number of independent variables -(i.e., with any number of data rows). - -@tex -\bigskip -@end tex - -Yet another variation is @dfn{homogeneous} linear models, in which -the constant term is known to be zero. In the linear case, this -means the model formula is simply @expr{a x}; in the multilinear -case, the model might be @expr{a x + b y + c z}; and in the polynomial -case, the model could be @expr{a x + b x^2 + c x^3}. You can get -a homogeneous linear or multilinear model by pressing the letter -@kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}. -This will be indicated by an ``h'' in the minibuffer after the help -message. - -It is certainly possible to have other constrained linear models, -like @expr{2.3 + a x} or @expr{a - 4 x}. While there is no single -key to select models like these, a later section shows how to enter -any desired model by hand. In the first case, for example, you -would enter @kbd{a F ' 2.3 + a x}. - -Another class of models that will work but must be entered by hand -are multinomial fits, e.g., @expr{a + b x + c y + d x^2 + e y^2 + f x y}. - -@node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting -@subsection Error Estimates for Fits - -@noindent -@kindex H a F -@tindex efit -With the Hyperbolic flag, @kbd{H a F} [@code{efit}] performs the same -fitting operation as @kbd{a F}, but reports the coefficients as error -forms instead of plain numbers. Fitting our two data matrices (first -with 13, then with 14) to a line with @kbd{H a F} gives the results, - -@example -3. + 2. x -2.6 +/- 0.382970843103 + 2.2 +/- 0.115470053838 x -@end example - -In the first case the estimated errors are zero because the linear -fit is perfect. In the second case, the errors are nonzero but -moderately small, because the data are still very close to linear. - -It is also possible for the @emph{input} to a fitting operation to -contain error forms. The data values must either all include errors -or all be plain numbers. Error forms can go anywhere but generally -go on the numbers in the last row of the data matrix. If the last -row contains error forms -@texline `@var{y_i}@w{ @tfn{+/-} }@math{\sigma_i}', -@infoline `@var{y_i}@w{ @tfn{+/-} }@var{sigma_i}', -then the -@texline @math{\chi^2} -@infoline @expr{chi^2} -statistic is now, - -@ifnottex -@example -chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N) -@end example -@end ifnottex -@tex -\turnoffactive -\beforedisplay -$$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$ -\afterdisplay -@end tex - -@noindent -so that data points with larger error estimates contribute less to -the fitting operation. - -If there are error forms on other rows of the data matrix, all the -errors for a given data point are combined; the square root of the -sum of the squares of the errors forms the -@texline @math{\sigma_i} -@infoline @expr{sigma_i} -used for the data point. - -Both @kbd{a F} and @kbd{H a F} can accept error forms in the input -matrix, although if you are concerned about error analysis you will -probably use @kbd{H a F} so that the output also contains error -estimates. - -If the input contains error forms but all the -@texline @math{\sigma_i} -@infoline @expr{sigma_i} -values are the same, it is easy to see that the resulting fitted model -will be the same as if the input did not have error forms at all -@texline (@math{\chi^2} -@infoline (@expr{chi^2} -is simply scaled uniformly by -@texline @math{1 / \sigma^2}, -@infoline @expr{1 / sigma^2}, -which doesn't affect where it has a minimum). But there @emph{will} be -a difference in the estimated errors of the coefficients reported by -@kbd{H a F}. - -Consult any text on statistical modeling of data for a discussion -of where these error estimates come from and how they should be -interpreted. - -@tex -\bigskip -@end tex - -@kindex I a F -@tindex xfit -With the Inverse flag, @kbd{I a F} [@code{xfit}] produces even more -information. The result is a vector of six items: - -@enumerate -@item -The model formula with error forms for its coefficients or -parameters. This is the result that @kbd{H a F} would have -produced. - -@item -A vector of ``raw'' parameter values for the model. These are the -polynomial coefficients or other parameters as plain numbers, in the -same order as the parameters appeared in the final prompt of the -@kbd{I a F} command. For polynomials of degree @expr{d}, this vector -will have length @expr{M = d+1} with the constant term first. - -@item -The covariance matrix @expr{C} computed from the fit. This is -an @var{m}x@var{m} symmetric matrix; the diagonal elements -@texline @math{C_{jj}} -@infoline @expr{C_j_j} -are the variances -@texline @math{\sigma_j^2} -@infoline @expr{sigma_j^2} -of the parameters. The other elements are covariances -@texline @math{\sigma_{ij}^2} -@infoline @expr{sigma_i_j^2} -that describe the correlation between pairs of parameters. (A related -set of numbers, the @dfn{linear correlation coefficients} -@texline @math{r_{ij}}, -@infoline @expr{r_i_j}, -are defined as -@texline @math{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.) -@infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.) - -@item -A vector of @expr{M} ``parameter filter'' functions whose -meanings are described below. If no filters are necessary this -will instead be an empty vector; this is always the case for the -polynomial and multilinear fits described so far. - -@item -The value of -@texline @math{\chi^2} -@infoline @expr{chi^2} -for the fit, calculated by the formulas shown above. This gives a -measure of the quality of the fit; statisticians consider -@texline @math{\chi^2 \approx N - M} -@infoline @expr{chi^2 = N - M} -to indicate a moderately good fit (where again @expr{N} is the number of -data points and @expr{M} is the number of parameters). - -@item -A measure of goodness of fit expressed as a probability @expr{Q}. -This is computed from the @code{utpc} probability distribution -function using -@texline @math{\chi^2} -@infoline @expr{chi^2} -with @expr{N - M} degrees of freedom. A -value of 0.5 implies a good fit; some texts recommend that often -@expr{Q = 0.1} or even 0.001 can signify an acceptable fit. In -particular, -@texline @math{\chi^2} -@infoline @expr{chi^2} -statistics assume the errors in your inputs -follow a normal (Gaussian) distribution; if they don't, you may -have to accept smaller values of @expr{Q}. - -The @expr{Q} value is computed only if the input included error -estimates. Otherwise, Calc will report the symbol @code{nan} -for @expr{Q}. The reason is that in this case the -@texline @math{\chi^2} -@infoline @expr{chi^2} -value has effectively been used to estimate the original errors -in the input, and thus there is no redundant information left -over to use for a confidence test. -@end enumerate - -@node Standard Nonlinear Models, Curve Fitting Details, Error Estimates for Fits, Curve Fitting -@subsection Standard Nonlinear Models - -@noindent -The @kbd{a F} command also accepts other kinds of models besides -lines and polynomials. Some common models have quick single-key -abbreviations; others must be entered by hand as algebraic formulas. - -Here is a complete list of the standard models recognized by @kbd{a F}: - -@table @kbd -@item 1 -Linear or multilinear. @mathit{a + b x + c y + d z}. -@item 2-9 -Polynomials. @mathit{a + b x + c x^2 + d x^3}. -@item e -Exponential. @mathit{a} @tfn{exp}@mathit{(b x)} @tfn{exp}@mathit{(c y)}. -@item E -Base-10 exponential. @mathit{a} @tfn{10^}@mathit{(b x)} @tfn{10^}@mathit{(c y)}. -@item x -Exponential (alternate notation). @tfn{exp}@mathit{(a + b x + c y)}. -@item X -Base-10 exponential (alternate). @tfn{10^}@mathit{(a + b x + c y)}. -@item l -Logarithmic. @mathit{a + b} @tfn{ln}@mathit{(x) + c} @tfn{ln}@mathit{(y)}. -@item L -Base-10 logarithmic. @mathit{a + b} @tfn{log10}@mathit{(x) + c} @tfn{log10}@mathit{(y)}. -@item ^ -General exponential. @mathit{a b^x c^y}. -@item p -Power law. @mathit{a x^b y^c}. -@item q -Quadratic. @mathit{a + b (x-c)^2 + d (x-e)^2}. -@item g -Gaussian. -@texline @math{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}. -@infoline @mathit{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}. -@item s -Logistic @emph{s} curve. -@texline @math{a/(1+e^{b(x-c)})}. -@infoline @mathit{a/(1 + exp(b (x - c)))}. -@item b -Logistic bell curve. -@texline @math{ae^{b(x-c)}/(1+e^{b(x-c)})^2}. -@infoline @mathit{a exp(b (x - c))/(1 + exp(b (x - c)))^2}. -@item o -Hubbert linearization. -@texline @math{{y \over x} = a(1-x/b)}. -@infoline @mathit{(y/x) = a (1 - x/b)}. -@end table - -All of these models are used in the usual way; just press the appropriate -letter at the model prompt, and choose variable names if you wish. The -result will be a formula as shown in the above table, with the best-fit -values of the parameters substituted. (You may find it easier to read -the parameter values from the vector that is placed in the trail.) - -All models except Gaussian, logistics, Hubbert and polynomials can -generalize as shown to any number of independent variables. Also, all -the built-in models except for the logistic and Hubbert curves have an -additive or multiplicative parameter shown as @expr{a} in the above table -which can be replaced by zero or one, as appropriate, by typing @kbd{h} -before the model key. - -Note that many of these models are essentially equivalent, but express -the parameters slightly differently. For example, @expr{a b^x} and -the other two exponential models are all algebraic rearrangements of -each other. Also, the ``quadratic'' model is just a degree-2 polynomial -with the parameters expressed differently. Use whichever form best -matches the problem. - -The HP-28/48 calculators support four different models for curve -fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}. -These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)}, -@samp{a exp(b x)}, and @samp{a x^b}, respectively. In each case, -@expr{a} is what the HP-48 identifies as the ``intercept,'' and -@expr{b} is what it calls the ``slope.'' - -@tex -\bigskip -@end tex - -If the model you want doesn't appear on this list, press @kbd{'} -(the apostrophe key) at the model prompt to enter any algebraic -formula, such as @kbd{m x - b}, as the model. (Not all models -will work, though---see the next section for details.) - -The model can also be an equation like @expr{y = m x + b}. -In this case, Calc thinks of all the rows of the data matrix on -equal terms; this model effectively has two parameters -(@expr{m} and @expr{b}) and two independent variables (@expr{x} -and @expr{y}), with no ``dependent'' variables. Model equations -do not need to take this @expr{y =} form. For example, the -implicit line equation @expr{a x + b y = 1} works fine as a -model. - -When you enter a model, Calc makes an alphabetical list of all -the variables that appear in the model. These are used for the -default parameters, independent variables, and dependent variable -(in that order). If you enter a plain formula (not an equation), -Calc assumes the dependent variable does not appear in the formula -and thus does not need a name. - -For example, if the model formula has the variables @expr{a,mu,sigma,t,x}, -and the data matrix has three rows (meaning two independent variables), -Calc will use @expr{a,mu,sigma} as the default parameters, and the -data rows will be named @expr{t} and @expr{x}, respectively. If you -enter an equation instead of a plain formula, Calc will use @expr{a,mu} -as the parameters, and @expr{sigma,t,x} as the three independent -variables. - -You can, of course, override these choices by entering something -different at the prompt. If you leave some variables out of the list, -those variables must have stored values and those stored values will -be used as constants in the model. (Stored values for the parameters -and independent variables are ignored by the @kbd{a F} command.) -If you list only independent variables, all the remaining variables -in the model formula will become parameters. - -If there are @kbd{$} signs in the model you type, they will stand -for parameters and all other variables (in alphabetical order) -will be independent. Use @kbd{$} for one parameter, @kbd{$$} for -another, and so on. Thus @kbd{$ x + $$} is another way to describe -a linear model. - -If you type a @kbd{$} instead of @kbd{'} at the model prompt itself, -Calc will take the model formula from the stack. (The data must then -appear at the second stack level.) The same conventions are used to -choose which variables in the formula are independent by default and -which are parameters. - -Models taken from the stack can also be expressed as vectors of -two or three elements, @expr{[@var{model}, @var{vars}]} or -@expr{[@var{model}, @var{vars}, @var{params}]}. Each of @var{vars} -and @var{params} may be either a variable or a vector of variables. -(If @var{params} is omitted, all variables in @var{model} except -those listed as @var{vars} are parameters.) - -When you enter a model manually with @kbd{'}, Calc puts a 3-vector -describing the model in the trail so you can get it back if you wish. - -@tex -\bigskip -@end tex - -@vindex Model1 -@vindex Model2 -Finally, you can store a model in one of the Calc variables -@code{Model1} or @code{Model2}, then use this model by typing -@kbd{a F u} or @kbd{a F U} (respectively). The value stored in -the variable can be any of the formats that @kbd{a F $} would -accept for a model on the stack. - -@tex -\bigskip -@end tex - -Calc uses the principal values of inverse functions like @code{ln} -and @code{arcsin} when doing fits. For example, when you enter -the model @samp{y = sin(a t + b)} Calc actually uses the easier -form @samp{arcsin(y) = a t + b}. The @code{arcsin} function always -returns results in the range from @mathit{-90} to 90 degrees (or the -equivalent range in radians). Suppose you had data that you -believed to represent roughly three oscillations of a sine wave, -so that the argument of the sine might go from zero to -@texline @math{3\times360} -@infoline @mathit{3*360} -degrees. -The above model would appear to be a good way to determine the -true frequency and phase of the sine wave, but in practice it -would fail utterly. The righthand side of the actual model -@samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but -the lefthand side will bounce back and forth between @mathit{-90} and 90. -No values of @expr{a} and @expr{b} can make the two sides match, -even approximately. - -There is no good solution to this problem at present. You could -restrict your data to small enough ranges so that the above problem -doesn't occur (i.e., not straddling any peaks in the sine wave). -Or, in this case, you could use a totally different method such as -Fourier analysis, which is beyond the scope of the @kbd{a F} command. -(Unfortunately, Calc does not currently have any facilities for -taking Fourier and related transforms.) - -@node Curve Fitting Details, Interpolation, Standard Nonlinear Models, Curve Fitting -@subsection Curve Fitting Details - -@noindent -Calc's internal least-squares fitter can only handle multilinear -models. More precisely, it can handle any model of the form -@expr{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @expr{a,b,c} -are the parameters and @expr{x,y,z} are the independent variables -(of course there can be any number of each, not just three). - -In a simple multilinear or polynomial fit, it is easy to see how -to convert the model into this form. For example, if the model -is @expr{a + b x + c x^2}, then @expr{f(x) = 1}, @expr{g(x) = x}, -and @expr{h(x) = x^2} are suitable functions. - -For most other models, Calc uses a variety of algebraic manipulations -to try to put the problem into the form - -@smallexample -Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z) -@end smallexample - -@noindent -where @expr{Y,A,B,C,F,G,H} are arbitrary functions. It computes -@expr{Y}, @expr{F}, @expr{G}, and @expr{H} for all the data points, -does a standard linear fit to find the values of @expr{A}, @expr{B}, -and @expr{C}, then uses the equation solver to solve for @expr{a,b,c} -in terms of @expr{A,B,C}. - -A remarkable number of models can be cast into this general form. -We'll look at two examples here to see how it works. The power-law -model @expr{y = a x^b} with two independent variables and two parameters -can be rewritten as follows: - -@example -y = a x^b -y = a exp(b ln(x)) -y = exp(ln(a) + b ln(x)) -ln(y) = ln(a) + b ln(x) -@end example - -@noindent -which matches the desired form with -@texline @math{Y = \ln(y)}, -@infoline @expr{Y = ln(y)}, -@texline @math{A = \ln(a)}, -@infoline @expr{A = ln(a)}, -@expr{F = 1}, @expr{B = b}, and -@texline @math{G = \ln(x)}. -@infoline @expr{G = ln(x)}. -Calc thus computes the logarithms of your @expr{y} and @expr{x} values, -does a linear fit for @expr{A} and @expr{B}, then solves to get -@texline @math{a = \exp(A)} -@infoline @expr{a = exp(A)} -and @expr{b = B}. - -Another interesting example is the ``quadratic'' model, which can -be handled by expanding according to the distributive law. - -@example -y = a + b*(x - c)^2 -y = a + b c^2 - 2 b c x + b x^2 -@end example - -@noindent -which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1}, -@expr{B = -2 b c}, @expr{G = x} (the @mathit{-2} factor could just as easily -have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and -@expr{H = x^2}. - -The Gaussian model looks quite complicated, but a closer examination -shows that it's actually similar to the quadratic model but with an -exponential that can be brought to the top and moved into @expr{Y}. - -The logistic models cannot be put into general linear form. For these -models, and the Hubbert linearization, Calc computes a rough -approximation for the parameters, then uses the Levenberg-Marquardt -iterative method to refine the approximations. - -Another model that cannot be put into general linear -form is a Gaussian with a constant background added on, i.e., -@expr{d} + the regular Gaussian formula. If you have a model like -this, your best bet is to replace enough of your parameters with -constants to make the model linearizable, then adjust the constants -manually by doing a series of fits. You can compare the fits by -graphing them, by examining the goodness-of-fit measures returned by -@kbd{I a F}, or by some other method suitable to your application. -Note that some models can be linearized in several ways. The -Gaussian-plus-@var{d} model can be linearized by setting @expr{d} -(the background) to a constant, or by setting @expr{b} (the standard -deviation) and @expr{c} (the mean) to constants. - -To fit a model with constants substituted for some parameters, just -store suitable values in those parameter variables, then omit them -from the list of parameters when you answer the variables prompt. - -@tex -\bigskip -@end tex - -A last desperate step would be to use the general-purpose -@code{minimize} function rather than @code{fit}. After all, both -functions solve the problem of minimizing an expression (the -@texline @math{\chi^2} -@infoline @expr{chi^2} -sum) by adjusting certain parameters in the expression. The @kbd{a F} -command is able to use a vastly more efficient algorithm due to its -special knowledge about linear chi-square sums, but the @kbd{a N} -command can do the same thing by brute force. - -A compromise would be to pick out a few parameters without which the -fit is linearizable, and use @code{minimize} on a call to @code{fit} -which efficiently takes care of the rest of the parameters. The thing -to be minimized would be the value of -@texline @math{\chi^2} -@infoline @expr{chi^2} -returned as the fifth result of the @code{xfit} function: - -@smallexample -minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess) -@end smallexample - -@noindent -where @code{gaus} represents the Gaussian model with background, -@code{data} represents the data matrix, and @code{guess} represents -the initial guess for @expr{d} that @code{minimize} requires. -This operation will only be, shall we say, extraordinarily slow -rather than astronomically slow (as would be the case if @code{minimize} -were used by itself to solve the problem). - -@tex -\bigskip -@end tex - -The @kbd{I a F} [@code{xfit}] command is somewhat trickier when -nonlinear models are used. The second item in the result is the -vector of ``raw'' parameters @expr{A}, @expr{B}, @expr{C}. The -covariance matrix is written in terms of those raw parameters. -The fifth item is a vector of @dfn{filter} expressions. This -is the empty vector @samp{[]} if the raw parameters were the same -as the requested parameters, i.e., if @expr{A = a}, @expr{B = b}, -and so on (which is always true if the model is already linear -in the parameters as written, e.g., for polynomial fits). If the -parameters had to be rearranged, the fifth item is instead a vector -of one formula per parameter in the original model. The raw -parameters are expressed in these ``filter'' formulas as -@samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} for @expr{B}, -and so on. - -When Calc needs to modify the model to return the result, it replaces -@samp{fitdummy(1)} in all the filters with the first item in the raw -parameters list, and so on for the other raw parameters, then -evaluates the resulting filter formulas to get the actual parameter -values to be substituted into the original model. In the case of -@kbd{H a F} and @kbd{I a F} where the parameters must be error forms, -Calc uses the square roots of the diagonal entries of the covariance -matrix as error values for the raw parameters, then lets Calc's -standard error-form arithmetic take it from there. - -If you use @kbd{I a F} with a nonlinear model, be sure to remember -that the covariance matrix is in terms of the raw parameters, -@emph{not} the actual requested parameters. It's up to you to -figure out how to interpret the covariances in the presence of -nontrivial filter functions. - -Things are also complicated when the input contains error forms. -Suppose there are three independent and dependent variables, @expr{x}, -@expr{y}, and @expr{z}, one or more of which are error forms in the -data. Calc combines all the error values by taking the square root -of the sum of the squares of the errors. It then changes @expr{x} -and @expr{y} to be plain numbers, and makes @expr{z} into an error -form with this combined error. The @expr{Y(x,y,z)} part of the -linearized model is evaluated, and the result should be an error -form. The error part of that result is used for -@texline @math{\sigma_i} -@infoline @expr{sigma_i} -for the data point. If for some reason @expr{Y(x,y,z)} does not return -an error form, the combined error from @expr{z} is used directly for -@texline @math{\sigma_i}. -@infoline @expr{sigma_i}. -Finally, @expr{z} is also stripped of its error -for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on; -the righthand side of the linearized model is computed in regular -arithmetic with no error forms. - -(While these rules may seem complicated, they are designed to do -the most reasonable thing in the typical case that @expr{Y(x,y,z)} -depends only on the dependent variable @expr{z}, and in fact is -often simply equal to @expr{z}. For common cases like polynomials -and multilinear models, the combined error is simply used as the -@texline @math{\sigma} -@infoline @expr{sigma} -for the data point with no further ado.) - -@tex -\bigskip -@end tex - -@vindex FitRules -It may be the case that the model you wish to use is linearizable, -but Calc's built-in rules are unable to figure it out. Calc uses -its algebraic rewrite mechanism to linearize a model. The rewrite -rules are kept in the variable @code{FitRules}. You can edit this -variable using the @kbd{s e FitRules} command; in fact, there is -a special @kbd{s F} command just for editing @code{FitRules}. -@xref{Operations on Variables}. - -@xref{Rewrite Rules}, for a discussion of rewrite rules. - -@ignore -@starindex -@end ignore -@tindex fitvar -@ignore -@starindex -@end ignore -@ignore -@mindex @idots -@end ignore -@tindex fitparam -@ignore -@starindex -@end ignore -@ignore -@mindex @null -@end ignore -@tindex fitmodel -@ignore -@starindex -@end ignore -@ignore -@mindex @null -@end ignore -@tindex fitsystem -@ignore -@starindex -@end ignore -@ignore -@mindex @null -@end ignore -@tindex fitdummy -Calc uses @code{FitRules} as follows. First, it converts the model -to an equation if necessary and encloses the model equation in a -call to the function @code{fitmodel} (which is not actually a defined -function in Calc; it is only used as a placeholder by the rewrite rules). -Parameter variables are renamed to function calls @samp{fitparam(1)}, -@samp{fitparam(2)}, and so on, and independent variables are renamed -to @samp{fitvar(1)}, @samp{fitvar(2)}, etc. The dependent variable -is the highest-numbered @code{fitvar}. For example, the power law -model @expr{a x^b} is converted to @expr{y = a x^b}, then to - -@smallexample -@group -fitmodel(fitvar(2) = fitparam(1) fitvar(1)^fitparam(2)) -@end group -@end smallexample - -Calc then applies the rewrites as if by @samp{C-u 0 a r FitRules}. -(The zero prefix means that rewriting should continue until no further -changes are possible.) - -When rewriting is complete, the @code{fitmodel} call should have -been replaced by a @code{fitsystem} call that looks like this: - -@example -fitsystem(@var{Y}, @var{FGH}, @var{abc}) -@end example - -@noindent -where @var{Y} is a formula that describes the function @expr{Y(x,y,z)}, -@var{FGH} is the vector of formulas @expr{[F(x,y,z), G(x,y,z), H(x,y,z)]}, -and @var{abc} is the vector of parameter filters which refer to the -raw parameters as @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} -for @expr{B}, etc. While the number of raw parameters (the length of -the @var{FGH} vector) is usually the same as the number of original -parameters (the length of the @var{abc} vector), this is not required. - -The power law model eventually boils down to - -@smallexample -@group -fitsystem(ln(fitvar(2)), - [1, ln(fitvar(1))], - [exp(fitdummy(1)), fitdummy(2)]) -@end group -@end smallexample - -The actual implementation of @code{FitRules} is complicated; it -proceeds in four phases. First, common rearrangements are done -to try to bring linear terms together and to isolate functions like -@code{exp} and @code{ln} either all the way ``out'' (so that they -can be put into @var{Y}) or all the way ``in'' (so that they can -be put into @var{abc} or @var{FGH}). In particular, all -non-constant powers are converted to logs-and-exponentials form, -and the distributive law is used to expand products of sums. -Quotients are rewritten to use the @samp{fitinv} function, where -@samp{fitinv(x)} represents @expr{1/x} while the @code{FitRules} -are operating. (The use of @code{fitinv} makes recognition of -linear-looking forms easier.) If you modify @code{FitRules}, you -will probably only need to modify the rules for this phase. - -Phase two, whose rules can actually also apply during phases one -and three, first rewrites @code{fitmodel} to a two-argument -form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is -initially zero and @var{model} has been changed from @expr{a=b} -to @expr{a-b} form. It then tries to peel off invertible functions -from the outside of @var{model} and put them into @var{Y} instead, -calling the equation solver to invert the functions. Finally, when -this is no longer possible, the @code{fitmodel} is changed to a -four-argument @code{fitsystem}, where the fourth argument is -@var{model} and the @var{FGH} and @var{abc} vectors are initially -empty. (The last vector is really @var{ABC}, corresponding to -raw parameters, for now.) - -Phase three converts a sum of items in the @var{model} to a sum -of @samp{fitpart(@var{a}, @var{b}, @var{c})} terms which represent -terms @samp{@var{a}*@var{b}*@var{c}} of the sum, where @var{a} -is all factors that do not involve any variables, @var{b} is all -factors that involve only parameters, and @var{c} is the factors -that involve only independent variables. (If this decomposition -is not possible, the rule set will not complete and Calc will -complain that the model is too complex.) Then @code{fitpart}s -with equal @var{b} or @var{c} components are merged back together -using the distributive law in order to minimize the number of -raw parameters needed. - -Phase four moves the @code{fitpart} terms into the @var{FGH} and -@var{ABC} vectors. Also, some of the algebraic expansions that -were done in phase 1 are undone now to make the formulas more -computationally efficient. Finally, it calls the solver one more -time to convert the @var{ABC} vector to an @var{abc} vector, and -removes the fourth @var{model} argument (which by now will be zero) -to obtain the three-argument @code{fitsystem} that the linear -least-squares solver wants to see. - -@ignore -@starindex -@end ignore -@ignore -@mindex hasfit@idots -@end ignore -@tindex hasfitparams -@ignore -@starindex -@end ignore -@ignore -@mindex @null -@end ignore -@tindex hasfitvars -Two functions which are useful in connection with @code{FitRules} -are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check -whether @expr{x} refers to any parameters or independent variables, -respectively. Specifically, these functions return ``true'' if the -argument contains any @code{fitparam} (or @code{fitvar}) function -calls, and ``false'' otherwise. (Recall that ``true'' means a -nonzero number, and ``false'' means zero. The actual nonzero number -returned is the largest @var{n} from all the @samp{fitparam(@var{n})}s -or @samp{fitvar(@var{n})}s, respectively, that appear in the formula.) - -@tex -\bigskip -@end tex - -The @code{fit} function in algebraic notation normally takes four -arguments, @samp{fit(@var{model}, @var{vars}, @var{params}, @var{data})}, -where @var{model} is the model formula as it would be typed after -@kbd{a F '}, @var{vars} is the independent variable or a vector of -independent variables, @var{params} likewise gives the parameter(s), -and @var{data} is the data matrix. Note that the length of @var{vars} -must be equal to the number of rows in @var{data} if @var{model} is -an equation, or one less than the number of rows if @var{model} is -a plain formula. (Actually, a name for the dependent variable is -allowed but will be ignored in the plain-formula case.) - -If @var{params} is omitted, the parameters are all variables in -@var{model} except those that appear in @var{vars}. If @var{vars} -is also omitted, Calc sorts all the variables that appear in -@var{model} alphabetically and uses the higher ones for @var{vars} -and the lower ones for @var{params}. - -Alternatively, @samp{fit(@var{modelvec}, @var{data})} is allowed -where @var{modelvec} is a 2- or 3-vector describing the model -and variables, as discussed previously. - -If Calc is unable to do the fit, the @code{fit} function is left -in symbolic form, ordinarily with an explanatory message. The -message will be ``Model expression is too complex'' if the -linearizer was unable to put the model into the required form. - -The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit} -(for @kbd{I a F}) functions are completely analogous. - -@node Interpolation, , Curve Fitting Details, Curve Fitting -@subsection Polynomial Interpolation - -@kindex a p -@pindex calc-poly-interp -@tindex polint -The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does -a polynomial interpolation at a particular @expr{x} value. It takes -two arguments from the stack: A data matrix of the sort used by -@kbd{a F}, and a single number which represents the desired @expr{x} -value. Calc effectively does an exact polynomial fit as if by @kbd{a F i}, -then substitutes the @expr{x} value into the result in order to get an -approximate @expr{y} value based on the fit. (Calc does not actually -use @kbd{a F i}, however; it uses a direct method which is both more -efficient and more numerically stable.) - -The result of @kbd{a p} is actually a vector of two values: The @expr{y} -value approximation, and an error measure @expr{dy} that reflects Calc's -estimation of the probable error of the approximation at that value of -@expr{x}. If the input @expr{x} is equal to any of the @expr{x} values -in the data matrix, the output @expr{y} will be the corresponding @expr{y} -value from the matrix, and the output @expr{dy} will be exactly zero. - -A prefix argument of 2 causes @kbd{a p} to take separate x- and -y-vectors from the stack instead of one data matrix. - -If @expr{x} is a vector of numbers, @kbd{a p} will return a matrix of -interpolated results for each of those @expr{x} values. (The matrix will -have two columns, the @expr{y} values and the @expr{dy} values.) -If @expr{x} is a formula instead of a number, the @code{polint} function -remains in symbolic form; use the @kbd{a "} command to expand it out to -a formula that describes the fit in symbolic terms. - -In all cases, the @kbd{a p} command leaves the data vectors or matrix -on the stack. Only the @expr{x} value is replaced by the result. - -@kindex H a p -@tindex ratint -The @kbd{H a p} [@code{ratint}] command does a rational function -interpolation. It is used exactly like @kbd{a p}, except that it -uses as its model the quotient of two polynomials. If there are -@expr{N} data points, the numerator and denominator polynomials will -each have degree @expr{N/2} (if @expr{N} is odd, the denominator will -have degree one higher than the numerator). - -Rational approximations have the advantage that they can accurately -describe functions that have poles (points at which the function's value -goes to infinity, so that the denominator polynomial of the approximation -goes to zero). If @expr{x} corresponds to a pole of the fitted rational -function, then the result will be a division by zero. If Infinite mode -is enabled, the result will be @samp{[uinf, uinf]}. - -There is no way to get the actual coefficients of the rational function -used by @kbd{H a p}. (The algorithm never generates these coefficients -explicitly, and quotients of polynomials are beyond @w{@kbd{a F}}'s -capabilities to fit.) - -@node Summations, Logical Operations, Curve Fitting, Algebra -@section Summations - -@noindent -@cindex Summation of a series -@kindex a + -@pindex calc-summation -@tindex sum -The @kbd{a +} (@code{calc-summation}) [@code{sum}] command computes -the sum of a formula over a certain range of index values. The formula -is taken from the top of the stack; the command prompts for the -name of the summation index variable, the lower limit of the -sum (any formula), and the upper limit of the sum. If you -enter a blank line at any of these prompts, that prompt and -any later ones are answered by reading additional elements from -the stack. Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}} -produces the result 55. -@tex -\turnoffactive -$$ \sum_{k=1}^5 k^2 = 55 $$ -@end tex - -The choice of index variable is arbitrary, but it's best not to -use a variable with a stored value. In particular, while -@code{i} is often a favorite index variable, it should be avoided -in Calc because @code{i} has the imaginary constant @expr{(0, 1)} -as a value. If you pressed @kbd{=} on a sum over @code{i}, it would -be changed to a nonsensical sum over the ``variable'' @expr{(0, 1)}! -If you really want to use @code{i} as an index variable, use -@w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable. -(@xref{Storing Variables}.) - -A numeric prefix argument steps the index by that amount rather -than by one. Thus @kbd{' a_k @key{RET} C-u -2 a + k @key{RET} 10 @key{RET} 0 @key{RET}} -yields @samp{a_10 + a_8 + a_6 + a_4 + a_2 + a_0}. A prefix -argument of plain @kbd{C-u} causes @kbd{a +} to prompt for the -step value, in which case you can enter any formula or enter -a blank line to take the step value from the stack. With the -@kbd{C-u} prefix, @kbd{a +} can take up to five arguments from -the stack: The formula, the variable, the lower limit, the -upper limit, and (at the top of the stack), the step value. - -Calc knows how to do certain sums in closed form. For example, -@samp{sum(6 k^2, k, 1, n) = @w{2 n^3} + 3 n^2 + n}. In particular, -this is possible if the formula being summed is polynomial or -exponential in the index variable. Sums of logarithms are -transformed into logarithms of products. Sums of trigonometric -and hyperbolic functions are transformed to sums of exponentials -and then done in closed form. Also, of course, sums in which the -lower and upper limits are both numbers can always be evaluated -just by grinding them out, although Calc will use closed forms -whenever it can for the sake of efficiency. - -The notation for sums in algebraic formulas is -@samp{sum(@var{expr}, @var{var}, @var{low}, @var{high}, @var{step})}. -If @var{step} is omitted, it defaults to one. If @var{high} is -omitted, @var{low} is actually the upper limit and the lower limit -is one. If @var{low} is also omitted, the limits are @samp{-inf} -and @samp{inf}, respectively. - -Infinite sums can sometimes be evaluated: @samp{sum(.5^k, k, 1, inf)} -returns @expr{1}. This is done by evaluating the sum in closed -form (to @samp{1. - 0.5^n} in this case), then evaluating this -formula with @code{n} set to @code{inf}. Calc's usual rules -for ``infinite'' arithmetic can find the answer from there. If -infinite arithmetic yields a @samp{nan}, or if the sum cannot be -solved in closed form, Calc leaves the @code{sum} function in -symbolic form. @xref{Infinities}. - -As a special feature, if the limits are infinite (or omitted, as -described above) but the formula includes vectors subscripted by -expressions that involve the iteration variable, Calc narrows -the limits to include only the range of integers which result in -valid subscripts for the vector. For example, the sum -@samp{sum(k [a,b,c,d,e,f,g]_(2k),k)} evaluates to @samp{b + 2 d + 3 f}. - -The limits of a sum do not need to be integers. For example, -@samp{sum(a_k, k, 0, 2 n, n)} produces @samp{a_0 + a_n + a_(2 n)}. -Calc computes the number of iterations using the formula -@samp{1 + (@var{high} - @var{low}) / @var{step}}, which must, -after simplification as if by @kbd{a s}, evaluate to an integer. - -If the number of iterations according to the above formula does -not come out to an integer, the sum is invalid and will be left -in symbolic form. However, closed forms are still supplied, and -you are on your honor not to misuse the resulting formulas by -substituting mismatched bounds into them. For example, -@samp{sum(k, k, 1, 10, 2)} is invalid, but Calc will go ahead and -evaluate the closed form solution for the limits 1 and 10 to get -the rather dubious answer, 29.25. - -If the lower limit is greater than the upper limit (assuming a -positive step size), the result is generally zero. However, -Calc only guarantees a zero result when the upper limit is -exactly one step less than the lower limit, i.e., if the number -of iterations is @mathit{-1}. Thus @samp{sum(f(k), k, n, n-1)} is zero -but the sum from @samp{n} to @samp{n-2} may report a nonzero value -if Calc used a closed form solution. - -Calc's logical predicates like @expr{a < b} return 1 for ``true'' -and 0 for ``false.'' @xref{Logical Operations}. This can be -used to advantage for building conditional sums. For example, -@samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all -prime numbers from 1 to 20; the @code{prime} predicate returns 1 if -its argument is prime and 0 otherwise. You can read this expression -as ``the sum of @expr{k^2}, where @expr{k} is prime.'' Indeed, -@samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes -squared, since the limits default to plus and minus infinity, but -there are no such sums that Calc's built-in rules can do in -closed form. - -As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the -sum of @expr{f(k)} for all @expr{k} from 1 to @expr{n}, excluding -one value @expr{k_0}. Slightly more tricky is the summand -@samp{(k != k_0) / (k - k_0)}, which is an attempt to describe -the sum of all @expr{1/(k-k_0)} except at @expr{k = k_0}, where -this would be a division by zero. But at @expr{k = k_0}, this -formula works out to the indeterminate form @expr{0 / 0}, which -Calc will not assume is zero. Better would be to use -@samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does -an ``if-then-else'' test: This expression says, ``if -@texline @math{k \ne k_0}, -@infoline @expr{k != k_0}, -then @expr{1/(k-k_0)}, else zero.'' Now the formula @expr{1/(k-k_0)} -will not even be evaluated by Calc when @expr{k = k_0}. - -@cindex Alternating sums -@kindex a - -@pindex calc-alt-summation -@tindex asum -The @kbd{a -} (@code{calc-alt-summation}) [@code{asum}] command -computes an alternating sum. Successive terms of the sequence -are given alternating signs, with the first term (corresponding -to the lower index value) being positive. Alternating sums -are converted to normal sums with an extra term of the form -@samp{(-1)^(k-@var{low})}. This formula is adjusted appropriately -if the step value is other than one. For example, the Taylor -series for the sine function is @samp{asum(x^k / k!, k, 1, inf, 2)}. -(Calc cannot evaluate this infinite series, but it can approximate -it if you replace @code{inf} with any particular odd number.) -Calc converts this series to a regular sum with a step of one, -namely @samp{sum((-1)^k x^(2k+1) / (2k+1)!, k, 0, inf)}. - -@cindex Product of a sequence -@kindex a * -@pindex calc-product -@tindex prod -The @kbd{a *} (@code{calc-product}) [@code{prod}] command is -the analogous way to take a product of many terms. Calc also knows -some closed forms for products, such as @samp{prod(k, k, 1, n) = n!}. -Conditional products can be written @samp{prod(k^prime(k), k, 1, n)} -or @samp{prod(prime(k) ? k : 1, k, 1, n)}. - -@kindex a T -@pindex calc-tabulate -@tindex table -The @kbd{a T} (@code{calc-tabulate}) [@code{table}] command -evaluates a formula at a series of iterated index values, just -like @code{sum} and @code{prod}, but its result is simply a -vector of the results. For example, @samp{table(a_i, i, 1, 7, 2)} -produces @samp{[a_1, a_3, a_5, a_7]}. - -@node Logical Operations, Rewrite Rules, Summations, Algebra -@section Logical Operations - -@noindent -The following commands and algebraic functions return true/false values, -where 1 represents ``true'' and 0 represents ``false.'' In cases where -a truth value is required (such as for the condition part of a rewrite -rule, or as the condition for a @w{@kbd{Z [ Z ]}} control structure), any -nonzero value is accepted to mean ``true.'' (Specifically, anything -for which @code{dnonzero} returns 1 is ``true,'' and anything for -which @code{dnonzero} returns 0 or cannot decide is assumed ``false.'' -Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then'' -portion if its condition is provably true, but it will execute the -``else'' portion for any condition like @expr{a = b} that is not -provably true, even if it might be true. Algebraic functions that -have conditions as arguments, like @code{? :} and @code{&&}, remain -unevaluated if the condition is neither provably true nor provably -false. @xref{Declarations}.) - -@kindex a = -@pindex calc-equal-to -@tindex eq -@tindex = -@tindex == -The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function -(which can also be written @samp{a = b} or @samp{a == b} in an algebraic -formula) is true if @expr{a} and @expr{b} are equal, either because they -are identical expressions, or because they are numbers which are -numerically equal. (Thus the integer 1 is considered equal to the float -1.0.) If the equality of @expr{a} and @expr{b} cannot be determined, -the comparison is left in symbolic form. Note that as a command, this -operation pops two values from the stack and pushes back either a 1 or -a 0, or a formula @samp{a = b} if the values' equality cannot be determined. - -Many Calc commands use @samp{=} formulas to represent @dfn{equations}. -For example, the @kbd{a S} (@code{calc-solve-for}) command rearranges -an equation to solve for a given variable. The @kbd{a M} -(@code{calc-map-equation}) command can be used to apply any -function to both sides of an equation; for example, @kbd{2 a M *} -multiplies both sides of the equation by two. Note that just -@kbd{2 *} would not do the same thing; it would produce the formula -@samp{2 (a = b)} which represents 2 if the equality is true or -zero if not. - -The @code{eq} function with more than two arguments (e.g., @kbd{C-u 3 a =} -or @samp{a = b = c}) tests if all of its arguments are equal. In -algebraic notation, the @samp{=} operator is unusual in that it is -neither left- nor right-associative: @samp{a = b = c} is not the -same as @samp{(a = b) = c} or @samp{a = (b = c)} (which each compare -one variable with the 1 or 0 that results from comparing two other -variables). - -@kindex a # -@pindex calc-not-equal-to -@tindex neq -@tindex != -The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or -@samp{a != b} function, is true if @expr{a} and @expr{b} are not equal. -This also works with more than two arguments; @samp{a != b != c != d} -tests that all four of @expr{a}, @expr{b}, @expr{c}, and @expr{d} are -distinct numbers. - -@kindex a < -@tindex lt -@ignore -@mindex @idots -@end ignore -@kindex a > -@ignore -@mindex @null -@end ignore -@kindex a [ -@ignore -@mindex @null -@end ignore -@kindex a ] -@pindex calc-less-than -@pindex calc-greater-than -@pindex calc-less-equal -@pindex calc-greater-equal -@ignore -@mindex @null -@end ignore -@tindex gt -@ignore -@mindex @null -@end ignore -@tindex leq -@ignore -@mindex @null -@end ignore -@tindex geq -@ignore -@mindex @null -@end ignore -@tindex < -@ignore -@mindex @null -@end ignore -@tindex > -@ignore -@mindex @null -@end ignore -@tindex <= -@ignore -@mindex @null -@end ignore -@tindex >= -The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}] -operation is true if @expr{a} is less than @expr{b}. Similar functions -are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}], -@kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and -@kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}]. - -While the inequality functions like @code{lt} do not accept more -than two arguments, the syntax @w{@samp{a <= b < c}} is translated to an -equivalent expression involving intervals: @samp{b in [a .. c)}. -(See the description of @code{in} below.) All four combinations -of @samp{<} and @samp{<=} are allowed, or any of the four combinations -of @samp{>} and @samp{>=}. Four-argument constructions like -@samp{a < b < c < d}, and mixtures like @w{@samp{a < b = c}} that -involve both equalities and inequalities, are not allowed. - -@kindex a . -@pindex calc-remove-equal -@tindex rmeq -The @kbd{a .} (@code{calc-remove-equal}) [@code{rmeq}] command extracts -the righthand side of the equation or inequality on the top of the -stack. It also works elementwise on vectors. For example, if -@samp{[x = 2.34, y = z / 2]} is on the stack, then @kbd{a .} produces -@samp{[2.34, z / 2]}. As a special case, if the righthand side is a -variable and the lefthand side is a number (as in @samp{2.34 = x}), then -Calc keeps the lefthand side instead. Finally, this command works with -assignments @samp{x := 2.34} as well as equations, always taking the -righthand side, and for @samp{=>} (evaluates-to) operators, always -taking the lefthand side. - -@kindex a & -@pindex calc-logical-and -@tindex land -@tindex && -The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}] -function is true if both of its arguments are true, i.e., are -non-zero numbers. In this case, the result will be either @expr{a} or -@expr{b}, chosen arbitrarily. If either argument is zero, the result is -zero. Otherwise, the formula is left in symbolic form. - -@kindex a | -@pindex calc-logical-or -@tindex lor -@tindex || -The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}] -function is true if either or both of its arguments are true (nonzero). -The result is whichever argument was nonzero, choosing arbitrarily if both -are nonzero. If both @expr{a} and @expr{b} are zero, the result is -zero. - -@kindex a ! -@pindex calc-logical-not -@tindex lnot -@tindex ! -The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}] -function is true if @expr{a} is false (zero), or false if @expr{a} is -true (nonzero). It is left in symbolic form if @expr{a} is not a -number. - -@kindex a : -@pindex calc-logical-if -@tindex if -@ignore -@mindex ? : -@end ignore -@tindex ? -@ignore -@mindex @null -@end ignore -@tindex : -@cindex Arguments, not evaluated -The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}] -function is equal to either @expr{b} or @expr{c} if @expr{a} is a nonzero -number or zero, respectively. If @expr{a} is not a number, the test is -left in symbolic form and neither @expr{b} nor @expr{c} is evaluated in -any way. In algebraic formulas, this is one of the few Calc functions -whose arguments are not automatically evaluated when the function itself -is evaluated. The others are @code{lambda}, @code{quote}, and -@code{condition}. - -One minor surprise to watch out for is that the formula @samp{a?3:4} -will not work because the @samp{3:4} is parsed as a fraction instead of -as three separate symbols. Type something like @samp{a ? 3 : 4} or -@samp{a?(3):4} instead. - -As a special case, if @expr{a} evaluates to a vector, then both @expr{b} -and @expr{c} are evaluated; the result is a vector of the same length -as @expr{a} whose elements are chosen from corresponding elements of -@expr{b} and @expr{c} according to whether each element of @expr{a} -is zero or nonzero. Each of @expr{b} and @expr{c} must be either a -vector of the same length as @expr{a}, or a non-vector which is matched -with all elements of @expr{a}. - -@kindex a @{ -@pindex calc-in-set -@tindex in -The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if -the number @expr{a} is in the set of numbers represented by @expr{b}. -If @expr{b} is an interval form, @expr{a} must be one of the values -encompassed by the interval. If @expr{b} is a vector, @expr{a} must be -equal to one of the elements of the vector. (If any vector elements are -intervals, @expr{a} must be in any of the intervals.) If @expr{b} is a -plain number, @expr{a} must be numerically equal to @expr{b}. -@xref{Set Operations}, for a group of commands that manipulate sets -of this sort. - -@ignore -@starindex -@end ignore -@tindex typeof -The @samp{typeof(a)} function produces an integer or variable which -characterizes @expr{a}. If @expr{a} is a number, vector, or variable, -the result will be one of the following numbers: - -@example - 1 Integer - 2 Fraction - 3 Floating-point number - 4 HMS form - 5 Rectangular complex number - 6 Polar complex number - 7 Error form - 8 Interval form - 9 Modulo form -10 Date-only form -11 Date/time form -12 Infinity (inf, uinf, or nan) -100 Variable -101 Vector (but not a matrix) -102 Matrix -@end example - -Otherwise, @expr{a} is a formula, and the result is a variable which -represents the name of the top-level function call. - -@ignore -@starindex -@end ignore -@tindex integer -@ignore -@starindex -@end ignore -@tindex real -@ignore -@starindex -@end ignore -@tindex constant -The @samp{integer(a)} function returns true if @expr{a} is an integer. -The @samp{real(a)} function -is true if @expr{a} is a real number, either integer, fraction, or -float. The @samp{constant(a)} function returns true if @expr{a} is -any of the objects for which @code{typeof} would produce an integer -code result except for variables, and provided that the components of -an object like a vector or error form are themselves constant. -Note that infinities do not satisfy any of these tests, nor do -special constants like @code{pi} and @code{e}. - -@xref{Declarations}, for a set of similar functions that recognize -formulas as well as actual numbers. For example, @samp{dint(floor(x))} -is true because @samp{floor(x)} is provably integer-valued, but -@samp{integer(floor(x))} does not because @samp{floor(x)} is not -literally an integer constant. - -@ignore -@starindex -@end ignore -@tindex refers -The @samp{refers(a,b)} function is true if the variable (or sub-expression) -@expr{b} appears in @expr{a}, or false otherwise. Unlike the other -tests described here, this function returns a definite ``no'' answer -even if its arguments are still in symbolic form. The only case where -@code{refers} will be left unevaluated is if @expr{a} is a plain -variable (different from @expr{b}). - -@ignore -@starindex -@end ignore -@tindex negative -The @samp{negative(a)} function returns true if @expr{a} ``looks'' negative, -because it is a negative number, because it is of the form @expr{-x}, -or because it is a product or quotient with a term that looks negative. -This is most useful in rewrite rules. Beware that @samp{negative(a)} -evaluates to 1 or 0 for @emph{any} argument @expr{a}, so it can only -be stored in a formula if the default simplifications are turned off -first with @kbd{m O} (or if it appears in an unevaluated context such -as a rewrite rule condition). - -@ignore -@starindex -@end ignore -@tindex variable -The @samp{variable(a)} function is true if @expr{a} is a variable, -or false if not. If @expr{a} is a function call, this test is left -in symbolic form. Built-in variables like @code{pi} and @code{inf} -are considered variables like any others by this test. - -@ignore -@starindex -@end ignore -@tindex nonvar -The @samp{nonvar(a)} function is true if @expr{a} is a non-variable. -If its argument is a variable it is left unsimplified; it never -actually returns zero. However, since Calc's condition-testing -commands consider ``false'' anything not provably true, this is -often good enough. - -@ignore -@starindex -@end ignore -@tindex lin -@ignore -@starindex -@end ignore -@tindex linnt -@ignore -@starindex -@end ignore -@tindex islin -@ignore -@starindex -@end ignore -@tindex islinnt -@cindex Linearity testing -The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt} -check if an expression is ``linear,'' i.e., can be written in the form -@expr{a + b x} for some constants @expr{a} and @expr{b}, and some -variable or subformula @expr{x}. The function @samp{islin(f,x)} checks -if formula @expr{f} is linear in @expr{x}, returning 1 if so. For -example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and -@samp{islin(x y / 3 - 2, x)} all return 1. The @samp{lin(f,x)} function -is similar, except that instead of returning 1 it returns the vector -@expr{[a, b, x]}. For the above examples, this vector would be -@expr{[0, 1, x]}, @expr{[0, -1, x]}, @expr{[3, 0, x]}, and -@expr{[-2, y/3, x]}, respectively. Both @code{lin} and @code{islin} -generally remain unevaluated for expressions which are not linear, -e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}. The second -argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))} -returns true. - -The @code{linnt} and @code{islinnt} functions perform a similar check, -but require a ``non-trivial'' linear form, which means that the -@expr{b} coefficient must be non-zero. For example, @samp{lin(2,x)} -returns @expr{[2, 0, x]} and @samp{lin(y,x)} returns @expr{[y, 0, x]}, -but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated -(in other words, these formulas are considered to be only ``trivially'' -linear in @expr{x}). - -All four linearity-testing functions allow you to omit the second -argument, in which case the input may be linear in any non-constant -formula. Here, the @expr{a=0}, @expr{b=1} case is also considered -trivial, and only constant values for @expr{a} and @expr{b} are -recognized. Thus, @samp{lin(2 x y)} returns @expr{[0, 2, x y]}, -@samp{lin(2 - x y)} returns @expr{[2, -1, x y]}, and @samp{lin(x y)} -returns @expr{[0, 1, x y]}. The @code{linnt} function would allow the -first two cases but not the third. Also, neither @code{lin} nor -@code{linnt} accept plain constants as linear in the one-argument -case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false. - -@ignore -@starindex -@end ignore -@tindex istrue -The @samp{istrue(a)} function returns 1 if @expr{a} is a nonzero -number or provably nonzero formula, or 0 if @expr{a} is anything else. -Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is -used to make sure they are not evaluated prematurely. (Note that -declarations are used when deciding whether a formula is true; -@code{istrue} returns 1 when @code{dnonzero} would return 1, and -it returns 0 when @code{dnonzero} would return 0 or leave itself -in symbolic form.) - -@node Rewrite Rules, , Logical Operations, Algebra -@section Rewrite Rules - -@noindent -@cindex Rewrite rules -@cindex Transformations -@cindex Pattern matching -@kindex a r -@pindex calc-rewrite -@tindex rewrite -The @kbd{a r} (@code{calc-rewrite}) [@code{rewrite}] command makes -substitutions in a formula according to a specified pattern or patterns -known as @dfn{rewrite rules}. Whereas @kbd{a b} (@code{calc-substitute}) -matches literally, so that substituting @samp{sin(x)} with @samp{cos(x)} -matches only the @code{sin} function applied to the variable @code{x}, -rewrite rules match general kinds of formulas; rewriting using the rule -@samp{sin(x) := cos(x)} matches @code{sin} of any argument and replaces -it with @code{cos} of that same argument. The only significance of the -name @code{x} is that the same name is used on both sides of the rule. - -Rewrite rules rearrange formulas already in Calc's memory. -@xref{Syntax Tables}, to read about @dfn{syntax rules}, which are -similar to algebraic rewrite rules but operate when new algebraic -entries are being parsed, converting strings of characters into -Calc formulas. - -@menu -* Entering Rewrite Rules:: -* Basic Rewrite Rules:: -* Conditional Rewrite Rules:: -* Algebraic Properties of Rewrite Rules:: -* Other Features of Rewrite Rules:: -* Composing Patterns in Rewrite Rules:: -* Nested Formulas with Rewrite Rules:: -* Multi-Phase Rewrite Rules:: -* Selections with Rewrite Rules:: -* Matching Commands:: -* Automatic Rewrites:: -* Debugging Rewrites:: -* Examples of Rewrite Rules:: -@end menu - -@node Entering Rewrite Rules, Basic Rewrite Rules, Rewrite Rules, Rewrite Rules -@subsection Entering Rewrite Rules - -@noindent -Rewrite rules normally use the ``assignment'' operator -@samp{@var{old} := @var{new}}. -This operator is equivalent to the function call @samp{assign(old, new)}. -The @code{assign} function is undefined by itself in Calc, so an -assignment formula such as a rewrite rule will be left alone by ordinary -Calc commands. But certain commands, like the rewrite system, interpret -assignments in special ways. - -For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace -every occurrence of the sine of something, squared, with one minus the -square of the cosine of that same thing. All by itself as a formula -on the stack it does nothing, but when given to the @kbd{a r} command -it turns that command into a sine-squared-to-cosine-squared converter. - -To specify a set of rules to be applied all at once, make a vector of -rules. - -When @kbd{a r} prompts you to enter the rewrite rules, you can answer -in several ways: - -@enumerate -@item -With a rule: @kbd{f(x) := g(x) @key{RET}}. -@item -With a vector of rules: @kbd{[f1(x) := g1(x), f2(x) := g2(x)] @key{RET}}. -(You can omit the enclosing square brackets if you wish.) -@item -With the name of a variable that contains the rule or rules vector: -@kbd{myrules @key{RET}}. -@item -With any formula except a rule, a vector, or a variable name; this -will be interpreted as the @var{old} half of a rewrite rule, -and you will be prompted a second time for the @var{new} half: -@kbd{f(x) @key{RET} g(x) @key{RET}}. -@item -With a blank line, in which case the rule, rules vector, or variable -will be taken from the top of the stack (and the formula to be -rewritten will come from the second-to-top position). -@end enumerate - -If you enter the rules directly (as opposed to using rules stored -in a variable), those rules will be put into the Trail so that you -can retrieve them later. @xref{Trail Commands}. - -It is most convenient to store rules you use often in a variable and -invoke them by giving the variable name. The @kbd{s e} -(@code{calc-edit-variable}) command is an easy way to create or edit a -rule set stored in a variable. You may also wish to use @kbd{s p} -(@code{calc-permanent-variable}) to save your rules permanently; -@pxref{Operations on Variables}. - -Rewrite rules are compiled into a special internal form for faster -matching. If you enter a rule set directly it must be recompiled -every time. If you store the rules in a variable and refer to them -through that variable, they will be compiled once and saved away -along with the variable for later reference. This is another good -reason to store your rules in a variable. - -Calc also accepts an obsolete notation for rules, as vectors -@samp{[@var{old}, @var{new}]}. But because it is easily confused with a -vector of two rules, the use of this notation is no longer recommended. - -@node Basic Rewrite Rules, Conditional Rewrite Rules, Entering Rewrite Rules, Rewrite Rules -@subsection Basic Rewrite Rules - -@noindent -To match a particular formula @expr{x} with a particular rewrite rule -@samp{@var{old} := @var{new}}, Calc compares the structure of @expr{x} with -the structure of @var{old}. Variables that appear in @var{old} are -treated as @dfn{meta-variables}; the corresponding positions in @expr{x} -may contain any sub-formulas. For example, the pattern @samp{f(x,y)} -would match the expression @samp{f(12, a+1)} with the meta-variable -@samp{x} corresponding to 12 and with @samp{y} corresponding to -@samp{a+1}. However, this pattern would not match @samp{f(12)} or -@samp{g(12, a+1)}, since there is no assignment of the meta-variables -that will make the pattern match these expressions. Notice that if -the pattern is a single meta-variable, it will match any expression. - -If a given meta-variable appears more than once in @var{old}, the -corresponding sub-formulas of @expr{x} must be identical. Thus -the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and -@samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}. -(@xref{Conditional Rewrite Rules}, for a way to match the latter.) - -Things other than variables must match exactly between the pattern -and the target formula. To match a particular variable exactly, use -the pseudo-function @samp{quote(v)} in the pattern. For example, the -pattern @samp{x+quote(y)} matches @samp{x+y}, @samp{2+y}, or -@samp{sin(a)+y}. - -The special variable names @samp{e}, @samp{pi}, @samp{i}, @samp{phi}, -@samp{gamma}, @samp{inf}, @samp{uinf}, and @samp{nan} always match -literally. Thus the pattern @samp{sin(d + e + f)} acts exactly like -@samp{sin(d + quote(e) + f)}. - -If the @var{old} pattern is found to match a given formula, that -formula is replaced by @var{new}, where any occurrences in @var{new} -of meta-variables from the pattern are replaced with the sub-formulas -that they matched. Thus, applying the rule @samp{f(x,y) := g(y+x,x)} -to @samp{f(12, a+1)} would produce @samp{g(a+13, 12)}. - -The normal @kbd{a r} command applies rewrite rules over and over -throughout the target formula until no further changes are possible -(up to a limit of 100 times). Use @kbd{C-u 1 a r} to make only one -change at a time. - -@node Conditional Rewrite Rules, Algebraic Properties of Rewrite Rules, Basic Rewrite Rules, Rewrite Rules -@subsection Conditional Rewrite Rules - -@noindent -A rewrite rule can also be @dfn{conditional}, written in the form -@samp{@var{old} := @var{new} :: @var{cond}}. (There is also the obsolete -form @samp{[@var{old}, @var{new}, @var{cond}]}.) If a @var{cond} part -is present in the -rule, this is an additional condition that must be satisfied before -the rule is accepted. Once @var{old} has been successfully matched -to the target expression, @var{cond} is evaluated (with all the -meta-variables substituted for the values they matched) and simplified -with @kbd{a s} (@code{calc-simplify}). If the result is a nonzero -number or any other object known to be nonzero (@pxref{Declarations}), -the rule is accepted. If the result is zero or if it is a symbolic -formula that is not known to be nonzero, the rule is rejected. -@xref{Logical Operations}, for a number of functions that return -1 or 0 according to the results of various tests. - -For example, the formula @samp{n > 0} simplifies to 1 or 0 if @expr{n} -is replaced by a positive or nonpositive number, respectively (or if -@expr{n} has been declared to be positive or nonpositive). Thus, -the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to -@samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)} -(assuming no outstanding declarations for @expr{a}). In the case of -@samp{f(-3, 2)}, the condition can be shown not to be satisfied; in -the case of @samp{f(12, a+1)}, the condition merely cannot be shown -to be satisfied, but that is enough to reject the rule. - -While Calc will use declarations to reason about variables in the -formula being rewritten, declarations do not apply to meta-variables. -For example, the rule @samp{f(a) := g(a+1)} will match for any values -of @samp{a}, such as complex numbers, vectors, or formulas, even if -@samp{a} has been declared to be real or scalar. If you want the -meta-variable @samp{a} to match only literal real numbers, use -@samp{f(a) := g(a+1) :: real(a)}. If you want @samp{a} to match only -reals and formulas which are provably real, use @samp{dreal(a)} as -the condition. - -The @samp{::} operator is a shorthand for the @code{condition} -function; @samp{@var{old} := @var{new} :: @var{cond}} is equivalent to -the formula @samp{condition(assign(@var{old}, @var{new}), @var{cond})}. - -If you have several conditions, you can use @samp{... :: c1 :: c2 :: c3} -or @samp{... :: c1 && c2 && c3}. The two are entirely equivalent. - -It is also possible to embed conditions inside the pattern: -@samp{f(x :: x>0, y) := g(y+x, x)}. This is purely a notational -convenience, though; where a condition appears in a rule has no -effect on when it is tested. The rewrite-rule compiler automatically -decides when it is best to test each condition while a rule is being -matched. - -Certain conditions are handled as special cases by the rewrite rule -system and are tested very efficiently: Where @expr{x} is any -meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)}, -@samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @expr{y} -is either a constant or another meta-variable and @samp{>=} may be -replaced by any of the six relational operators, and @samp{x % a = b} -where @expr{a} and @expr{b} are constants. Other conditions, like -@samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check -since Calc must bring the whole evaluator and simplifier into play. - -An interesting property of @samp{::} is that neither of its arguments -will be touched by Calc's default simplifications. This is important -because conditions often are expressions that cannot safely be -evaluated early. For example, the @code{typeof} function never -remains in symbolic form; entering @samp{typeof(a)} will put the -number 100 (the type code for variables like @samp{a}) on the stack. -But putting the condition @samp{... :: typeof(a) = 6} on the stack -is safe since @samp{::} prevents the @code{typeof} from being -evaluated until the condition is actually used by the rewrite system. - -Since @samp{::} protects its lefthand side, too, you can use a dummy -condition to protect a rule that must itself not evaluate early. -For example, it's not safe to put @samp{a(f,x) := apply(f, [x])} on -the stack because it will immediately evaluate to @samp{a(f,x) := f(x)}, -where the meta-variable-ness of @code{f} on the righthand side has been -lost. But @samp{a(f,x) := apply(f, [x]) :: 1} is safe, and of course -the condition @samp{1} is always true (nonzero) so it has no effect on -the functioning of the rule. (The rewrite compiler will ensure that -it doesn't even impact the speed of matching the rule.) - -@node Algebraic Properties of Rewrite Rules, Other Features of Rewrite Rules, Conditional Rewrite Rules, Rewrite Rules -@subsection Algebraic Properties of Rewrite Rules - -@noindent -The rewrite mechanism understands the algebraic properties of functions -like @samp{+} and @samp{*}. In particular, pattern matching takes -the associativity and commutativity of the following functions into -account: - -@smallexample -+ - * = != && || and or xor vint vunion vxor gcd lcm max min beta -@end smallexample - -For example, the rewrite rule: - -@example -a x + b x := (a + b) x -@end example - -@noindent -will match formulas of the form, - -@example -a x + b x, x a + x b, a x + x b, x a + b x -@end example - -Rewrites also understand the relationship between the @samp{+} and @samp{-} -operators. The above rewrite rule will also match the formulas, - -@example -a x - b x, x a - x b, a x - x b, x a - b x -@end example - -@noindent -by matching @samp{b} in the pattern to @samp{-b} from the formula. - -Applied to a sum of many terms like @samp{r + a x + s + b x + t}, this -pattern will check all pairs of terms for possible matches. The rewrite -will take whichever suitable pair it discovers first. - -In general, a pattern using an associative operator like @samp{a + b} -will try @var{2 n} different ways to match a sum of @var{n} terms -like @samp{x + y + z - w}. First, @samp{a} is matched against each -of @samp{x}, @samp{y}, @samp{z}, and @samp{-w} in turn, with @samp{b} -being matched to the remainders @samp{y + z - w}, @samp{x + z - w}, etc. -If none of these succeed, then @samp{b} is matched against each of the -four terms with @samp{a} matching the remainder. Half-and-half matches, -like @samp{(x + y) + (z - w)}, are not tried. - -Note that @samp{*} is not commutative when applied to matrices, but -rewrite rules pretend that it is. If you type @kbd{m v} to enable -Matrix mode (@pxref{Matrix Mode}), rewrite rules will match @samp{*} -literally, ignoring its usual commutativity property. (In the -current implementation, the associativity also vanishes---it is as -if the pattern had been enclosed in a @code{plain} marker; see below.) -If you are applying rewrites to formulas with matrices, it's best to -enable Matrix mode first to prevent algebraically incorrect rewrites -from occurring. - -The pattern @samp{-x} will actually match any expression. For example, -the rule - -@example -f(-x) := -f(x) -@end example - -@noindent -will rewrite @samp{f(a)} to @samp{-f(-a)}. To avoid this, either use -a @code{plain} marker as described below, or add a @samp{negative(x)} -condition. The @code{negative} function is true if its argument -``looks'' negative, for example, because it is a negative number or -because it is a formula like @samp{-x}. The new rule using this -condition is: - -@example -f(x) := -f(-x) :: negative(x) @r{or, equivalently,} -f(-x) := -f(x) :: negative(-x) -@end example - -In the same way, the pattern @samp{x - y} will match the sum @samp{a + b} -by matching @samp{y} to @samp{-b}. - -The pattern @samp{a b} will also match the formula @samp{x/y} if -@samp{y} is a number. Thus the rule @samp{a x + @w{b x} := (a+b) x} -will also convert @samp{a x + x / 2} to @samp{(a + 0.5) x} (or -@samp{(a + 1:2) x}, depending on the current fraction mode). - -Calc will @emph{not} take other liberties with @samp{*}, @samp{/}, and -@samp{^}. For example, the pattern @samp{f(a b)} will not match -@samp{f(x^2)}, and @samp{f(a + b)} will not match @samp{f(2 x)}, even -though conceivably these patterns could match with @samp{a = b = x}. -Nor will @samp{f(a b)} match @samp{f(x / y)} if @samp{y} is not a -constant, even though it could be considered to match with @samp{a = x} -and @samp{b = 1/y}. The reasons are partly for efficiency, and partly -because while few mathematical operations are substantively different -for addition and subtraction, often it is preferable to treat the cases -of multiplication, division, and integer powers separately. - -Even more subtle is the rule set - -@example -[ f(a) + f(b) := f(a + b), -f(a) := f(-a) ] -@end example - -@noindent -attempting to match @samp{f(x) - f(y)}. You might think that Calc -will view this subtraction as @samp{f(x) + (-f(y))} and then apply -the above two rules in turn, but actually this will not work because -Calc only does this when considering rules for @samp{+} (like the -first rule in this set). So it will see first that @samp{f(x) + (-f(y))} -does not match @samp{f(a) + f(b)} for any assignments of the -meta-variables, and then it will see that @samp{f(x) - f(y)} does -not match @samp{-f(a)} for any assignment of @samp{a}. Because Calc -tries only one rule at a time, it will not be able to rewrite -@samp{f(x) - f(y)} with this rule set. An explicit @samp{f(a) - f(b)} -rule will have to be added. - -Another thing patterns will @emph{not} do is break up complex numbers. -The pattern @samp{myconj(a + @w{b i)} := a - b i} will work for formulas -involving the special constant @samp{i} (such as @samp{3 - 4 i}), but -it will not match actual complex numbers like @samp{(3, -4)}. A version -of the above rule for complex numbers would be - -@example -myconj(a) := re(a) - im(a) (0,1) :: im(a) != 0 -@end example - -@noindent -(Because the @code{re} and @code{im} functions understand the properties -of the special constant @samp{i}, this rule will also work for -@samp{3 - 4 i}. In fact, this particular rule would probably be better -without the @samp{im(a) != 0} condition, since if @samp{im(a) = 0} the -righthand side of the rule will still give the correct answer for the -conjugate of a real number.) - -It is also possible to specify optional arguments in patterns. The rule - -@example -opt(a) x + opt(b) (x^opt(c) + opt(d)) := f(a, b, c, d) -@end example - -@noindent -will match the formula - -@example -5 (x^2 - 4) + 3 x -@end example - -@noindent -in a fairly straightforward manner, but it will also match reduced -formulas like - -@example -x + x^2, 2(x + 1) - x, x + x -@end example - -@noindent -producing, respectively, - -@example -f(1, 1, 2, 0), f(-1, 2, 1, 1), f(1, 1, 1, 0) -@end example - -(The latter two formulas can be entered only if default simplifications -have been turned off with @kbd{m O}.) - -The default value for a term of a sum is zero. The default value -for a part of a product, for a power, or for the denominator of a -quotient, is one. Also, @samp{-x} matches the pattern @samp{opt(a) b} -with @samp{a = -1}. - -In particular, the distributive-law rule can be refined to - -@example -opt(a) x + opt(b) x := (a + b) x -@end example - -@noindent -so that it will convert, e.g., @samp{a x - x}, to @samp{(a - 1) x}. - -The pattern @samp{opt(a) + opt(b) x} matches almost any formulas which -are linear in @samp{x}. You can also use the @code{lin} and @code{islin} -functions with rewrite conditions to test for this; @pxref{Logical -Operations}. These functions are not as convenient to use in rewrite -rules, but they recognize more kinds of formulas as linear: -@samp{x/z} is considered linear with @expr{b = 1/z} by @code{lin}, -but it will not match the above pattern because that pattern calls -for a multiplication, not a division. - -As another example, the obvious rule to replace @samp{sin(x)^2 + cos(x)^2} -by 1, - -@example -sin(x)^2 + cos(x)^2 := 1 -@end example - -@noindent -misses many cases because the sine and cosine may both be multiplied by -an equal factor. Here's a more successful rule: - -@example -opt(a) sin(x)^2 + opt(a) cos(x)^2 := a -@end example - -Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2} -because one @expr{a} would have ``matched'' 1 while the other matched 6. - -Calc automatically converts a rule like - -@example -f(x-1, x) := g(x) -@end example - -@noindent -into the form - -@example -f(temp, x) := g(x) :: temp = x-1 -@end example - -@noindent -(where @code{temp} stands for a new, invented meta-variable that -doesn't actually have a name). This modified rule will successfully -match @samp{f(6, 7)}, binding @samp{temp} and @samp{x} to 6 and 7, -respectively, then verifying that they differ by one even though -@samp{6} does not superficially look like @samp{x-1}. - -However, Calc does not solve equations to interpret a rule. The -following rule, - -@example -f(x-1, x+1) := g(x) -@end example - -@noindent -will not work. That is, it will match @samp{f(a - 1 + b, a + 1 + b)} -but not @samp{f(6, 8)}. Calc always interprets at least one occurrence -of a variable by literal matching. If the variable appears ``isolated'' -then Calc is smart enough to use it for literal matching. But in this -last example, Calc is forced to rewrite the rule to @samp{f(x-1, temp) -:= g(x) :: temp = x+1} where the @samp{x-1} term must correspond to an -actual ``something-minus-one'' in the target formula. - -A successful way to write this would be @samp{f(x, x+2) := g(x+1)}. -You could make this resemble the original form more closely by using -@code{let} notation, which is described in the next section: - -@example -f(xm1, x+1) := g(x) :: let(x := xm1+1) -@end example - -Calc does this rewriting or ``conditionalizing'' for any sub-pattern -which involves only the functions in the following list, operating -only on constants and meta-variables which have already been matched -elsewhere in the pattern. When matching a function call, Calc is -careful to match arguments which are plain variables before arguments -which are calls to any of the functions below, so that a pattern like -@samp{f(x-1, x)} can be conditionalized even though the isolated -@samp{x} comes after the @samp{x-1}. - -@smallexample -+ - * / \ % ^ abs sign round rounde roundu trunc floor ceil -max min re im conj arg -@end smallexample - -You can suppress all of the special treatments described in this -section by surrounding a function call with a @code{plain} marker. -This marker causes the function call which is its argument to be -matched literally, without regard to commutativity, associativity, -negation, or conditionalization. When you use @code{plain}, the -``deep structure'' of the formula being matched can show through. -For example, - -@example -plain(a - a b) := f(a, b) -@end example - -@noindent -will match only literal subtractions. However, the @code{plain} -marker does not affect its arguments' arguments. In this case, -commutativity and associativity is still considered while matching -the @w{@samp{a b}} sub-pattern, so the whole pattern will match -@samp{x - y x} as well as @samp{x - x y}. We could go still -further and use - -@example -plain(a - plain(a b)) := f(a, b) -@end example - -@noindent -which would do a completely strict match for the pattern. - -By contrast, the @code{quote} marker means that not only the -function name but also the arguments must be literally the same. -The above pattern will match @samp{x - x y} but - -@example -quote(a - a b) := f(a, b) -@end example - -@noindent -will match only the single formula @samp{a - a b}. Also, - -@example -quote(a - quote(a b)) := f(a, b) -@end example - -@noindent -will match only @samp{a - quote(a b)}---probably not the desired -effect! - -A certain amount of algebra is also done when substituting the -meta-variables on the righthand side of a rule. For example, -in the rule - -@example -a + f(b) := f(a + b) -@end example - -@noindent -matching @samp{f(x) - y} would produce @samp{f((-y) + x)} if -taken literally, but the rewrite mechanism will simplify the -righthand side to @samp{f(x - y)} automatically. (Of course, -the default simplifications would do this anyway, so this -special simplification is only noticeable if you have turned the -default simplifications off.) This rewriting is done only when -a meta-variable expands to a ``negative-looking'' expression. -If this simplification is not desirable, you can use a @code{plain} -marker on the righthand side: - -@example -a + f(b) := f(plain(a + b)) -@end example - -@noindent -In this example, we are still allowing the pattern-matcher to -use all the algebra it can muster, but the righthand side will -always simplify to a literal addition like @samp{f((-y) + x)}. - -@node Other Features of Rewrite Rules, Composing Patterns in Rewrite Rules, Algebraic Properties of Rewrite Rules, Rewrite Rules -@subsection Other Features of Rewrite Rules - -@noindent -Certain ``function names'' serve as markers in rewrite rules. -Here is a complete list of these markers. First are listed the -markers that work inside a pattern; then come the markers that -work in the righthand side of a rule. - -@ignore -@starindex -@end ignore -@tindex import -One kind of marker, @samp{import(x)}, takes the place of a whole -rule. Here @expr{x} is the name of a variable containing another -rule set; those rules are ``spliced into'' the rule set that -imports them. For example, if @samp{[f(a+b) := f(a) + f(b), -f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF}, -then the rule set @samp{[f(0) := 0, import(linearF)]} will apply -all three rules. It is possible to modify the imported rules -slightly: @samp{import(x, v1, x1, v2, x2, @dots{})} imports -the rule set @expr{x} with all occurrences of -@texline @math{v_1}, -@infoline @expr{v1}, -as either a variable name or a function name, replaced with -@texline @math{x_1} -@infoline @expr{x1} -and so on. (If -@texline @math{v_1} -@infoline @expr{v1} -is used as a function name, then -@texline @math{x_1} -@infoline @expr{x1} -must be either a function name itself or a @w{@samp{< >}} nameless -function; @pxref{Specifying Operators}.) For example, @samp{[g(0) := 0, -import(linearF, f, g)]} applies the linearity rules to the function -@samp{g} instead of @samp{f}. Imports can be nested, but the -import-with-renaming feature may fail to rename sub-imports properly. - -The special functions allowed in patterns are: - -@table @samp -@item quote(x) -@ignore -@starindex -@end ignore -@tindex quote -This pattern matches exactly @expr{x}; variable names in @expr{x} are -not interpreted as meta-variables. The only flexibility is that -numbers are compared for numeric equality, so that the pattern -@samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}. -(Numbers are always treated this way by the rewrite mechanism: -The rule @samp{f(x,x) := g(x)} will match @samp{f(12, 12.0)}. -The rewrite may produce either @samp{g(12)} or @samp{g(12.0)} -as a result in this case.) - -@item plain(x) -@ignore -@starindex -@end ignore -@tindex plain -Here @expr{x} must be a function call @samp{f(x1,x2,@dots{})}. This -pattern matches a call to function @expr{f} with the specified -argument patterns. No special knowledge of the properties of the -function @expr{f} is used in this case; @samp{+} is not commutative or -associative. Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}} -are treated as patterns. If you wish them to be treated ``plainly'' -as well, you must enclose them with more @code{plain} markers: -@samp{plain(plain(@w{-a}) + plain(b c))}. - -@item opt(x,def) -@ignore -@starindex -@end ignore -@tindex opt -Here @expr{x} must be a variable name. This must appear as an -argument to a function or an element of a vector; it specifies that -the argument or element is optional. -As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||}, -or as the second argument to @samp{/} or @samp{^}, the value @var{def} -may be omitted. The pattern @samp{x + opt(y)} matches a sum by -binding one summand to @expr{x} and the other to @expr{y}, and it -matches anything else by binding the whole expression to @expr{x} and -zero to @expr{y}. The other operators above work similarly. - -For general miscellaneous functions, the default value @code{def} -must be specified. Optional arguments are dropped starting with -the rightmost one during matching. For example, the pattern -@samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)}, -or @samp{f(a,b,c)}. Default values of zero and @expr{b} are -supplied in this example for the omitted arguments. Note that -the literal variable @expr{b} will be the default in the latter -case, @emph{not} the value that matched the meta-variable @expr{b}. -In other words, the default @var{def} is effectively quoted. - -@item condition(x,c) -@ignore -@starindex -@end ignore -@tindex condition -@tindex :: -This matches the pattern @expr{x}, with the attached condition -@expr{c}. It is the same as @samp{x :: c}. - -@item pand(x,y) -@ignore -@starindex -@end ignore -@tindex pand -@tindex &&& -This matches anything that matches both pattern @expr{x} and -pattern @expr{y}. It is the same as @samp{x &&& y}. -@pxref{Composing Patterns in Rewrite Rules}. - -@item por(x,y) -@ignore -@starindex -@end ignore -@tindex por -@tindex ||| -This matches anything that matches either pattern @expr{x} or -pattern @expr{y}. It is the same as @w{@samp{x ||| y}}. - -@item pnot(x) -@ignore -@starindex -@end ignore -@tindex pnot -@tindex !!! -This matches anything that does not match pattern @expr{x}. -It is the same as @samp{!!! x}. - -@item cons(h,t) -@ignore -@mindex cons -@end ignore -@tindex cons (rewrites) -This matches any vector of one or more elements. The first -element is matched to @expr{h}; a vector of the remaining -elements is matched to @expr{t}. Note that vectors of fixed -length can also be matched as actual vectors: The rule -@samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent -to the rule @samp{[a,b] := [a+b]}. - -@item rcons(t,h) -@ignore -@mindex rcons -@end ignore -@tindex rcons (rewrites) -This is like @code{cons}, except that the @emph{last} element -is matched to @expr{h}, with the remaining elements matched -to @expr{t}. - -@item apply(f,args) -@ignore -@mindex apply -@end ignore -@tindex apply (rewrites) -This matches any function call. The name of the function, in -the form of a variable, is matched to @expr{f}. The arguments -of the function, as a vector of zero or more objects, are -matched to @samp{args}. Constants, variables, and vectors -do @emph{not} match an @code{apply} pattern. For example, -@samp{apply(f,x)} matches any function call, @samp{apply(quote(f),x)} -matches any call to the function @samp{f}, @samp{apply(f,[a,b])} -matches any function call with exactly two arguments, and -@samp{apply(quote(f), cons(a,cons(b,x)))} matches any call -to the function @samp{f} with two or more arguments. Another -way to implement the latter, if the rest of the rule does not -need to refer to the first two arguments of @samp{f} by name, -would be @samp{apply(quote(f), x :: vlen(x) >= 2)}. -Here's a more interesting sample use of @code{apply}: - -@example -apply(f,[x+n]) := n + apply(f,[x]) - :: in(f, [floor,ceil,round,trunc]) :: integer(n) -@end example - -Note, however, that this will be slower to match than a rule -set with four separate rules. The reason is that Calc sorts -the rules of a rule set according to top-level function name; -if the top-level function is @code{apply}, Calc must try the -rule for every single formula and sub-formula. If the top-level -function in the pattern is, say, @code{floor}, then Calc invokes -the rule only for sub-formulas which are calls to @code{floor}. - -Formulas normally written with operators like @code{+} are still -considered function calls: @code{apply(f,x)} matches @samp{a+b} -with @samp{f = add}, @samp{x = [a,b]}. - -You must use @code{apply} for meta-variables with function names -on both sides of a rewrite rule: @samp{apply(f, [x]) := f(x+1)} -is @emph{not} correct, because it rewrites @samp{spam(6)} into -@samp{f(7)}. The righthand side should be @samp{apply(f, [x+1])}. -Also note that you will have to use No-Simplify mode (@kbd{m O}) -when entering this rule so that the @code{apply} isn't -evaluated immediately to get the new rule @samp{f(x) := f(x+1)}. -Or, use @kbd{s e} to enter the rule without going through the stack, -or enter the rule as @samp{apply(f, [x]) := apply(f, [x+1]) @w{:: 1}}. -@xref{Conditional Rewrite Rules}. - -@item select(x) -@ignore -@starindex -@end ignore -@tindex select -This is used for applying rules to formulas with selections; -@pxref{Selections with Rewrite Rules}. -@end table - -Special functions for the righthand sides of rules are: - -@table @samp -@item quote(x) -The notation @samp{quote(x)} is changed to @samp{x} when the -righthand side is used. As far as the rewrite rule is concerned, -@code{quote} is invisible. However, @code{quote} has the special -property in Calc that its argument is not evaluated. Thus, -while it will not work to put the rule @samp{t(a) := typeof(a)} -on the stack because @samp{typeof(a)} is evaluated immediately -to produce @samp{t(a) := 100}, you can use @code{quote} to -protect the righthand side: @samp{t(a) := quote(typeof(a))}. -(@xref{Conditional Rewrite Rules}, for another trick for -protecting rules from evaluation.) - -@item plain(x) -Special properties of and simplifications for the function call -@expr{x} are not used. One interesting case where @code{plain} -is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a -shorthand notation for the @code{quote} function. This rule will -not work as shown; instead of replacing @samp{q(foo)} with -@samp{quote(foo)}, it will replace it with @samp{foo}! The correct -rule would be @samp{q(x) := plain(quote(x))}. - -@item cons(h,t) -Where @expr{t} is a vector, this is converted into an expanded -vector during rewrite processing. Note that @code{cons} is a regular -Calc function which normally does this anyway; the only way @code{cons} -is treated specially by rewrites is that @code{cons} on the righthand -side of a rule will be evaluated even if default simplifications -have been turned off. - -@item rcons(t,h) -Analogous to @code{cons} except putting @expr{h} at the @emph{end} of -the vector @expr{t}. - -@item apply(f,args) -Where @expr{f} is a variable and @var{args} is a vector, this -is converted to a function call. Once again, note that @code{apply} -is also a regular Calc function. - -@item eval(x) -@ignore -@starindex -@end ignore -@tindex eval -The formula @expr{x} is handled in the usual way, then the -default simplifications are applied to it even if they have -been turned off normally. This allows you to treat any function -similarly to the way @code{cons} and @code{apply} are always -treated. However, there is a slight difference: @samp{cons(2+3, [])} -with default simplifications off will be converted to @samp{[2+3]}, -whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}. - -@item evalsimp(x) -@ignore -@starindex -@end ignore -@tindex evalsimp -The formula @expr{x} has meta-variables substituted in the usual -way, then algebraically simplified as if by the @kbd{a s} command. - -@item evalextsimp(x) -@ignore -@starindex -@end ignore -@tindex evalextsimp -The formula @expr{x} has meta-variables substituted in the normal -way, then ``extendedly'' simplified as if by the @kbd{a e} command. - -@item select(x) -@xref{Selections with Rewrite Rules}. -@end table - -There are also some special functions you can use in conditions. - -@table @samp -@item let(v := x) -@ignore -@starindex -@end ignore -@tindex let -The expression @expr{x} is evaluated with meta-variables substituted. -The @kbd{a s} command's simplifications are @emph{not} applied by -default, but @expr{x} can include calls to @code{evalsimp} or -@code{evalextsimp} as described above to invoke higher levels -of simplification. The -result of @expr{x} is then bound to the meta-variable @expr{v}. As -usual, if this meta-variable has already been matched to something -else the two values must be equal; if the meta-variable is new then -it is bound to the result of the expression. This variable can then -appear in later conditions, and on the righthand side of the rule. -In fact, @expr{v} may be any pattern in which case the result of -evaluating @expr{x} is matched to that pattern, binding any -meta-variables that appear in that pattern. Note that @code{let} -can only appear by itself as a condition, or as one term of an -@samp{&&} which is a whole condition: It cannot be inside -an @samp{||} term or otherwise buried. - -The alternate, equivalent form @samp{let(v, x)} is also recognized. -Note that the use of @samp{:=} by @code{let}, while still being -assignment-like in character, is unrelated to the use of @samp{:=} -in the main part of a rewrite rule. - -As an example, @samp{f(a) := g(ia) :: let(ia := 1/a) :: constant(ia)} -replaces @samp{f(a)} with @samp{g} of the inverse of @samp{a}, if -that inverse exists and is constant. For example, if @samp{a} is a -singular matrix the operation @samp{1/a} is left unsimplified and -@samp{constant(ia)} fails, but if @samp{a} is an invertible matrix -then the rule succeeds. Without @code{let} there would be no way -to express this rule that didn't have to invert the matrix twice. -Note that, because the meta-variable @samp{ia} is otherwise unbound -in this rule, the @code{let} condition itself always ``succeeds'' -because no matter what @samp{1/a} evaluates to, it can successfully -be bound to @code{ia}. - -Here's another example, for integrating cosines of linear -terms: @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}. -The @code{lin} function returns a 3-vector if its argument is linear, -or leaves itself unevaluated if not. But an unevaluated @code{lin} -call will not match the 3-vector on the lefthand side of the @code{let}, -so this @code{let} both verifies that @code{y} is linear, and binds -the coefficients @code{a} and @code{b} for use elsewhere in the rule. -(It would have been possible to use @samp{sin(a x + b)/b} for the -righthand side instead, but using @samp{sin(y)/b} avoids gratuitous -rearrangement of the argument of the sine.) - -@ignore -@starindex -@end ignore -@tindex ierf -Similarly, here is a rule that implements an inverse-@code{erf} -function. It uses @code{root} to search for a solution. If -@code{root} succeeds, it will return a vector of two numbers -where the first number is the desired solution. If no solution -is found, @code{root} remains in symbolic form. So we use -@code{let} to check that the result was indeed a vector. - -@example -ierf(x) := y :: let([y,z] := root(erf(a) = x, a, .5)) -@end example - -@item matches(v,p) -The meta-variable @var{v}, which must already have been matched -to something elsewhere in the rule, is compared against pattern -@var{p}. Since @code{matches} is a standard Calc function, it -can appear anywhere in a condition. But if it appears alone or -as a term of a top-level @samp{&&}, then you get the special -extra feature that meta-variables which are bound to things -inside @var{p} can be used elsewhere in the surrounding rewrite -rule. - -The only real difference between @samp{let(p := v)} and -@samp{matches(v, p)} is that the former evaluates @samp{v} using -the default simplifications, while the latter does not. - -@item remember -@vindex remember -This is actually a variable, not a function. If @code{remember} -appears as a condition in a rule, then when that rule succeeds -the original expression and rewritten expression are added to the -front of the rule set that contained the rule. If the rule set -was not stored in a variable, @code{remember} is ignored. The -lefthand side is enclosed in @code{quote} in the added rule if it -contains any variables. - -For example, the rule @samp{f(n) := n f(n-1) :: remember} applied -to @samp{f(7)} will add the rule @samp{f(7) := 7 f(6)} to the front -of the rule set. The rule set @code{EvalRules} works slightly -differently: There, the evaluation of @samp{f(6)} will complete before -the result is added to the rule set, in this case as @samp{f(7) := 5040}. -Thus @code{remember} is most useful inside @code{EvalRules}. - -It is up to you to ensure that the optimization performed by -@code{remember} is safe. For example, the rule @samp{foo(n) := n -:: evalv(eatfoo) > 0 :: remember} is a bad idea (@code{evalv} is -the function equivalent of the @kbd{=} command); if the variable -@code{eatfoo} ever contains 1, rules like @samp{foo(7) := 7} will -be added to the rule set and will continue to operate even if -@code{eatfoo} is later changed to 0. - -@item remember(c) -@ignore -@starindex -@end ignore -@tindex remember -Remember the match as described above, but only if condition @expr{c} -is true. For example, @samp{remember(n % 4 = 0)} in the above factorial -rule remembers only every fourth result. Note that @samp{remember(1)} -is equivalent to @samp{remember}, and @samp{remember(0)} has no effect. -@end table - -@node Composing Patterns in Rewrite Rules, Nested Formulas with Rewrite Rules, Other Features of Rewrite Rules, Rewrite Rules -@subsection Composing Patterns in Rewrite Rules - -@noindent -There are three operators, @samp{&&&}, @samp{|||}, and @samp{!!!}, -that combine rewrite patterns to make larger patterns. The -combinations are ``and,'' ``or,'' and ``not,'' respectively, and -these operators are the pattern equivalents of @samp{&&}, @samp{||} -and @samp{!} (which operate on zero-or-nonzero logical values). - -Note that @samp{&&&}, @samp{|||}, and @samp{!!!} are left in symbolic -form by all regular Calc features; they have special meaning only in -the context of rewrite rule patterns. - -The pattern @samp{@var{p1} &&& @var{p2}} matches anything that -matches both @var{p1} and @var{p2}. One especially useful case is -when one of @var{p1} or @var{p2} is a meta-variable. For example, -here is a rule that operates on error forms: - -@example -f(x &&& a +/- b, x) := g(x) -@end example - -This does the same thing, but is arguably simpler than, the rule - -@example -f(a +/- b, a +/- b) := g(a +/- b) -@end example - -@ignore -@starindex -@end ignore -@tindex ends -Here's another interesting example: - -@example -ends(cons(a, x) &&& rcons(y, b)) := [a, b] -@end example - -@noindent -which effectively clips out the middle of a vector leaving just -the first and last elements. This rule will change a one-element -vector @samp{[a]} to @samp{[a, a]}. The similar rule - -@example -ends(cons(a, rcons(y, b))) := [a, b] -@end example - -@noindent -would do the same thing except that it would fail to match a -one-element vector. - -@tex -\bigskip -@end tex - -The pattern @samp{@var{p1} ||| @var{p2}} matches anything that -matches either @var{p1} or @var{p2}. Calc first tries matching -against @var{p1}; if that fails, it goes on to try @var{p2}. - -@ignore -@starindex -@end ignore -@tindex curve -A simple example of @samp{|||} is - -@example -curve(inf ||| -inf) := 0 -@end example - -@noindent -which converts both @samp{curve(inf)} and @samp{curve(-inf)} to zero. - -Here is a larger example: - -@example -log(a, b) ||| (ln(a) :: let(b := e)) := mylog(a, b) -@end example - -This matches both generalized and natural logarithms in a single rule. -Note that the @samp{::} term must be enclosed in parentheses because -that operator has lower precedence than @samp{|||} or @samp{:=}. - -(In practice this rule would probably include a third alternative, -omitted here for brevity, to take care of @code{log10}.) - -While Calc generally treats interior conditions exactly the same as -conditions on the outside of a rule, it does guarantee that if all the -variables in the condition are special names like @code{e}, or already -bound in the pattern to which the condition is attached (say, if -@samp{a} had appeared in this condition), then Calc will process this -condition right after matching the pattern to the left of the @samp{::}. -Thus, we know that @samp{b} will be bound to @samp{e} only if the -@code{ln} branch of the @samp{|||} was taken. - -Note that this rule was careful to bind the same set of meta-variables -on both sides of the @samp{|||}. Calc does not check this, but if -you bind a certain meta-variable only in one branch and then use that -meta-variable elsewhere in the rule, results are unpredictable: - -@example -f(a,b) ||| g(b) := h(a,b) -@end example - -Here if the pattern matches @samp{g(17)}, Calc makes no promises about -the value that will be substituted for @samp{a} on the righthand side. - -@tex -\bigskip -@end tex - -The pattern @samp{!!! @var{pat}} matches anything that does not -match @var{pat}. Any meta-variables that are bound while matching -@var{pat} remain unbound outside of @var{pat}. - -For example, - -@example -f(x &&& !!! a +/- b, !!![]) := g(x) -@end example - -@noindent -converts @code{f} whose first argument is anything @emph{except} an -error form, and whose second argument is not the empty vector, into -a similar call to @code{g} (but without the second argument). - -If we know that the second argument will be a vector (empty or not), -then an equivalent rule would be: - -@example -f(x, y) := g(x) :: typeof(x) != 7 :: vlen(y) > 0 -@end example - -@noindent -where of course 7 is the @code{typeof} code for error forms. -Another final condition, that works for any kind of @samp{y}, -would be @samp{!istrue(y == [])}. (The @code{istrue} function -returns an explicit 0 if its argument was left in symbolic form; -plain @samp{!(y == [])} or @samp{y != []} would not work to replace -@samp{!!![]} since these would be left unsimplified, and thus cause -the rule to fail, if @samp{y} was something like a variable name.) - -It is possible for a @samp{!!!} to refer to meta-variables bound -elsewhere in the pattern. For example, - -@example -f(a, !!!a) := g(a) -@end example - -@noindent -matches any call to @code{f} with different arguments, changing -this to @code{g} with only the first argument. - -If a function call is to be matched and one of the argument patterns -contains a @samp{!!!} somewhere inside it, that argument will be -matched last. Thus - -@example -f(!!!a, a) := g(a) -@end example - -@noindent -will be careful to bind @samp{a} to the second argument of @code{f} -before testing the first argument. If Calc had tried to match the -first argument of @code{f} first, the results would have been -disastrous: since @code{a} was unbound so far, the pattern @samp{a} -would have matched anything at all, and the pattern @samp{!!!a} -therefore would @emph{not} have matched anything at all! - -@node Nested Formulas with Rewrite Rules, Multi-Phase Rewrite Rules, Composing Patterns in Rewrite Rules, Rewrite Rules -@subsection Nested Formulas with Rewrite Rules - -@noindent -When @kbd{a r} (@code{calc-rewrite}) is used, it takes an expression from -the top of the stack and attempts to match any of the specified rules -to any part of the expression, starting with the whole expression -and then, if that fails, trying deeper and deeper sub-expressions. -For each part of the expression, the rules are tried in the order -they appear in the rules vector. The first rule to match the first -sub-expression wins; it replaces the matched sub-expression according -to the @var{new} part of the rule. - -Often, the rule set will match and change the formula several times. -The top-level formula is first matched and substituted repeatedly until -it no longer matches the pattern; then, sub-formulas are tried, and -so on. Once every part of the formula has gotten its chance, the -rewrite mechanism starts over again with the top-level formula -(in case a substitution of one of its arguments has caused it again -to match). This continues until no further matches can be made -anywhere in the formula. - -It is possible for a rule set to get into an infinite loop. The -most obvious case, replacing a formula with itself, is not a problem -because a rule is not considered to ``succeed'' unless the righthand -side actually comes out to something different than the original -formula or sub-formula that was matched. But if you accidentally -had both @samp{ln(a b) := ln(a) + ln(b)} and the reverse -@samp{ln(a) + ln(b) := ln(a b)} in your rule set, Calc would -run forever switching a formula back and forth between the two -forms. - -To avoid disaster, Calc normally stops after 100 changes have been -made to the formula. This will be enough for most multiple rewrites, -but it will keep an endless loop of rewrites from locking up the -computer forever. (On most systems, you can also type @kbd{C-g} to -halt any Emacs command prematurely.) - -To change this limit, give a positive numeric prefix argument. -In particular, @kbd{M-1 a r} applies only one rewrite at a time, -useful when you are first testing your rule (or just if repeated -rewriting is not what is called for by your application). - -@ignore -@starindex -@end ignore -@ignore -@mindex iter@idots -@end ignore -@tindex iterations -You can also put a ``function call'' @samp{iterations(@var{n})} -in place of a rule anywhere in your rules vector (but usually at -the top). Then, @var{n} will be used instead of 100 as the default -number of iterations for this rule set. You can use -@samp{iterations(inf)} if you want no iteration limit by default. -A prefix argument will override the @code{iterations} limit in the -rule set. - -@example -[ iterations(1), - f(x) := f(x+1) ] -@end example - -More precisely, the limit controls the number of ``iterations,'' -where each iteration is a successful matching of a rule pattern whose -righthand side, after substituting meta-variables and applying the -default simplifications, is different from the original sub-formula -that was matched. - -A prefix argument of zero sets the limit to infinity. Use with caution! - -Given a negative numeric prefix argument, @kbd{a r} will match and -substitute the top-level expression up to that many times, but -will not attempt to match the rules to any sub-expressions. - -In a formula, @code{rewrite(@var{expr}, @var{rules}, @var{n})} -does a rewriting operation. Here @var{expr} is the expression -being rewritten, @var{rules} is the rule, vector of rules, or -variable containing the rules, and @var{n} is the optional -iteration limit, which may be a positive integer, a negative -integer, or @samp{inf} or @samp{-inf}. If @var{n} is omitted -the @code{iterations} value from the rule set is used; if both -are omitted, 100 is used. - -@node Multi-Phase Rewrite Rules, Selections with Rewrite Rules, Nested Formulas with Rewrite Rules, Rewrite Rules -@subsection Multi-Phase Rewrite Rules - -@noindent -It is possible to separate a rewrite rule set into several @dfn{phases}. -During each phase, certain rules will be enabled while certain others -will be disabled. A @dfn{phase schedule} controls the order in which -phases occur during the rewriting process. - -@ignore -@starindex -@end ignore -@tindex phase -@vindex all -If a call to the marker function @code{phase} appears in the rules -vector in place of a rule, all rules following that point will be -members of the phase(s) identified in the arguments to @code{phase}. -Phases are given integer numbers. The markers @samp{phase()} and -@samp{phase(all)} both mean the following rules belong to all phases; -this is the default at the start of the rule set. - -If you do not explicitly schedule the phases, Calc sorts all phase -numbers that appear in the rule set and executes the phases in -ascending order. For example, the rule set - -@example -@group -[ f0(x) := g0(x), - phase(1), - f1(x) := g1(x), - phase(2), - f2(x) := g2(x), - phase(3), - f3(x) := g3(x), - phase(1,2), - f4(x) := g4(x) ] -@end group -@end example - -@noindent -has three phases, 1 through 3. Phase 1 consists of the @code{f0}, -@code{f1}, and @code{f4} rules (in that order). Phase 2 consists of -@code{f0}, @code{f2}, and @code{f4}. Phase 3 consists of @code{f0} -and @code{f3}. - -When Calc rewrites a formula using this rule set, it first rewrites -the formula using only the phase 1 rules until no further changes are -possible. Then it switches to the phase 2 rule set and continues -until no further changes occur, then finally rewrites with phase 3. -When no more phase 3 rules apply, rewriting finishes. (This is -assuming @kbd{a r} with a large enough prefix argument to allow the -rewriting to run to completion; the sequence just described stops -early if the number of iterations specified in the prefix argument, -100 by default, is reached.) - -During each phase, Calc descends through the nested levels of the -formula as described previously. (@xref{Nested Formulas with Rewrite -Rules}.) Rewriting starts at the top of the formula, then works its -way down to the parts, then goes back to the top and works down again. -The phase 2 rules do not begin until no phase 1 rules apply anywhere -in the formula. - -@ignore -@starindex -@end ignore -@tindex schedule -A @code{schedule} marker appearing in the rule set (anywhere, but -conventionally at the top) changes the default schedule of phases. -In the simplest case, @code{schedule} has a sequence of phase numbers -for arguments; each phase number is invoked in turn until the -arguments to @code{schedule} are exhausted. Thus adding -@samp{schedule(3,2,1)} at the top of the above rule set would -reverse the order of the phases; @samp{schedule(1,2,3)} would have -no effect since this is the default schedule; and @samp{schedule(1,2,1,3)} -would give phase 1 a second chance after phase 2 has completed, before -moving on to phase 3. - -Any argument to @code{schedule} can instead be a vector of phase -numbers (or even of sub-vectors). Then the sub-sequence of phases -described by the vector are tried repeatedly until no change occurs -in any phase in the sequence. For example, @samp{schedule([1, 2], 3)} -tries phase 1, then phase 2, then, if either phase made any changes -to the formula, repeats these two phases until they can make no -further progress. Finally, it goes on to phase 3 for finishing -touches. - -Also, items in @code{schedule} can be variable names as well as -numbers. A variable name is interpreted as the name of a function -to call on the whole formula. For example, @samp{schedule(1, simplify)} -says to apply the phase-1 rules (presumably, all of them), then to -call @code{simplify} which is the function name equivalent of @kbd{a s}. -Likewise, @samp{schedule([1, simplify])} says to alternate between -phase 1 and @kbd{a s} until no further changes occur. - -Phases can be used purely to improve efficiency; if it is known that -a certain group of rules will apply only at the beginning of rewriting, -and a certain other group will apply only at the end, then rewriting -will be faster if these groups are identified as separate phases. -Once the phase 1 rules are done, Calc can put them aside and no longer -spend any time on them while it works on phase 2. - -There are also some problems that can only be solved with several -rewrite phases. For a real-world example of a multi-phase rule set, -examine the set @code{FitRules}, which is used by the curve-fitting -command to convert a model expression to linear form. -@xref{Curve Fitting Details}. This set is divided into four phases. -The first phase rewrites certain kinds of expressions to be more -easily linearizable, but less computationally efficient. After the -linear components have been picked out, the final phase includes the -opposite rewrites to put each component back into an efficient form. -If both sets of rules were included in one big phase, Calc could get -into an infinite loop going back and forth between the two forms. - -Elsewhere in @code{FitRules}, the components are first isolated, -then recombined where possible to reduce the complexity of the linear -fit, then finally packaged one component at a time into vectors. -If the packaging rules were allowed to begin before the recombining -rules were finished, some components might be put away into vectors -before they had a chance to recombine. By putting these rules in -two separate phases, this problem is neatly avoided. - -@node Selections with Rewrite Rules, Matching Commands, Multi-Phase Rewrite Rules, Rewrite Rules -@subsection Selections with Rewrite Rules - -@noindent -If a sub-formula of the current formula is selected (as by @kbd{j s}; -@pxref{Selecting Subformulas}), the @kbd{a r} (@code{calc-rewrite}) -command applies only to that sub-formula. Together with a negative -prefix argument, you can use this fact to apply a rewrite to one -specific part of a formula without affecting any other parts. - -@kindex j r -@pindex calc-rewrite-selection -The @kbd{j r} (@code{calc-rewrite-selection}) command allows more -sophisticated operations on selections. This command prompts for -the rules in the same way as @kbd{a r}, but it then applies those -rules to the whole formula in question even though a sub-formula -of it has been selected. However, the selected sub-formula will -first have been surrounded by a @samp{select( )} function call. -(Calc's evaluator does not understand the function name @code{select}; -this is only a tag used by the @kbd{j r} command.) - -For example, suppose the formula on the stack is @samp{2 (a + b)^2} -and the sub-formula @samp{a + b} is selected. This formula will -be rewritten to @samp{2 select(a + b)^2} and then the rewrite -rules will be applied in the usual way. The rewrite rules can -include references to @code{select} to tell where in the pattern -the selected sub-formula should appear. - -If there is still exactly one @samp{select( )} function call in -the formula after rewriting is done, it indicates which part of -the formula should be selected afterwards. Otherwise, the -formula will be unselected. - -You can make @kbd{j r} act much like @kbd{a r} by enclosing both parts -of the rewrite rule with @samp{select()}. However, @kbd{j r} -allows you to use the current selection in more flexible ways. -Suppose you wished to make a rule which removed the exponent from -the selected term; the rule @samp{select(a)^x := select(a)} would -work. In the above example, it would rewrite @samp{2 select(a + b)^2} -to @samp{2 select(a + b)}. This would then be returned to the -stack as @samp{2 (a + b)} with the @samp{a + b} selected. - -The @kbd{j r} command uses one iteration by default, unlike -@kbd{a r} which defaults to 100 iterations. A numeric prefix -argument affects @kbd{j r} in the same way as @kbd{a r}. -@xref{Nested Formulas with Rewrite Rules}. - -As with other selection commands, @kbd{j r} operates on the stack -entry that contains the cursor. (If the cursor is on the top-of-stack -@samp{.} marker, it works as if the cursor were on the formula -at stack level 1.) - -If you don't specify a set of rules, the rules are taken from the -top of the stack, just as with @kbd{a r}. In this case, the -cursor must indicate stack entry 2 or above as the formula to be -rewritten (otherwise the same formula would be used as both the -target and the rewrite rules). - -If the indicated formula has no selection, the cursor position within -the formula temporarily selects a sub-formula for the purposes of this -command. If the cursor is not on any sub-formula (e.g., it is in -the line-number area to the left of the formula), the @samp{select( )} -markers are ignored by the rewrite mechanism and the rules are allowed -to apply anywhere in the formula. - -As a special feature, the normal @kbd{a r} command also ignores -@samp{select( )} calls in rewrite rules. For example, if you used the -above rule @samp{select(a)^x := select(a)} with @kbd{a r}, it would apply -the rule as if it were @samp{a^x := a}. Thus, you can write general -purpose rules with @samp{select( )} hints inside them so that they -will ``do the right thing'' in both @kbd{a r} and @kbd{j r}, -both with and without selections. - -@node Matching Commands, Automatic Rewrites, Selections with Rewrite Rules, Rewrite Rules -@subsection Matching Commands - -@noindent -@kindex a m -@pindex calc-match -@tindex match -The @kbd{a m} (@code{calc-match}) [@code{match}] function takes a -vector of formulas and a rewrite-rule-style pattern, and produces -a vector of all formulas which match the pattern. The command -prompts you to enter the pattern; as for @kbd{a r}, you can enter -a single pattern (i.e., a formula with meta-variables), or a -vector of patterns, or a variable which contains patterns, or -you can give a blank response in which case the patterns are taken -from the top of the stack. The pattern set will be compiled once -and saved if it is stored in a variable. If there are several -patterns in the set, vector elements are kept if they match any -of the patterns. - -For example, @samp{match(a+b, [x, x+y, x-y, 7, x+y+z])} -will return @samp{[x+y, x-y, x+y+z]}. - -The @code{import} mechanism is not available for pattern sets. - -The @kbd{a m} command can also be used to extract all vector elements -which satisfy any condition: The pattern @samp{x :: x>0} will select -all the positive vector elements. - -@kindex I a m -@tindex matchnot -With the Inverse flag [@code{matchnot}], this command extracts all -vector elements which do @emph{not} match the given pattern. - -@ignore -@starindex -@end ignore -@tindex matches -There is also a function @samp{matches(@var{x}, @var{p})} which -evaluates to 1 if expression @var{x} matches pattern @var{p}, or -to 0 otherwise. This is sometimes useful for including into the -conditional clauses of other rewrite rules. - -@ignore -@starindex -@end ignore -@tindex vmatches -The function @code{vmatches} is just like @code{matches}, except -that if the match succeeds it returns a vector of assignments to -the meta-variables instead of the number 1. For example, -@samp{vmatches(f(1,2), f(a,b))} returns @samp{[a := 1, b := 2]}. -If the match fails, the function returns the number 0. - -@node Automatic Rewrites, Debugging Rewrites, Matching Commands, Rewrite Rules -@subsection Automatic Rewrites - -@noindent -@cindex @code{EvalRules} variable -@vindex EvalRules -It is possible to get Calc to apply a set of rewrite rules on all -results, effectively adding to the built-in set of default -simplifications. To do this, simply store your rule set in the -variable @code{EvalRules}. There is a convenient @kbd{s E} command -for editing @code{EvalRules}; @pxref{Operations on Variables}. - -For example, suppose you want @samp{sin(a + b)} to be expanded out -to @samp{sin(b) cos(a) + cos(b) sin(a)} wherever it appears, and -similarly for @samp{cos(a + b)}. The corresponding rewrite rule -set would be, - -@smallexample -@group -[ sin(a + b) := cos(a) sin(b) + sin(a) cos(b), - cos(a + b) := cos(a) cos(b) - sin(a) sin(b) ] -@end group -@end smallexample - -To apply these manually, you could put them in a variable called -@code{trigexp} and then use @kbd{a r trigexp} every time you wanted -to expand trig functions. But if instead you store them in the -variable @code{EvalRules}, they will automatically be applied to all -sines and cosines of sums. Then, with @samp{2 x} and @samp{45} on -the stack, typing @kbd{+ S} will (assuming Degrees mode) result in -@samp{0.7071 sin(2 x) + 0.7071 cos(2 x)} automatically. - -As each level of a formula is evaluated, the rules from -@code{EvalRules} are applied before the default simplifications. -Rewriting continues until no further @code{EvalRules} apply. -Note that this is different from the usual order of application of -rewrite rules: @code{EvalRules} works from the bottom up, simplifying -the arguments to a function before the function itself, while @kbd{a r} -applies rules from the top down. - -Because the @code{EvalRules} are tried first, you can use them to -override the normal behavior of any built-in Calc function. - -It is important not to write a rule that will get into an infinite -loop. For example, the rule set @samp{[f(0) := 1, f(n) := n f(n-1)]} -appears to be a good definition of a factorial function, but it is -unsafe. Imagine what happens if @samp{f(2.5)} is simplified. Calc -will continue to subtract 1 from this argument forever without reaching -zero. A safer second rule would be @samp{f(n) := n f(n-1) :: n>0}. -Another dangerous rule is @samp{g(x, y) := g(y, x)}. Rewriting -@samp{g(2, 4)}, this would bounce back and forth between that and -@samp{g(4, 2)} forever. If an infinite loop in @code{EvalRules} -occurs, Emacs will eventually stop with a ``Computation got stuck -or ran too long'' message. - -Another subtle difference between @code{EvalRules} and regular rewrites -concerns rules that rewrite a formula into an identical formula. For -example, @samp{f(n) := f(floor(n))} ``fails to match'' when @expr{n} is -already an integer. But in @code{EvalRules} this case is detected only -if the righthand side literally becomes the original formula before any -further simplification. This means that @samp{f(n) := f(floor(n))} will -get into an infinite loop if it occurs in @code{EvalRules}. Calc will -replace @samp{f(6)} with @samp{f(floor(6))}, which is different from -@samp{f(6)}, so it will consider the rule to have matched and will -continue simplifying that formula; first the argument is simplified -to get @samp{f(6)}, then the rule matches again to get @samp{f(floor(6))} -again, ad infinitum. A much safer rule would check its argument first, -say, with @samp{f(n) := f(floor(n)) :: !dint(n)}. - -(What really happens is that the rewrite mechanism substitutes the -meta-variables in the righthand side of a rule, compares to see if the -result is the same as the original formula and fails if so, then uses -the default simplifications to simplify the result and compares again -(and again fails if the formula has simplified back to its original -form). The only special wrinkle for the @code{EvalRules} is that the -same rules will come back into play when the default simplifications -are used. What Calc wants to do is build @samp{f(floor(6))}, see that -this is different from the original formula, simplify to @samp{f(6)}, -see that this is the same as the original formula, and thus halt the -rewriting. But while simplifying, @samp{f(6)} will again trigger -the same @code{EvalRules} rule and Calc will get into a loop inside -the rewrite mechanism itself.) - -The @code{phase}, @code{schedule}, and @code{iterations} markers do -not work in @code{EvalRules}. If the rule set is divided into phases, -only the phase 1 rules are applied, and the schedule is ignored. -The rules are always repeated as many times as possible. - -The @code{EvalRules} are applied to all function calls in a formula, -but not to numbers (and other number-like objects like error forms), -nor to vectors or individual variable names. (Though they will apply -to @emph{components} of vectors and error forms when appropriate.) You -might try to make a variable @code{phihat} which automatically expands -to its definition without the need to press @kbd{=} by writing the -rule @samp{quote(phihat) := (1-sqrt(5))/2}, but unfortunately this rule -will not work as part of @code{EvalRules}. - -Finally, another limitation is that Calc sometimes calls its built-in -functions directly rather than going through the default simplifications. -When it does this, @code{EvalRules} will not be able to override those -functions. For example, when you take the absolute value of the complex -number @expr{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling -the multiplication, addition, and square root functions directly rather -than applying the default simplifications to this formula. So an -@code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6} -would not apply. (However, if you put Calc into Symbolic mode so that -@samp{sqrt(13)} will be left in symbolic form by the built-in square -root function, your rule will be able to apply. But if the complex -number were @expr{(3,4)}, so that @samp{sqrt(25)} must be calculated, -then Symbolic mode will not help because @samp{sqrt(25)} can be -evaluated exactly to 5.) - -One subtle restriction that normally only manifests itself with -@code{EvalRules} is that while a given rewrite rule is in the process -of being checked, that same rule cannot be recursively applied. Calc -effectively removes the rule from its rule set while checking the rule, -then puts it back once the match succeeds or fails. (The technical -reason for this is that compiled pattern programs are not reentrant.) -For example, consider the rule @samp{foo(x) := x :: foo(x/2) > 0} -attempting to match @samp{foo(8)}. This rule will be inactive while -the condition @samp{foo(4) > 0} is checked, even though it might be -an integral part of evaluating that condition. Note that this is not -a problem for the more usual recursive type of rule, such as -@samp{foo(x) := foo(x/2)}, because there the rule has succeeded and -been reactivated by the time the righthand side is evaluated. - -If @code{EvalRules} has no stored value (its default state), or if -anything but a vector is stored in it, then it is ignored. - -Even though Calc's rewrite mechanism is designed to compare rewrite -rules to formulas as quickly as possible, storing rules in -@code{EvalRules} may make Calc run substantially slower. This is -particularly true of rules where the top-level call is a commonly used -function, or is not fixed. The rule @samp{f(n) := n f(n-1) :: n>0} will -only activate the rewrite mechanism for calls to the function @code{f}, -but @samp{lg(n) + lg(m) := lg(n m)} will check every @samp{+} operator. - -@smallexample -apply(f, [a*b]) := apply(f, [a]) + apply(f, [b]) :: in(f, [ln, log10]) -@end smallexample - -@noindent -may seem more ``efficient'' than two separate rules for @code{ln} and -@code{log10}, but actually it is vastly less efficient because rules -with @code{apply} as the top-level pattern must be tested against -@emph{every} function call that is simplified. - -@cindex @code{AlgSimpRules} variable -@vindex AlgSimpRules -Suppose you want @samp{sin(a + b)} to be expanded out not all the time, -but only when @kbd{a s} is used to simplify the formula. The variable -@code{AlgSimpRules} holds rules for this purpose. The @kbd{a s} command -will apply @code{EvalRules} and @code{AlgSimpRules} to the formula, as -well as all of its built-in simplifications. - -Most of the special limitations for @code{EvalRules} don't apply to -@code{AlgSimpRules}. Calc simply does an @kbd{a r AlgSimpRules} -command with an infinite repeat count as the first step of @kbd{a s}. -It then applies its own built-in simplifications throughout the -formula, and then repeats these two steps (along with applying the -default simplifications) until no further changes are possible. - -@cindex @code{ExtSimpRules} variable -@cindex @code{UnitSimpRules} variable -@vindex ExtSimpRules -@vindex UnitSimpRules -There are also @code{ExtSimpRules} and @code{UnitSimpRules} variables -that are used by @kbd{a e} and @kbd{u s}, respectively; these commands -also apply @code{EvalRules} and @code{AlgSimpRules}. The variable -@code{IntegSimpRules} contains simplification rules that are used -only during integration by @kbd{a i}. - -@node Debugging Rewrites, Examples of Rewrite Rules, Automatic Rewrites, Rewrite Rules -@subsection Debugging Rewrites - -@noindent -If a buffer named @samp{*Trace*} exists, the rewrite mechanism will -record some useful information there as it operates. The original -formula is written there, as is the result of each successful rewrite, -and the final result of the rewriting. All phase changes are also -noted. - -Calc always appends to @samp{*Trace*}. You must empty this buffer -yourself periodically if it is in danger of growing unwieldy. - -Note that the rewriting mechanism is substantially slower when the -@samp{*Trace*} buffer exists, even if the buffer is not visible on -the screen. Once you are done, you will probably want to kill this -buffer (with @kbd{C-x k *Trace* @key{RET}}). If you leave it in -existence and forget about it, all your future rewrite commands will -be needlessly slow. - -@node Examples of Rewrite Rules, , Debugging Rewrites, Rewrite Rules -@subsection Examples of Rewrite Rules - -@noindent -Returning to the example of substituting the pattern -@samp{sin(x)^2 + cos(x)^2} with 1, we saw that the rule -@samp{opt(a) sin(x)^2 + opt(a) cos(x)^2 := a} does a good job of -finding suitable cases. Another solution would be to use the rule -@samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification -if necessary. This rule will be the most effective way to do the job, -but at the expense of making some changes that you might not desire. - -Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}. -To make this work with the @w{@kbd{j r}} command so that it can be -easily targeted to a particular exponential in a large formula, -you might wish to write the rule as @samp{select(exp(x+y)) := -select(exp(x) exp(y))}. The @samp{select} markers will be -ignored by the regular @kbd{a r} command -(@pxref{Selections with Rewrite Rules}). - -A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}. -This will simplify the formula whenever @expr{b} and/or @expr{c} can -be made simpler by squaring. For example, applying this rule to -@samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming -Symbolic mode has been enabled to keep the square root from being -evaluated to a floating-point approximation). This rule is also -useful when working with symbolic complex numbers, e.g., -@samp{(a + b i) / (c + d i)}. - -As another example, we could define our own ``triangular numbers'' function -with the rules @samp{[tri(0) := 0, tri(n) := n + tri(n-1) :: n>0]}. Enter -this vector and store it in a variable: @kbd{@w{s t} trirules}. Now, given -a suitable formula like @samp{tri(5)} on the stack, type @samp{a r trirules} -to apply these rules repeatedly. After six applications, @kbd{a r} will -stop with 15 on the stack. Once these rules are debugged, it would probably -be most useful to add them to @code{EvalRules} so that Calc will evaluate -the new @code{tri} function automatically. We could then use @kbd{Z K} on -the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies -@code{tri} to the value on the top of the stack. @xref{Programming}. - -@cindex Quaternions -The following rule set, contributed by -@texline Fran\c cois -@infoline Francois -Pinard, implements @dfn{quaternions}, a generalization of the concept of -complex numbers. Quaternions have four components, and are here -represented by function calls @samp{quat(@var{w}, [@var{x}, @var{y}, -@var{z}])} with ``real part'' @var{w} and the three ``imaginary'' parts -collected into a vector. Various arithmetical operations on quaternions -are supported. To use these rules, either add them to @code{EvalRules}, -or create a command based on @kbd{a r} for simplifying quaternion -formulas. A convenient way to enter quaternions would be a command -defined by a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $]) -@key{RET}}. - -@smallexample -[ quat(w, x, y, z) := quat(w, [x, y, z]), - quat(w, [0, 0, 0]) := w, - abs(quat(w, v)) := hypot(w, v), - -quat(w, v) := quat(-w, -v), - r + quat(w, v) := quat(r + w, v) :: real(r), - r - quat(w, v) := quat(r - w, -v) :: real(r), - quat(w1, v1) + quat(w2, v2) := quat(w1 + w2, v1 + v2), - r * quat(w, v) := quat(r * w, r * v) :: real(r), - plain(quat(w1, v1) * quat(w2, v2)) - := quat(w1 * w2 - v1 * v2, w1 * v2 + w2 * v1 + cross(v1, v2)), - quat(w1, v1) / r := quat(w1 / r, v1 / r) :: real(r), - z / quat(w, v) := z * quatinv(quat(w, v)), - quatinv(quat(w, v)) := quat(w, -v) / (w^2 + v^2), - quatsqr(quat(w, v)) := quat(w^2 - v^2, 2 * w * v), - quat(w, v)^k := quatsqr(quat(w, v)^(k / 2)) - :: integer(k) :: k > 0 :: k % 2 = 0, - quat(w, v)^k := quatsqr(quat(w, v)^((k - 1) / 2)) * quat(w, v) - :: integer(k) :: k > 2, - quat(w, v)^-k := quatinv(quat(w, v)^k) :: integer(k) :: k > 0 ] -@end smallexample - -Quaternions, like matrices, have non-commutative multiplication. -In other words, @expr{q1 * q2 = q2 * q1} is not necessarily true if -@expr{q1} and @expr{q2} are @code{quat} forms. The @samp{quat*quat} -rule above uses @code{plain} to prevent Calc from rearranging the -product. It may also be wise to add the line @samp{[quat(), matrix]} -to the @code{Decls} matrix, to ensure that Calc's other algebraic -operations will not rearrange a quaternion product. @xref{Declarations}. - -These rules also accept a four-argument @code{quat} form, converting -it to the preferred form in the first rule. If you would rather see -results in the four-argument form, just append the two items -@samp{phase(2), quat(w, [x, y, z]) := quat(w, x, y, z)} to the end -of the rule set. (But remember that multi-phase rule sets don't work -in @code{EvalRules}.) - -@node Units, Store and Recall, Algebra, Top -@chapter Operating on Units - -@noindent -One special interpretation of algebraic formulas is as numbers with units. -For example, the formula @samp{5 m / s^2} can be read ``five meters -per second squared.'' The commands in this chapter help you -manipulate units expressions in this form. Units-related commands -begin with the @kbd{u} prefix key. - -@menu -* Basic Operations on Units:: -* The Units Table:: -* Predefined Units:: -* User-Defined Units:: -@end menu - -@node Basic Operations on Units, The Units Table, Units, Units -@section Basic Operations on Units - -@noindent -A @dfn{units expression} is a formula which is basically a number -multiplied and/or divided by one or more @dfn{unit names}, which may -optionally be raised to integer powers. Actually, the value part need not -be a number; any product or quotient involving unit names is a units -expression. Many of the units commands will also accept any formula, -where the command applies to all units expressions which appear in the -formula. - -A unit name is a variable whose name appears in the @dfn{unit table}, -or a variable whose name is a prefix character like @samp{k} (for ``kilo'') -or @samp{u} (for ``micro'') followed by a name in the unit table. -A substantial table of built-in units is provided with Calc; -@pxref{Predefined Units}. You can also define your own unit names; -@pxref{User-Defined Units}. - -Note that if the value part of a units expression is exactly @samp{1}, -it will be removed by the Calculator's automatic algebra routines: The -formula @samp{1 mm} is ``simplified'' to @samp{mm}. This is only a -display anomaly, however; @samp{mm} will work just fine as a -representation of one millimeter. - -You may find that Algebraic mode (@pxref{Algebraic Entry}) makes working -with units expressions easier. Otherwise, you will have to remember -to hit the apostrophe key every time you wish to enter units. - -@kindex u s -@pindex calc-simplify-units -@ignore -@mindex usimpl@idots -@end ignore -@tindex usimplify -The @kbd{u s} (@code{calc-simplify-units}) [@code{usimplify}] command -simplifies a units -expression. It uses @kbd{a s} (@code{calc-simplify}) to simplify the -expression first as a regular algebraic formula; it then looks for -features that can be further simplified by converting one object's units -to be compatible with another's. For example, @samp{5 m + 23 mm} will -simplify to @samp{5.023 m}. When different but compatible units are -added, the righthand term's units are converted to match those of the -lefthand term. @xref{Simplification Modes}, for a way to have this done -automatically at all times. - -Units simplification also handles quotients of two units with the same -dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional -powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and -@samp{sqrt(9 acre)} to a quantity in meters; and @code{floor}, -@code{ceil}, @code{round}, @code{rounde}, @code{roundu}, @code{trunc}, -@code{float}, @code{frac}, @code{abs}, and @code{clean} -applied to units expressions, in which case -the operation in question is applied only to the numeric part of the -expression. Finally, trigonometric functions of quantities with units -of angle are evaluated, regardless of the current angular mode. - -@kindex u c -@pindex calc-convert-units -The @kbd{u c} (@code{calc-convert-units}) command converts a units -expression to new, compatible units. For example, given the units -expression @samp{55 mph}, typing @kbd{u c m/s @key{RET}} produces -@samp{24.5872 m/s}. If you have previously converted a units expression -with the same type of units (in this case, distance over time), you will -be offered the previous choice of new units as a default. Continuing -the above example, entering the units expression @samp{100 km/hr} and -typing @kbd{u c @key{RET}} (without specifying new units) produces -@samp{27.7777777778 m/s}. - -While many of Calc's conversion factors are exact, some are necessarily -approximate. If Calc is in fraction mode (@pxref{Fraction Mode}), then -unit conversions will try to give exact, rational conversions, but it -isn't always possible. Given @samp{55 mph} in fraction mode, typing -@kbd{u c m/s @key{RET}} produces @samp{15367:625 m/s}, for example, -while typing @kbd{u c au/yr @key{RET}} produces -@samp{5.18665819999e-3 au/yr}. - -If the units you request are inconsistent with the original units, the -number will be converted into your units times whatever ``remainder'' -units are left over. For example, converting @samp{55 mph} into acres -produces @samp{6.08e-3 acre / m s}. (Recall that multiplication binds -more strongly than division in Calc formulas, so the units here are -acres per meter-second.) Remainder units are expressed in terms of -``fundamental'' units like @samp{m} and @samp{s}, regardless of the -input units. - -One special exception is that if you specify a single unit name, and -a compatible unit appears somewhere in the units expression, then -that compatible unit will be converted to the new unit and the -remaining units in the expression will be left alone. For example, -given the input @samp{980 cm/s^2}, the command @kbd{u c ms} will -change the @samp{s} to @samp{ms} to get @samp{9.8e-4 cm/ms^2}. -The ``remainder unit'' @samp{cm} is left alone rather than being -changed to the base unit @samp{m}. - -You can use explicit unit conversion instead of the @kbd{u s} command -to gain more control over the units of the result of an expression. -For example, given @samp{5 m + 23 mm}, you can type @kbd{u c m} or -@kbd{u c mm} to express the result in either meters or millimeters. -(For that matter, you could type @kbd{u c fath} to express the result -in fathoms, if you preferred!) - -In place of a specific set of units, you can also enter one of the -units system names @code{si}, @code{mks} (equivalent), or @code{cgs}. -For example, @kbd{u c si @key{RET}} converts the expression into -International System of Units (SI) base units. Also, @kbd{u c base} -converts to Calc's base units, which are the same as @code{si} units -except that @code{base} uses @samp{g} as the fundamental unit of mass -whereas @code{si} uses @samp{kg}. - -@cindex Composite units -The @kbd{u c} command also accepts @dfn{composite units}, which -are expressed as the sum of several compatible unit names. For -example, converting @samp{30.5 in} to units @samp{mi+ft+in} (miles, -feet, and inches) produces @samp{2 ft + 6.5 in}. Calc first -sorts the unit names into order of decreasing relative size. -It then accounts for as much of the input quantity as it can -using an integer number times the largest unit, then moves on -to the next smaller unit, and so on. Only the smallest unit -may have a non-integer amount attached in the result. A few -standard unit names exist for common combinations, such as -@code{mfi} for @samp{mi+ft+in}, and @code{tpo} for @samp{ton+lb+oz}. -Composite units are expanded as if by @kbd{a x}, so that -@samp{(ft+in)/hr} is first converted to @samp{ft/hr+in/hr}. - -If the value on the stack does not contain any units, @kbd{u c} will -prompt first for the old units which this value should be considered -to have, then for the new units. Assuming the old and new units you -give are consistent with each other, the result also will not contain -any units. For example, @kbd{@w{u c} cm @key{RET} in @key{RET}} converts the number -2 on the stack to 5.08. - -@kindex u b -@pindex calc-base-units -The @kbd{u b} (@code{calc-base-units}) command is shorthand for -@kbd{u c base}; it converts the units expression on the top of the -stack into @code{base} units. If @kbd{u s} does not simplify a -units expression as far as you would like, try @kbd{u b}. - -The @kbd{u c} and @kbd{u b} commands treat temperature units (like -@samp{degC} and @samp{K}) as relative temperatures. For example, -@kbd{u c} converts @samp{10 degC} to @samp{18 degF}: A change of 10 -degrees Celsius corresponds to a change of 18 degrees Fahrenheit. - -@kindex u t -@pindex calc-convert-temperature -@cindex Temperature conversion -The @kbd{u t} (@code{calc-convert-temperature}) command converts -absolute temperatures. The value on the stack must be a simple units -expression with units of temperature only. This command would convert -@samp{10 degC} to @samp{50 degF}, the equivalent temperature on the -Fahrenheit scale. - -@kindex u r -@pindex calc-remove-units -@kindex u x -@pindex calc-extract-units -The @kbd{u r} (@code{calc-remove-units}) command removes units from the -formula at the top of the stack. The @kbd{u x} -(@code{calc-extract-units}) command extracts only the units portion of a -formula. These commands essentially replace every term of the formula -that does or doesn't (respectively) look like a unit name by the -constant 1, then resimplify the formula. - -@kindex u a -@pindex calc-autorange-units -The @kbd{u a} (@code{calc-autorange-units}) command turns on and off a -mode in which unit prefixes like @code{k} (``kilo'') are automatically -applied to keep the numeric part of a units expression in a reasonable -range. This mode affects @kbd{u s} and all units conversion commands -except @kbd{u b}. For example, with autoranging on, @samp{12345 Hz} -will be simplified to @samp{12.345 kHz}. Autoranging is useful for -some kinds of units (like @code{Hz} and @code{m}), but is probably -undesirable for non-metric units like @code{ft} and @code{tbsp}. -(Composite units are more appropriate for those; see above.) - -Autoranging always applies the prefix to the leftmost unit name. -Calc chooses the largest prefix that causes the number to be greater -than or equal to 1.0. Thus an increasing sequence of adjusted times -would be @samp{1 ms, 10 ms, 100 ms, 1 s, 10 s, 100 s, 1 ks}. -Generally the rule of thumb is that the number will be adjusted -to be in the interval @samp{[1 .. 1000)}, although there are several -exceptions to this rule. First, if the unit has a power then this -is not possible; @samp{0.1 s^2} simplifies to @samp{100000 ms^2}. -Second, the ``centi-'' prefix is allowed to form @code{cm} (centimeters), -but will not apply to other units. The ``deci-,'' ``deka-,'' and -``hecto-'' prefixes are never used. Thus the allowable interval is -@samp{[1 .. 10)} for millimeters and @samp{[1 .. 100)} for centimeters. -Finally, a prefix will not be added to a unit if the resulting name -is also the actual name of another unit; @samp{1e-15 t} would normally -be considered a ``femto-ton,'' but it is written as @samp{1000 at} -(1000 atto-tons) instead because @code{ft} would be confused with feet. - -@node The Units Table, Predefined Units, Basic Operations on Units, Units -@section The Units Table - -@noindent -@kindex u v -@pindex calc-enter-units-table -The @kbd{u v} (@code{calc-enter-units-table}) command displays the units table -in another buffer called @code{*Units Table*}. Each entry in this table -gives the unit name as it would appear in an expression, the definition -of the unit in terms of simpler units, and a full name or description of -the unit. Fundamental units are defined as themselves; these are the -units produced by the @kbd{u b} command. The fundamental units are -meters, seconds, grams, kelvins, amperes, candelas, moles, radians, -and steradians. - -The Units Table buffer also displays the Unit Prefix Table. Note that -two prefixes, ``kilo'' and ``hecto,'' accept either upper- or lower-case -prefix letters. @samp{Meg} is also accepted as a synonym for the @samp{M} -prefix. Whenever a unit name can be interpreted as either a built-in name -or a prefix followed by another built-in name, the former interpretation -wins. For example, @samp{2 pt} means two pints, not two pico-tons. - -The Units Table buffer, once created, is not rebuilt unless you define -new units. To force the buffer to be rebuilt, give any numeric prefix -argument to @kbd{u v}. - -@kindex u V -@pindex calc-view-units-table -The @kbd{u V} (@code{calc-view-units-table}) command is like @kbd{u v} except -that the cursor is not moved into the Units Table buffer. You can -type @kbd{u V} again to remove the Units Table from the display. To -return from the Units Table buffer after a @kbd{u v}, type @kbd{C-x * c} -again or use the regular Emacs @w{@kbd{C-x o}} (@code{other-window}) -command. You can also kill the buffer with @kbd{C-x k} if you wish; -the actual units table is safely stored inside the Calculator. - -@kindex u g -@pindex calc-get-unit-definition -The @kbd{u g} (@code{calc-get-unit-definition}) command retrieves a unit's -defining expression and pushes it onto the Calculator stack. For example, -@kbd{u g in} will produce the expression @samp{2.54 cm}. This is the -same definition for the unit that would appear in the Units Table buffer. -Note that this command works only for actual unit names; @kbd{u g km} -will report that no such unit exists, for example, because @code{km} is -really the unit @code{m} with a @code{k} (``kilo'') prefix. To see a -definition of a unit in terms of base units, it is easier to push the -unit name on the stack and then reduce it to base units with @kbd{u b}. - -@kindex u e -@pindex calc-explain-units -The @kbd{u e} (@code{calc-explain-units}) command displays an English -description of the units of the expression on the stack. For example, -for the expression @samp{62 km^2 g / s^2 mol K}, the description is -``Square-Kilometer Gram per (Second-squared Mole Degree-Kelvin).'' This -command uses the English descriptions that appear in the righthand -column of the Units Table. - -@node Predefined Units, User-Defined Units, The Units Table, Units -@section Predefined Units - -@noindent -Since the exact definitions of many kinds of units have evolved over the -years, and since certain countries sometimes have local differences in -their definitions, it is a good idea to examine Calc's definition of a -unit before depending on its exact value. For example, there are three -different units for gallons, corresponding to the US (@code{gal}), -Canadian (@code{galC}), and British (@code{galUK}) definitions. Also, -note that @code{oz} is a standard ounce of mass, @code{ozt} is a Troy -ounce, and @code{ozfl} is a fluid ounce. - -The temperature units corresponding to degrees Kelvin and Centigrade -(Celsius) are the same in this table, since most units commands treat -temperatures as being relative. The @code{calc-convert-temperature} -command has special rules for handling the different absolute magnitudes -of the various temperature scales. - -The unit of volume ``liters'' can be referred to by either the lower-case -@code{l} or the upper-case @code{L}. - -The unit @code{A} stands for Amperes; the name @code{Ang} is used -@tex -for \AA ngstroms. -@end tex -@ifnottex -for Angstroms. -@end ifnottex - -The unit @code{pt} stands for pints; the name @code{point} stands for -a typographical point, defined by @samp{72 point = 1 in}. This is -slightly different than the point defined by the American Typefounder's -Association in 1886, but the point used by Calc has become standard -largely due to its use by the PostScript page description language. -There is also @code{texpt}, which stands for a printer's point as -defined by the @TeX{} typesetting system: @samp{72.27 texpt = 1 in}. -Other units used by @TeX{} are available; they are @code{texpc} (a pica), -@code{texbp} (a ``big point'', equal to a standard point which is larger -than the point used by @TeX{}), @code{texdd} (a Didot point), -@code{texcc} (a Cicero) and @code{texsp} (a scaled @TeX{} point, -all dimensions representable in @TeX{} are multiples of this value). - -The unit @code{e} stands for the elementary (electron) unit of charge; -because algebra command could mistake this for the special constant -@expr{e}, Calc provides the alternate unit name @code{ech} which is -preferable to @code{e}. - -The name @code{g} stands for one gram of mass; there is also @code{gf}, -one gram of force. (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.) -Meanwhile, one ``@expr{g}'' of acceleration is denoted @code{ga}. - -The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is -a metric ton of @samp{1000 kg}. - -The names @code{s} (or @code{sec}) and @code{min} refer to units of -time; @code{arcsec} and @code{arcmin} are units of angle. - -Some ``units'' are really physical constants; for example, @code{c} -represents the speed of light, and @code{h} represents Planck's -constant. You can use these just like other units: converting -@samp{.5 c} to @samp{m/s} expresses one-half the speed of light in -meters per second. You can also use this merely as a handy reference; -the @kbd{u g} command gets the definition of one of these constants -in its normal terms, and @kbd{u b} expresses the definition in base -units. - -Two units, @code{pi} and @code{alpha} (the fine structure constant, -approximately @mathit{1/137}) are dimensionless. The units simplification -commands simply treat these names as equivalent to their corresponding -values. However you can, for example, use @kbd{u c} to convert a pure -number into multiples of the fine structure constant, or @kbd{u b} to -convert this back into a pure number. (When @kbd{u c} prompts for the -``old units,'' just enter a blank line to signify that the value -really is unitless.) - -@c Describe angular units, luminosity vs. steradians problem. - -@node User-Defined Units, , Predefined Units, Units -@section User-Defined Units - -@noindent -Calc provides ways to get quick access to your selected ``favorite'' -units, as well as ways to define your own new units. - -@kindex u 0-9 -@pindex calc-quick-units -@vindex Units -@cindex @code{Units} variable -@cindex Quick units -To select your favorite units, store a vector of unit names or -expressions in the Calc variable @code{Units}. The @kbd{u 1} -through @kbd{u 9} commands (@code{calc-quick-units}) provide access -to these units. If the value on the top of the stack is a plain -number (with no units attached), then @kbd{u 1} gives it the -specified units. (Basically, it multiplies the number by the -first item in the @code{Units} vector.) If the number on the -stack @emph{does} have units, then @kbd{u 1} converts that number -to the new units. For example, suppose the vector @samp{[in, ft]} -is stored in @code{Units}. Then @kbd{30 u 1} will create the -expression @samp{30 in}, and @kbd{u 2} will convert that expression -to @samp{2.5 ft}. - -The @kbd{u 0} command accesses the tenth element of @code{Units}. -Only ten quick units may be defined at a time. If the @code{Units} -variable has no stored value (the default), or if its value is not -a vector, then the quick-units commands will not function. The -@kbd{s U} command is a convenient way to edit the @code{Units} -variable; @pxref{Operations on Variables}. - -@kindex u d -@pindex calc-define-unit -@cindex User-defined units -The @kbd{u d} (@code{calc-define-unit}) command records the units -expression on the top of the stack as the definition for a new, -user-defined unit. For example, putting @samp{16.5 ft} on the stack and -typing @kbd{u d rod} defines the new unit @samp{rod} to be equivalent to -16.5 feet. The unit conversion and simplification commands will now -treat @code{rod} just like any other unit of length. You will also be -prompted for an optional English description of the unit, which will -appear in the Units Table. - -@kindex u u -@pindex calc-undefine-unit -The @kbd{u u} (@code{calc-undefine-unit}) command removes a user-defined -unit. It is not possible to remove one of the predefined units, -however. - -If you define a unit with an existing unit name, your new definition -will replace the original definition of that unit. If the unit was a -predefined unit, the old definition will not be replaced, only -``shadowed.'' The built-in definition will reappear if you later use -@kbd{u u} to remove the shadowing definition. - -To create a new fundamental unit, use either 1 or the unit name itself -as the defining expression. Otherwise the expression can involve any -other units that you like (except for composite units like @samp{mfi}). -You can create a new composite unit with a sum of other units as the -defining expression. The next unit operation like @kbd{u c} or @kbd{u v} -will rebuild the internal unit table incorporating your modifications. -Note that erroneous definitions (such as two units defined in terms of -each other) will not be detected until the unit table is next rebuilt; -@kbd{u v} is a convenient way to force this to happen. - -Temperature units are treated specially inside the Calculator; it is not -possible to create user-defined temperature units. - -@kindex u p -@pindex calc-permanent-units -@cindex Calc init file, user-defined units -The @kbd{u p} (@code{calc-permanent-units}) command stores the user-defined -units in your Calc init file (the file given by the variable -@code{calc-settings-file}, typically @file{~/.calc.el}), so that the -units will still be available in subsequent Emacs sessions. If there -was already a set of user-defined units in your Calc init file, it -is replaced by the new set. (@xref{General Mode Commands}, for a way to -tell Calc to use a different file for the Calc init file.) - -@node Store and Recall, Graphics, Units, Top -@chapter Storing and Recalling - -@noindent -Calculator variables are really just Lisp variables that contain numbers -or formulas in a form that Calc can understand. The commands in this -section allow you to manipulate variables conveniently. Commands related -to variables use the @kbd{s} prefix key. - -@menu -* Storing Variables:: -* Recalling Variables:: -* Operations on Variables:: -* Let Command:: -* Evaluates-To Operator:: -@end menu - -@node Storing Variables, Recalling Variables, Store and Recall, Store and Recall -@section Storing Variables - -@noindent -@kindex s s -@pindex calc-store -@cindex Storing variables -@cindex Quick variables -@vindex q0 -@vindex q9 -The @kbd{s s} (@code{calc-store}) command stores the value at the top of -the stack into a specified variable. It prompts you to enter the -name of the variable. If you press a single digit, the value is stored -immediately in one of the ``quick'' variables @code{q0} through -@code{q9}. Or you can enter any variable name. - -@kindex s t -@pindex calc-store-into -The @kbd{s s} command leaves the stored value on the stack. There is -also an @kbd{s t} (@code{calc-store-into}) command, which removes a -value from the stack and stores it in a variable. - -If the top of stack value is an equation @samp{a = 7} or assignment -@samp{a := 7} with a variable on the lefthand side, then Calc will -assign that variable with that value by default, i.e., if you type -@kbd{s s @key{RET}} or @kbd{s t @key{RET}}. In this example, the -value 7 would be stored in the variable @samp{a}. (If you do type -a variable name at the prompt, the top-of-stack value is stored in -its entirety, even if it is an equation: @samp{s s b @key{RET}} -with @samp{a := 7} on the stack stores @samp{a := 7} in @code{b}.) - -In fact, the top of stack value can be a vector of equations or -assignments with different variables on their lefthand sides; the -default will be to store all the variables with their corresponding -righthand sides simultaneously. - -It is also possible to type an equation or assignment directly at -the prompt for the @kbd{s s} or @kbd{s t} command: @kbd{s s foo = 7}. -In this case the expression to the right of the @kbd{=} or @kbd{:=} -symbol is evaluated as if by the @kbd{=} command, and that value is -stored in the variable. No value is taken from the stack; @kbd{s s} -and @kbd{s t} are equivalent when used in this way. - -@kindex s 0-9 -@kindex t 0-9 -The prefix keys @kbd{s} and @kbd{t} may be followed immediately by a -digit; @kbd{s 9} is equivalent to @kbd{s s 9}, and @kbd{t 9} is -equivalent to @kbd{s t 9}. (The @kbd{t} prefix is otherwise used -for trail and time/date commands.) - -@kindex s + -@kindex s - -@ignore -@mindex @idots -@end ignore -@kindex s * -@ignore -@mindex @null -@end ignore -@kindex s / -@ignore -@mindex @null -@end ignore -@kindex s ^ -@ignore -@mindex @null -@end ignore -@kindex s | -@ignore -@mindex @null -@end ignore -@kindex s n -@ignore -@mindex @null -@end ignore -@kindex s & -@ignore -@mindex @null -@end ignore -@kindex s [ -@ignore -@mindex @null -@end ignore -@kindex s ] -@pindex calc-store-plus -@pindex calc-store-minus -@pindex calc-store-times -@pindex calc-store-div -@pindex calc-store-power -@pindex calc-store-concat -@pindex calc-store-neg -@pindex calc-store-inv -@pindex calc-store-decr -@pindex calc-store-incr -There are also several ``arithmetic store'' commands. For example, -@kbd{s +} removes a value from the stack and adds it to the specified -variable. The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /}, -@kbd{s ^}, and @w{@kbd{s |}} (vector concatenation), plus @kbd{s n} and -@kbd{s &} which negate or invert the value in a variable, and @w{@kbd{s [}} -and @kbd{s ]} which decrease or increase a variable by one. - -All the arithmetic stores accept the Inverse prefix to reverse the -order of the operands. If @expr{v} represents the contents of the -variable, and @expr{a} is the value drawn from the stack, then regular -@w{@kbd{s -}} assigns -@texline @math{v \coloneq v - a}, -@infoline @expr{v := v - a}, -but @kbd{I s -} assigns -@texline @math{v \coloneq a - v}. -@infoline @expr{v := a - v}. -While @kbd{I s *} might seem pointless, it is -useful if matrix multiplication is involved. Actually, all the -arithmetic stores use formulas designed to behave usefully both -forwards and backwards: - -@example -@group -s + v := v + a v := a + v -s - v := v - a v := a - v -s * v := v * a v := a * v -s / v := v / a v := a / v -s ^ v := v ^ a v := a ^ v -s | v := v | a v := a | v -s n v := v / (-1) v := (-1) / v -s & v := v ^ (-1) v := (-1) ^ v -s [ v := v - 1 v := 1 - v -s ] v := v - (-1) v := (-1) - v -@end group -@end example - -In the last four cases, a numeric prefix argument will be used in -place of the number one. (For example, @kbd{M-2 s ]} increases -a variable by 2, and @kbd{M-2 I s ]} replaces a variable by -minus-two minus the variable. - -The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -}, -etc. The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous -arithmetic stores that don't remove the value @expr{a} from the stack. - -All arithmetic stores report the new value of the variable in the -Trail for your information. They signal an error if the variable -previously had no stored value. If default simplifications have been -turned off, the arithmetic stores temporarily turn them on for numeric -arguments only (i.e., they temporarily do an @kbd{m N} command). -@xref{Simplification Modes}. Large vectors put in the trail by -these commands always use abbreviated (@kbd{t .}) mode. - -@kindex s m -@pindex calc-store-map -The @kbd{s m} command is a general way to adjust a variable's value -using any Calc function. It is a ``mapping'' command analogous to -@kbd{V M}, @kbd{V R}, etc. @xref{Reducing and Mapping}, to see -how to specify a function for a mapping command. Basically, -all you do is type the Calc command key that would invoke that -function normally. For example, @kbd{s m n} applies the @kbd{n} -key to negate the contents of the variable, so @kbd{s m n} is -equivalent to @kbd{s n}. Also, @kbd{s m Q} takes the square root -of the value stored in a variable, @kbd{s m v v} uses @kbd{v v} to -reverse the vector stored in the variable, and @kbd{s m H I S} -takes the hyperbolic arcsine of the variable contents. - -If the mapping function takes two or more arguments, the additional -arguments are taken from the stack; the old value of the variable -is provided as the first argument. Thus @kbd{s m -} with @expr{a} -on the stack computes @expr{v - a}, just like @kbd{s -}. With the -Inverse prefix, the variable's original value becomes the @emph{last} -argument instead of the first. Thus @kbd{I s m -} is also -equivalent to @kbd{I s -}. - -@kindex s x -@pindex calc-store-exchange -The @kbd{s x} (@code{calc-store-exchange}) command exchanges the value -of a variable with the value on the top of the stack. Naturally, the -variable must already have a stored value for this to work. - -You can type an equation or assignment at the @kbd{s x} prompt. The -command @kbd{s x a=6} takes no values from the stack; instead, it -pushes the old value of @samp{a} on the stack and stores @samp{a = 6}. - -@kindex s u -@pindex calc-unstore -@cindex Void variables -@cindex Un-storing variables -Until you store something in them, most variables are ``void,'' that is, -they contain no value at all. If they appear in an algebraic formula -they will be left alone even if you press @kbd{=} (@code{calc-evaluate}). -The @kbd{s u} (@code{calc-unstore}) command returns a variable to the -void state. - -@kindex s c -@pindex calc-copy-variable -The @kbd{s c} (@code{calc-copy-variable}) command copies the stored -value of one variable to another. One way it differs from a simple -@kbd{s r} followed by an @kbd{s t} (aside from saving keystrokes) is -that the value never goes on the stack and thus is never rounded, -evaluated, or simplified in any way; it is not even rounded down to the -current precision. - -The only variables with predefined values are the ``special constants'' -@code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}. You are free -to unstore these variables or to store new values into them if you like, -although some of the algebraic-manipulation functions may assume these -variables represent their standard values. Calc displays a warning if -you change the value of one of these variables, or of one of the other -special variables @code{inf}, @code{uinf}, and @code{nan} (which are -normally void). - -Note that @code{pi} doesn't actually have 3.14159265359 stored in it, -but rather a special magic value that evaluates to @cpi{} at the current -precision. Likewise @code{e}, @code{i}, and @code{phi} evaluate -according to the current precision or polar mode. If you recall a value -from @code{pi} and store it back, this magic property will be lost. The -magic property is preserved, however, when a variable is copied with -@kbd{s c}. - -@kindex s k -@pindex calc-copy-special-constant -If one of the ``special constants'' is redefined (or undefined) so that -it no longer has its magic property, the property can be restored with -@kbd{s k} (@code{calc-copy-special-constant}). This command will prompt -for a special constant and a variable to store it in, and so a special -constant can be stored in any variable. Here, the special constant that -you enter doesn't depend on the value of the corresponding variable; -@code{pi} will represent 3.14159@dots{} regardless of what is currently -stored in the Calc variable @code{pi}. If one of the other special -variables, @code{inf}, @code{uinf} or @code{nan}, is given a value, its -original behavior can be restored by voiding it with @kbd{s u}. - -@node Recalling Variables, Operations on Variables, Storing Variables, Store and Recall -@section Recalling Variables - -@noindent -@kindex s r -@pindex calc-recall -@cindex Recalling variables -The most straightforward way to extract the stored value from a variable -is to use the @kbd{s r} (@code{calc-recall}) command. This command prompts -for a variable name (similarly to @code{calc-store}), looks up the value -of the specified variable, and pushes that value onto the stack. It is -an error to try to recall a void variable. - -It is also possible to recall the value from a variable by evaluating a -formula containing that variable. For example, @kbd{' a @key{RET} =} is -the same as @kbd{s r a @key{RET}} except that if the variable is void, the -former will simply leave the formula @samp{a} on the stack whereas the -latter will produce an error message. - -@kindex r 0-9 -The @kbd{r} prefix may be followed by a digit, so that @kbd{r 9} is -equivalent to @kbd{s r 9}. (The @kbd{r} prefix is otherwise unused -in the current version of Calc.) - -@node Operations on Variables, Let Command, Recalling Variables, Store and Recall -@section Other Operations on Variables - -@noindent -@kindex s e -@pindex calc-edit-variable -The @kbd{s e} (@code{calc-edit-variable}) command edits the stored -value of a variable without ever putting that value on the stack -or simplifying or evaluating the value. It prompts for the name of -the variable to edit. If the variable has no stored value, the -editing buffer will start out empty. If the editing buffer is -empty when you press @kbd{C-c C-c} to finish, the variable will -be made void. @xref{Editing Stack Entries}, for a general -description of editing. - -The @kbd{s e} command is especially useful for creating and editing -rewrite rules which are stored in variables. Sometimes these rules -contain formulas which must not be evaluated until the rules are -actually used. (For example, they may refer to @samp{deriv(x,y)}, -where @code{x} will someday become some expression involving @code{y}; -if you let Calc evaluate the rule while you are defining it, Calc will -replace @samp{deriv(x,y)} with 0 because the formula @code{x} does -not itself refer to @code{y}.) By contrast, recalling the variable, -editing with @kbd{`}, and storing will evaluate the variable's value -as a side effect of putting the value on the stack. - -@kindex s A -@kindex s D -@ignore -@mindex @idots -@end ignore -@kindex s E -@ignore -@mindex @null -@end ignore -@kindex s F -@ignore -@mindex @null -@end ignore -@kindex s G -@ignore -@mindex @null -@end ignore -@kindex s H -@ignore -@mindex @null -@end ignore -@kindex s I -@ignore -@mindex @null -@end ignore -@kindex s L -@ignore -@mindex @null -@end ignore -@kindex s P -@ignore -@mindex @null -@end ignore -@kindex s R -@ignore -@mindex @null -@end ignore -@kindex s T -@ignore -@mindex @null -@end ignore -@kindex s U -@ignore -@mindex @null -@end ignore -@kindex s X -@pindex calc-store-AlgSimpRules -@pindex calc-store-Decls -@pindex calc-store-EvalRules -@pindex calc-store-FitRules -@pindex calc-store-GenCount -@pindex calc-store-Holidays -@pindex calc-store-IntegLimit -@pindex calc-store-LineStyles -@pindex calc-store-PointStyles -@pindex calc-store-PlotRejects -@pindex calc-store-TimeZone -@pindex calc-store-Units -@pindex calc-store-ExtSimpRules -There are several special-purpose variable-editing commands that -use the @kbd{s} prefix followed by a shifted letter: - -@table @kbd -@item s A -Edit @code{AlgSimpRules}. @xref{Algebraic Simplifications}. -@item s D -Edit @code{Decls}. @xref{Declarations}. -@item s E -Edit @code{EvalRules}. @xref{Default Simplifications}. -@item s F -Edit @code{FitRules}. @xref{Curve Fitting}. -@item s G -Edit @code{GenCount}. @xref{Solving Equations}. -@item s H -Edit @code{Holidays}. @xref{Business Days}. -@item s I -Edit @code{IntegLimit}. @xref{Calculus}. -@item s L -Edit @code{LineStyles}. @xref{Graphics}. -@item s P -Edit @code{PointStyles}. @xref{Graphics}. -@item s R -Edit @code{PlotRejects}. @xref{Graphics}. -@item s T -Edit @code{TimeZone}. @xref{Time Zones}. -@item s U -Edit @code{Units}. @xref{User-Defined Units}. -@item s X -Edit @code{ExtSimpRules}. @xref{Unsafe Simplifications}. -@end table - -These commands are just versions of @kbd{s e} that use fixed variable -names rather than prompting for the variable name. - -@kindex s p -@pindex calc-permanent-variable -@cindex Storing variables -@cindex Permanent variables -@cindex Calc init file, variables -The @kbd{s p} (@code{calc-permanent-variable}) command saves a -variable's value permanently in your Calc init file (the file given by -the variable @code{calc-settings-file}, typically @file{~/.calc.el}), so -that its value will still be available in future Emacs sessions. You -can re-execute @w{@kbd{s p}} later on to update the saved value, but the -only way to remove a saved variable is to edit your calc init file -by hand. (@xref{General Mode Commands}, for a way to tell Calc to -use a different file for the Calc init file.) - -If you do not specify the name of a variable to save (i.e., -@kbd{s p @key{RET}}), all Calc variables with defined values -are saved except for the special constants @code{pi}, @code{e}, -@code{i}, @code{phi}, and @code{gamma}; the variables @code{TimeZone} -and @code{PlotRejects}; -@code{FitRules}, @code{DistribRules}, and other built-in rewrite -rules; and @code{PlotData@var{n}} variables generated -by the graphics commands. (You can still save these variables by -explicitly naming them in an @kbd{s p} command.) - -@kindex s i -@pindex calc-insert-variables -The @kbd{s i} (@code{calc-insert-variables}) command writes -the values of all Calc variables into a specified buffer. -The variables are written with the prefix @code{var-} in the form of -Lisp @code{setq} commands -which store the values in string form. You can place these commands -in your Calc init file (or @file{.emacs}) if you wish, though in this case it -would be easier to use @kbd{s p @key{RET}}. (Note that @kbd{s i} -omits the same set of variables as @w{@kbd{s p @key{RET}}}; the difference -is that @kbd{s i} will store the variables in any buffer, and it also -stores in a more human-readable format.) - -@node Let Command, Evaluates-To Operator, Operations on Variables, Store and Recall -@section The Let Command - -@noindent -@kindex s l -@pindex calc-let -@cindex Variables, temporary assignment -@cindex Temporary assignment to variables -If you have an expression like @samp{a+b^2} on the stack and you wish to -compute its value where @expr{b=3}, you can simply store 3 in @expr{b} and -then press @kbd{=} to reevaluate the formula. This has the side-effect -of leaving the stored value of 3 in @expr{b} for future operations. - -The @kbd{s l} (@code{calc-let}) command evaluates a formula under a -@emph{temporary} assignment of a variable. It stores the value on the -top of the stack into the specified variable, then evaluates the -second-to-top stack entry, then restores the original value (or lack of one) -in the variable. Thus after @kbd{'@w{ }a+b^2 @key{RET} 3 s l b @key{RET}}, -the stack will contain the formula @samp{a + 9}. The subsequent command -@kbd{@w{5 s l a} @key{RET}} will replace this formula with the number 14. -The variables @samp{a} and @samp{b} are not permanently affected in any way -by these commands. - -The value on the top of the stack may be an equation or assignment, or -a vector of equations or assignments, in which case the default will be -analogous to the case of @kbd{s t @key{RET}}. @xref{Storing Variables}. - -Also, you can answer the variable-name prompt with an equation or -assignment: @kbd{s l b=3 @key{RET}} is the same as storing 3 on the stack -and typing @kbd{s l b @key{RET}}. - -The @kbd{a b} (@code{calc-substitute}) command is another way to substitute -a variable with a value in a formula. It does an actual substitution -rather than temporarily assigning the variable and evaluating. For -example, letting @expr{n=2} in @samp{f(n pi)} with @kbd{a b} will -produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)} -since the evaluation step will also evaluate @code{pi}. - -@node Evaluates-To Operator, , Let Command, Store and Recall -@section The Evaluates-To Operator - -@noindent -@tindex evalto -@tindex => -@cindex Evaluates-to operator -@cindex @samp{=>} operator -The special algebraic symbol @samp{=>} is known as the @dfn{evaluates-to -operator}. (It will show up as an @code{evalto} function call in -other language modes like Pascal and La@TeX{}.) This is a binary -operator, that is, it has a lefthand and a righthand argument, -although it can be entered with the righthand argument omitted. - -A formula like @samp{@var{a} => @var{b}} is evaluated by Calc as -follows: First, @var{a} is not simplified or modified in any -way. The previous value of argument @var{b} is thrown away; the -formula @var{a} is then copied and evaluated as if by the @kbd{=} -command according to all current modes and stored variable values, -and the result is installed as the new value of @var{b}. - -For example, suppose you enter the algebraic formula @samp{2 + 3 => 17}. -The number 17 is ignored, and the lefthand argument is left in its -unevaluated form; the result is the formula @samp{2 + 3 => 5}. - -@kindex s = -@pindex calc-evalto -You can enter an @samp{=>} formula either directly using algebraic -entry (in which case the righthand side may be omitted since it is -going to be replaced right away anyhow), or by using the @kbd{s =} -(@code{calc-evalto}) command, which takes @var{a} from the stack -and replaces it with @samp{@var{a} => @var{b}}. - -Calc keeps track of all @samp{=>} operators on the stack, and -recomputes them whenever anything changes that might affect their -values, i.e., a mode setting or variable value. This occurs only -if the @samp{=>} operator is at the top level of the formula, or -if it is part of a top-level vector. In other words, pushing -@samp{2 + (a => 17)} will change the 17 to the actual value of -@samp{a} when you enter the formula, but the result will not be -dynamically updated when @samp{a} is changed later because the -@samp{=>} operator is buried inside a sum. However, a vector -of @samp{=>} operators will be recomputed, since it is convenient -to push a vector like @samp{[a =>, b =>, c =>]} on the stack to -make a concise display of all the variables in your problem. -(Another way to do this would be to use @samp{[a, b, c] =>}, -which provides a slightly different format of display. You -can use whichever you find easiest to read.) - -@kindex m C -@pindex calc-auto-recompute -The @kbd{m C} (@code{calc-auto-recompute}) command allows you to -turn this automatic recomputation on or off. If you turn -recomputation off, you must explicitly recompute an @samp{=>} -operator on the stack in one of the usual ways, such as by -pressing @kbd{=}. Turning recomputation off temporarily can save -a lot of time if you will be changing several modes or variables -before you look at the @samp{=>} entries again. - -Most commands are not especially useful with @samp{=>} operators -as arguments. For example, given @samp{x + 2 => 17}, it won't -work to type @kbd{1 +} to get @samp{x + 3 => 18}. If you want -to operate on the lefthand side of the @samp{=>} operator on -the top of the stack, type @kbd{j 1} (that's the digit ``one'') -to select the lefthand side, execute your commands, then type -@kbd{j u} to unselect. - -All current modes apply when an @samp{=>} operator is computed, -including the current simplification mode. Recall that the -formula @samp{x + y + x} is not handled by Calc's default -simplifications, but the @kbd{a s} command will reduce it to -the simpler form @samp{y + 2 x}. You can also type @kbd{m A} -to enable an Algebraic Simplification mode in which the -equivalent of @kbd{a s} is used on all of Calc's results. -If you enter @samp{x + y + x =>} normally, the result will -be @samp{x + y + x => x + y + x}. If you change to -Algebraic Simplification mode, the result will be -@samp{x + y + x => y + 2 x}. However, just pressing @kbd{a s} -once will have no effect on @samp{x + y + x => x + y + x}, -because the righthand side depends only on the lefthand side -and the current mode settings, and the lefthand side is not -affected by commands like @kbd{a s}. - -The ``let'' command (@kbd{s l}) has an interesting interaction -with the @samp{=>} operator. The @kbd{s l} command evaluates the -second-to-top stack entry with the top stack entry supplying -a temporary value for a given variable. As you might expect, -if that stack entry is an @samp{=>} operator its righthand -side will temporarily show this value for the variable. In -fact, all @samp{=>}s on the stack will be updated if they refer -to that variable. But this change is temporary in the sense -that the next command that causes Calc to look at those stack -entries will make them revert to the old variable value. - -@smallexample -@group -2: a => a 2: a => 17 2: a => a -1: a + 1 => a + 1 1: a + 1 => 18 1: a + 1 => a + 1 - . . . - - 17 s l a @key{RET} p 8 @key{RET} -@end group -@end smallexample - -Here the @kbd{p 8} command changes the current precision, -thus causing the @samp{=>} forms to be recomputed after the -influence of the ``let'' is gone. The @kbd{d @key{SPC}} command -(@code{calc-refresh}) is a handy way to force the @samp{=>} -operators on the stack to be recomputed without any other -side effects. - -@kindex s : -@pindex calc-assign -@tindex assign -@tindex := -Embedded mode also uses @samp{=>} operators. In Embedded mode, -the lefthand side of an @samp{=>} operator can refer to variables -assigned elsewhere in the file by @samp{:=} operators. The -assignment operator @samp{a := 17} does not actually do anything -by itself. But Embedded mode recognizes it and marks it as a sort -of file-local definition of the variable. You can enter @samp{:=} -operators in Algebraic mode, or by using the @kbd{s :} -(@code{calc-assign}) [@code{assign}] command which takes a variable -and value from the stack and replaces them with an assignment. - -@xref{TeX and LaTeX Language Modes}, for the way @samp{=>} appears in -@TeX{} language output. The @dfn{eqn} mode gives similar -treatment to @samp{=>}. - -@node Graphics, Kill and Yank, Store and Recall, Top -@chapter Graphics - -@noindent -The commands for graphing data begin with the @kbd{g} prefix key. Calc -uses GNUPLOT 2.0 or later to do graphics. These commands will only work -if GNUPLOT is available on your system. (While GNUPLOT sounds like -a relative of GNU Emacs, it is actually completely unrelated. -However, it is free software. It can be obtained from -@samp{http://www.gnuplot.info}.) - -@vindex calc-gnuplot-name -If you have GNUPLOT installed on your system but Calc is unable to -find it, you may need to set the @code{calc-gnuplot-name} variable -in your Calc init file or @file{.emacs}. You may also need to set some Lisp -variables to show Calc how to run GNUPLOT on your system; these -are described under @kbd{g D} and @kbd{g O} below. If you are -using the X window system, Calc will configure GNUPLOT for you -automatically. If you have GNUPLOT 3.0 or later and you are not using X, -Calc will configure GNUPLOT to display graphs using simple character -graphics that will work on any terminal. - -@menu -* Basic Graphics:: -* Three Dimensional Graphics:: -* Managing Curves:: -* Graphics Options:: -* Devices:: -@end menu - -@node Basic Graphics, Three Dimensional Graphics, Graphics, Graphics -@section Basic Graphics - -@noindent -@kindex g f -@pindex calc-graph-fast -The easiest graphics command is @kbd{g f} (@code{calc-graph-fast}). -This command takes two vectors of equal length from the stack. -The vector at the top of the stack represents the ``y'' values of -the various data points. The vector in the second-to-top position -represents the corresponding ``x'' values. This command runs -GNUPLOT (if it has not already been started by previous graphing -commands) and displays the set of data points. The points will -be connected by lines, and there will also be some kind of symbol -to indicate the points themselves. - -The ``x'' entry may instead be an interval form, in which case suitable -``x'' values are interpolated between the minimum and maximum values of -the interval (whether the interval is open or closed is ignored). - -The ``x'' entry may also be a number, in which case Calc uses the -sequence of ``x'' values @expr{x}, @expr{x+1}, @expr{x+2}, etc. -(Generally the number 0 or 1 would be used for @expr{x} in this case.) - -The ``y'' entry may be any formula instead of a vector. Calc effectively -uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula; -the result of this must be a formula in a single (unassigned) variable. -The formula is plotted with this variable taking on the various ``x'' -values. Graphs of formulas by default use lines without symbols at the -computed data points. Note that if neither ``x'' nor ``y'' is a vector, -Calc guesses at a reasonable number of data points to use. See the -@kbd{g N} command below. (The ``x'' values must be either a vector -or an interval if ``y'' is a formula.) - -@ignore -@starindex -@end ignore -@tindex xy -If ``y'' is (or evaluates to) a formula of the form -@samp{xy(@var{x}, @var{y})} then the result is a -parametric plot. The two arguments of the fictitious @code{xy} function -are used as the ``x'' and ``y'' coordinates of the curve, respectively. -In this case the ``x'' vector or interval you specified is not directly -visible in the graph. For example, if ``x'' is the interval @samp{[0..360]} -and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph -will be a circle. - -Also, ``x'' and ``y'' may each be variable names, in which case Calc -looks for suitable vectors, intervals, or formulas stored in those -variables. - -The ``x'' and ``y'' values for the data points (as pulled from the vectors, -calculated from the formulas, or interpolated from the intervals) should -be real numbers (integers, fractions, or floats). One exception to this -is that the ``y'' entry can consist of a vector of numbers combined with -error forms, in which case the points will be plotted with the -appropriate error bars. Other than this, if either the ``x'' -value or the ``y'' value of a given data point is not a real number, that -data point will be omitted from the graph. The points on either side -of the invalid point will @emph{not} be connected by a line. - -See the documentation for @kbd{g a} below for a description of the way -numeric prefix arguments affect @kbd{g f}. - -@cindex @code{PlotRejects} variable -@vindex PlotRejects -If you store an empty vector in the variable @code{PlotRejects} -(i.e., @kbd{[ ] s t PlotRejects}), Calc will append information to -this vector for every data point which was rejected because its -``x'' or ``y'' values were not real numbers. The result will be -a matrix where each row holds the curve number, data point number, -``x'' value, and ``y'' value for a rejected data point. -@xref{Evaluates-To Operator}, for a handy way to keep tabs on the -current value of @code{PlotRejects}. @xref{Operations on Variables}, -for the @kbd{s R} command which is another easy way to examine -@code{PlotRejects}. - -@kindex g c -@pindex calc-graph-clear -To clear the graphics display, type @kbd{g c} (@code{calc-graph-clear}). -If the GNUPLOT output device is an X window, the window will go away. -Effects on other kinds of output devices will vary. You don't need -to use @kbd{g c} if you don't want to---if you give another @kbd{g f} -or @kbd{g p} command later on, it will reuse the existing graphics -window if there is one. - -@node Three Dimensional Graphics, Managing Curves, Basic Graphics, Graphics -@section Three-Dimensional Graphics - -@kindex g F -@pindex calc-graph-fast-3d -The @kbd{g F} (@code{calc-graph-fast-3d}) command makes a three-dimensional -graph. It works only if you have GNUPLOT 3.0 or later; with GNUPLOT 2.0, -you will see a GNUPLOT error message if you try this command. - -The @kbd{g F} command takes three values from the stack, called ``x'', -``y'', and ``z'', respectively. As was the case for 2D graphs, there -are several options for these values. - -In the first case, ``x'' and ``y'' are each vectors (not necessarily of -the same length); either or both may instead be interval forms. The -``z'' value must be a matrix with the same number of rows as elements -in ``x'', and the same number of columns as elements in ``y''. The -result is a surface plot where -@texline @math{z_{ij}} -@infoline @expr{z_ij} -is the height of the point -at coordinate @expr{(x_i, y_j)} on the surface. The 3D graph will -be displayed from a certain default viewpoint; you can change this -viewpoint by adding a @samp{set view} to the @samp{*Gnuplot Commands*} -buffer as described later. See the GNUPLOT documentation for a -description of the @samp{set view} command. - -Each point in the matrix will be displayed as a dot in the graph, -and these points will be connected by a grid of lines (@dfn{isolines}). - -In the second case, ``x'', ``y'', and ``z'' are all vectors of equal -length. The resulting graph displays a 3D line instead of a surface, -where the coordinates of points along the line are successive triplets -of values from the input vectors. - -In the third case, ``x'' and ``y'' are vectors or interval forms, and -``z'' is any formula involving two variables (not counting variables -with assigned values). These variables are sorted into alphabetical -order; the first takes on values from ``x'' and the second takes on -values from ``y'' to form a matrix of results that are graphed as a -3D surface. - -@ignore -@starindex -@end ignore -@tindex xyz -If the ``z'' formula evaluates to a call to the fictitious function -@samp{xyz(@var{x}, @var{y}, @var{z})}, then the result is a -``parametric surface.'' In this case, the axes of the graph are -taken from the @var{x} and @var{y} values in these calls, and the -``x'' and ``y'' values from the input vectors or intervals are used only -to specify the range of inputs to the formula. For example, plotting -@samp{[0..360], [0..180], xyz(sin(x)*sin(y), cos(x)*sin(y), cos(y))} -will draw a sphere. (Since the default resolution for 3D plots is -5 steps in each of ``x'' and ``y'', this will draw a very crude -sphere. You could use the @kbd{g N} command, described below, to -increase this resolution, or specify the ``x'' and ``y'' values as -vectors with more than 5 elements. - -It is also possible to have a function in a regular @kbd{g f} plot -evaluate to an @code{xyz} call. Since @kbd{g f} plots a line, not -a surface, the result will be a 3D parametric line. For example, -@samp{[[0..720], xyz(sin(x), cos(x), x)]} will plot two turns of a -helix (a three-dimensional spiral). - -As for @kbd{g f}, each of ``x'', ``y'', and ``z'' may instead be -variables containing the relevant data. - -@node Managing Curves, Graphics Options, Three Dimensional Graphics, Graphics -@section Managing Curves - -@noindent -The @kbd{g f} command is really shorthand for the following commands: -@kbd{C-u g d g a g p}. Likewise, @w{@kbd{g F}} is shorthand for -@kbd{C-u g d g A g p}. You can gain more control over your graph -by using these commands directly. - -@kindex g a -@pindex calc-graph-add -The @kbd{g a} (@code{calc-graph-add}) command adds the ``curve'' -represented by the two values on the top of the stack to the current -graph. You can have any number of curves in the same graph. When -you give the @kbd{g p} command, all the curves will be drawn superimposed -on the same axes. - -The @kbd{g a} command (and many others that affect the current graph) -will cause a special buffer, @samp{*Gnuplot Commands*}, to be displayed -in another window. This buffer is a template of the commands that will -be sent to GNUPLOT when it is time to draw the graph. The first -@kbd{g a} command adds a @code{plot} command to this buffer. Succeeding -@kbd{g a} commands add extra curves onto that @code{plot} command. -Other graph-related commands put other GNUPLOT commands into this -buffer. In normal usage you never need to work with this buffer -directly, but you can if you wish. The only constraint is that there -must be only one @code{plot} command, and it must be the last command -in the buffer. If you want to save and later restore a complete graph -configuration, you can use regular Emacs commands to save and restore -the contents of the @samp{*Gnuplot Commands*} buffer. - -@vindex PlotData1 -@vindex PlotData2 -If the values on the stack are not variable names, @kbd{g a} will invent -variable names for them (of the form @samp{PlotData@var{n}}) and store -the values in those variables. The ``x'' and ``y'' variables are what -go into the @code{plot} command in the template. If you add a curve -that uses a certain variable and then later change that variable, you -can replot the graph without having to delete and re-add the curve. -That's because the variable name, not the vector, interval or formula -itself, is what was added by @kbd{g a}. - -A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way -stack entries are interpreted as curves. With a positive prefix -argument @expr{n}, the top @expr{n} stack entries are ``y'' values -for @expr{n} different curves which share a common ``x'' value in -the @expr{n+1}st stack entry. (Thus @kbd{g a} with no prefix -argument is equivalent to @kbd{C-u 1 g a}.) - -A prefix of zero or plain @kbd{C-u} means to take two stack entries, -``x'' and ``y'' as usual, but to interpret ``y'' as a vector of -``y'' values for several curves that share a common ``x''. - -A negative prefix argument tells Calc to read @expr{n} vectors from -the stack; each vector @expr{[x, y]} describes an independent curve. -This is the only form of @kbd{g a} that creates several curves at once -that don't have common ``x'' values. (Of course, the range of ``x'' -values covered by all the curves ought to be roughly the same if -they are to look nice on the same graph.) - -For example, to plot -@texline @math{\sin n x} -@infoline @expr{sin(n x)} -for integers @expr{n} -from 1 to 5, you could use @kbd{v x} to create a vector of integers -(@expr{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)} -across this vector. The resulting vector of formulas is suitable -for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f} -command. - -@kindex g A -@pindex calc-graph-add-3d -The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve -to the graph. It is not valid to intermix 2D and 3D curves in a -single graph. This command takes three arguments, ``x'', ``y'', -and ``z'', from the stack. With a positive prefix @expr{n}, it -takes @expr{n+2} arguments (common ``x'' and ``y'', plus @expr{n} -separate ``z''s). With a zero prefix, it takes three stack entries -but the ``z'' entry is a vector of curve values. With a negative -prefix @expr{-n}, it takes @expr{n} vectors of the form @expr{[x, y, z]}. -The @kbd{g A} command works by adding a @code{splot} (surface-plot) -command to the @samp{*Gnuplot Commands*} buffer. - -(Although @kbd{g a} adds a 2D @code{plot} command to the -@samp{*Gnuplot Commands*} buffer, Calc changes this to @code{splot} -before sending it to GNUPLOT if it notices that the data points are -evaluating to @code{xyz} calls. It will not work to mix 2D and 3D -@kbd{g a} curves in a single graph, although Calc does not currently -check for this.) - -@kindex g d -@pindex calc-graph-delete -The @kbd{g d} (@code{calc-graph-delete}) command deletes the most -recently added curve from the graph. It has no effect if there are -no curves in the graph. With a numeric prefix argument of any kind, -it deletes all of the curves from the graph. - -@kindex g H -@pindex calc-graph-hide -The @kbd{g H} (@code{calc-graph-hide}) command ``hides'' or ``unhides'' -the most recently added curve. A hidden curve will not appear in -the actual plot, but information about it such as its name and line and -point styles will be retained. - -@kindex g j -@pindex calc-graph-juggle -The @kbd{g j} (@code{calc-graph-juggle}) command moves the curve -at the end of the list (the ``most recently added curve'') to the -front of the list. The next-most-recent curve is thus exposed for -@w{@kbd{g d}} or similar commands to use. With @kbd{g j} you can work -with any curve in the graph even though curve-related commands only -affect the last curve in the list. - -@kindex g p -@pindex calc-graph-plot -The @kbd{g p} (@code{calc-graph-plot}) command uses GNUPLOT to draw -the graph described in the @samp{*Gnuplot Commands*} buffer. Any -GNUPLOT parameters which are not defined by commands in this buffer -are reset to their default values. The variables named in the @code{plot} -command are written to a temporary data file and the variable names -are then replaced by the file name in the template. The resulting -plotting commands are fed to the GNUPLOT program. See the documentation -for the GNUPLOT program for more specific information. All temporary -files are removed when Emacs or GNUPLOT exits. - -If you give a formula for ``y'', Calc will remember all the values that -it calculates for the formula so that later plots can reuse these values. -Calc throws out these saved values when you change any circumstances -that may affect the data, such as switching from Degrees to Radians -mode, or changing the value of a parameter in the formula. You can -force Calc to recompute the data from scratch by giving a negative -numeric prefix argument to @kbd{g p}. - -Calc uses a fairly rough step size when graphing formulas over intervals. -This is to ensure quick response. You can ``refine'' a plot by giving -a positive numeric prefix argument to @kbd{g p}. Calc goes through -the data points it has computed and saved from previous plots of the -function, and computes and inserts a new data point midway between -each of the existing points. You can refine a plot any number of times, -but beware that the amount of calculation involved doubles each time. - -Calc does not remember computed values for 3D graphs. This means the -numerix prefix argument, if any, to @kbd{g p} is effectively ignored if -the current graph is three-dimensional. - -@kindex g P -@pindex calc-graph-print -The @kbd{g P} (@code{calc-graph-print}) command is like @kbd{g p}, -except that it sends the output to a printer instead of to the -screen. More precisely, @kbd{g p} looks for @samp{set terminal} -or @samp{set output} commands in the @samp{*Gnuplot Commands*} buffer; -lacking these it uses the default settings. However, @kbd{g P} -ignores @samp{set terminal} and @samp{set output} commands and -uses a different set of default values. All of these values are -controlled by the @kbd{g D} and @kbd{g O} commands discussed below. -Provided everything is set up properly, @kbd{g p} will plot to -the screen unless you have specified otherwise and @kbd{g P} will -always plot to the printer. - -@node Graphics Options, Devices, Managing Curves, Graphics -@section Graphics Options - -@noindent -@kindex g g -@pindex calc-graph-grid -The @kbd{g g} (@code{calc-graph-grid}) command turns the ``grid'' -on and off. It is off by default; tick marks appear only at the -edges of the graph. With the grid turned on, dotted lines appear -across the graph at each tick mark. Note that this command only -changes the setting in @samp{*Gnuplot Commands*}; to see the effects -of the change you must give another @kbd{g p} command. - -@kindex g b -@pindex calc-graph-border -The @kbd{g b} (@code{calc-graph-border}) command turns the border -(the box that surrounds the graph) on and off. It is on by default. -This command will only work with GNUPLOT 3.0 and later versions. - -@kindex g k -@pindex calc-graph-key -The @kbd{g k} (@code{calc-graph-key}) command turns the ``key'' -on and off. The key is a chart in the corner of the graph that -shows the correspondence between curves and line styles. It is -off by default, and is only really useful if you have several -curves on the same graph. - -@kindex g N -@pindex calc-graph-num-points -The @kbd{g N} (@code{calc-graph-num-points}) command allows you -to select the number of data points in the graph. This only affects -curves where neither ``x'' nor ``y'' is specified as a vector. -Enter a blank line to revert to the default value (initially 15). -With no prefix argument, this command affects only the current graph. -With a positive prefix argument this command changes or, if you enter -a blank line, displays the default number of points used for all -graphs created by @kbd{g a} that don't specify the resolution explicitly. -With a negative prefix argument, this command changes or displays -the default value (initially 5) used for 3D graphs created by @kbd{g A}. -Note that a 3D setting of 5 means that a total of @expr{5^2 = 25} points -will be computed for the surface. - -Data values in the graph of a function are normally computed to a -precision of five digits, regardless of the current precision at the -time. This is usually more than adequate, but there are cases where -it will not be. For example, plotting @expr{1 + x} with @expr{x} in the -interval @samp{[0 ..@: 1e-6]} will round all the data points down -to 1.0! Putting the command @samp{set precision @var{n}} in the -@samp{*Gnuplot Commands*} buffer will cause the data to be computed -at precision @var{n} instead of 5. Since this is such a rare case, -there is no keystroke-based command to set the precision. - -@kindex g h -@pindex calc-graph-header -The @kbd{g h} (@code{calc-graph-header}) command sets the title -for the graph. This will show up centered above the graph. -The default title is blank (no title). - -@kindex g n -@pindex calc-graph-name -The @kbd{g n} (@code{calc-graph-name}) command sets the title of an -individual curve. Like the other curve-manipulating commands, it -affects the most recently added curve, i.e., the last curve on the -list in the @samp{*Gnuplot Commands*} buffer. To set the title of -the other curves you must first juggle them to the end of the list -with @kbd{g j}, or edit the @samp{*Gnuplot Commands*} buffer by hand. -Curve titles appear in the key; if the key is turned off they are -not used. - -@kindex g t -@kindex g T -@pindex calc-graph-title-x -@pindex calc-graph-title-y -The @kbd{g t} (@code{calc-graph-title-x}) and @kbd{g T} -(@code{calc-graph-title-y}) commands set the titles on the ``x'' -and ``y'' axes, respectively. These titles appear next to the -tick marks on the left and bottom edges of the graph, respectively. -Calc does not have commands to control the tick marks themselves, -but you can edit them into the @samp{*Gnuplot Commands*} buffer if -you wish. See the GNUPLOT documentation for details. - -@kindex g r -@kindex g R -@pindex calc-graph-range-x -@pindex calc-graph-range-y -The @kbd{g r} (@code{calc-graph-range-x}) and @kbd{g R} -(@code{calc-graph-range-y}) commands set the range of values on the -``x'' and ``y'' axes, respectively. You are prompted to enter a -suitable range. This should be either a pair of numbers of the -form, @samp{@var{min}:@var{max}}, or a blank line to revert to the -default behavior of setting the range based on the range of values -in the data, or @samp{$} to take the range from the top of the stack. -Ranges on the stack can be represented as either interval forms or -vectors: @samp{[@var{min} ..@: @var{max}]} or @samp{[@var{min}, @var{max}]}. - -@kindex g l -@kindex g L -@pindex calc-graph-log-x -@pindex calc-graph-log-y -The @kbd{g l} (@code{calc-graph-log-x}) and @kbd{g L} (@code{calc-graph-log-y}) -commands allow you to set either or both of the axes of the graph to -be logarithmic instead of linear. - -@kindex g C-l -@kindex g C-r -@kindex g C-t -@pindex calc-graph-log-z -@pindex calc-graph-range-z -@pindex calc-graph-title-z -For 3D plots, @kbd{g C-t}, @kbd{g C-r}, and @kbd{g C-l} (those are -letters with the Control key held down) are the corresponding commands -for the ``z'' axis. - -@kindex g z -@kindex g Z -@pindex calc-graph-zero-x -@pindex calc-graph-zero-y -The @kbd{g z} (@code{calc-graph-zero-x}) and @kbd{g Z} -(@code{calc-graph-zero-y}) commands control whether a dotted line is -drawn to indicate the ``x'' and/or ``y'' zero axes. (These are the same -dotted lines that would be drawn there anyway if you used @kbd{g g} to -turn the ``grid'' feature on.) Zero-axis lines are on by default, and -may be turned off only in GNUPLOT 3.0 and later versions. They are -not available for 3D plots. - -@kindex g s -@pindex calc-graph-line-style -The @kbd{g s} (@code{calc-graph-line-style}) command turns the connecting -lines on or off for the most recently added curve, and optionally selects -the style of lines to be used for that curve. Plain @kbd{g s} simply -toggles the lines on and off. With a numeric prefix argument, @kbd{g s} -turns lines on and sets a particular line style. Line style numbers -start at one and their meanings vary depending on the output device. -GNUPLOT guarantees that there will be at least six different line styles -available for any device. - -@kindex g S -@pindex calc-graph-point-style -The @kbd{g S} (@code{calc-graph-point-style}) command similarly turns -the symbols at the data points on or off, or sets the point style. -If you turn both lines and points off, the data points will show as -tiny dots. If the ``y'' values being plotted contain error forms and -the connecting lines are turned off, then this command will also turn -the error bars on or off. - -@cindex @code{LineStyles} variable -@cindex @code{PointStyles} variable -@vindex LineStyles -@vindex PointStyles -Another way to specify curve styles is with the @code{LineStyles} and -@code{PointStyles} variables. These variables initially have no stored -values, but if you store a vector of integers in one of these variables, -the @kbd{g a} and @kbd{g f} commands will use those style numbers -instead of the defaults for new curves that are added to the graph. -An entry should be a positive integer for a specific style, or 0 to let -the style be chosen automatically, or @mathit{-1} to turn off lines or points -altogether. If there are more curves than elements in the vector, the -last few curves will continue to have the default styles. Of course, -you can later use @kbd{g s} and @kbd{g S} to change any of these styles. - -For example, @kbd{'[2 -1 3] @key{RET} s t LineStyles} causes the first curve -to have lines in style number 2, the second curve to have no connecting -lines, and the third curve to have lines in style 3. Point styles will -still be assigned automatically, but you could store another vector in -@code{PointStyles} to define them, too. - -@node Devices, , Graphics Options, Graphics -@section Graphical Devices - -@noindent -@kindex g D -@pindex calc-graph-device -The @kbd{g D} (@code{calc-graph-device}) command sets the device name -(or ``terminal name'' in GNUPLOT lingo) to be used by @kbd{g p} commands -on this graph. It does not affect the permanent default device name. -If you enter a blank name, the device name reverts to the default. -Enter @samp{?} to see a list of supported devices. - -With a positive numeric prefix argument, @kbd{g D} instead sets -the default device name, used by all plots in the future which do -not override it with a plain @kbd{g D} command. If you enter a -blank line this command shows you the current default. The special -name @code{default} signifies that Calc should choose @code{x11} if -the X window system is in use (as indicated by the presence of a -@code{DISPLAY} environment variable), or otherwise @code{dumb} under -GNUPLOT 3.0 and later, or @code{postscript} under GNUPLOT 2.0. -This is the initial default value. - -The @code{dumb} device is an interface to ``dumb terminals,'' i.e., -terminals with no special graphics facilities. It writes a crude -picture of the graph composed of characters like @code{-} and @code{|} -to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays. -The graph is made the same size as the Emacs screen, which on most -dumb terminals will be -@texline @math{80\times24} -@infoline 80x24 -characters. The graph is displayed in -an Emacs ``recursive edit''; type @kbd{q} or @kbd{C-c C-c} to exit -the recursive edit and return to Calc. Note that the @code{dumb} -device is present only in GNUPLOT 3.0 and later versions. - -The word @code{dumb} may be followed by two numbers separated by -spaces. These are the desired width and height of the graph in -characters. Also, the device name @code{big} is like @code{dumb} -but creates a graph four times the width and height of the Emacs -screen. You will then have to scroll around to view the entire -graph. In the @samp{*Gnuplot Trail*} buffer, @key{SPC}, @key{DEL}, -@kbd{<}, and @kbd{>} are defined to scroll by one screenful in each -of the four directions. - -With a negative numeric prefix argument, @kbd{g D} sets or displays -the device name used by @kbd{g P} (@code{calc-graph-print}). This -is initially @code{postscript}. If you don't have a PostScript -printer, you may decide once again to use @code{dumb} to create a -plot on any text-only printer. - -@kindex g O -@pindex calc-graph-output -The @kbd{g O} (@code{calc-graph-output}) command sets the name of -the output file used by GNUPLOT. For some devices, notably @code{x11}, -there is no output file and this information is not used. Many other -``devices'' are really file formats like @code{postscript}; in these -cases the output in the desired format goes into the file you name -with @kbd{g O}. Type @kbd{g O stdout @key{RET}} to set GNUPLOT to write -to its standard output stream, i.e., to @samp{*Gnuplot Trail*}. -This is the default setting. - -Another special output name is @code{tty}, which means that GNUPLOT -is going to write graphics commands directly to its standard output, -which you wish Emacs to pass through to your terminal. Tektronix -graphics terminals, among other devices, operate this way. Calc does -this by telling GNUPLOT to write to a temporary file, then running a -sub-shell executing the command @samp{cat tempfile >/dev/tty}. On -typical Unix systems, this will copy the temporary file directly to -the terminal, bypassing Emacs entirely. You will have to type @kbd{C-l} -to Emacs afterwards to refresh the screen. - -Once again, @kbd{g O} with a positive or negative prefix argument -sets the default or printer output file names, respectively. In each -case you can specify @code{auto}, which causes Calc to invent a temporary -file name for each @kbd{g p} (or @kbd{g P}) command. This temporary file -will be deleted once it has been displayed or printed. If the output file -name is not @code{auto}, the file is not automatically deleted. - -The default and printer devices and output files can be saved -permanently by the @kbd{m m} (@code{calc-save-modes}) command. The -default number of data points (see @kbd{g N}) and the X geometry -(see @kbd{g X}) are also saved. Other graph information is @emph{not} -saved; you can save a graph's configuration simply by saving the contents -of the @samp{*Gnuplot Commands*} buffer. - -@vindex calc-gnuplot-plot-command -@vindex calc-gnuplot-default-device -@vindex calc-gnuplot-default-output -@vindex calc-gnuplot-print-command -@vindex calc-gnuplot-print-device -@vindex calc-gnuplot-print-output -You may wish to configure the default and -printer devices and output files for the whole system. The relevant -Lisp variables are @code{calc-gnuplot-default-device} and @code{-output}, -and @code{calc-gnuplot-print-device} and @code{-output}. The output -file names must be either strings as described above, or Lisp -expressions which are evaluated on the fly to get the output file names. - -Other important Lisp variables are @code{calc-gnuplot-plot-command} and -@code{calc-gnuplot-print-command}, which give the system commands to -display or print the output of GNUPLOT, respectively. These may be -@code{nil} if no command is necessary, or strings which can include -@samp{%s} to signify the name of the file to be displayed or printed. -Or, these variables may contain Lisp expressions which are evaluated -to display or print the output. These variables are customizable -(@pxref{Customizing Calc}). - -@kindex g x -@pindex calc-graph-display -The @kbd{g x} (@code{calc-graph-display}) command lets you specify -on which X window system display your graphs should be drawn. Enter -a blank line to see the current display name. This command has no -effect unless the current device is @code{x11}. - -@kindex g X -@pindex calc-graph-geometry -The @kbd{g X} (@code{calc-graph-geometry}) command is a similar -command for specifying the position and size of the X window. -The normal value is @code{default}, which generally means your -window manager will let you place the window interactively. -Entering @samp{800x500+0+0} would create an 800-by-500 pixel -window in the upper-left corner of the screen. - -The buffer called @samp{*Gnuplot Trail*} holds a transcript of the -session with GNUPLOT. This shows the commands Calc has ``typed'' to -GNUPLOT and the responses it has received. Calc tries to notice when an -error message has appeared here and display the buffer for you when -this happens. You can check this buffer yourself if you suspect -something has gone wrong. - -@kindex g C -@pindex calc-graph-command -The @kbd{g C} (@code{calc-graph-command}) command prompts you to -enter any line of text, then simply sends that line to the current -GNUPLOT process. The @samp{*Gnuplot Trail*} buffer looks deceptively -like a Shell buffer but you can't type commands in it yourself. -Instead, you must use @kbd{g C} for this purpose. - -@kindex g v -@kindex g V -@pindex calc-graph-view-commands -@pindex calc-graph-view-trail -The @kbd{g v} (@code{calc-graph-view-commands}) and @kbd{g V} -(@code{calc-graph-view-trail}) commands display the @samp{*Gnuplot Commands*} -and @samp{*Gnuplot Trail*} buffers, respectively, in another window. -This happens automatically when Calc thinks there is something you -will want to see in either of these buffers. If you type @kbd{g v} -or @kbd{g V} when the relevant buffer is already displayed, the -buffer is hidden again. - -One reason to use @kbd{g v} is to add your own commands to the -@samp{*Gnuplot Commands*} buffer. Press @kbd{g v}, then use -@kbd{C-x o} to switch into that window. For example, GNUPLOT has -@samp{set label} and @samp{set arrow} commands that allow you to -annotate your plots. Since Calc doesn't understand these commands, -you have to add them to the @samp{*Gnuplot Commands*} buffer -yourself, then use @w{@kbd{g p}} to replot using these new commands. Note -that your commands must appear @emph{before} the @code{plot} command. -To get help on any GNUPLOT feature, type, e.g., @kbd{g C help set label}. -You may have to type @kbd{g C @key{RET}} a few times to clear the -``press return for more'' or ``subtopic of @dots{}'' requests. -Note that Calc always sends commands (like @samp{set nolabel}) to -reset all plotting parameters to the defaults before each plot, so -to delete a label all you need to do is delete the @samp{set label} -line you added (or comment it out with @samp{#}) and then replot -with @kbd{g p}. - -@kindex g q -@pindex calc-graph-quit -You can use @kbd{g q} (@code{calc-graph-quit}) to kill the GNUPLOT -process that is running. The next graphing command you give will -start a fresh GNUPLOT process. The word @samp{Graph} appears in -the Calc window's mode line whenever a GNUPLOT process is currently -running. The GNUPLOT process is automatically killed when you -exit Emacs if you haven't killed it manually by then. - -@kindex g K -@pindex calc-graph-kill -The @kbd{g K} (@code{calc-graph-kill}) command is like @kbd{g q} -except that it also views the @samp{*Gnuplot Trail*} buffer so that -you can see the process being killed. This is better if you are -killing GNUPLOT because you think it has gotten stuck. - -@node Kill and Yank, Keypad Mode, Graphics, Top -@chapter Kill and Yank Functions - -@noindent -The commands in this chapter move information between the Calculator and -other Emacs editing buffers. - -In many cases Embedded mode is an easier and more natural way to -work with Calc from a regular editing buffer. @xref{Embedded Mode}. - -@menu -* Killing From Stack:: -* Yanking Into Stack:: -* Grabbing From Buffers:: -* Yanking Into Buffers:: -* X Cut and Paste:: -@end menu - -@node Killing From Stack, Yanking Into Stack, Kill and Yank, Kill and Yank -@section Killing from the Stack - -@noindent -@kindex C-k -@pindex calc-kill -@kindex M-k -@pindex calc-copy-as-kill -@kindex C-w -@pindex calc-kill-region -@kindex M-w -@pindex calc-copy-region-as-kill -@cindex Kill ring -@dfn{Kill} commands are Emacs commands that insert text into the -``kill ring,'' from which it can later be ``yanked'' by a @kbd{C-y} -command. Three common kill commands in normal Emacs are @kbd{C-k}, which -kills one line, @kbd{C-w}, which kills the region between mark and point, -and @kbd{M-w}, which puts the region into the kill ring without actually -deleting it. All of these commands work in the Calculator, too. Also, -@kbd{M-k} has been provided to complete the set; it puts the current line -into the kill ring without deleting anything. - -The kill commands are unusual in that they pay attention to the location -of the cursor in the Calculator buffer. If the cursor is on or below the -bottom line, the kill commands operate on the top of the stack. Otherwise, -they operate on whatever stack element the cursor is on. Calc's kill -commands always operate on whole stack entries. (They act the same as their -standard Emacs cousins except they ``round up'' the specified region to -encompass full lines.) The text is copied into the kill ring exactly as -it appears on the screen, including line numbers if they are enabled. - -A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number -of lines killed. A positive argument kills the current line and @expr{n-1} -lines below it. A negative argument kills the @expr{-n} lines above the -current line. Again this mirrors the behavior of the standard Emacs -@kbd{C-k} command. Although a whole line is always deleted, @kbd{C-k} -with no argument copies only the number itself into the kill ring, whereas -@kbd{C-k} with a prefix argument of 1 copies the number with its trailing -newline. - -@node Yanking Into Stack, Grabbing From Buffers, Killing From Stack, Kill and Yank -@section Yanking into the Stack - -@noindent -@kindex C-y -@pindex calc-yank -The @kbd{C-y} command yanks the most recently killed text back into the -Calculator. It pushes this value onto the top of the stack regardless of -the cursor position. In general it re-parses the killed text as a number -or formula (or a list of these separated by commas or newlines). However if -the thing being yanked is something that was just killed from the Calculator -itself, its full internal structure is yanked. For example, if you have -set the floating-point display mode to show only four significant digits, -then killing and re-yanking 3.14159 (which displays as 3.142) will yank the -full 3.14159, even though yanking it into any other buffer would yank the -number in its displayed form, 3.142. (Since the default display modes -show all objects to their full precision, this feature normally makes no -difference.) - -@node Grabbing From Buffers, Yanking Into Buffers, Yanking Into Stack, Kill and Yank -@section Grabbing from Other Buffers - -@noindent -@kindex C-x * g -@pindex calc-grab-region -The @kbd{C-x * g} (@code{calc-grab-region}) command takes the text between -point and mark in the current buffer and attempts to parse it as a -vector of values. Basically, it wraps the text in vector brackets -@samp{[ ]} unless the text already is enclosed in vector brackets, -then reads the text as if it were an algebraic entry. The contents -of the vector may be numbers, formulas, or any other Calc objects. -If the @kbd{C-x * g} command works successfully, it does an automatic -@kbd{C-x * c} to enter the Calculator buffer. - -A numeric prefix argument grabs the specified number of lines around -point, ignoring the mark. A positive prefix grabs from point to the -@expr{n}th following newline (so that @kbd{M-1 C-x * g} grabs from point -to the end of the current line); a negative prefix grabs from point -back to the @expr{n+1}st preceding newline. In these cases the text -that is grabbed is exactly the same as the text that @kbd{C-k} would -delete given that prefix argument. - -A prefix of zero grabs the current line; point may be anywhere on the -line. - -A plain @kbd{C-u} prefix interprets the region between point and mark -as a single number or formula rather than a vector. For example, -@kbd{C-x * g} on the text @samp{2 a b} produces the vector of three -values @samp{[2, a, b]}, but @kbd{C-u C-x * g} on the same region -reads a formula which is a product of three things: @samp{2 a b}. -(The text @samp{a + b}, on the other hand, will be grabbed as a -vector of one element by plain @kbd{C-x * g} because the interpretation -@samp{[a, +, b]} would be a syntax error.) - -If a different language has been specified (@pxref{Language Modes}), -the grabbed text will be interpreted according to that language. - -@kindex C-x * r -@pindex calc-grab-rectangle -The @kbd{C-x * r} (@code{calc-grab-rectangle}) command takes the text between -point and mark and attempts to parse it as a matrix. If point and mark -are both in the leftmost column, the lines in between are parsed in their -entirety. Otherwise, point and mark define the corners of a rectangle -whose contents are parsed. - -Each line of the grabbed area becomes a row of the matrix. The result -will actually be a vector of vectors, which Calc will treat as a matrix -only if every row contains the same number of values. - -If a line contains a portion surrounded by square brackets (or curly -braces), that portion is interpreted as a vector which becomes a row -of the matrix. Any text surrounding the bracketed portion on the line -is ignored. - -Otherwise, the entire line is interpreted as a row vector as if it -were surrounded by square brackets. Leading line numbers (in the -format used in the Calc stack buffer) are ignored. If you wish to -force this interpretation (even if the line contains bracketed -portions), give a negative numeric prefix argument to the -@kbd{C-x * r} command. - -If you give a numeric prefix argument of zero or plain @kbd{C-u}, each -line is instead interpreted as a single formula which is converted into -a one-element vector. Thus the result of @kbd{C-u C-x * r} will be a -one-column matrix. For example, suppose one line of the data is the -expression @samp{2 a}. A plain @w{@kbd{C-x * r}} will interpret this as -@samp{[2 a]}, which in turn is read as a two-element vector that forms -one row of the matrix. But a @kbd{C-u C-x * r} will interpret this row -as @samp{[2*a]}. - -If you give a positive numeric prefix argument @var{n}, then each line -will be split up into columns of width @var{n}; each column is parsed -separately as a matrix element. If a line contained -@w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8 -would correctly split the line into two error forms. - -@xref{Matrix Functions}, to see how to pull the matrix apart into its -constituent rows and columns. (If it is a -@texline @math{1\times1} -@infoline 1x1 -matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.) - -@kindex C-x * : -@kindex C-x * _ -@pindex calc-grab-sum-across -@pindex calc-grab-sum-down -@cindex Summing rows and columns of data -The @kbd{C-x * :} (@code{calc-grab-sum-down}) command is a handy way to -grab a rectangle of data and sum its columns. It is equivalent to -typing @kbd{C-x * r}, followed by @kbd{V R : +} (the vector reduction -command that sums the columns of a matrix; @pxref{Reducing}). The -result of the command will be a vector of numbers, one for each column -in the input data. The @kbd{C-x * _} (@code{calc-grab-sum-across}) command -similarly grabs a rectangle and sums its rows by executing @w{@kbd{V R _ +}}. - -As well as being more convenient, @kbd{C-x * :} and @kbd{C-x * _} are also -much faster because they don't actually place the grabbed vector on -the stack. In a @kbd{C-x * r V R : +} sequence, formatting the vector -for display on the stack takes a large fraction of the total time -(unless you have planned ahead and used @kbd{v .} and @kbd{t .} modes). - -For example, suppose we have a column of numbers in a file which we -wish to sum. Go to one corner of the column and press @kbd{C-@@} to -set the mark; go to the other corner and type @kbd{C-x * :}. Since there -is only one column, the result will be a vector of one number, the sum. -(You can type @kbd{v u} to unpack this vector into a plain number if -you want to do further arithmetic with it.) - -To compute the product of the column of numbers, we would have to do -it ``by hand'' since there's no special grab-and-multiply command. -Use @kbd{C-x * r} to grab the column of numbers into the calculator in -the form of a column matrix. The statistics command @kbd{u *} is a -handy way to find the product of a vector or matrix of numbers. -@xref{Statistical Operations}. Another approach would be to use -an explicit column reduction command, @kbd{V R : *}. - -@node Yanking Into Buffers, X Cut and Paste, Grabbing From Buffers, Kill and Yank -@section Yanking into Other Buffers - -@noindent -@kindex y -@pindex calc-copy-to-buffer -The plain @kbd{y} (@code{calc-copy-to-buffer}) command inserts the number -at the top of the stack into the most recently used normal editing buffer. -(More specifically, this is the most recently used buffer which is displayed -in a window and whose name does not begin with @samp{*}. If there is no -such buffer, this is the most recently used buffer except for Calculator -and Calc Trail buffers.) The number is inserted exactly as it appears and -without a newline. (If line-numbering is enabled, the line number is -normally not included.) The number is @emph{not} removed from the stack. - -With a prefix argument, @kbd{y} inserts several numbers, one per line. -A positive argument inserts the specified number of values from the top -of the stack. A negative argument inserts the @expr{n}th value from the -top of the stack. An argument of zero inserts the entire stack. Note -that @kbd{y} with an argument of 1 is slightly different from @kbd{y} -with no argument; the former always copies full lines, whereas the -latter strips off the trailing newline. - -With a lone @kbd{C-u} as a prefix argument, @kbd{y} @emph{replaces} the -region in the other buffer with the yanked text, then quits the -Calculator, leaving you in that buffer. A typical use would be to use -@kbd{C-x * g} to read a region of data into the Calculator, operate on the -data to produce a new matrix, then type @kbd{C-u y} to replace the -original data with the new data. One might wish to alter the matrix -display style (@pxref{Vector and Matrix Formats}) or change the current -display language (@pxref{Language Modes}) before doing this. Also, note -that this command replaces a linear region of text (as grabbed by -@kbd{C-x * g}), not a rectangle (as grabbed by @kbd{C-x * r}). - -If the editing buffer is in overwrite (as opposed to insert) mode, -and the @kbd{C-u} prefix was not used, then the yanked number will -overwrite the characters following point rather than being inserted -before those characters. The usual conventions of overwrite mode -are observed; for example, characters will be inserted at the end of -a line rather than overflowing onto the next line. Yanking a multi-line -object such as a matrix in overwrite mode overwrites the next @var{n} -lines in the buffer, lengthening or shortening each line as necessary. -Finally, if the thing being yanked is a simple integer or floating-point -number (like @samp{-1.2345e-3}) and the characters following point also -make up such a number, then Calc will replace that number with the new -number, lengthening or shortening as necessary. The concept of -``overwrite mode'' has thus been generalized from overwriting characters -to overwriting one complete number with another. - -@kindex C-x * y -The @kbd{C-x * y} key sequence is equivalent to @kbd{y} except that -it can be typed anywhere, not just in Calc. This provides an easy -way to guarantee that Calc knows which editing buffer you want to use! - -@node X Cut and Paste, , Yanking Into Buffers, Kill and Yank -@section X Cut and Paste - -@noindent -If you are using Emacs with the X window system, there is an easier -way to move small amounts of data into and out of the calculator: -Use the mouse-oriented cut and paste facilities of X. - -The default bindings for a three-button mouse cause the left button -to move the Emacs cursor to the given place, the right button to -select the text between the cursor and the clicked location, and -the middle button to yank the selection into the buffer at the -clicked location. So, if you have a Calc window and an editing -window on your Emacs screen, you can use left-click/right-click -to select a number, vector, or formula from one window, then -middle-click to paste that value into the other window. When you -paste text into the Calc window, Calc interprets it as an algebraic -entry. It doesn't matter where you click in the Calc window; the -new value is always pushed onto the top of the stack. - -The @code{xterm} program that is typically used for general-purpose -shell windows in X interprets the mouse buttons in the same way. -So you can use the mouse to move data between Calc and any other -Unix program. One nice feature of @code{xterm} is that a double -left-click selects one word, and a triple left-click selects a -whole line. So you can usually transfer a single number into Calc -just by double-clicking on it in the shell, then middle-clicking -in the Calc window. - -@node Keypad Mode, Embedded Mode, Kill and Yank, Top -@chapter Keypad Mode - -@noindent -@kindex C-x * k -@pindex calc-keypad -The @kbd{C-x * k} (@code{calc-keypad}) command starts the Calculator -and displays a picture of a calculator-style keypad. If you are using -the X window system, you can click on any of the ``keys'' in the -keypad using the left mouse button to operate the calculator. -The original window remains the selected window; in Keypad mode -you can type in your file while simultaneously performing -calculations with the mouse. - -@pindex full-calc-keypad -If you have used @kbd{C-x * b} first, @kbd{C-x * k} instead invokes -the @code{full-calc-keypad} command, which takes over the whole -Emacs screen and displays the keypad, the Calc stack, and the Calc -trail all at once. This mode would normally be used when running -Calc standalone (@pxref{Standalone Operation}). - -If you aren't using the X window system, you must switch into -the @samp{*Calc Keypad*} window, place the cursor on the desired -``key,'' and type @key{SPC} or @key{RET}. If you think this -is easier than using Calc normally, go right ahead. - -Calc commands are more or less the same in Keypad mode. Certain -keypad keys differ slightly from the corresponding normal Calc -keystrokes; all such deviations are described below. - -Keypad mode includes many more commands than will fit on the keypad -at once. Click the right mouse button [@code{calc-keypad-menu}] -to switch to the next menu. The bottom five rows of the keypad -stay the same; the top three rows change to a new set of commands. -To return to earlier menus, click the middle mouse button -[@code{calc-keypad-menu-back}] or simply advance through the menus -until you wrap around. Typing @key{TAB} inside the keypad window -is equivalent to clicking the right mouse button there. - -You can always click the @key{EXEC} button and type any normal -Calc key sequence. This is equivalent to switching into the -Calc buffer, typing the keys, then switching back to your -original buffer. - -@menu -* Keypad Main Menu:: -* Keypad Functions Menu:: -* Keypad Binary Menu:: -* Keypad Vectors Menu:: -* Keypad Modes Menu:: -@end menu - -@node Keypad Main Menu, Keypad Functions Menu, Keypad Mode, Keypad Mode -@section Main Menu - -@smallexample -@group -|----+-----Calc 2.1------+----1 -|FLR |CEIL|RND |TRNC|CLN2|FLT | -|----+----+----+----+----+----| -| LN |EXP | |ABS |IDIV|MOD | -|----+----+----+----+----+----| -|SIN |COS |TAN |SQRT|y^x |1/x | -|----+----+----+----+----+----| -| ENTER |+/- |EEX |UNDO| <- | -|-----+---+-+--+--+-+---++----| -| INV | 7 | 8 | 9 | / | -|-----+-----+-----+-----+-----| -| HYP | 4 | 5 | 6 | * | -|-----+-----+-----+-----+-----| -|EXEC | 1 | 2 | 3 | - | -|-----+-----+-----+-----+-----| -| OFF | 0 | . | PI | + | -|-----+-----+-----+-----+-----+ -@end group -@end smallexample - -@noindent -This is the menu that appears the first time you start Keypad mode. -It will show up in a vertical window on the right side of your screen. -Above this menu is the traditional Calc stack display. On a 24-line -screen you will be able to see the top three stack entries. - -The ten digit keys, decimal point, and @key{EEX} key are used for -entering numbers in the obvious way. @key{EEX} begins entry of an -exponent in scientific notation. Just as with regular Calc, the -number is pushed onto the stack as soon as you press @key{ENTER} -or any other function key. - -The @key{+/-} key corresponds to normal Calc's @kbd{n} key. During -numeric entry it changes the sign of the number or of the exponent. -At other times it changes the sign of the number on the top of the -stack. - -The @key{INV} and @key{HYP} keys modify other keys. As well as -having the effects described elsewhere in this manual, Keypad mode -defines several other ``inverse'' operations. These are described -below and in the following sections. - -The @key{ENTER} key finishes the current numeric entry, or otherwise -duplicates the top entry on the stack. - -The @key{UNDO} key undoes the most recent Calc operation. -@kbd{INV UNDO} is the ``redo'' command, and @kbd{HYP UNDO} is -``last arguments'' (@kbd{M-@key{RET}}). - -The @key{<-} key acts as a ``backspace'' during numeric entry. -At other times it removes the top stack entry. @kbd{INV <-} -clears the entire stack. @kbd{HYP <-} takes an integer from -the stack, then removes that many additional stack elements. - -The @key{EXEC} key prompts you to enter any keystroke sequence -that would normally work in Calc mode. This can include a -numeric prefix if you wish. It is also possible simply to -switch into the Calc window and type commands in it; there is -nothing ``magic'' about this window when Keypad mode is active. - -The other keys in this display perform their obvious calculator -functions. @key{CLN2} rounds the top-of-stack by temporarily -reducing the precision by 2 digits. @key{FLT} converts an -integer or fraction on the top of the stack to floating-point. - -The @key{INV} and @key{HYP} keys combined with several of these keys -give you access to some common functions even if the appropriate menu -is not displayed. Obviously you don't need to learn these keys -unless you find yourself wasting time switching among the menus. - -@table @kbd -@item INV +/- -is the same as @key{1/x}. -@item INV + -is the same as @key{SQRT}. -@item INV - -is the same as @key{CONJ}. -@item INV * -is the same as @key{y^x}. -@item INV / -is the same as @key{INV y^x} (the @expr{x}th root of @expr{y}). -@item HYP/INV 1 -are the same as @key{SIN} / @kbd{INV SIN}. -@item HYP/INV 2 -are the same as @key{COS} / @kbd{INV COS}. -@item HYP/INV 3 -are the same as @key{TAN} / @kbd{INV TAN}. -@item INV/HYP 4 -are the same as @key{LN} / @kbd{HYP LN}. -@item INV/HYP 5 -are the same as @key{EXP} / @kbd{HYP EXP}. -@item INV 6 -is the same as @key{ABS}. -@item INV 7 -is the same as @key{RND} (@code{calc-round}). -@item INV 8 -is the same as @key{CLN2}. -@item INV 9 -is the same as @key{FLT} (@code{calc-float}). -@item INV 0 -is the same as @key{IMAG}. -@item INV . -is the same as @key{PREC}. -@item INV ENTER -is the same as @key{SWAP}. -@item HYP ENTER -is the same as @key{RLL3}. -@item INV HYP ENTER -is the same as @key{OVER}. -@item HYP +/- -packs the top two stack entries as an error form. -@item HYP EEX -packs the top two stack entries as a modulo form. -@item INV EEX -creates an interval form; this removes an integer which is one -of 0 @samp{[]}, 1 @samp{[)}, 2 @samp{(]} or 3 @samp{()}, followed -by the two limits of the interval. -@end table - -The @kbd{OFF} key turns Calc off; typing @kbd{C-x * k} or @kbd{C-x * *} -again has the same effect. This is analogous to typing @kbd{q} or -hitting @kbd{C-x * c} again in the normal calculator. If Calc is -running standalone (the @code{full-calc-keypad} command appeared in the -command line that started Emacs), then @kbd{OFF} is replaced with -@kbd{EXIT}; clicking on this actually exits Emacs itself. - -@node Keypad Functions Menu, Keypad Binary Menu, Keypad Main Menu, Keypad Mode -@section Functions Menu - -@smallexample -@group -|----+----+----+----+----+----2 -|IGAM|BETA|IBET|ERF |BESJ|BESY| -|----+----+----+----+----+----| -|IMAG|CONJ| RE |ATN2|RAND|RAGN| -|----+----+----+----+----+----| -|GCD |FACT|DFCT|BNOM|PERM|NXTP| -|----+----+----+----+----+----| -@end group -@end smallexample - -@noindent -This menu provides various operations from the @kbd{f} and @kbd{k} -prefix keys. - -@key{IMAG} multiplies the number on the stack by the imaginary -number @expr{i = (0, 1)}. - -@key{RE} extracts the real part a complex number. @kbd{INV RE} -extracts the imaginary part. - -@key{RAND} takes a number from the top of the stack and computes -a random number greater than or equal to zero but less than that -number. (@xref{Random Numbers}.) @key{RAGN} is the ``random -again'' command; it computes another random number using the -same limit as last time. - -@key{INV GCD} computes the LCM (least common multiple) function. - -@key{INV FACT} is the gamma function. -@texline @math{\Gamma(x) = (x-1)!}. -@infoline @expr{gamma(x) = (x-1)!}. - -@key{PERM} is the number-of-permutations function, which is on the -@kbd{H k c} key in normal Calc. - -@key{NXTP} finds the next prime after a number. @kbd{INV NXTP} -finds the previous prime. - -@node Keypad Binary Menu, Keypad Vectors Menu, Keypad Functions Menu, Keypad Mode -@section Binary Menu - -@smallexample -@group -|----+----+----+----+----+----3 -|AND | OR |XOR |NOT |LSH |RSH | -|----+----+----+----+----+----| -|DEC |HEX |OCT |BIN |WSIZ|ARSH| -|----+----+----+----+----+----| -| A | B | C | D | E | F | -|----+----+----+----+----+----| -@end group -@end smallexample - -@noindent -The keys in this menu perform operations on binary integers. -Note that both logical and arithmetic right-shifts are provided. -@key{INV LSH} rotates one bit to the left. - -The ``difference'' function (normally on @kbd{b d}) is on @key{INV AND}. -The ``clip'' function (normally on @w{@kbd{b c}}) is on @key{INV NOT}. - -The @key{DEC}, @key{HEX}, @key{OCT}, and @key{BIN} keys select the -current radix for display and entry of numbers: Decimal, hexadecimal, -octal, or binary. The six letter keys @key{A} through @key{F} are used -for entering hexadecimal numbers. - -The @key{WSIZ} key displays the current word size for binary operations -and allows you to enter a new word size. You can respond to the prompt -using either the keyboard or the digits and @key{ENTER} from the keypad. -The initial word size is 32 bits. - -@node Keypad Vectors Menu, Keypad Modes Menu, Keypad Binary Menu, Keypad Mode -@section Vectors Menu - -@smallexample -@group -|----+----+----+----+----+----4 -|SUM |PROD|MAX |MAP*|MAP^|MAP$| -|----+----+----+----+----+----| -|MINV|MDET|MTRN|IDNT|CRSS|"x" | -|----+----+----+----+----+----| -|PACK|UNPK|INDX|BLD |LEN |... | -|----+----+----+----+----+----| -@end group -@end smallexample - -@noindent -The keys in this menu operate on vectors and matrices. - -@key{PACK} removes an integer @var{n} from the top of the stack; -the next @var{n} stack elements are removed and packed into a vector, -which is replaced onto the stack. Thus the sequence -@kbd{1 ENTER 3 ENTER 5 ENTER 3 PACK} enters the vector -@samp{[1, 3, 5]} onto the stack. To enter a matrix, build each row -on the stack as a vector, then use a final @key{PACK} to collect the -rows into a matrix. - -@key{UNPK} unpacks the vector on the stack, pushing each of its -components separately. - -@key{INDX} removes an integer @var{n}, then builds a vector of -integers from 1 to @var{n}. @kbd{INV INDX} takes three numbers -from the stack: The vector size @var{n}, the starting number, -and the increment. @kbd{BLD} takes an integer @var{n} and any -value @var{x} and builds a vector of @var{n} copies of @var{x}. - -@key{IDNT} removes an integer @var{n}, then builds an @var{n}-by-@var{n} -identity matrix. - -@key{LEN} replaces a vector by its length, an integer. - -@key{...} turns on or off ``abbreviated'' display mode for large vectors. - -@key{MINV}, @key{MDET}, @key{MTRN}, and @key{CROSS} are the matrix -inverse, determinant, and transpose, and vector cross product. - -@key{SUM} replaces a vector by the sum of its elements. It is -equivalent to @kbd{u +} in normal Calc (@pxref{Statistical Operations}). -@key{PROD} computes the product of the elements of a vector, and -@key{MAX} computes the maximum of all the elements of a vector. - -@key{INV SUM} computes the alternating sum of the first element -minus the second, plus the third, minus the fourth, and so on. -@key{INV MAX} computes the minimum of the vector elements. - -@key{HYP SUM} computes the mean of the vector elements. -@key{HYP PROD} computes the sample standard deviation. -@key{HYP MAX} computes the median. - -@key{MAP*} multiplies two vectors elementwise. It is equivalent -to the @kbd{V M *} command. @key{MAP^} computes powers elementwise. -The arguments must be vectors of equal length, or one must be a vector -and the other must be a plain number. For example, @kbd{2 MAP^} squares -all the elements of a vector. - -@key{MAP$} maps the formula on the top of the stack across the -vector in the second-to-top position. If the formula contains -several variables, Calc takes that many vectors starting at the -second-to-top position and matches them to the variables in -alphabetical order. The result is a vector of the same size as -the input vectors, whose elements are the formula evaluated with -the variables set to the various sets of numbers in those vectors. -For example, you could simulate @key{MAP^} using @key{MAP$} with -the formula @samp{x^y}. - -The @kbd{"x"} key pushes the variable name @expr{x} onto the -stack. To build the formula @expr{x^2 + 6}, you would use the -key sequence @kbd{"x" 2 y^x 6 +}. This formula would then be -suitable for use with the @key{MAP$} key described above. -With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the -@kbd{"x"} key pushes the variable names @expr{y}, @expr{z}, and -@expr{t}, respectively. - -@node Keypad Modes Menu, , Keypad Vectors Menu, Keypad Mode -@section Modes Menu - -@smallexample -@group -|----+----+----+----+----+----5 -|FLT |FIX |SCI |ENG |GRP | | -|----+----+----+----+----+----| -|RAD |DEG |FRAC|POLR|SYMB|PREC| -|----+----+----+----+----+----| -|SWAP|RLL3|RLL4|OVER|STO |RCL | -|----+----+----+----+----+----| -@end group -@end smallexample - -@noindent -The keys in this menu manipulate modes, variables, and the stack. - -The @key{FLT}, @key{FIX}, @key{SCI}, and @key{ENG} keys select -floating-point, fixed-point, scientific, or engineering notation. -@key{FIX} displays two digits after the decimal by default; the -others display full precision. With the @key{INV} prefix, these -keys pop a number-of-digits argument from the stack. - -The @key{GRP} key turns grouping of digits with commas on or off. -@kbd{INV GRP} enables grouping to the right of the decimal point as -well as to the left. - -The @key{RAD} and @key{DEG} keys switch between radians and degrees -for trigonometric functions. - -The @key{FRAC} key turns Fraction mode on or off. This affects -whether commands like @kbd{/} with integer arguments produce -fractional or floating-point results. - -The @key{POLR} key turns Polar mode on or off, determining whether -polar or rectangular complex numbers are used by default. - -The @key{SYMB} key turns Symbolic mode on or off, in which -operations that would produce inexact floating-point results -are left unevaluated as algebraic formulas. - -The @key{PREC} key selects the current precision. Answer with -the keyboard or with the keypad digit and @key{ENTER} keys. - -The @key{SWAP} key exchanges the top two stack elements. -The @key{RLL3} key rotates the top three stack elements upwards. -The @key{RLL4} key rotates the top four stack elements upwards. -The @key{OVER} key duplicates the second-to-top stack element. - -The @key{STO} and @key{RCL} keys are analogous to @kbd{s t} and -@kbd{s r} in regular Calc. @xref{Store and Recall}. Click the -@key{STO} or @key{RCL} key, then one of the ten digits. (Named -variables are not available in Keypad mode.) You can also use, -for example, @kbd{STO + 3} to add to register 3. - -@node Embedded Mode, Programming, Keypad Mode, Top -@chapter Embedded Mode - -@noindent -Embedded mode in Calc provides an alternative to copying numbers -and formulas back and forth between editing buffers and the Calc -stack. In Embedded mode, your editing buffer becomes temporarily -linked to the stack and this copying is taken care of automatically. - -@menu -* Basic Embedded Mode:: -* More About Embedded Mode:: -* Assignments in Embedded Mode:: -* Mode Settings in Embedded Mode:: -* Customizing Embedded Mode:: -@end menu - -@node Basic Embedded Mode, More About Embedded Mode, Embedded Mode, Embedded Mode -@section Basic Embedded Mode - -@noindent -@kindex C-x * e -@pindex calc-embedded -To enter Embedded mode, position the Emacs point (cursor) on a -formula in any buffer and press @kbd{C-x * e} (@code{calc-embedded}). -Note that @kbd{C-x * e} is not to be used in the Calc stack buffer -like most Calc commands, but rather in regular editing buffers that -are visiting your own files. - -Calc will try to guess an appropriate language based on the major mode -of the editing buffer. (@xref{Language Modes}.) If the current buffer is -in @code{latex-mode}, for example, Calc will set its language to La@TeX{}. -Similarly, Calc will use @TeX{} language for @code{tex-mode}, -@code{plain-tex-mode} and @code{context-mode}, C language for -@code{c-mode} and @code{c++-mode}, FORTRAN language for -@code{fortran-mode} and @code{f90-mode}, Pascal for @code{pascal-mode}, -and eqn for @code{nroff-mode} (@pxref{Customizing Calc}). -These can be overridden with Calc's mode -changing commands (@pxref{Mode Settings in Embedded Mode}). If no -suitable language is available, Calc will continue with its current language. - -Calc normally scans backward and forward in the buffer for the -nearest opening and closing @dfn{formula delimiters}. The simplest -delimiters are blank lines. Other delimiters that Embedded mode -understands are: - -@enumerate -@item -The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$}, -@samp{\[ \]}, and @samp{\( \)}; -@item -Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters); -@item -Lines beginning with @samp{@@} (Texinfo delimiters). -@item -Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters); -@item -Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else. -@end enumerate - -@xref{Customizing Embedded Mode}, to see how to make Calc recognize -your own favorite delimiters. Delimiters like @samp{$ $} can appear -on their own separate lines or in-line with the formula. - -If you give a positive or negative numeric prefix argument, Calc -instead uses the current point as one end of the formula, and includes -that many lines forward or backward (respectively, including the current -line). Explicit delimiters are not necessary in this case. - -With a prefix argument of zero, Calc uses the current region (delimited -by point and mark) instead of formula delimiters. With a prefix -argument of @kbd{C-u} only, Calc uses the current line as the formula. - -@kindex C-x * w -@pindex calc-embedded-word -The @kbd{C-x * w} (@code{calc-embedded-word}) command will start Embedded -mode on the current ``word''; in this case Calc will scan for the first -non-numeric character (i.e., the first character that is not a digit, -sign, decimal point, or upper- or lower-case @samp{e}) forward and -backward to delimit the formula. - -When you enable Embedded mode for a formula, Calc reads the text -between the delimiters and tries to interpret it as a Calc formula. -Calc can generally identify @TeX{} formulas and -Big-style formulas even if the language mode is wrong. If Calc -can't make sense of the formula, it beeps and refuses to enter -Embedded mode. But if the current language is wrong, Calc can -sometimes parse the formula successfully (but incorrectly); -for example, the C expression @samp{atan(a[1])} can be parsed -in Normal language mode, but the @code{atan} won't correspond to -the built-in @code{arctan} function, and the @samp{a[1]} will be -interpreted as @samp{a} times the vector @samp{[1]}! - -If you press @kbd{C-x * e} or @kbd{C-x * w} to activate an embedded -formula which is blank, say with the cursor on the space between -the two delimiters @samp{$ $}, Calc will immediately prompt for -an algebraic entry. - -Only one formula in one buffer can be enabled at a time. If you -move to another area of the current buffer and give Calc commands, -Calc turns Embedded mode off for the old formula and then tries -to restart Embedded mode at the new position. Other buffers are -not affected by Embedded mode. - -When Embedded mode begins, Calc pushes the current formula onto -the stack. No Calc stack window is created; however, Calc copies -the top-of-stack position into the original buffer at all times. -You can create a Calc window by hand with @kbd{C-x * o} if you -find you need to see the entire stack. - -For example, typing @kbd{C-x * e} while somewhere in the formula -@samp{n>2} in the following line enables Embedded mode on that -inequality: - -@example -We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$. -@end example - -@noindent -The formula @expr{n>2} will be pushed onto the Calc stack, and -the top of stack will be copied back into the editing buffer. -This means that spaces will appear around the @samp{>} symbol -to match Calc's usual display style: - -@example -We define $F_n = F_(n-1)+F_(n-2)$ for all $n > 2$. -@end example - -@noindent -No spaces have appeared around the @samp{+} sign because it's -in a different formula, one which we have not yet touched with -Embedded mode. - -Now that Embedded mode is enabled, keys you type in this buffer -are interpreted as Calc commands. At this point we might use -the ``commute'' command @kbd{j C} to reverse the inequality. -This is a selection-based command for which we first need to -move the cursor onto the operator (@samp{>} in this case) that -needs to be commuted. - -@example -We define $F_n = F_(n-1)+F_(n-2)$ for all $2 < n$. -@end example - -The @kbd{C-x * o} command is a useful way to open a Calc window -without actually selecting that window. Giving this command -verifies that @samp{2 < n} is also on the Calc stack. Typing -@kbd{17 @key{RET}} would produce: - -@example -We define $F_n = F_(n-1)+F_(n-2)$ for all $17$. -@end example - -@noindent -with @samp{2 < n} and @samp{17} on the stack; typing @key{TAB} -at this point will exchange the two stack values and restore -@samp{2 < n} to the embedded formula. Even though you can't -normally see the stack in Embedded mode, it is still there and -it still operates in the same way. But, as with old-fashioned -RPN calculators, you can only see the value at the top of the -stack at any given time (unless you use @kbd{C-x * o}). - -Typing @kbd{C-x * e} again turns Embedded mode off. The Calc -window reveals that the formula @w{@samp{2 < n}} is automatically -removed from the stack, but the @samp{17} is not. Entering -Embedded mode always pushes one thing onto the stack, and -leaving Embedded mode always removes one thing. Anything else -that happens on the stack is entirely your business as far as -Embedded mode is concerned. - -If you press @kbd{C-x * e} in the wrong place by accident, it is -possible that Calc will be able to parse the nearby text as a -formula and will mangle that text in an attempt to redisplay it -``properly'' in the current language mode. If this happens, -press @kbd{C-x * e} again to exit Embedded mode, then give the -regular Emacs ``undo'' command (@kbd{C-_} or @kbd{C-x u}) to put -the text back the way it was before Calc edited it. Note that Calc's -own Undo command (typed before you turn Embedded mode back off) -will not do you any good, because as far as Calc is concerned -you haven't done anything with this formula yet. - -@node More About Embedded Mode, Assignments in Embedded Mode, Basic Embedded Mode, Embedded Mode -@section More About Embedded Mode - -@noindent -When Embedded mode ``activates'' a formula, i.e., when it examines -the formula for the first time since the buffer was created or -loaded, Calc tries to sense the language in which the formula was -written. If the formula contains any La@TeX{}-like @samp{\} sequences, -it is parsed (i.e., read) in La@TeX{} mode. If the formula appears to -be written in multi-line Big mode, it is parsed in Big mode. Otherwise, -it is parsed according to the current language mode. - -Note that Calc does not change the current language mode according -the formula it reads in. Even though it can read a La@TeX{} formula when -not in La@TeX{} mode, it will immediately rewrite this formula using -whatever language mode is in effect. - -@tex -\bigskip -@end tex - -@kindex d p -@pindex calc-show-plain -Calc's parser is unable to read certain kinds of formulas. For -example, with @kbd{v ]} (@code{calc-matrix-brackets}) you can -specify matrix display styles which the parser is unable to -recognize as matrices. The @kbd{d p} (@code{calc-show-plain}) -command turns on a mode in which a ``plain'' version of a -formula is placed in front of the fully-formatted version. -When Calc reads a formula that has such a plain version in -front, it reads the plain version and ignores the formatted -version. - -Plain formulas are preceded and followed by @samp{%%%} signs -by default. This notation has the advantage that the @samp{%} -character begins a comment in @TeX{} and La@TeX{}, so if your formula is -embedded in a @TeX{} or La@TeX{} document its plain version will be -invisible in the final printed copy. Certain major modes have different -delimiters to ensure that the ``plain'' version will be -in a comment for those modes, also. -See @ref{Customizing Embedded Mode} to see how to change the ``plain'' -formula delimiters. - -There are several notations which Calc's parser for ``big'' -formatted formulas can't yet recognize. In particular, it can't -read the large symbols for @code{sum}, @code{prod}, and @code{integ}, -and it can't handle @samp{=>} with the righthand argument omitted. -Also, Calc won't recognize special formats you have defined with -the @kbd{Z C} command (@pxref{User-Defined Compositions}). In -these cases it is important to use ``plain'' mode to make sure -Calc will be able to read your formula later. - -Another example where ``plain'' mode is important is if you have -specified a float mode with few digits of precision. Normally -any digits that are computed but not displayed will simply be -lost when you save and re-load your embedded buffer, but ``plain'' -mode allows you to make sure that the complete number is present -in the file as well as the rounded-down number. - -@tex -\bigskip -@end tex - -Embedded buffers remember active formulas for as long as they -exist in Emacs memory. Suppose you have an embedded formula -which is @cpi{} to the normal 12 decimal places, and then -type @w{@kbd{C-u 5 d n}} to display only five decimal places. -If you then type @kbd{d n}, all 12 places reappear because the -full number is still there on the Calc stack. More surprisingly, -even if you exit Embedded mode and later re-enter it for that -formula, typing @kbd{d n} will restore all 12 places because -each buffer remembers all its active formulas. However, if you -save the buffer in a file and reload it in a new Emacs session, -all non-displayed digits will have been lost unless you used -``plain'' mode. - -@tex -\bigskip -@end tex - -In some applications of Embedded mode, you will want to have a -sequence of copies of a formula that show its evolution as you -work on it. For example, you might want to have a sequence -like this in your file (elaborating here on the example from -the ``Getting Started'' chapter): - -@smallexample -The derivative of - - ln(ln(x)) - -is - - @r{(the derivative of }ln(ln(x))@r{)} - -whose value at x = 2 is - - @r{(the value)} - -and at x = 3 is - - @r{(the value)} -@end smallexample - -@kindex C-x * d -@pindex calc-embedded-duplicate -The @kbd{C-x * d} (@code{calc-embedded-duplicate}) command is a -handy way to make sequences like this. If you type @kbd{C-x * d}, -the formula under the cursor (which may or may not have Embedded -mode enabled for it at the time) is copied immediately below and -Embedded mode is then enabled for that copy. - -For this example, you would start with just - -@smallexample -The derivative of - - ln(ln(x)) -@end smallexample - -@noindent -and press @kbd{C-x * d} with the cursor on this formula. The result -is - -@smallexample -The derivative of - - ln(ln(x)) - - - ln(ln(x)) -@end smallexample - -@noindent -with the second copy of the formula enabled in Embedded mode. -You can now press @kbd{a d x @key{RET}} to take the derivative, and -@kbd{C-x * d C-x * d} to make two more copies of the derivative. -To complete the computations, type @kbd{3 s l x @key{RET}} to evaluate -the last formula, then move up to the second-to-last formula -and type @kbd{2 s l x @key{RET}}. - -Finally, you would want to press @kbd{C-x * e} to exit Embedded -mode, then go up and insert the necessary text in between the -various formulas and numbers. - -@tex -\bigskip -@end tex - -@kindex C-x * f -@kindex C-x * ' -@pindex calc-embedded-new-formula -The @kbd{C-x * f} (@code{calc-embedded-new-formula}) command -creates a new embedded formula at the current point. It inserts -some default delimiters, which are usually just blank lines, -and then does an algebraic entry to get the formula (which is -then enabled for Embedded mode). This is just shorthand for -typing the delimiters yourself, positioning the cursor between -the new delimiters, and pressing @kbd{C-x * e}. The key sequence -@kbd{C-x * '} is equivalent to @kbd{C-x * f}. - -@kindex C-x * n -@kindex C-x * p -@pindex calc-embedded-next -@pindex calc-embedded-previous -The @kbd{C-x * n} (@code{calc-embedded-next}) and @kbd{C-x * p} -(@code{calc-embedded-previous}) commands move the cursor to the -next or previous active embedded formula in the buffer. They -can take positive or negative prefix arguments to move by several -formulas. Note that these commands do not actually examine the -text of the buffer looking for formulas; they only see formulas -which have previously been activated in Embedded mode. In fact, -@kbd{C-x * n} and @kbd{C-x * p} are a useful way to tell which -embedded formulas are currently active. Also, note that these -commands do not enable Embedded mode on the next or previous -formula, they just move the cursor. - -@kindex C-x * ` -@pindex calc-embedded-edit -The @kbd{C-x * `} (@code{calc-embedded-edit}) command edits the -embedded formula at the current point as if by @kbd{`} (@code{calc-edit}). -Embedded mode does not have to be enabled for this to work. Press -@kbd{C-c C-c} to finish the edit, or @kbd{C-x k} to cancel. - -@node Assignments in Embedded Mode, Mode Settings in Embedded Mode, More About Embedded Mode, Embedded Mode -@section Assignments in Embedded Mode - -@noindent -The @samp{:=} (assignment) and @samp{=>} (``evaluates-to'') operators -are especially useful in Embedded mode. They allow you to make -a definition in one formula, then refer to that definition in -other formulas embedded in the same buffer. - -An embedded formula which is an assignment to a variable, as in - -@example -foo := 5 -@end example - -@noindent -records @expr{5} as the stored value of @code{foo} for the -purposes of Embedded mode operations in the current buffer. It -does @emph{not} actually store @expr{5} as the ``global'' value -of @code{foo}, however. Regular Calc operations, and Embedded -formulas in other buffers, will not see this assignment. - -One way to use this assigned value is simply to create an -Embedded formula elsewhere that refers to @code{foo}, and to press -@kbd{=} in that formula. However, this permanently replaces the -@code{foo} in the formula with its current value. More interesting -is to use @samp{=>} elsewhere: - -@example -foo + 7 => 12 -@end example - -@xref{Evaluates-To Operator}, for a general discussion of @samp{=>}. - -If you move back and change the assignment to @code{foo}, any -@samp{=>} formulas which refer to it are automatically updated. - -@example -foo := 17 - -foo + 7 => 24 -@end example - -The obvious question then is, @emph{how} can one easily change the -assignment to @code{foo}? If you simply select the formula in -Embedded mode and type 17, the assignment itself will be replaced -by the 17. The effect on the other formula will be that the -variable @code{foo} becomes unassigned: - -@example -17 - -foo + 7 => foo + 7 -@end example - -The right thing to do is first to use a selection command (@kbd{j 2} -will do the trick) to select the righthand side of the assignment. -Then, @kbd{17 @key{TAB} @key{DEL}} will swap the 17 into place (@pxref{Selecting -Subformulas}, to see how this works). - -@kindex C-x * j -@pindex calc-embedded-select -The @kbd{C-x * j} (@code{calc-embedded-select}) command provides an -easy way to operate on assignments. It is just like @kbd{C-x * e}, -except that if the enabled formula is an assignment, it uses -@kbd{j 2} to select the righthand side. If the enabled formula -is an evaluates-to, it uses @kbd{j 1} to select the lefthand side. -A formula can also be a combination of both: - -@example -bar := foo + 3 => 20 -@end example - -@noindent -in which case @kbd{C-x * j} will select the middle part (@samp{foo + 3}). - -The formula is automatically deselected when you leave Embedded -mode. - -@kindex C-x * u -@pindex calc-embedded-update-formula -Another way to change the assignment to @code{foo} would simply be -to edit the number using regular Emacs editing rather than Embedded -mode. Then, we have to find a way to get Embedded mode to notice -the change. The @kbd{C-x * u} (@code{calc-embedded-update-formula}) -command is a convenient way to do this. - -@example -foo := 6 - -foo + 7 => 13 -@end example - -Pressing @kbd{C-x * u} is much like pressing @kbd{C-x * e = C-x * e}, that -is, temporarily enabling Embedded mode for the formula under the -cursor and then evaluating it with @kbd{=}. But @kbd{C-x * u} does -not actually use @kbd{C-x * e}, and in fact another formula somewhere -else can be enabled in Embedded mode while you use @kbd{C-x * u} and -that formula will not be disturbed. - -With a numeric prefix argument, @kbd{C-x * u} updates all active -@samp{=>} formulas in the buffer. Formulas which have not yet -been activated in Embedded mode, and formulas which do not have -@samp{=>} as their top-level operator, are not affected by this. -(This is useful only if you have used @kbd{m C}; see below.) - -With a plain @kbd{C-u} prefix, @kbd{C-u C-x * u} updates only in the -region between mark and point rather than in the whole buffer. - -@kbd{C-x * u} is also a handy way to activate a formula, such as an -@samp{=>} formula that has freshly been typed in or loaded from a -file. - -@kindex C-x * a -@pindex calc-embedded-activate -The @kbd{C-x * a} (@code{calc-embedded-activate}) command scans -through the current buffer and activates all embedded formulas -that contain @samp{:=} or @samp{=>} symbols. This does not mean -that Embedded mode is actually turned on, but only that the -formulas' positions are registered with Embedded mode so that -the @samp{=>} values can be properly updated as assignments are -changed. - -It is a good idea to type @kbd{C-x * a} right after loading a file -that uses embedded @samp{=>} operators. Emacs includes a nifty -``buffer-local variables'' feature that you can use to do this -automatically. The idea is to place near the end of your file -a few lines that look like this: - -@example ---- Local Variables: --- ---- eval:(calc-embedded-activate) --- ---- End: --- -@end example - -@noindent -where the leading and trailing @samp{---} can be replaced by -any suitable strings (which must be the same on all three lines) -or omitted altogether; in a @TeX{} or La@TeX{} file, @samp{%} would be a good -leading string and no trailing string would be necessary. In a -C program, @samp{/*} and @samp{*/} would be good leading and -trailing strings. - -When Emacs loads a file into memory, it checks for a Local Variables -section like this one at the end of the file. If it finds this -section, it does the specified things (in this case, running -@kbd{C-x * a} automatically) before editing of the file begins. -The Local Variables section must be within 3000 characters of the -end of the file for Emacs to find it, and it must be in the last -page of the file if the file has any page separators. -@xref{File Variables, , Local Variables in Files, emacs, the -Emacs manual}. - -Note that @kbd{C-x * a} does not update the formulas it finds. -To do this, type, say, @kbd{M-1 C-x * u} after @w{@kbd{C-x * a}}. -Generally this should not be a problem, though, because the -formulas will have been up-to-date already when the file was -saved. - -Normally, @kbd{C-x * a} activates all the formulas it finds, but -any previous active formulas remain active as well. With a -positive numeric prefix argument, @kbd{C-x * a} first deactivates -all current active formulas, then actives the ones it finds in -its scan of the buffer. With a negative prefix argument, -@kbd{C-x * a} simply deactivates all formulas. - -Embedded mode has two symbols, @samp{Active} and @samp{~Active}, -which it puts next to the major mode name in a buffer's mode line. -It puts @samp{Active} if it has reason to believe that all -formulas in the buffer are active, because you have typed @kbd{C-x * a} -and Calc has not since had to deactivate any formulas (which can -happen if Calc goes to update an @samp{=>} formula somewhere because -a variable changed, and finds that the formula is no longer there -due to some kind of editing outside of Embedded mode). Calc puts -@samp{~Active} in the mode line if some, but probably not all, -formulas in the buffer are active. This happens if you activate -a few formulas one at a time but never use @kbd{C-x * a}, or if you -used @kbd{C-x * a} but then Calc had to deactivate a formula -because it lost track of it. If neither of these symbols appears -in the mode line, no embedded formulas are active in the buffer -(e.g., before Embedded mode has been used, or after a @kbd{M-- C-x * a}). - -Embedded formulas can refer to assignments both before and after them -in the buffer. If there are several assignments to a variable, the -nearest preceding assignment is used if there is one, otherwise the -following assignment is used. - -@example -x => 1 - -x := 1 - -x => 1 - -x := 2 - -x => 2 -@end example - -As well as simple variables, you can also assign to subscript -expressions of the form @samp{@var{var}_@var{number}} (as in -@code{x_0}), or @samp{@var{var}_@var{var}} (as in @code{x_max}). -Assignments to other kinds of objects can be represented by Calc, -but the automatic linkage between assignments and references works -only for plain variables and these two kinds of subscript expressions. - -If there are no assignments to a given variable, the global -stored value for the variable is used (@pxref{Storing Variables}), -or, if no value is stored, the variable is left in symbolic form. -Note that global stored values will be lost when the file is saved -and loaded in a later Emacs session, unless you have used the -@kbd{s p} (@code{calc-permanent-variable}) command to save them; -@pxref{Operations on Variables}. - -The @kbd{m C} (@code{calc-auto-recompute}) command turns automatic -recomputation of @samp{=>} forms on and off. If you turn automatic -recomputation off, you will have to use @kbd{C-x * u} to update these -formulas manually after an assignment has been changed. If you -plan to change several assignments at once, it may be more efficient -to type @kbd{m C}, change all the assignments, then use @kbd{M-1 C-x * u} -to update the entire buffer afterwards. The @kbd{m C} command also -controls @samp{=>} formulas on the stack; @pxref{Evaluates-To -Operator}. When you turn automatic recomputation back on, the -stack will be updated but the Embedded buffer will not; you must -use @kbd{C-x * u} to update the buffer by hand. - -@node Mode Settings in Embedded Mode, Customizing Embedded Mode, Assignments in Embedded Mode, Embedded Mode -@section Mode Settings in Embedded Mode - -@kindex m e -@pindex calc-embedded-preserve-modes -@noindent -The mode settings can be changed while Calc is in embedded mode, but -by default they will revert to their original values when embedded mode -is ended. However, the modes saved when the mode-recording mode is -@code{Save} (see below) and the modes in effect when the @kbd{m e} -(@code{calc-embedded-preserve-modes}) command is given -will be preserved when embedded mode is ended. - -Embedded mode has a rather complicated mechanism for handling mode -settings in Embedded formulas. It is possible to put annotations -in the file that specify mode settings either global to the entire -file or local to a particular formula or formulas. In the latter -case, different modes can be specified for use when a formula -is the enabled Embedded mode formula. - -When you give any mode-setting command, like @kbd{m f} (for Fraction -mode) or @kbd{d s} (for scientific notation), Embedded mode adds -a line like the following one to the file just before the opening -delimiter of the formula. - -@example -% [calc-mode: fractions: t] -% [calc-mode: float-format: (sci 0)] -@end example - -When Calc interprets an embedded formula, it scans the text before -the formula for mode-setting annotations like these and sets the -Calc buffer to match these modes. Modes not explicitly described -in the file are not changed. Calc scans all the way to the top of -the file, or up to a line of the form - -@example -% [calc-defaults] -@end example - -@noindent -which you can insert at strategic places in the file if this backward -scan is getting too slow, or just to provide a barrier between one -``zone'' of mode settings and another. - -If the file contains several annotations for the same mode, the -closest one before the formula is used. Annotations after the -formula are never used (except for global annotations, described -below). - -The scan does not look for the leading @samp{% }, only for the -square brackets and the text they enclose. In fact, the leading -characters are different for different major modes. You can edit the -mode annotations to a style that works better in context if you wish. -@xref{Customizing Embedded Mode}, to see how to change the style -that Calc uses when it generates the annotations. You can write -mode annotations into the file yourself if you know the syntax; -the easiest way to find the syntax for a given mode is to let -Calc write the annotation for it once and see what it does. - -If you give a mode-changing command for a mode that already has -a suitable annotation just above the current formula, Calc will -modify that annotation rather than generating a new, conflicting -one. - -Mode annotations have three parts, separated by colons. (Spaces -after the colons are optional.) The first identifies the kind -of mode setting, the second is a name for the mode itself, and -the third is the value in the form of a Lisp symbol, number, -or list. Annotations with unrecognizable text in the first or -second parts are ignored. The third part is not checked to make -sure the value is of a valid type or range; if you write an -annotation by hand, be sure to give a proper value or results -will be unpredictable. Mode-setting annotations are case-sensitive. - -While Embedded mode is enabled, the word @code{Local} appears in -the mode line. This is to show that mode setting commands generate -annotations that are ``local'' to the current formula or set of -formulas. The @kbd{m R} (@code{calc-mode-record-mode}) command -causes Calc to generate different kinds of annotations. Pressing -@kbd{m R} repeatedly cycles through the possible modes. - -@code{LocEdit} and @code{LocPerm} modes generate annotations -that look like this, respectively: - -@example -% [calc-edit-mode: float-format: (sci 0)] -% [calc-perm-mode: float-format: (sci 5)] -@end example - -The first kind of annotation will be used only while a formula -is enabled in Embedded mode. The second kind will be used only -when the formula is @emph{not} enabled. (Whether the formula -is ``active'' or not, i.e., whether Calc has seen this formula -yet, is not relevant here.) - -@code{Global} mode generates an annotation like this at the end -of the file: - -@example -% [calc-global-mode: fractions t] -@end example - -Global mode annotations affect all formulas throughout the file, -and may appear anywhere in the file. This allows you to tuck your -mode annotations somewhere out of the way, say, on a new page of -the file, as long as those mode settings are suitable for all -formulas in the file. - -Enabling a formula with @kbd{C-x * e} causes a fresh scan for local -mode annotations; you will have to use this after adding annotations -above a formula by hand to get the formula to notice them. Updating -a formula with @kbd{C-x * u} will also re-scan the local modes, but -global modes are only re-scanned by @kbd{C-x * a}. - -Another way that modes can get out of date is if you add a local -mode annotation to a formula that has another formula after it. -In this example, we have used the @kbd{d s} command while the -first of the two embedded formulas is active. But the second -formula has not changed its style to match, even though by the -rules of reading annotations the @samp{(sci 0)} applies to it, too. - -@example -% [calc-mode: float-format: (sci 0)] -1.23e2 - -456. -@end example - -We would have to go down to the other formula and press @kbd{C-x * u} -on it in order to get it to notice the new annotation. - -Two more mode-recording modes selectable by @kbd{m R} are available -which are also available outside of Embedded mode. -(@pxref{General Mode Commands}.) They are @code{Save}, in which mode -settings are recorded permanently in your Calc init file (the file given -by the variable @code{calc-settings-file}, typically @file{~/.calc.el}) -rather than by annotating the current document, and no-recording -mode (where there is no symbol like @code{Save} or @code{Local} in -the mode line), in which mode-changing commands do not leave any -annotations at all. - -When Embedded mode is not enabled, mode-recording modes except -for @code{Save} have no effect. - -@node Customizing Embedded Mode, , Mode Settings in Embedded Mode, Embedded Mode -@section Customizing Embedded Mode - -@noindent -You can modify Embedded mode's behavior by setting various Lisp -variables described here. These variables are customizable -(@pxref{Customizing Calc}), or you can use @kbd{M-x set-variable} -or @kbd{M-x edit-options} to adjust a variable on the fly. -(Another possibility would be to use a file-local variable annotation at -the end of the file; -@pxref{File Variables, , Local Variables in Files, emacs, the Emacs manual}.) -Many of the variables given mentioned here can be set to depend on the -major mode of the editing buffer (@pxref{Customizing Calc}). - -@vindex calc-embedded-open-formula -The @code{calc-embedded-open-formula} variable holds a regular -expression for the opening delimiter of a formula. @xref{Regexp Search, -, Regular Expression Search, emacs, the Emacs manual}, to see -how regular expressions work. Basically, a regular expression is a -pattern that Calc can search for. A regular expression that considers -blank lines, @samp{$}, and @samp{$$} to be opening delimiters is -@code{"\\`\\|^\n\\|\\$\\$?"}. Just in case the meaning of this -regular expression is not completely plain, let's go through it -in detail. - -The surrounding @samp{" "} marks quote the text between them as a -Lisp string. If you left them off, @code{set-variable} or -@code{edit-options} would try to read the regular expression as a -Lisp program. - -The most obvious property of this regular expression is that it -contains indecently many backslashes. There are actually two levels -of backslash usage going on here. First, when Lisp reads a quoted -string, all pairs of characters beginning with a backslash are -interpreted as special characters. Here, @code{\n} changes to a -new-line character, and @code{\\} changes to a single backslash. -So the actual regular expression seen by Calc is -@samp{\`\|^ @r{(newline)} \|\$\$?}. - -Regular expressions also consider pairs beginning with backslash -to have special meanings. Sometimes the backslash is used to quote -a character that otherwise would have a special meaning in a regular -expression, like @samp{$}, which normally means ``end-of-line,'' -or @samp{?}, which means that the preceding item is optional. So -@samp{\$\$?} matches either one or two dollar signs. - -The other codes in this regular expression are @samp{^}, which matches -``beginning-of-line,'' @samp{\|}, which means ``or,'' and @samp{\`}, -which matches ``beginning-of-buffer.'' So the whole pattern means -that a formula begins at the beginning of the buffer, or on a newline -that occurs at the beginning of a line (i.e., a blank line), or at -one or two dollar signs. - -The default value of @code{calc-embedded-open-formula} looks just -like this example, with several more alternatives added on to -recognize various other common kinds of delimiters. - -By the way, the reason to use @samp{^\n} rather than @samp{^$} -or @samp{\n\n}, which also would appear to match blank lines, -is that the former expression actually ``consumes'' only one -newline character as @emph{part of} the delimiter, whereas the -latter expressions consume zero or two newlines, respectively. -The former choice gives the most natural behavior when Calc -must operate on a whole formula including its delimiters. - -See the Emacs manual for complete details on regular expressions. -But just for your convenience, here is a list of all characters -which must be quoted with backslash (like @samp{\$}) to avoid -some special interpretation: @samp{. * + ? [ ] ^ $ \}. (Note -the backslash in this list; for example, to match @samp{\[} you -must use @code{"\\\\\\["}. An exercise for the reader is to -account for each of these six backslashes!) - -@vindex calc-embedded-close-formula -The @code{calc-embedded-close-formula} variable holds a regular -expression for the closing delimiter of a formula. A closing -regular expression to match the above example would be -@code{"\\'\\|\n$\\|\\$\\$?"}. This is almost the same as the -other one, except it now uses @samp{\'} (``end-of-buffer'') and -@samp{\n$} (newline occurring at end of line, yet another way -of describing a blank line that is more appropriate for this -case). - -@vindex calc-embedded-open-word -@vindex calc-embedded-close-word -The @code{calc-embedded-open-word} and @code{calc-embedded-close-word} -variables are similar expressions used when you type @kbd{C-x * w} -instead of @kbd{C-x * e} to enable Embedded mode. - -@vindex calc-embedded-open-plain -The @code{calc-embedded-open-plain} variable is a string which -begins a ``plain'' formula written in front of the formatted -formula when @kbd{d p} mode is turned on. Note that this is an -actual string, not a regular expression, because Calc must be able -to write this string into a buffer as well as to recognize it. -The default string is @code{"%%% "} (note the trailing space), but may -be different for certain major modes. - -@vindex calc-embedded-close-plain -The @code{calc-embedded-close-plain} variable is a string which -ends a ``plain'' formula. The default is @code{" %%%\n"}, but may be -different for different major modes. Without -the trailing newline here, the first line of a Big mode formula -that followed might be shifted over with respect to the other lines. - -@vindex calc-embedded-open-new-formula -The @code{calc-embedded-open-new-formula} variable is a string -which is inserted at the front of a new formula when you type -@kbd{C-x * f}. Its default value is @code{"\n\n"}. If this -string begins with a newline character and the @kbd{C-x * f} is -typed at the beginning of a line, @kbd{C-x * f} will skip this -first newline to avoid introducing unnecessary blank lines in -the file. - -@vindex calc-embedded-close-new-formula -The @code{calc-embedded-close-new-formula} variable is the corresponding -string which is inserted at the end of a new formula. Its default -value is also @code{"\n\n"}. The final newline is omitted by -@w{@kbd{C-x * f}} if typed at the end of a line. (It follows that if -@kbd{C-x * f} is typed on a blank line, both a leading opening -newline and a trailing closing newline are omitted.) - -@vindex calc-embedded-announce-formula -The @code{calc-embedded-announce-formula} variable is a regular -expression which is sure to be followed by an embedded formula. -The @kbd{C-x * a} command searches for this pattern as well as for -@samp{=>} and @samp{:=} operators. Note that @kbd{C-x * a} will -not activate just anything surrounded by formula delimiters; after -all, blank lines are considered formula delimiters by default! -But if your language includes a delimiter which can only occur -actually in front of a formula, you can take advantage of it here. -The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, but may be -different for different major modes. -This pattern will check for @samp{%Embed} followed by any number of -lines beginning with @samp{%} and a space. This last is important to -make Calc consider mode annotations part of the pattern, so that the -formula's opening delimiter really is sure to follow the pattern. - -@vindex calc-embedded-open-mode -The @code{calc-embedded-open-mode} variable is a string (not a -regular expression) which should precede a mode annotation. -Calc never scans for this string; Calc always looks for the -annotation itself. But this is the string that is inserted before -the opening bracket when Calc adds an annotation on its own. -The default is @code{"% "}, but may be different for different major -modes. - -@vindex calc-embedded-close-mode -The @code{calc-embedded-close-mode} variable is a string which -follows a mode annotation written by Calc. Its default value -is simply a newline, @code{"\n"}, but may be different for different -major modes. If you change this, it is a good idea still to end with a -newline so that mode annotations will appear on lines by themselves. - -@node Programming, Copying, Embedded Mode, Top -@chapter Programming - -@noindent -There are several ways to ``program'' the Emacs Calculator, depending -on the nature of the problem you need to solve. - -@enumerate -@item -@dfn{Keyboard macros} allow you to record a sequence of keystrokes -and play them back at a later time. This is just the standard Emacs -keyboard macro mechanism, dressed up with a few more features such -as loops and conditionals. - -@item -@dfn{Algebraic definitions} allow you to use any formula to define a -new function. This function can then be used in algebraic formulas or -as an interactive command. - -@item -@dfn{Rewrite rules} are discussed in the section on algebra commands. -@xref{Rewrite Rules}. If you put your rewrite rules in the variable -@code{EvalRules}, they will be applied automatically to all Calc -results in just the same way as an internal ``rule'' is applied to -evaluate @samp{sqrt(9)} to 3 and so on. @xref{Automatic Rewrites}. - -@item -@dfn{Lisp} is the programming language that Calc (and most of Emacs) -is written in. If the above techniques aren't powerful enough, you -can write Lisp functions to do anything that built-in Calc commands -can do. Lisp code is also somewhat faster than keyboard macros or -rewrite rules. -@end enumerate - -@kindex z -Programming features are available through the @kbd{z} and @kbd{Z} -prefix keys. New commands that you define are two-key sequences -beginning with @kbd{z}. Commands for managing these definitions -use the shift-@kbd{Z} prefix. (The @kbd{Z T} (@code{calc-timing}) -command is described elsewhere; @pxref{Troubleshooting Commands}. -The @kbd{Z C} (@code{calc-user-define-composition}) command is also -described elsewhere; @pxref{User-Defined Compositions}.) - -@menu -* Creating User Keys:: -* Keyboard Macros:: -* Invocation Macros:: -* Algebraic Definitions:: -* Lisp Definitions:: -@end menu - -@node Creating User Keys, Keyboard Macros, Programming, Programming -@section Creating User Keys - -@noindent -@kindex Z D -@pindex calc-user-define -Any Calculator command may be bound to a key using the @kbd{Z D} -(@code{calc-user-define}) command. Actually, it is bound to a two-key -sequence beginning with the lower-case @kbd{z} prefix. - -The @kbd{Z D} command first prompts for the key to define. For example, -press @kbd{Z D a} to define the new key sequence @kbd{z a}. You are then -prompted for the name of the Calculator command that this key should -run. For example, the @code{calc-sincos} command is not normally -available on a key. Typing @kbd{Z D s sincos @key{RET}} programs the -@kbd{z s} key sequence to run @code{calc-sincos}. This definition will remain -in effect for the rest of this Emacs session, or until you redefine -@kbd{z s} to be something else. - -You can actually bind any Emacs command to a @kbd{z} key sequence by -backspacing over the @samp{calc-} when you are prompted for the command name. - -As with any other prefix key, you can type @kbd{z ?} to see a list of -all the two-key sequences you have defined that start with @kbd{z}. -Initially, no @kbd{z} sequences (except @kbd{z ?} itself) are defined. - -User keys are typically letters, but may in fact be any key. -(@key{META}-keys are not permitted, nor are a terminal's special -function keys which generate multi-character sequences when pressed.) -You can define different commands on the shifted and unshifted versions -of a letter if you wish. - -@kindex Z U -@pindex calc-user-undefine -The @kbd{Z U} (@code{calc-user-undefine}) command unbinds a user key. -For example, the key sequence @kbd{Z U s} will undefine the @code{sincos} -key we defined above. - -@kindex Z P -@pindex calc-user-define-permanent -@cindex Storing user definitions -@cindex Permanent user definitions -@cindex Calc init file, user-defined commands -The @kbd{Z P} (@code{calc-user-define-permanent}) command makes a key -binding permanent so that it will remain in effect even in future Emacs -sessions. (It does this by adding a suitable bit of Lisp code into -your Calc init file; that is, the file given by the variable -@code{calc-settings-file}, typically @file{~/.calc.el}.) For example, -@kbd{Z P s} would register our @code{sincos} command permanently. If -you later wish to unregister this command you must edit your Calc init -file by hand. (@xref{General Mode Commands}, for a way to tell Calc to -use a different file for the Calc init file.) - -The @kbd{Z P} command also saves the user definition, if any, for the -command bound to the key. After @kbd{Z F} and @kbd{Z C}, a given user -key could invoke a command, which in turn calls an algebraic function, -which might have one or more special display formats. A single @kbd{Z P} -command will save all of these definitions. -To save an algebraic function, type @kbd{'} (the apostrophe) -when prompted for a key, and type the function name. To save a command -without its key binding, type @kbd{M-x} and enter a function name. (The -@samp{calc-} prefix will automatically be inserted for you.) -(If the command you give implies a function, the function will be saved, -and if the function has any display formats, those will be saved, but -not the other way around: Saving a function will not save any commands -or key bindings associated with the function.) - -@kindex Z E -@pindex calc-user-define-edit -@cindex Editing user definitions -The @kbd{Z E} (@code{calc-user-define-edit}) command edits the definition -of a user key. This works for keys that have been defined by either -keyboard macros or formulas; further details are contained in the relevant -following sections. - -@node Keyboard Macros, Invocation Macros, Creating User Keys, Programming -@section Programming with Keyboard Macros - -@noindent -@kindex X -@cindex Programming with keyboard macros -@cindex Keyboard macros -The easiest way to ``program'' the Emacs Calculator is to use standard -keyboard macros. Press @w{@kbd{C-x (}} to begin recording a macro. From -this point on, keystrokes you type will be saved away as well as -performing their usual functions. Press @kbd{C-x )} to end recording. -Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to -execute your keyboard macro by replaying the recorded keystrokes. -@xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further -information. - -When you use @kbd{X} to invoke a keyboard macro, the entire macro is -treated as a single command by the undo and trail features. The stack -display buffer is not updated during macro execution, but is instead -fixed up once the macro completes. Thus, commands defined with keyboard -macros are convenient and efficient. The @kbd{C-x e} command, on the -other hand, invokes the keyboard macro with no special treatment: Each -command in the macro will record its own undo information and trail entry, -and update the stack buffer accordingly. If your macro uses features -outside of Calc's control to operate on the contents of the Calc stack -buffer, or if it includes Undo, Redo, or last-arguments commands, you -must use @kbd{C-x e} to make sure the buffer and undo list are up-to-date -at all times. You could also consider using @kbd{K} (@code{calc-keep-args}) -instead of @kbd{M-@key{RET}} (@code{calc-last-args}). - -Calc extends the standard Emacs keyboard macros in several ways. -Keyboard macros can be used to create user-defined commands. Keyboard -macros can include conditional and iteration structures, somewhat -analogous to those provided by a traditional programmable calculator. - -@menu -* Naming Keyboard Macros:: -* Conditionals in Macros:: -* Loops in Macros:: -* Local Values in Macros:: -* Queries in Macros:: -@end menu - -@node Naming Keyboard Macros, Conditionals in Macros, Keyboard Macros, Keyboard Macros -@subsection Naming Keyboard Macros - -@noindent -@kindex Z K -@pindex calc-user-define-kbd-macro -Once you have defined a keyboard macro, you can bind it to a @kbd{z} -key sequence with the @kbd{Z K} (@code{calc-user-define-kbd-macro}) command. -This command prompts first for a key, then for a command name. For -example, if you type @kbd{C-x ( n @key{TAB} n @key{TAB} C-x )} you will -define a keyboard macro which negates the top two numbers on the stack -(@key{TAB} swaps the top two stack elements). Now you can type -@kbd{Z K n @key{RET}} to define this keyboard macro onto the @kbd{z n} key -sequence. The default command name (if you answer the second prompt with -just the @key{RET} key as in this example) will be something like -@samp{calc-User-n}. The keyboard macro will now be available as both -@kbd{z n} and @kbd{M-x calc-User-n}. You can backspace and enter a more -descriptive command name if you wish. - -Macros defined by @kbd{Z K} act like single commands; they are executed -in the same way as by the @kbd{X} key. If you wish to define the macro -as a standard no-frills Emacs macro (to be executed as if by @kbd{C-x e}), -give a negative prefix argument to @kbd{Z K}. - -Once you have bound your keyboard macro to a key, you can use -@kbd{Z P} to register it permanently with Emacs. @xref{Creating User Keys}. - -@cindex Keyboard macros, editing -The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has -been defined by a keyboard macro tries to use the @code{edmacro} package -edit the macro. Type @kbd{C-c C-c} to finish editing and update -the definition stored on the key, or, to cancel the edit, kill the -buffer with @kbd{C-x k}. -The special characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, -@code{DEL}, and @code{NUL} must be entered as these three character -sequences, written in all uppercase, as must the prefixes @code{C-} and -@code{M-}. Spaces and line breaks are ignored. Other characters are -copied verbatim into the keyboard macro. Basically, the notation is the -same as is used in all of this manual's examples, except that the manual -takes some liberties with spaces: When we say @kbd{' [1 2 3] @key{RET}}, -we take it for granted that it is clear we really mean -@kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}}. - -@kindex C-x * m -@pindex read-kbd-macro -The @kbd{C-x * m} (@code{read-kbd-macro}) command reads an Emacs ``region'' -of spelled-out keystrokes and defines it as the current keyboard macro. -It is a convenient way to define a keyboard macro that has been stored -in a file, or to define a macro without executing it at the same time. - -@node Conditionals in Macros, Loops in Macros, Naming Keyboard Macros, Keyboard Macros -@subsection Conditionals in Keyboard Macros - -@noindent -@kindex Z [ -@kindex Z ] -@pindex calc-kbd-if -@pindex calc-kbd-else -@pindex calc-kbd-else-if -@pindex calc-kbd-end-if -@cindex Conditional structures -The @kbd{Z [} (@code{calc-kbd-if}) and @kbd{Z ]} (@code{calc-kbd-end-if}) -commands allow you to put simple tests in a keyboard macro. When Calc -sees the @kbd{Z [}, it pops an object from the stack and, if the object is -a non-zero value, continues executing keystrokes. But if the object is -zero, or if it is not provably nonzero, Calc skips ahead to the matching -@kbd{Z ]} keystroke. @xref{Logical Operations}, for a set of commands for -performing tests which conveniently produce 1 for true and 0 for false. - -For example, @kbd{@key{RET} 0 a < Z [ n Z ]} implements an absolute-value -function in the form of a keyboard macro. This macro duplicates the -number on the top of the stack, pushes zero and compares using @kbd{a <} -(@code{calc-less-than}), then, if the number was less than zero, -executes @kbd{n} (@code{calc-change-sign}). Otherwise, the change-sign -command is skipped. - -To program this macro, type @kbd{C-x (}, type the above sequence of -keystrokes, then type @kbd{C-x )}. Note that the keystrokes will be -executed while you are making the definition as well as when you later -re-execute the macro by typing @kbd{X}. Thus you should make sure a -suitable number is on the stack before defining the macro so that you -don't get a stack-underflow error during the definition process. - -Conditionals can be nested arbitrarily. However, there should be exactly -one @kbd{Z ]} for each @kbd{Z [} in a keyboard macro. - -@kindex Z : -The @kbd{Z :} (@code{calc-kbd-else}) command allows you to choose between -two keystroke sequences. The general format is @kbd{@var{cond} Z [ -@var{then-part} Z : @var{else-part} Z ]}. If @var{cond} is true -(i.e., if the top of stack contains a non-zero number after @var{cond} -has been executed), the @var{then-part} will be executed and the -@var{else-part} will be skipped. Otherwise, the @var{then-part} will -be skipped and the @var{else-part} will be executed. - -@kindex Z | -The @kbd{Z |} (@code{calc-kbd-else-if}) command allows you to choose -between any number of alternatives. For example, -@kbd{@var{cond1} Z [ @var{part1} Z : @var{cond2} Z | @var{part2} Z : -@var{part3} Z ]} will execute @var{part1} if @var{cond1} is true, -otherwise it will execute @var{part2} if @var{cond2} is true, otherwise -it will execute @var{part3}. - -More precisely, @kbd{Z [} pops a number and conditionally skips to the -next matching @kbd{Z :} or @kbd{Z ]} key. @w{@kbd{Z ]}} has no effect when -actually executed. @kbd{Z :} skips to the next matching @kbd{Z ]}. -@kbd{Z |} pops a number and conditionally skips to the next matching -@kbd{Z :} or @kbd{Z ]}; thus, @kbd{Z [} and @kbd{Z |} are functionally -equivalent except that @kbd{Z [} participates in nesting but @kbd{Z |} -does not. - -Calc's conditional and looping constructs work by scanning the -keyboard macro for occurrences of character sequences like @samp{Z:} -and @samp{Z]}. One side-effect of this is that if you use these -constructs you must be careful that these character pairs do not -occur by accident in other parts of the macros. Since Calc rarely -uses shift-@kbd{Z} for any purpose except as a prefix character, this -is not likely to be a problem. Another side-effect is that it will -not work to define your own custom key bindings for these commands. -Only the standard shift-@kbd{Z} bindings will work correctly. - -@kindex Z C-g -If Calc gets stuck while skipping characters during the definition of a -macro, type @kbd{Z C-g} to cancel the definition. (Typing plain @kbd{C-g} -actually adds a @kbd{C-g} keystroke to the macro.) - -@node Loops in Macros, Local Values in Macros, Conditionals in Macros, Keyboard Macros -@subsection Loops in Keyboard Macros - -@noindent -@kindex Z < -@kindex Z > -@pindex calc-kbd-repeat -@pindex calc-kbd-end-repeat -@cindex Looping structures -@cindex Iterative structures -The @kbd{Z <} (@code{calc-kbd-repeat}) and @kbd{Z >} -(@code{calc-kbd-end-repeat}) commands pop a number from the stack, -which must be an integer, then repeat the keystrokes between the brackets -the specified number of times. If the integer is zero or negative, the -body is skipped altogether. For example, @kbd{1 @key{TAB} Z < 2 * Z >} -computes two to a nonnegative integer power. First, we push 1 on the -stack and then swap the integer argument back to the top. The @kbd{Z <} -pops that argument leaving the 1 back on top of the stack. Then, we -repeat a multiply-by-two step however many times. - -Once again, the keyboard macro is executed as it is being entered. -In this case it is especially important to set up reasonable initial -conditions before making the definition: Suppose the integer 1000 just -happened to be sitting on the stack before we typed the above definition! -Another approach is to enter a harmless dummy definition for the macro, -then go back and edit in the real one with a @kbd{Z E} command. Yet -another approach is to type the macro as written-out keystroke names -in a buffer, then use @kbd{C-x * m} (@code{read-kbd-macro}) to read the -macro. - -@kindex Z / -@pindex calc-break -The @kbd{Z /} (@code{calc-kbd-break}) command allows you to break out -of a keyboard macro loop prematurely. It pops an object from the stack; -if that object is true (a non-zero number), control jumps out of the -innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues -after the @kbd{Z >}. If the object is false, the @kbd{Z /} has no -effect. Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;} -in the C language. - -@kindex Z ( -@kindex Z ) -@pindex calc-kbd-for -@pindex calc-kbd-end-for -The @kbd{Z (} (@code{calc-kbd-for}) and @kbd{Z )} (@code{calc-kbd-end-for}) -commands are similar to @kbd{Z <} and @kbd{Z >}, except that they make the -value of the counter available inside the loop. The general layout is -@kbd{@var{init} @var{final} Z ( @var{body} @var{step} Z )}. The @kbd{Z (} -command pops initial and final values from the stack. It then creates -a temporary internal counter and initializes it with the value @var{init}. -The @kbd{Z (} command then repeatedly pushes the counter value onto the -stack and executes @var{body} and @var{step}, adding @var{step} to the -counter each time until the loop finishes. - -@cindex Summations (by keyboard macros) -By default, the loop finishes when the counter becomes greater than (or -less than) @var{final}, assuming @var{initial} is less than (greater -than) @var{final}. If @var{initial} is equal to @var{final}, the body -executes exactly once. The body of the loop always executes at least -once. For example, @kbd{0 1 10 Z ( 2 ^ + 1 Z )} computes the sum of the -squares of the integers from 1 to 10, in steps of 1. - -If you give a numeric prefix argument of 1 to @kbd{Z (}, the loop is -forced to use upward-counting conventions. In this case, if @var{initial} -is greater than @var{final} the body will not be executed at all. -Note that @var{step} may still be negative in this loop; the prefix -argument merely constrains the loop-finished test. Likewise, a prefix -argument of @mathit{-1} forces downward-counting conventions. - -@kindex Z @{ -@kindex Z @} -@pindex calc-kbd-loop -@pindex calc-kbd-end-loop -The @kbd{Z @{} (@code{calc-kbd-loop}) and @kbd{Z @}} -(@code{calc-kbd-end-loop}) commands are similar to @kbd{Z <} and -@kbd{Z >}, except that they do not pop a count from the stack---they -effectively create an infinite loop. Every @kbd{Z @{} @dots{} @kbd{Z @}} -loop ought to include at least one @kbd{Z /} to make sure the loop -doesn't run forever. (If any error message occurs which causes Emacs -to beep, the keyboard macro will also be halted; this is a standard -feature of Emacs. You can also generally press @kbd{C-g} to halt a -running keyboard macro, although not all versions of Unix support -this feature.) - -The conditional and looping constructs are not actually tied to -keyboard macros, but they are most often used in that context. -For example, the keystrokes @kbd{10 Z < 23 @key{RET} Z >} push -ten copies of 23 onto the stack. This can be typed ``live'' just -as easily as in a macro definition. - -@xref{Conditionals in Macros}, for some additional notes about -conditional and looping commands. - -@node Local Values in Macros, Queries in Macros, Loops in Macros, Keyboard Macros -@subsection Local Values in Macros - -@noindent -@cindex Local variables -@cindex Restoring saved modes -Keyboard macros sometimes want to operate under known conditions -without affecting surrounding conditions. For example, a keyboard -macro may wish to turn on Fraction mode, or set a particular -precision, independent of the user's normal setting for those -modes. - -@kindex Z ` -@kindex Z ' -@pindex calc-kbd-push -@pindex calc-kbd-pop -Macros also sometimes need to use local variables. Assignments to -local variables inside the macro should not affect any variables -outside the macro. The @kbd{Z `} (@code{calc-kbd-push}) and @kbd{Z '} -(@code{calc-kbd-pop}) commands give you both of these capabilities. - -When you type @kbd{Z `} (with a backquote or accent grave character), -the values of various mode settings are saved away. The ten ``quick'' -variables @code{q0} through @code{q9} are also saved. When -you type @w{@kbd{Z '}} (with an apostrophe), these values are restored. -Pairs of @kbd{Z `} and @kbd{Z '} commands may be nested. - -If a keyboard macro halts due to an error in between a @kbd{Z `} and -a @kbd{Z '}, the saved values will be restored correctly even though -the macro never reaches the @kbd{Z '} command. Thus you can use -@kbd{Z `} and @kbd{Z '} without having to worry about what happens -in exceptional conditions. - -If you type @kbd{Z `} ``live'' (not in a keyboard macro), Calc puts -you into a ``recursive edit.'' You can tell you are in a recursive -edit because there will be extra square brackets in the mode line, -as in @samp{[(Calculator)]}. These brackets will go away when you -type the matching @kbd{Z '} command. The modes and quick variables -will be saved and restored in just the same way as if actual keyboard -macros were involved. - -The modes saved by @kbd{Z `} and @kbd{Z '} are the current precision -and binary word size, the angular mode (Deg, Rad, or HMS), the -simplification mode, Algebraic mode, Symbolic mode, Infinite mode, -Matrix or Scalar mode, Fraction mode, and the current complex mode -(Polar or Rectangular). The ten ``quick'' variables' values (or lack -thereof) are also saved. - -Most mode-setting commands act as toggles, but with a numeric prefix -they force the mode either on (positive prefix) or off (negative -or zero prefix). Since you don't know what the environment might -be when you invoke your macro, it's best to use prefix arguments -for all mode-setting commands inside the macro. - -In fact, @kbd{C-u Z `} is like @kbd{Z `} except that it sets the modes -listed above to their default values. As usual, the matching @kbd{Z '} -will restore the modes to their settings from before the @kbd{C-u Z `}. -Also, @w{@kbd{Z `}} with a negative prefix argument resets the algebraic mode -to its default (off) but leaves the other modes the same as they were -outside the construct. - -The contents of the stack and trail, values of non-quick variables, and -other settings such as the language mode and the various display modes, -are @emph{not} affected by @kbd{Z `} and @kbd{Z '}. - -@node Queries in Macros, , Local Values in Macros, Keyboard Macros -@subsection Queries in Keyboard Macros - -@c @noindent -@c @kindex Z = -@c @pindex calc-kbd-report -@c The @kbd{Z =} (@code{calc-kbd-report}) command displays an informative -@c message including the value on the top of the stack. You are prompted -@c to enter a string. That string, along with the top-of-stack value, -@c is displayed unless @kbd{m w} (@code{calc-working}) has been used -@c to turn such messages off. - -@noindent -@kindex Z # -@pindex calc-kbd-query -The @kbd{Z #} (@code{calc-kbd-query}) command prompts for an algebraic -entry which takes its input from the keyboard, even during macro -execution. All the normal conventions of algebraic input, including the -use of @kbd{$} characters, are supported. The prompt message itself is -taken from the top of the stack, and so must be entered (as a string) -before the @kbd{Z #} command. (Recall, as a string it can be entered by -pressing the @kbd{"} key and will appear as a vector when it is put on -the stack. The prompt message is only put on the stack to provide a -prompt for the @kbd{Z #} command; it will not play any role in any -subsequent calculations.) This command allows your keyboard macros to -accept numbers or formulas as interactive input. - -As an example, -@kbd{2 @key{RET} "Power: " @key{RET} Z # 3 @key{RET} ^} will prompt for -input with ``Power: '' in the minibuffer, then return 2 to the provided -power. (The response to the prompt that's given, 3 in this example, -will not be part of the macro.) - -@xref{Keyboard Macro Query, , , emacs, the Emacs Manual}, for a description of -@kbd{C-x q} (@code{kbd-macro-query}), the standard Emacs way to accept -keyboard input during a keyboard macro. In particular, you can use -@kbd{C-x q} to enter a recursive edit, which allows the user to perform -any Calculator operations interactively before pressing @kbd{C-M-c} to -return control to the keyboard macro. - -@node Invocation Macros, Algebraic Definitions, Keyboard Macros, Programming -@section Invocation Macros - -@kindex C-x * z -@kindex Z I -@pindex calc-user-invocation -@pindex calc-user-define-invocation -Calc provides one special keyboard macro, called up by @kbd{C-x * z} -(@code{calc-user-invocation}), that is intended to allow you to define -your own special way of starting Calc. To define this ``invocation -macro,'' create the macro in the usual way with @kbd{C-x (} and -@kbd{C-x )}, then type @kbd{Z I} (@code{calc-user-define-invocation}). -There is only one invocation macro, so you don't need to type any -additional letters after @kbd{Z I}. From now on, you can type -@kbd{C-x * z} at any time to execute your invocation macro. - -For example, suppose you find yourself often grabbing rectangles of -numbers into Calc and multiplying their columns. You can do this -by typing @kbd{C-x * r} to grab, and @kbd{V R : *} to multiply columns. -To make this into an invocation macro, just type @kbd{C-x ( C-x * r -V R : * C-x )}, then @kbd{Z I}. Then, to multiply a rectangle of data, -just mark the data in its buffer in the usual way and type @kbd{C-x * z}. - -Invocation macros are treated like regular Emacs keyboard macros; -all the special features described above for @kbd{Z K}-style macros -do not apply. @kbd{C-x * z} is just like @kbd{C-x e}, except that it -uses the macro that was last stored by @kbd{Z I}. (In fact, the -macro does not even have to have anything to do with Calc!) - -The @kbd{m m} command saves the last invocation macro defined by -@kbd{Z I} along with all the other Calc mode settings. -@xref{General Mode Commands}. - -@node Algebraic Definitions, Lisp Definitions, Invocation Macros, Programming -@section Programming with Formulas - -@noindent -@kindex Z F -@pindex calc-user-define-formula -@cindex Programming with algebraic formulas -Another way to create a new Calculator command uses algebraic formulas. -The @kbd{Z F} (@code{calc-user-define-formula}) command stores the -formula at the top of the stack as the definition for a key. This -command prompts for five things: The key, the command name, the function -name, the argument list, and the behavior of the command when given -non-numeric arguments. - -For example, suppose we type @kbd{' a+2b @key{RET}} to push the formula -@samp{a + 2*b} onto the stack. We now type @kbd{Z F m} to define this -formula on the @kbd{z m} key sequence. The next prompt is for a command -name, beginning with @samp{calc-}, which should be the long (@kbd{M-x}) form -for the new command. If you simply press @key{RET}, a default name like -@code{calc-User-m} will be constructed. In our example, suppose we enter -@kbd{spam @key{RET}} to define the new command as @code{calc-spam}. - -If you want to give the formula a long-style name only, you can press -@key{SPC} or @key{RET} when asked which single key to use. For example -@kbd{Z F @key{RET} spam @key{RET}} defines the new command as -@kbd{M-x calc-spam}, with no keyboard equivalent. - -The third prompt is for an algebraic function name. The default is to -use the same name as the command name but without the @samp{calc-} -prefix. (If this is of the form @samp{User-m}, the hyphen is removed so -it won't be taken for a minus sign in algebraic formulas.) -This is the name you will use if you want to enter your -new function in an algebraic formula. Suppose we enter @kbd{yow @key{RET}}. -Then the new function can be invoked by pushing two numbers on the -stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic -formula @samp{yow(x,y)}. - -The fourth prompt is for the function's argument list. This is used to -associate values on the stack with the variables that appear in the formula. -The default is a list of all variables which appear in the formula, sorted -into alphabetical order. In our case, the default would be @samp{(a b)}. -This means that, when the user types @kbd{z m}, the Calculator will remove -two numbers from the stack, substitute these numbers for @samp{a} and -@samp{b} (respectively) in the formula, then simplify the formula and -push the result on the stack. In other words, @kbd{10 @key{RET} 100 z m} -would replace the 10 and 100 on the stack with the number 210, which is -@expr{a + 2 b} with @expr{a=10} and @expr{b=100}. Likewise, the formula -@samp{yow(10, 100)} will be evaluated by substituting @expr{a=10} and -@expr{b=100} in the definition. - -You can rearrange the order of the names before pressing @key{RET} to -control which stack positions go to which variables in the formula. If -you remove a variable from the argument list, that variable will be left -in symbolic form by the command. Thus using an argument list of @samp{(b)} -for our function would cause @kbd{10 z m} to replace the 10 on the stack -with the formula @samp{a + 20}. If we had used an argument list of -@samp{(b a)}, the result with inputs 10 and 100 would have been 120. - -You can also put a nameless function on the stack instead of just a -formula, as in @samp{}. @xref{Specifying Operators}. -In this example, the command will be defined by the formula @samp{a + 2 b} -using the argument list @samp{(a b)}. - -The final prompt is a y-or-n question concerning what to do if symbolic -arguments are given to your function. If you answer @kbd{y}, then -executing @kbd{z m} (using the original argument list @samp{(a b)}) with -arguments @expr{10} and @expr{x} will leave the function in symbolic -form, i.e., @samp{yow(10,x)}. On the other hand, if you answer @kbd{n}, -then the formula will always be expanded, even for non-constant -arguments: @samp{10 + 2 x}. If you never plan to feed algebraic -formulas to your new function, it doesn't matter how you answer this -question. - -If you answered @kbd{y} to this question you can still cause a function -call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}). -Also, Calc will expand the function if necessary when you take a -derivative or integral or solve an equation involving the function. - -@kindex Z G -@pindex calc-get-user-defn -Once you have defined a formula on a key, you can retrieve this formula -with the @kbd{Z G} (@code{calc-user-define-get-defn}) command. Press a -key, and this command pushes the formula that was used to define that -key onto the stack. Actually, it pushes a nameless function that -specifies both the argument list and the defining formula. You will get -an error message if the key is undefined, or if the key was not defined -by a @kbd{Z F} command. - -The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has -been defined by a formula uses a variant of the @code{calc-edit} command -to edit the defining formula. Press @kbd{C-c C-c} to finish editing and -store the new formula back in the definition, or kill the buffer with -@kbd{C-x k} to -cancel the edit. (The argument list and other properties of the -definition are unchanged; to adjust the argument list, you can use -@kbd{Z G} to grab the function onto the stack, edit with @kbd{`}, and -then re-execute the @kbd{Z F} command.) - -As usual, the @kbd{Z P} command records your definition permanently. -In this case it will permanently record all three of the relevant -definitions: the key, the command, and the function. - -You may find it useful to turn off the default simplifications with -@kbd{m O} (@code{calc-no-simplify-mode}) when entering a formula to be -used as a function definition. For example, the formula @samp{deriv(a^2,v)} -which might be used to define a new function @samp{dsqr(a,v)} will be -``simplified'' to 0 immediately upon entry since @code{deriv} considers -@expr{a} to be constant with respect to @expr{v}. Turning off -default simplifications cures this problem: The definition will be stored -in symbolic form without ever activating the @code{deriv} function. Press -@kbd{m D} to turn the default simplifications back on afterwards. - -@node Lisp Definitions, , Algebraic Definitions, Programming -@section Programming with Lisp - -@noindent -The Calculator can be programmed quite extensively in Lisp. All you -do is write a normal Lisp function definition, but with @code{defmath} -in place of @code{defun}. This has the same form as @code{defun}, but it -automagically replaces calls to standard Lisp functions like @code{+} and -@code{zerop} with calls to the corresponding functions in Calc's own library. -Thus you can write natural-looking Lisp code which operates on all of the -standard Calculator data types. You can then use @kbd{Z D} if you wish to -bind your new command to a @kbd{z}-prefix key sequence. The @kbd{Z E} command -will not edit a Lisp-based definition. - -Emacs Lisp is described in the GNU Emacs Lisp Reference Manual. This section -assumes a familiarity with Lisp programming concepts; if you do not know -Lisp, you may find keyboard macros or rewrite rules to be an easier way -to program the Calculator. - -This section first discusses ways to write commands, functions, or -small programs to be executed inside of Calc. Then it discusses how -your own separate programs are able to call Calc from the outside. -Finally, there is a list of internal Calc functions and data structures -for the true Lisp enthusiast. - -@menu -* Defining Functions:: -* Defining Simple Commands:: -* Defining Stack Commands:: -* Argument Qualifiers:: -* Example Definitions:: - -* Calling Calc from Your Programs:: -* Internals:: -@end menu - -@node Defining Functions, Defining Simple Commands, Lisp Definitions, Lisp Definitions -@subsection Defining New Functions - -@noindent -@findex defmath -The @code{defmath} function (actually a Lisp macro) is like @code{defun} -except that code in the body of the definition can make use of the full -range of Calculator data types. The prefix @samp{calcFunc-} is added -to the specified name to get the actual Lisp function name. As a simple -example, - -@example -(defmath myfact (n) - (if (> n 0) - (* n (myfact (1- n))) - 1)) -@end example - -@noindent -This actually expands to the code, - -@example -(defun calcFunc-myfact (n) - (if (math-posp n) - (math-mul n (calcFunc-myfact (math-add n -1))) - 1)) -@end example - -@noindent -This function can be used in algebraic expressions, e.g., @samp{myfact(5)}. - -The @samp{myfact} function as it is defined above has the bug that an -expression @samp{myfact(a+b)} will be simplified to 1 because the -formula @samp{a+b} is not considered to be @code{posp}. A robust -factorial function would be written along the following lines: - -@smallexample -(defmath myfact (n) - (if (> n 0) - (* n (myfact (1- n))) - (if (= n 0) - 1 - nil))) ; this could be simplified as: (and (= n 0) 1) -@end smallexample - -If a function returns @code{nil}, it is left unsimplified by the Calculator -(except that its arguments will be simplified). Thus, @samp{myfact(a+1+2)} -will be simplified to @samp{myfact(a+3)} but no further. Beware that every -time the Calculator reexamines this formula it will attempt to resimplify -it, so your function ought to detect the returning-@code{nil} case as -efficiently as possible. - -The following standard Lisp functions are treated by @code{defmath}: -@code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^} or -@code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=}, -@code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor}, -@code{logandc2}, @code{lognot}. Also, @code{~=} is an abbreviation for -@code{math-nearly-equal}, which is useful in implementing Taylor series. - -For other functions @var{func}, if a function by the name -@samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the -name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself -is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is -used on the assumption that this is a to-be-defined math function. Also, if -the function name is quoted as in @samp{('integerp a)} the function name is -always used exactly as written (but not quoted). - -Variable names have @samp{var-} prepended to them unless they appear in -the function's argument list or in an enclosing @code{let}, @code{let*}, -@code{for}, or @code{foreach} form, -or their names already contain a @samp{-} character. Thus a reference to -@samp{foo} is the same as a reference to @samp{var-foo}. - -A few other Lisp extensions are available in @code{defmath} definitions: - -@itemize @bullet -@item -The @code{elt} function accepts any number of index variables. -Note that Calc vectors are stored as Lisp lists whose first -element is the symbol @code{vec}; thus, @samp{(elt v 2)} yields -the second element of vector @code{v}, and @samp{(elt m i j)} -yields one element of a Calc matrix. - -@item -The @code{setq} function has been extended to act like the Common -Lisp @code{setf} function. (The name @code{setf} is recognized as -a synonym of @code{setq}.) Specifically, the first argument of -@code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form, -in which case the effect is to store into the specified -element of a list. Thus, @samp{(setq (elt m i j) x)} stores @expr{x} -into one element of a matrix. - -@item -A @code{for} looping construct is available. For example, -@samp{(for ((i 0 10)) body)} executes @code{body} once for each -binding of @expr{i} from zero to 10. This is like a @code{let} -form in that @expr{i} is temporarily bound to the loop count -without disturbing its value outside the @code{for} construct. -Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)}, -are also available. For each value of @expr{i} from zero to 10, -@expr{j} counts from 0 to @expr{i-1} in steps of two. Note that -@code{for} has the same general outline as @code{let*}, except -that each element of the header is a list of three or four -things, not just two. - -@item -The @code{foreach} construct loops over elements of a list. -For example, @samp{(foreach ((x (cdr v))) body)} executes -@code{body} with @expr{x} bound to each element of Calc vector -@expr{v} in turn. The purpose of @code{cdr} here is to skip over -the initial @code{vec} symbol in the vector. - -@item -The @code{break} function breaks out of the innermost enclosing -@code{while}, @code{for}, or @code{foreach} loop. If given a -value, as in @samp{(break x)}, this value is returned by the -loop. (Lisp loops otherwise always return @code{nil}.) - -@item -The @code{return} function prematurely returns from the enclosing -function. For example, @samp{(return (+ x y))} returns @expr{x+y} -as the value of a function. You can use @code{return} anywhere -inside the body of the function. -@end itemize - -Non-integer numbers (and extremely large integers) cannot be included -directly into a @code{defmath} definition. This is because the Lisp -reader will fail to parse them long before @code{defmath} ever gets control. -Instead, use the notation, @samp{:"3.1415"}. In fact, any algebraic -formula can go between the quotes. For example, - -@smallexample -(defmath sqexp (x) ; sqexp(x) == sqrt(exp(x)) == exp(x*0.5) - (and (numberp x) - (exp :"x * 0.5"))) -@end smallexample - -expands to - -@smallexample -(defun calcFunc-sqexp (x) - (and (math-numberp x) - (calcFunc-exp (math-mul x '(float 5 -1))))) -@end smallexample - -Note the use of @code{numberp} as a guard to ensure that the argument is -a number first, returning @code{nil} if not. The exponential function -could itself have been included in the expression, if we had preferred: -@samp{:"exp(x * 0.5)"}. As another example, the multiplication-and-recursion -step of @code{myfact} could have been written - -@example -:"n * myfact(n-1)" -@end example - -A good place to put your @code{defmath} commands is your Calc init file -(the file given by @code{calc-settings-file}, typically -@file{~/.calc.el}), which will not be loaded until Calc starts. -If a file named @file{.emacs} exists in your home directory, Emacs reads -and executes the Lisp forms in this file as it starts up. While it may -seem reasonable to put your favorite @code{defmath} commands there, -this has the unfortunate side-effect that parts of the Calculator must be -loaded in to process the @code{defmath} commands whether or not you will -actually use the Calculator! If you want to put the @code{defmath} -commands there (for example, if you redefine @code{calc-settings-file} -to be @file{.emacs}), a better effect can be had by writing - -@example -(put 'calc-define 'thing '(progn - (defmath ... ) - (defmath ... ) -)) -@end example - -@noindent -@vindex calc-define -The @code{put} function adds a @dfn{property} to a symbol. Each Lisp -symbol has a list of properties associated with it. Here we add a -property with a name of @code{thing} and a @samp{(progn ...)} form as -its value. When Calc starts up, and at the start of every Calc command, -the property list for the symbol @code{calc-define} is checked and the -values of any properties found are evaluated as Lisp forms. The -properties are removed as they are evaluated. The property names -(like @code{thing}) are not used; you should choose something like the -name of your project so as not to conflict with other properties. - -The net effect is that you can put the above code in your @file{.emacs} -file and it will not be executed until Calc is loaded. Or, you can put -that same code in another file which you load by hand either before or -after Calc itself is loaded. - -The properties of @code{calc-define} are evaluated in the same order -that they were added. They can assume that the Calc modules @file{calc.el}, -@file{calc-ext.el}, and @file{calc-macs.el} have been fully loaded, and -that the @samp{*Calculator*} buffer will be the current buffer. - -If your @code{calc-define} property only defines algebraic functions, -you can be sure that it will have been evaluated before Calc tries to -call your function, even if the file defining the property is loaded -after Calc is loaded. But if the property defines commands or key -sequences, it may not be evaluated soon enough. (Suppose it defines the -new command @code{tweak-calc}; the user can load your file, then type -@kbd{M-x tweak-calc} before Calc has had chance to do anything.) To -protect against this situation, you can put - -@example -(run-hooks 'calc-check-defines) -@end example - -@findex calc-check-defines -@noindent -at the end of your file. The @code{calc-check-defines} function is what -looks for and evaluates properties on @code{calc-define}; @code{run-hooks} -has the advantage that it is quietly ignored if @code{calc-check-defines} -is not yet defined because Calc has not yet been loaded. - -Examples of things that ought to be enclosed in a @code{calc-define} -property are @code{defmath} calls, @code{define-key} calls that modify -the Calc key map, and any calls that redefine things defined inside Calc. -Ordinary @code{defun}s need not be enclosed with @code{calc-define}. - -@node Defining Simple Commands, Defining Stack Commands, Defining Functions, Lisp Definitions -@subsection Defining New Simple Commands - -@noindent -@findex interactive -If a @code{defmath} form contains an @code{interactive} clause, it defines -a Calculator command. Actually such a @code{defmath} results in @emph{two} -function definitions: One, a @samp{calcFunc-} function as was just described, -with the @code{interactive} clause removed. Two, a @samp{calc-} function -with a suitable @code{interactive} clause and some sort of wrapper to make -the command work in the Calc environment. - -In the simple case, the @code{interactive} clause has the same form as -for normal Emacs Lisp commands: - -@smallexample -(defmath increase-precision (delta) - "Increase precision by DELTA." ; This is the "documentation string" - (interactive "p") ; Register this as a M-x-able command - (setq calc-internal-prec (+ calc-internal-prec delta))) -@end smallexample - -This expands to the pair of definitions, - -@smallexample -(defun calc-increase-precision (delta) - "Increase precision by DELTA." - (interactive "p") - (calc-wrapper - (setq calc-internal-prec (math-add calc-internal-prec delta)))) - -(defun calcFunc-increase-precision (delta) - "Increase precision by DELTA." - (setq calc-internal-prec (math-add calc-internal-prec delta))) -@end smallexample - -@noindent -where in this case the latter function would never really be used! Note -that since the Calculator stores small integers as plain Lisp integers, -the @code{math-add} function will work just as well as the native -@code{+} even when the intent is to operate on native Lisp integers. - -@findex calc-wrapper -The @samp{calc-wrapper} call invokes a macro which surrounds the body of -the function with code that looks roughly like this: - -@smallexample -(let ((calc-command-flags nil)) - (unwind-protect - (save-excursion - (calc-select-buffer) - @emph{body of function} - @emph{renumber stack} - @emph{clear} Working @emph{message}) - @emph{realign cursor and window} - @emph{clear Inverse, Hyperbolic, and Keep Args flags} - @emph{update Emacs mode line})) -@end smallexample - -@findex calc-select-buffer -The @code{calc-select-buffer} function selects the @samp{*Calculator*} -buffer if necessary, say, because the command was invoked from inside -the @samp{*Calc Trail*} window. - -@findex calc-set-command-flag -You can call, for example, @code{(calc-set-command-flag 'no-align)} to -set the above-mentioned command flags. Calc routines recognize the -following command flags: - -@table @code -@item renum-stack -Stack line numbers @samp{1:}, @samp{2:}, and so on must be renumbered -after this command completes. This is set by routines like -@code{calc-push}. - -@item clear-message -Calc should call @samp{(message "")} if this command completes normally -(to clear a ``Working@dots{}'' message out of the echo area). - -@item no-align -Do not move the cursor back to the @samp{.} top-of-stack marker. - -@item position-point -Use the variables @code{calc-position-point-line} and -@code{calc-position-point-column} to position the cursor after -this command finishes. - -@item keep-flags -Do not clear @code{calc-inverse-flag}, @code{calc-hyperbolic-flag}, -and @code{calc-keep-args-flag} at the end of this command. - -@item do-edit -Switch to buffer @samp{*Calc Edit*} after this command. - -@item hold-trail -Do not move trail pointer to end of trail when something is recorded -there. -@end table - -@kindex Y -@kindex Y ? -@vindex calc-Y-help-msgs -Calc reserves a special prefix key, shift-@kbd{Y}, for user-written -extensions to Calc. There are no built-in commands that work with -this prefix key; you must call @code{define-key} from Lisp (probably -from inside a @code{calc-define} property) to add to it. Initially only -@kbd{Y ?} is defined; it takes help messages from a list of strings -(initially @code{nil}) in the variable @code{calc-Y-help-msgs}. All -other undefined keys except for @kbd{Y} are reserved for use by -future versions of Calc. - -If you are writing a Calc enhancement which you expect to give to -others, it is best to minimize the number of @kbd{Y}-key sequences -you use. In fact, if you have more than one key sequence you should -consider defining three-key sequences with a @kbd{Y}, then a key that -stands for your package, then a third key for the particular command -within your package. - -Users may wish to install several Calc enhancements, and it is possible -that several enhancements will choose to use the same key. In the -example below, a variable @code{inc-prec-base-key} has been defined -to contain the key that identifies the @code{inc-prec} package. Its -value is initially @code{"P"}, but a user can change this variable -if necessary without having to modify the file. - -Here is a complete file, @file{inc-prec.el}, which makes a @kbd{Y P I} -command that increases the precision, and a @kbd{Y P D} command that -decreases the precision. - -@smallexample -;;; Increase and decrease Calc precision. Dave Gillespie, 5/31/91. -;; (Include copyright or copyleft stuff here.) - -(defvar inc-prec-base-key "P" - "Base key for inc-prec.el commands.") - -(put 'calc-define 'inc-prec '(progn - -(define-key calc-mode-map (format "Y%sI" inc-prec-base-key) - 'increase-precision) -(define-key calc-mode-map (format "Y%sD" inc-prec-base-key) - 'decrease-precision) - -(setq calc-Y-help-msgs - (cons (format "%s + Inc-prec, Dec-prec" inc-prec-base-key) - calc-Y-help-msgs)) - -(defmath increase-precision (delta) - "Increase precision by DELTA." - (interactive "p") - (setq calc-internal-prec (+ calc-internal-prec delta))) - -(defmath decrease-precision (delta) - "Decrease precision by DELTA." - (interactive "p") - (setq calc-internal-prec (- calc-internal-prec delta))) - -)) ; end of calc-define property - -(run-hooks 'calc-check-defines) -@end smallexample - -@node Defining Stack Commands, Argument Qualifiers, Defining Simple Commands, Lisp Definitions -@subsection Defining New Stack-Based Commands - -@noindent -To define a new computational command which takes and/or leaves arguments -on the stack, a special form of @code{interactive} clause is used. - -@example -(interactive @var{num} @var{tag}) -@end example - -@noindent -where @var{num} is an integer, and @var{tag} is a string. The effect is -to pop @var{num} values off the stack, resimplify them by calling -@code{calc-normalize}, and hand them to your function according to the -function's argument list. Your function may include @code{&optional} and -@code{&rest} parameters, so long as calling the function with @var{num} -parameters is valid. - -Your function must return either a number or a formula in a form -acceptable to Calc, or a list of such numbers or formulas. These value(s) -are pushed onto the stack when the function completes. They are also -recorded in the Calc Trail buffer on a line beginning with @var{tag}, -a string of (normally) four characters or less. If you omit @var{tag} -or use @code{nil} as a tag, the result is not recorded in the trail. - -As an example, the definition - -@smallexample -(defmath myfact (n) - "Compute the factorial of the integer at the top of the stack." - (interactive 1 "fact") - (if (> n 0) - (* n (myfact (1- n))) - (and (= n 0) 1))) -@end smallexample - -@noindent -is a version of the factorial function shown previously which can be used -as a command as well as an algebraic function. It expands to - -@smallexample -(defun calc-myfact () - "Compute the factorial of the integer at the top of the stack." - (interactive) - (calc-slow-wrapper - (calc-enter-result 1 "fact" - (cons 'calcFunc-myfact (calc-top-list-n 1))))) - -(defun calcFunc-myfact (n) - "Compute the factorial of the integer at the top of the stack." - (if (math-posp n) - (math-mul n (calcFunc-myfact (math-add n -1))) - (and (math-zerop n) 1))) -@end smallexample - -@findex calc-slow-wrapper -The @code{calc-slow-wrapper} function is a version of @code{calc-wrapper} -that automatically puts up a @samp{Working...} message before the -computation begins. (This message can be turned off by the user -with an @kbd{m w} (@code{calc-working}) command.) - -@findex calc-top-list-n -The @code{calc-top-list-n} function returns a list of the specified number -of values from the top of the stack. It resimplifies each value by -calling @code{calc-normalize}. If its argument is zero it returns an -empty list. It does not actually remove these values from the stack. - -@findex calc-enter-result -The @code{calc-enter-result} function takes an integer @var{num} and string -@var{tag} as described above, plus a third argument which is either a -Calculator data object or a list of such objects. These objects are -resimplified and pushed onto the stack after popping the specified number -of values from the stack. If @var{tag} is non-@code{nil}, the values -being pushed are also recorded in the trail. - -Note that if @code{calcFunc-myfact} returns @code{nil} this represents -``leave the function in symbolic form.'' To return an actual empty list, -in the sense that @code{calc-enter-result} will push zero elements back -onto the stack, you should return the special value @samp{'(nil)}, a list -containing the single symbol @code{nil}. - -The @code{interactive} declaration can actually contain a limited -Emacs-style code string as well which comes just before @var{num} and -@var{tag}. Currently the only Emacs code supported is @samp{"p"}, as in - -@example -(defmath foo (a b &optional c) - (interactive "p" 2 "foo") - @var{body}) -@end example - -In this example, the command @code{calc-foo} will evaluate the expression -@samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if -executed with a numeric prefix argument of @expr{n}. - -The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"} -code as used with @code{defun}). It uses the numeric prefix argument as the -number of objects to remove from the stack and pass to the function. -In this case, the integer @var{num} serves as a default number of -arguments to be used when no prefix is supplied. - -@node Argument Qualifiers, Example Definitions, Defining Stack Commands, Lisp Definitions -@subsection Argument Qualifiers - -@noindent -Anywhere a parameter name can appear in the parameter list you can also use -an @dfn{argument qualifier}. Thus the general form of a definition is: - -@example -(defmath @var{name} (@var{param} @var{param...} - &optional @var{param} @var{param...} - &rest @var{param}) - @var{body}) -@end example - -@noindent -where each @var{param} is either a symbol or a list of the form - -@example -(@var{qual} @var{param}) -@end example - -The following qualifiers are recognized: - -@table @samp -@item complete -@findex complete -The argument must not be an incomplete vector, interval, or complex number. -(This is rarely needed since the Calculator itself will never call your -function with an incomplete argument. But there is nothing stopping your -own Lisp code from calling your function with an incomplete argument.) - -@item integer -@findex integer -The argument must be an integer. If it is an integer-valued float -it will be accepted but converted to integer form. Non-integers and -formulas are rejected. - -@item natnum -@findex natnum -Like @samp{integer}, but the argument must be non-negative. - -@item fixnum -@findex fixnum -Like @samp{integer}, but the argument must fit into a native Lisp integer, -which on most systems means less than 2^23 in absolute value. The -argument is converted into Lisp-integer form if necessary. - -@item float -@findex float -The argument is converted to floating-point format if it is a number or -vector. If it is a formula it is left alone. (The argument is never -actually rejected by this qualifier.) - -@item @var{pred} -The argument must satisfy predicate @var{pred}, which is one of the -standard Calculator predicates. @xref{Predicates}. - -@item not-@var{pred} -The argument must @emph{not} satisfy predicate @var{pred}. -@end table - -For example, - -@example -(defmath foo (a (constp (not-matrixp b)) &optional (float c) - &rest (integer d)) - @var{body}) -@end example - -@noindent -expands to - -@example -(defun calcFunc-foo (a b &optional c &rest d) - (and (math-matrixp b) - (math-reject-arg b 'not-matrixp)) - (or (math-constp b) - (math-reject-arg b 'constp)) - (and c (setq c (math-check-float c))) - (setq d (mapcar 'math-check-integer d)) - @var{body}) -@end example - -@noindent -which performs the necessary checks and conversions before executing the -body of the function. - -@node Example Definitions, Calling Calc from Your Programs, Argument Qualifiers, Lisp Definitions -@subsection Example Definitions - -@noindent -This section includes some Lisp programming examples on a larger scale. -These programs make use of some of the Calculator's internal functions; -@pxref{Internals}. - -@menu -* Bit Counting Example:: -* Sine Example:: -@end menu - -@node Bit Counting Example, Sine Example, Example Definitions, Example Definitions -@subsubsection Bit-Counting - -@noindent -@ignore -@starindex -@end ignore -@tindex bcount -Calc does not include a built-in function for counting the number of -``one'' bits in a binary integer. It's easy to invent one using @kbd{b u} -to convert the integer to a set, and @kbd{V #} to count the elements of -that set; let's write a function that counts the bits without having to -create an intermediate set. - -@smallexample -(defmath bcount ((natnum n)) - (interactive 1 "bcnt") - (let ((count 0)) - (while (> n 0) - (if (oddp n) - (setq count (1+ count))) - (setq n (lsh n -1))) - count)) -@end smallexample - -@noindent -When this is expanded by @code{defmath}, it will become the following -Emacs Lisp function: - -@smallexample -(defun calcFunc-bcount (n) - (setq n (math-check-natnum n)) - (let ((count 0)) - (while (math-posp n) - (if (math-oddp n) - (setq count (math-add count 1))) - (setq n (calcFunc-lsh n -1))) - count)) -@end smallexample - -If the input numbers are large, this function involves a fair amount -of arithmetic. A binary right shift is essentially a division by two; -recall that Calc stores integers in decimal form so bit shifts must -involve actual division. - -To gain a bit more efficiency, we could divide the integer into -@var{n}-bit chunks, each of which can be handled quickly because -they fit into Lisp integers. It turns out that Calc's arithmetic -routines are especially fast when dividing by an integer less than -1000, so we can set @var{n = 9} bits and use repeated division by 512: - -@smallexample -(defmath bcount ((natnum n)) - (interactive 1 "bcnt") - (let ((count 0)) - (while (not (fixnump n)) - (let ((qr (idivmod n 512))) - (setq count (+ count (bcount-fixnum (cdr qr))) - n (car qr)))) - (+ count (bcount-fixnum n)))) - -(defun bcount-fixnum (n) - (let ((count 0)) - (while (> n 0) - (setq count (+ count (logand n 1)) - n (lsh n -1))) - count)) -@end smallexample - -@noindent -Note that the second function uses @code{defun}, not @code{defmath}. -Because this function deals only with native Lisp integers (``fixnums''), -it can use the actual Emacs @code{+} and related functions rather -than the slower but more general Calc equivalents which @code{defmath} -uses. - -The @code{idivmod} function does an integer division, returning both -the quotient and the remainder at once. Again, note that while it -might seem that @samp{(logand n 511)} and @samp{(lsh n -9)} are -more efficient ways to split off the bottom nine bits of @code{n}, -actually they are less efficient because each operation is really -a division by 512 in disguise; @code{idivmod} allows us to do the -same thing with a single division by 512. - -@node Sine Example, , Bit Counting Example, Example Definitions -@subsubsection The Sine Function - -@noindent -@ignore -@starindex -@end ignore -@tindex mysin -A somewhat limited sine function could be defined as follows, using the -well-known Taylor series expansion for -@texline @math{\sin x}: -@infoline @samp{sin(x)}: - -@smallexample -(defmath mysin ((float (anglep x))) - (interactive 1 "mysn") - (setq x (to-radians x)) ; Convert from current angular mode. - (let ((sum x) ; Initial term of Taylor expansion of sin. - newsum - (nfact 1) ; "nfact" equals "n" factorial at all times. - (xnegsqr :"-(x^2)")) ; "xnegsqr" equals -x^2. - (for ((n 3 100 2)) ; Upper limit of 100 is a good precaution. - (working "mysin" sum) ; Display "Working" message, if enabled. - (setq nfact (* nfact (1- n) n) - x (* x xnegsqr) - newsum (+ sum (/ x nfact))) - (if (~= newsum sum) ; If newsum is "nearly equal to" sum, - (break)) ; then we are done. - (setq sum newsum)) - sum)) -@end smallexample - -The actual @code{sin} function in Calc works by first reducing the problem -to a sine or cosine of a nonnegative number less than @cpiover{4}. This -ensures that the Taylor series will converge quickly. Also, the calculation -is carried out with two extra digits of precision to guard against cumulative -round-off in @samp{sum}. Finally, complex arguments are allowed and handled -by a separate algorithm. - -@smallexample -(defmath mysin ((float (scalarp x))) - (interactive 1 "mysn") - (setq x (to-radians x)) ; Convert from current angular mode. - (with-extra-prec 2 ; Evaluate with extra precision. - (cond ((complexp x) - (mysin-complex x)) - ((< x 0) - (- (mysin-raw (- x))) ; Always call mysin-raw with x >= 0. - (t (mysin-raw x)))))) - -(defmath mysin-raw (x) - (cond ((>= x 7) - (mysin-raw (% x (two-pi)))) ; Now x < 7. - ((> x (pi-over-2)) - (- (mysin-raw (- x (pi))))) ; Now -pi/2 <= x <= pi/2. - ((> x (pi-over-4)) - (mycos-raw (- x (pi-over-2)))) ; Now -pi/2 <= x <= pi/4. - ((< x (- (pi-over-4))) - (- (mycos-raw (+ x (pi-over-2))))) ; Now -pi/4 <= x <= pi/4, - (t (mysin-series x)))) ; so the series will be efficient. -@end smallexample - -@noindent -where @code{mysin-complex} is an appropriate function to handle complex -numbers, @code{mysin-series} is the routine to compute the sine Taylor -series as before, and @code{mycos-raw} is a function analogous to -@code{mysin-raw} for cosines. - -The strategy is to ensure that @expr{x} is nonnegative before calling -@code{mysin-raw}. This function then recursively reduces its argument -to a suitable range, namely, plus-or-minus @cpiover{4}. Note that each -test, and particularly the first comparison against 7, is designed so -that small roundoff errors cannot produce an infinite loop. (Suppose -we compared with @samp{(two-pi)} instead; if due to roundoff problems -the modulo operator ever returned @samp{(two-pi)} exactly, an infinite -recursion could result!) We use modulo only for arguments that will -clearly get reduced, knowing that the next rule will catch any reductions -that this rule misses. - -If a program is being written for general use, it is important to code -it carefully as shown in this second example. For quick-and-dirty programs, -when you know that your own use of the sine function will never encounter -a large argument, a simpler program like the first one shown is fine. - -@node Calling Calc from Your Programs, Internals, Example Definitions, Lisp Definitions -@subsection Calling Calc from Your Lisp Programs - -@noindent -A later section (@pxref{Internals}) gives a full description of -Calc's internal Lisp functions. It's not hard to call Calc from -inside your programs, but the number of these functions can be daunting. -So Calc provides one special ``programmer-friendly'' function called -@code{calc-eval} that can be made to do just about everything you -need. It's not as fast as the low-level Calc functions, but it's -much simpler to use! - -It may seem that @code{calc-eval} itself has a daunting number of -options, but they all stem from one simple operation. - -In its simplest manifestation, @samp{(calc-eval "1+2")} parses the -string @code{"1+2"} as if it were a Calc algebraic entry and returns -the result formatted as a string: @code{"3"}. - -Since @code{calc-eval} is on the list of recommended @code{autoload} -functions, you don't need to make any special preparations to load -Calc before calling @code{calc-eval} the first time. Calc will be -loaded and initialized for you. - -All the Calc modes that are currently in effect will be used when -evaluating the expression and formatting the result. - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Additional Arguments to @code{calc-eval} - -@noindent -If the input string parses to a list of expressions, Calc returns -the results separated by @code{", "}. You can specify a different -separator by giving a second string argument to @code{calc-eval}: -@samp{(calc-eval "1+2,3+4" ";")} returns @code{"3;7"}. - -The ``separator'' can also be any of several Lisp symbols which -request other behaviors from @code{calc-eval}. These are discussed -one by one below. - -You can give additional arguments to be substituted for -@samp{$}, @samp{$$}, and so on in the main expression. For -example, @samp{(calc-eval "$/$$" nil "7" "1+1")} evaluates the -expression @code{"7/(1+1)"} to yield the result @code{"3.5"} -(assuming Fraction mode is not in effect). Note the @code{nil} -used as a placeholder for the item-separator argument. - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Error Handling - -@noindent -If @code{calc-eval} encounters an error, it returns a list containing -the character position of the error, plus a suitable message as a -string. Note that @samp{1 / 0} is @emph{not} an error by Calc's -standards; it simply returns the string @code{"1 / 0"} which is the -division left in symbolic form. But @samp{(calc-eval "1/")} will -return the list @samp{(2 "Expected a number")}. - -If you bind the variable @code{calc-eval-error} to @code{t} -using a @code{let} form surrounding the call to @code{calc-eval}, -errors instead call the Emacs @code{error} function which aborts -to the Emacs command loop with a beep and an error message. - -If you bind this variable to the symbol @code{string}, error messages -are returned as strings instead of lists. The character position is -ignored. - -As a courtesy to other Lisp code which may be using Calc, be sure -to bind @code{calc-eval-error} using @code{let} rather than changing -it permanently with @code{setq}. - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Numbers Only - -@noindent -Sometimes it is preferable to treat @samp{1 / 0} as an error -rather than returning a symbolic result. If you pass the symbol -@code{num} as the second argument to @code{calc-eval}, results -that are not constants are treated as errors. The error message -reported is the first @code{calc-why} message if there is one, -or otherwise ``Number expected.'' - -A result is ``constant'' if it is a number, vector, or other -object that does not include variables or function calls. If it -is a vector, the components must themselves be constants. - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Default Modes - -@noindent -If the first argument to @code{calc-eval} is a list whose first -element is a formula string, then @code{calc-eval} sets all the -various Calc modes to their default values while the formula is -evaluated and formatted. For example, the precision is set to 12 -digits, digit grouping is turned off, and the Normal language -mode is used. - -This same principle applies to the other options discussed below. -If the first argument would normally be @var{x}, then it can also -be the list @samp{(@var{x})} to use the default mode settings. - -If there are other elements in the list, they are taken as -variable-name/value pairs which override the default mode -settings. Look at the documentation at the front of the -@file{calc.el} file to find the names of the Lisp variables for -the various modes. The mode settings are restored to their -original values when @code{calc-eval} is done. - -For example, @samp{(calc-eval '("$+$$" calc-internal-prec 8) 'num a b)} -computes the sum of two numbers, requiring a numeric result, and -using default mode settings except that the precision is 8 instead -of the default of 12. - -It's usually best to use this form of @code{calc-eval} unless your -program actually considers the interaction with Calc's mode settings -to be a feature. This will avoid all sorts of potential ``gotchas''; -consider what happens with @samp{(calc-eval "sqrt(2)" 'num)} -when the user has left Calc in Symbolic mode or No-Simplify mode. - -As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")} -checks if the number in string @expr{a} is less than the one in -string @expr{b}. Without using a list, the integer 1 might -come out in a variety of formats which would be hard to test for -conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}. (But -see ``Predicates'' mode, below.) - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Raw Numbers - -@noindent -Normally all input and output for @code{calc-eval} is done with strings. -You can do arithmetic with, say, @samp{(calc-eval "$+$$" nil a b)} -in place of @samp{(+ a b)}, but this is very inefficient since the -numbers must be converted to and from string format as they are passed -from one @code{calc-eval} to the next. - -If the separator is the symbol @code{raw}, the result will be returned -as a raw Calc data structure rather than a string. You can read about -how these objects look in the following sections, but usually you can -treat them as ``black box'' objects with no important internal -structure. - -There is also a @code{rawnum} symbol, which is a combination of -@code{raw} (returning a raw Calc object) and @code{num} (signaling -an error if that object is not a constant). - -You can pass a raw Calc object to @code{calc-eval} in place of a -string, either as the formula itself or as one of the @samp{$} -arguments. Thus @samp{(calc-eval "$+$$" 'raw a b)} is an -addition function that operates on raw Calc objects. Of course -in this case it would be easier to call the low-level @code{math-add} -function in Calc, if you can remember its name. - -In particular, note that a plain Lisp integer is acceptable to Calc -as a raw object. (All Lisp integers are accepted on input, but -integers of more than six decimal digits are converted to ``big-integer'' -form for output. @xref{Data Type Formats}.) - -When it comes time to display the object, just use @samp{(calc-eval a)} -to format it as a string. - -It is an error if the input expression evaluates to a list of -values. The separator symbol @code{list} is like @code{raw} -except that it returns a list of one or more raw Calc objects. - -Note that a Lisp string is not a valid Calc object, nor is a list -containing a string. Thus you can still safely distinguish all the -various kinds of error returns discussed above. - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Predicates - -@noindent -If the separator symbol is @code{pred}, the result of the formula is -treated as a true/false value; @code{calc-eval} returns @code{t} or -@code{nil}, respectively. A value is considered ``true'' if it is a -non-zero number, or false if it is zero or if it is not a number. - -For example, @samp{(calc-eval "$<$$" 'pred a b)} tests whether -one value is less than another. - -As usual, it is also possible for @code{calc-eval} to return one of -the error indicators described above. Lisp will interpret such an -indicator as ``true'' if you don't check for it explicitly. If you -wish to have an error register as ``false'', use something like -@samp{(eq (calc-eval ...) t)}. - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Variable Values - -@noindent -Variables in the formula passed to @code{calc-eval} are not normally -replaced by their values. If you wish this, you can use the -@code{evalv} function (@pxref{Algebraic Manipulation}). For example, -if 4 is stored in Calc variable @code{a} (i.e., in Lisp variable -@code{var-a}), then @samp{(calc-eval "a+pi")} will return the -formula @code{"a + pi"}, but @samp{(calc-eval "evalv(a+pi)")} -will return @code{"7.14159265359"}. - -To store in a Calc variable, just use @code{setq} to store in the -corresponding Lisp variable. (This is obtained by prepending -@samp{var-} to the Calc variable name.) Calc routines will -understand either string or raw form values stored in variables, -although raw data objects are much more efficient. For example, -to increment the Calc variable @code{a}: - -@example -(setq var-a (calc-eval "evalv(a+1)" 'raw)) -@end example - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Stack Access - -@noindent -If the separator symbol is @code{push}, the formula argument is -evaluated (with possible @samp{$} expansions, as usual). The -result is pushed onto the Calc stack. The return value is @code{nil} -(unless there is an error from evaluating the formula, in which -case the return value depends on @code{calc-eval-error} in the -usual way). - -If the separator symbol is @code{pop}, the first argument to -@code{calc-eval} must be an integer instead of a string. That -many values are popped from the stack and thrown away. A negative -argument deletes the entry at that stack level. The return value -is the number of elements remaining in the stack after popping; -@samp{(calc-eval 0 'pop)} is a good way to measure the size of -the stack. - -If the separator symbol is @code{top}, the first argument to -@code{calc-eval} must again be an integer. The value at that -stack level is formatted as a string and returned. Thus -@samp{(calc-eval 1 'top)} returns the top-of-stack value. If the -integer is out of range, @code{nil} is returned. - -The separator symbol @code{rawtop} is just like @code{top} except -that the stack entry is returned as a raw Calc object instead of -as a string. - -In all of these cases the first argument can be made a list in -order to force the default mode settings, as described above. -Thus @samp{(calc-eval '(2 calc-number-radix 16) 'top)} returns the -second-to-top stack entry, formatted as a string using the default -instead of current display modes, except that the radix is -hexadecimal instead of decimal. - -It is, of course, polite to put the Calc stack back the way you -found it when you are done, unless the user of your program is -actually expecting it to affect the stack. - -Note that you do not actually have to switch into the @samp{*Calculator*} -buffer in order to use @code{calc-eval}; it temporarily switches into -the stack buffer if necessary. - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Keyboard Macros - -@noindent -If the separator symbol is @code{macro}, the first argument must be a -string of characters which Calc can execute as a sequence of keystrokes. -This switches into the Calc buffer for the duration of the macro. -For example, @samp{(calc-eval "vx5\rVR+" 'macro)} pushes the -vector @samp{[1,2,3,4,5]} on the stack and then replaces it -with the sum of those numbers. Note that @samp{\r} is the Lisp -notation for the carriage-return, @key{RET}, character. - -If your keyboard macro wishes to pop the stack, @samp{\C-d} is -safer than @samp{\177} (the @key{DEL} character) because some -installations may have switched the meanings of @key{DEL} and -@kbd{C-h}. Calc always interprets @kbd{C-d} as a synonym for -``pop-stack'' regardless of key mapping. - -If you provide a third argument to @code{calc-eval}, evaluation -of the keyboard macro will leave a record in the Trail using -that argument as a tag string. Normally the Trail is unaffected. - -The return value in this case is always @code{nil}. - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Lisp Evaluation - -@noindent -Finally, if the separator symbol is @code{eval}, then the Lisp -@code{eval} function is called on the first argument, which must -be a Lisp expression rather than a Calc formula. Remember to -quote the expression so that it is not evaluated until inside -@code{calc-eval}. - -The difference from plain @code{eval} is that @code{calc-eval} -switches to the Calc buffer before evaluating the expression. -For example, @samp{(calc-eval '(setq calc-internal-prec 17) 'eval)} -will correctly affect the buffer-local Calc precision variable. - -An alternative would be @samp{(calc-eval '(calc-precision 17) 'eval)}. -This is evaluating a call to the function that is normally invoked -by the @kbd{p} key, giving it 17 as its ``numeric prefix argument.'' -Note that this function will leave a message in the echo area as -a side effect. Also, all Calc functions switch to the Calc buffer -automatically if not invoked from there, so the above call is -also equivalent to @samp{(calc-precision 17)} by itself. -In all cases, Calc uses @code{save-excursion} to switch back to -your original buffer when it is done. - -As usual the first argument can be a list that begins with a Lisp -expression to use default instead of current mode settings. - -The result of @code{calc-eval} in this usage is just the result -returned by the evaluated Lisp expression. - -@ifinfo -@example - -@end example -@end ifinfo -@subsubsection Example - -@noindent -@findex convert-temp -Here is a sample Emacs command that uses @code{calc-eval}. Suppose -you have a document with lots of references to temperatures on the -Fahrenheit scale, say ``98.6 F'', and you wish to convert these -references to Centigrade. The following command does this conversion. -Place the Emacs cursor right after the letter ``F'' and invoke the -command to change ``98.6 F'' to ``37 C''. Or, if the temperature is -already in Centigrade form, the command changes it back to Fahrenheit. - -@example -(defun convert-temp () - (interactive) - (save-excursion - (re-search-backward "[^-.0-9]\\([-.0-9]+\\) *\\([FC]\\)") - (let* ((top1 (match-beginning 1)) - (bot1 (match-end 1)) - (number (buffer-substring top1 bot1)) - (top2 (match-beginning 2)) - (bot2 (match-end 2)) - (type (buffer-substring top2 bot2))) - (if (equal type "F") - (setq type "C" - number (calc-eval "($ - 32)*5/9" nil number)) - (setq type "F" - number (calc-eval "$*9/5 + 32" nil number))) - (goto-char top2) - (delete-region top2 bot2) - (insert-before-markers type) - (goto-char top1) - (delete-region top1 bot1) - (if (string-match "\\.$" number) ; change "37." to "37" - (setq number (substring number 0 -1))) - (insert number)))) -@end example - -Note the use of @code{insert-before-markers} when changing between -``F'' and ``C'', so that the character winds up before the cursor -instead of after it. - -@node Internals, , Calling Calc from Your Programs, Lisp Definitions -@subsection Calculator Internals - -@noindent -This section describes the Lisp functions defined by the Calculator that -may be of use to user-written Calculator programs (as described in the -rest of this chapter). These functions are shown by their names as they -conventionally appear in @code{defmath}. Their full Lisp names are -generally gotten by prepending @samp{calcFunc-} or @samp{math-} to their -apparent names. (Names that begin with @samp{calc-} are already in -their full Lisp form.) You can use the actual full names instead if you -prefer them, or if you are calling these functions from regular Lisp. - -The functions described here are scattered throughout the various -Calc component files. Note that @file{calc.el} includes @code{autoload}s -for only a few component files; when Calc wants to call an advanced -function it calls @samp{(calc-extensions)} first; this function -autoloads @file{calc-ext.el}, which in turn autoloads all the functions -in the remaining component files. - -Because @code{defmath} itself uses the extensions, user-written code -generally always executes with the extensions already loaded, so -normally you can use any Calc function and be confident that it will -be autoloaded for you when necessary. If you are doing something -special, check carefully to make sure each function you are using is -from @file{calc.el} or its components, and call @samp{(calc-extensions)} -before using any function based in @file{calc-ext.el} if you can't -prove this file will already be loaded. - -@menu -* Data Type Formats:: -* Interactive Lisp Functions:: -* Stack Lisp Functions:: -* Predicates:: -* Computational Lisp Functions:: -* Vector Lisp Functions:: -* Symbolic Lisp Functions:: -* Formatting Lisp Functions:: -* Hooks:: -@end menu - -@node Data Type Formats, Interactive Lisp Functions, Internals, Internals -@subsubsection Data Type Formats - -@noindent -Integers are stored in either of two ways, depending on their magnitude. -Integers less than one million in absolute value are stored as standard -Lisp integers. This is the only storage format for Calc data objects -which is not a Lisp list. - -Large integers are stored as lists of the form @samp{(bigpos @var{d0} -@var{d1} @var{d2} @dots{})} for positive integers 1000000 or more, or -@samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative integers -@mathit{-1000000} or less. Each @var{d} is a base-1000 ``digit,'' a Lisp integer -from 0 to 999. The least significant digit is @var{d0}; the last digit, -@var{dn}, which is always nonzero, is the most significant digit. For -example, the integer @mathit{-12345678} is stored as @samp{(bigneg 678 345 12)}. - -The distinction between small and large integers is entirely hidden from -the user. In @code{defmath} definitions, the Lisp predicate @code{integerp} -returns true for either kind of integer, and in general both big and small -integers are accepted anywhere the word ``integer'' is used in this manual. -If the distinction must be made, native Lisp integers are called @dfn{fixnums} -and large integers are called @dfn{bignums}. - -Fractions are stored as a list of the form, @samp{(frac @var{n} @var{d})} -where @var{n} is an integer (big or small) numerator, @var{d} is an -integer denominator greater than one, and @var{n} and @var{d} are relatively -prime. Note that fractions where @var{d} is one are automatically converted -to plain integers by all math routines; fractions where @var{d} is negative -are normalized by negating the numerator and denominator. - -Floating-point numbers are stored in the form, @samp{(float @var{mant} -@var{exp})}, where @var{mant} (the ``mantissa'') is an integer less than -@samp{10^@var{p}} in absolute value (@var{p} represents the current -precision), and @var{exp} (the ``exponent'') is a fixnum. The value of -the float is @samp{@var{mant} * 10^@var{exp}}. For example, the number -@mathit{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}. Other constraints -are that the number 0.0 is always stored as @samp{(float 0 0)}, and, -except for the 0.0 case, the rightmost base-10 digit of @var{mant} is -always nonzero. (If the rightmost digit is zero, the number is -rearranged by dividing @var{mant} by ten and incrementing @var{exp}.) - -Rectangular complex numbers are stored in the form @samp{(cplx @var{re} -@var{im})}, where @var{re} and @var{im} are each real numbers, either -integers, fractions, or floats. The value is @samp{@var{re} + @var{im}i}. -The @var{im} part is nonzero; complex numbers with zero imaginary -components are converted to real numbers automatically. - -Polar complex numbers are stored in the form @samp{(polar @var{r} -@var{theta})}, where @var{r} is a positive real value and @var{theta} -is a real value or HMS form representing an angle. This angle is -usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees, -or @samp{(-pi ..@: pi)} radians, according to the current angular mode. -If the angle is 0 the value is converted to a real number automatically. -(If the angle is 180 degrees, the value is usually also converted to a -negative real number.) - -Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m} -@var{s})}, where @var{h} is an integer or an integer-valued float (i.e., -a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued -float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number -in the range @samp{[0 ..@: 60)}. - -Date forms are stored as @samp{(date @var{n})}, where @var{n} is -a real number that counts days since midnight on the morning of -January 1, 1 AD. If @var{n} is an integer, this is a pure date -form. If @var{n} is a fraction or float, this is a date/time form. - -Modulo forms are stored as @samp{(mod @var{n} @var{m})}, where @var{m} is a -positive real number or HMS form, and @var{n} is a real number or HMS -form in the range @samp{[0 ..@: @var{m})}. - -Error forms are stored as @samp{(sdev @var{x} @var{sigma})}, where @var{x} -is the mean value and @var{sigma} is the standard deviation. Each -component is either a number, an HMS form, or a symbolic object -(a variable or function call). If @var{sigma} is zero, the value is -converted to a plain real number. If @var{sigma} is negative or -complex, it is automatically normalized to be a positive real. - -Interval forms are stored as @samp{(intv @var{mask} @var{lo} @var{hi})}, -where @var{mask} is one of the integers 0, 1, 2, or 3, and @var{lo} and -@var{hi} are real numbers, HMS forms, or symbolic objects. The @var{mask} -is a binary integer where 1 represents the fact that the interval is -closed on the high end, and 2 represents the fact that it is closed on -the low end. (Thus 3 represents a fully closed interval.) The interval -@w{@samp{(intv 3 @var{x} @var{x})}} is converted to the plain number @var{x}; -intervals @samp{(intv @var{mask} @var{x} @var{x})} for any other @var{mask} -represent empty intervals. If @var{hi} is less than @var{lo}, the interval -is converted to a standard empty interval by replacing @var{hi} with @var{lo}. - -Vectors are stored as @samp{(vec @var{v1} @var{v2} @dots{})}, where @var{v1} -is the first element of the vector, @var{v2} is the second, and so on. -An empty vector is stored as @samp{(vec)}. A matrix is simply a vector -where all @var{v}'s are themselves vectors of equal lengths. Note that -Calc vectors are unrelated to the Emacs Lisp ``vector'' type, which is -generally unused by Calc data structures. - -Variables are stored as @samp{(var @var{name} @var{sym})}, where -@var{name} is a Lisp symbol whose print name is used as the visible name -of the variable, and @var{sym} is a Lisp symbol in which the variable's -value is actually stored. Thus, @samp{(var pi var-pi)} represents the -special constant @samp{pi}. Almost always, the form is @samp{(var -@var{v} var-@var{v})}. If the variable name was entered with @code{#} -signs (which are converted to hyphens internally), the form is -@samp{(var @var{u} @var{v})}, where @var{u} is a symbol whose name -contains @code{#} characters, and @var{v} is a symbol that contains -@code{-} characters instead. The value of a variable is the Calc -object stored in its @var{sym} symbol's value cell. If the symbol's -value cell is void or if it contains @code{nil}, the variable has no -value. Special constants have the form @samp{(special-const -@var{value})} stored in their value cell, where @var{value} is a formula -which is evaluated when the constant's value is requested. Variables -which represent units are not stored in any special way; they are units -only because their names appear in the units table. If the value -cell contains a string, it is parsed to get the variable's value when -the variable is used. - -A Lisp list with any other symbol as the first element is a function call. -The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^}, -and @code{|} represent special binary operators; these lists are always -of the form @samp{(@var{op} @var{lhs} @var{rhs})} where @var{lhs} is the -sub-formula on the lefthand side and @var{rhs} is the sub-formula on the -right. The symbol @code{neg} represents unary negation; this list is always -of the form @samp{(neg @var{arg})}. Any other symbol @var{func} represents a -function that would be displayed in function-call notation; the symbol -@var{func} is in general always of the form @samp{calcFunc-@var{name}}. -The function cell of the symbol @var{func} should contain a Lisp function -for evaluating a call to @var{func}. This function is passed the remaining -elements of the list (themselves already evaluated) as arguments; such -functions should return @code{nil} or call @code{reject-arg} to signify -that they should be left in symbolic form, or they should return a Calc -object which represents their value, or a list of such objects if they -wish to return multiple values. (The latter case is allowed only for -functions which are the outer-level call in an expression whose value is -about to be pushed on the stack; this feature is considered obsolete -and is not used by any built-in Calc functions.) - -@node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals -@subsubsection Interactive Functions - -@noindent -The functions described here are used in implementing interactive Calc -commands. Note that this list is not exhaustive! If there is an -existing command that behaves similarly to the one you want to define, -you may find helpful tricks by checking the source code for that command. - -@defun calc-set-command-flag flag -Set the command flag @var{flag}. This is generally a Lisp symbol, but -may in fact be anything. The effect is to add @var{flag} to the list -stored in the variable @code{calc-command-flags}, unless it is already -there. @xref{Defining Simple Commands}. -@end defun - -@defun calc-clear-command-flag flag -If @var{flag} appears among the list of currently-set command flags, -remove it from that list. -@end defun - -@defun calc-record-undo rec -Add the ``undo record'' @var{rec} to the list of steps to take if the -current operation should need to be undone. Stack push and pop functions -automatically call @code{calc-record-undo}, so the kinds of undo records -you might need to create take the form @samp{(set @var{sym} @var{value})}, -which says that the Lisp variable @var{sym} was changed and had previously -contained @var{value}; @samp{(store @var{var} @var{value})} which says that -the Calc variable @var{var} (a string which is the name of the symbol that -contains the variable's value) was stored and its previous value was -@var{value} (either a Calc data object, or @code{nil} if the variable was -previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})}, -which means that to undo requires calling the function @samp{(@var{undo} -@var{args} @dots{})} and, if the undo is later redone, calling -@samp{(@var{redo} @var{args} @dots{})}. -@end defun - -@defun calc-record-why msg args -Record the error or warning message @var{msg}, which is normally a string. -This message will be replayed if the user types @kbd{w} (@code{calc-why}); -if the message string begins with a @samp{*}, it is considered important -enough to display even if the user doesn't type @kbd{w}. If one or more -@var{args} are present, the displayed message will be of the form, -@samp{@var{msg}: @var{arg1}, @var{arg2}, @dots{}}, where the arguments are -formatted on the assumption that they are either strings or Calc objects of -some sort. If @var{msg} is a symbol, it is the name of a Calc predicate -(such as @code{integerp} or @code{numvecp}) which the arguments did not -satisfy; it is expanded to a suitable string such as ``Expected an -integer.'' The @code{reject-arg} function calls @code{calc-record-why} -automatically; @pxref{Predicates}. -@end defun - -@defun calc-is-inverse -This predicate returns true if the current command is inverse, -i.e., if the Inverse (@kbd{I} key) flag was set. -@end defun - -@defun calc-is-hyperbolic -This predicate is the analogous function for the @kbd{H} key. -@end defun - -@node Stack Lisp Functions, Predicates, Interactive Lisp Functions, Internals -@subsubsection Stack-Oriented Functions - -@noindent -The functions described here perform various operations on the Calc -stack and trail. They are to be used in interactive Calc commands. - -@defun calc-push-list vals n -Push the Calc objects in list @var{vals} onto the stack at stack level -@var{n}. If @var{n} is omitted it defaults to 1, so that the elements -are pushed at the top of the stack. If @var{n} is greater than 1, the -elements will be inserted into the stack so that the last element will -end up at level @var{n}, the next-to-last at level @var{n}+1, etc. -The elements of @var{vals} are assumed to be valid Calc objects, and -are not evaluated, rounded, or renormalized in any way. If @var{vals} -is an empty list, nothing happens. - -The stack elements are pushed without any sub-formula selections. -You can give an optional third argument to this function, which must -be a list the same size as @var{vals} of selections. Each selection -must be @code{eq} to some sub-formula of the corresponding formula -in @var{vals}, or @code{nil} if that formula should have no selection. -@end defun - -@defun calc-top-list n m -Return a list of the @var{n} objects starting at level @var{m} of the -stack. If @var{m} is omitted it defaults to 1, so that the elements are -taken from the top of the stack. If @var{n} is omitted, it also -defaults to 1, so that the top stack element (in the form of a -one-element list) is returned. If @var{m} is greater than 1, the -@var{m}th stack element will be at the end of the list, the @var{m}+1st -element will be next-to-last, etc. If @var{n} or @var{m} are out of -range, the command is aborted with a suitable error message. If @var{n} -is zero, the function returns an empty list. The stack elements are not -evaluated, rounded, or renormalized. - -If any stack elements contain selections, and selections have not -been disabled by the @kbd{j e} (@code{calc-enable-selections}) command, -this function returns the selected portions rather than the entire -stack elements. It can be given a third ``selection-mode'' argument -which selects other behaviors. If it is the symbol @code{t}, then -a selection in any of the requested stack elements produces an -``invalid operation on selections'' error. If it is the symbol @code{full}, -the whole stack entry is always returned regardless of selections. -If it is the symbol @code{sel}, the selected portion is always returned, -or @code{nil} if there is no selection. (This mode ignores the @kbd{j e} -command.) If the symbol is @code{entry}, the complete stack entry in -list form is returned; the first element of this list will be the whole -formula, and the third element will be the selection (or @code{nil}). -@end defun - -@defun calc-pop-stack n m -Remove the specified elements from the stack. The parameters @var{n} -and @var{m} are defined the same as for @code{calc-top-list}. The return -value of @code{calc-pop-stack} is uninteresting. - -If there are any selected sub-formulas among the popped elements, and -@kbd{j e} has not been used to disable selections, this produces an -error without changing the stack. If you supply an optional third -argument of @code{t}, the stack elements are popped even if they -contain selections. -@end defun - -@defun calc-record-list vals tag -This function records one or more results in the trail. The @var{vals} -are a list of strings or Calc objects. The @var{tag} is the four-character -tag string to identify the values. If @var{tag} is omitted, a blank tag -will be used. -@end defun - -@defun calc-normalize n -This function takes a Calc object and ``normalizes'' it. At the very -least this involves re-rounding floating-point values according to the -current precision and other similar jobs. Also, unless the user has -selected No-Simplify mode (@pxref{Simplification Modes}), this involves -actually evaluating a formula object by executing the function calls -it contains, and possibly also doing algebraic simplification, etc. -@end defun - -@defun calc-top-list-n n m -This function is identical to @code{calc-top-list}, except that it calls -@code{calc-normalize} on the values that it takes from the stack. They -are also passed through @code{check-complete}, so that incomplete -objects will be rejected with an error message. All computational -commands should use this in preference to @code{calc-top-list}; the only -standard Calc commands that operate on the stack without normalizing -are stack management commands like @code{calc-enter} and @code{calc-roll-up}. -This function accepts the same optional selection-mode argument as -@code{calc-top-list}. -@end defun - -@defun calc-top-n m -This function is a convenient form of @code{calc-top-list-n} in which only -a single element of the stack is taken and returned, rather than a list -of elements. This also accepts an optional selection-mode argument. -@end defun - -@defun calc-enter-result n tag vals -This function is a convenient interface to most of the above functions. -The @var{vals} argument should be either a single Calc object, or a list -of Calc objects; the object or objects are normalized, and the top @var{n} -stack entries are replaced by the normalized objects. If @var{tag} is -non-@code{nil}, the normalized objects are also recorded in the trail. -A typical stack-based computational command would take the form, - -@smallexample -(calc-enter-result @var{n} @var{tag} (cons 'calcFunc-@var{func} - (calc-top-list-n @var{n}))) -@end smallexample - -If any of the @var{n} stack elements replaced contain sub-formula -selections, and selections have not been disabled by @kbd{j e}, -this function takes one of two courses of action. If @var{n} is -equal to the number of elements in @var{vals}, then each element of -@var{vals} is spliced into the corresponding selection; this is what -happens when you use the @key{TAB} key, or when you use a unary -arithmetic operation like @code{sqrt}. If @var{vals} has only one -element but @var{n} is greater than one, there must be only one -selection among the top @var{n} stack elements; the element from -@var{vals} is spliced into that selection. This is what happens when -you use a binary arithmetic operation like @kbd{+}. Any other -combination of @var{n} and @var{vals} is an error when selections -are present. -@end defun - -@defun calc-unary-op tag func arg -This function implements a unary operator that allows a numeric prefix -argument to apply the operator over many stack entries. If the prefix -argument @var{arg} is @code{nil}, this uses @code{calc-enter-result} -as outlined above. Otherwise, it maps the function over several stack -elements; @pxref{Prefix Arguments}. For example, - -@smallexample -(defun calc-zeta (arg) - (interactive "P") - (calc-unary-op "zeta" 'calcFunc-zeta arg)) -@end smallexample -@end defun - -@defun calc-binary-op tag func arg ident unary -This function implements a binary operator, analogously to -@code{calc-unary-op}. The optional @var{ident} and @var{unary} -arguments specify the behavior when the prefix argument is zero or -one, respectively. If the prefix is zero, the value @var{ident} -is pushed onto the stack, if specified, otherwise an error message -is displayed. If the prefix is one, the unary function @var{unary} -is applied to the top stack element, or, if @var{unary} is not -specified, nothing happens. When the argument is two or more, -the binary function @var{func} is reduced across the top @var{arg} -stack elements; when the argument is negative, the function is -mapped between the next-to-top @mathit{-@var{arg}} stack elements and the -top element. -@end defun - -@defun calc-stack-size -Return the number of elements on the stack as an integer. This count -does not include elements that have been temporarily hidden by stack -truncation; @pxref{Truncating the Stack}. -@end defun - -@defun calc-cursor-stack-index n -Move the point to the @var{n}th stack entry. If @var{n} is zero, this -will be the @samp{.} line. If @var{n} is from 1 to the current stack size, -this will be the beginning of the first line of that stack entry's display. -If line numbers are enabled, this will move to the first character of the -line number, not the stack entry itself. -@end defun - -@defun calc-substack-height n -Return the number of lines between the beginning of the @var{n}th stack -entry and the bottom of the buffer. If @var{n} is zero, this -will be one (assuming no stack truncation). If all stack entries are -one line long (i.e., no matrices are displayed), the return value will -be equal @var{n}+1 as long as @var{n} is in range. (Note that in Big -mode, the return value includes the blank lines that separate stack -entries.) -@end defun - -@defun calc-refresh -Erase the @code{*Calculator*} buffer and reformat its contents from memory. -This must be called after changing any parameter, such as the current -display radix, which might change the appearance of existing stack -entries. (During a keyboard macro invoked by the @kbd{X} key, refreshing -is suppressed, but a flag is set so that the entire stack will be refreshed -rather than just the top few elements when the macro finishes.) -@end defun - -@node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals -@subsubsection Predicates - -@noindent -The functions described here are predicates, that is, they return a -true/false value where @code{nil} means false and anything else means -true. These predicates are expanded by @code{defmath}, for example, -from @code{zerop} to @code{math-zerop}. In many cases they correspond -to native Lisp functions by the same name, but are extended to cover -the full range of Calc data types. - -@defun zerop x -Returns true if @var{x} is numerically zero, in any of the Calc data -types. (Note that for some types, such as error forms and intervals, -it never makes sense to return true.) In @code{defmath}, the expression -@samp{(= x 0)} will automatically be converted to @samp{(math-zerop x)}, -and @samp{(/= x 0)} will be converted to @samp{(not (math-zerop x))}. -@end defun - -@defun negp x -Returns true if @var{x} is negative. This accepts negative real numbers -of various types, negative HMS and date forms, and intervals in which -all included values are negative. In @code{defmath}, the expression -@samp{(< x 0)} will automatically be converted to @samp{(math-negp x)}, -and @samp{(>= x 0)} will be converted to @samp{(not (math-negp x))}. -@end defun - -@defun posp x -Returns true if @var{x} is positive (and non-zero). For complex -numbers, none of these three predicates will return true. -@end defun - -@defun looks-negp x -Returns true if @var{x} is ``negative-looking.'' This returns true if -@var{x} is a negative number, or a formula with a leading minus sign -such as @samp{-a/b}. In other words, this is an object which can be -made simpler by calling @code{(- @var{x})}. -@end defun - -@defun integerp x -Returns true if @var{x} is an integer of any size. -@end defun - -@defun fixnump x -Returns true if @var{x} is a native Lisp integer. -@end defun - -@defun natnump x -Returns true if @var{x} is a nonnegative integer of any size. -@end defun - -@defun fixnatnump x -Returns true if @var{x} is a nonnegative Lisp integer. -@end defun - -@defun num-integerp x -Returns true if @var{x} is numerically an integer, i.e., either a -true integer or a float with no significant digits to the right of -the decimal point. -@end defun - -@defun messy-integerp x -Returns true if @var{x} is numerically, but not literally, an integer. -A value is @code{num-integerp} if it is @code{integerp} or -@code{messy-integerp} (but it is never both at once). -@end defun - -@defun num-natnump x -Returns true if @var{x} is numerically a nonnegative integer. -@end defun - -@defun evenp x -Returns true if @var{x} is an even integer. -@end defun - -@defun looks-evenp x -Returns true if @var{x} is an even integer, or a formula with a leading -multiplicative coefficient which is an even integer. -@end defun - -@defun oddp x -Returns true if @var{x} is an odd integer. -@end defun - -@defun ratp x -Returns true if @var{x} is a rational number, i.e., an integer or a -fraction. -@end defun - -@defun realp x -Returns true if @var{x} is a real number, i.e., an integer, fraction, -or floating-point number. -@end defun - -@defun anglep x -Returns true if @var{x} is a real number or HMS form. -@end defun - -@defun floatp x -Returns true if @var{x} is a float, or a complex number, error form, -interval, date form, or modulo form in which at least one component -is a float. -@end defun - -@defun complexp x -Returns true if @var{x} is a rectangular or polar complex number -(but not a real number). -@end defun - -@defun rect-complexp x -Returns true if @var{x} is a rectangular complex number. -@end defun - -@defun polar-complexp x -Returns true if @var{x} is a polar complex number. -@end defun - -@defun numberp x -Returns true if @var{x} is a real number or a complex number. -@end defun - -@defun scalarp x -Returns true if @var{x} is a real or complex number or an HMS form. -@end defun - -@defun vectorp x -Returns true if @var{x} is a vector (this simply checks if its argument -is a list whose first element is the symbol @code{vec}). -@end defun - -@defun numvecp x -Returns true if @var{x} is a number or vector. -@end defun - -@defun matrixp x -Returns true if @var{x} is a matrix, i.e., a vector of one or more vectors, -all of the same size. -@end defun - -@defun square-matrixp x -Returns true if @var{x} is a square matrix. -@end defun - -@defun objectp x -Returns true if @var{x} is any numeric Calc object, including real and -complex numbers, HMS forms, date forms, error forms, intervals, and -modulo forms. (Note that error forms and intervals may include formulas -as their components; see @code{constp} below.) -@end defun - -@defun objvecp x -Returns true if @var{x} is an object or a vector. This also accepts -incomplete objects, but it rejects variables and formulas (except as -mentioned above for @code{objectp}). -@end defun - -@defun primp x -Returns true if @var{x} is a ``primitive'' or ``atomic'' Calc object, -i.e., one whose components cannot be regarded as sub-formulas. This -includes variables, and all @code{objectp} types except error forms -and intervals. -@end defun - -@defun constp x -Returns true if @var{x} is constant, i.e., a real or complex number, -HMS form, date form, or error form, interval, or vector all of whose -components are @code{constp}. -@end defun - -@defun lessp x y -Returns true if @var{x} is numerically less than @var{y}. Returns false -if @var{x} is greater than or equal to @var{y}, or if the order is -undefined or cannot be determined. Generally speaking, this works -by checking whether @samp{@var{x} - @var{y}} is @code{negp}. In -@code{defmath}, the expression @samp{(< x y)} will automatically be -converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=}, -and @code{>=} are similarly converted in terms of @code{lessp}. -@end defun - -@defun beforep x y -Returns true if @var{x} comes before @var{y} in a canonical ordering -of Calc objects. If @var{x} and @var{y} are both real numbers, this -will be the same as @code{lessp}. But whereas @code{lessp} considers -other types of objects to be unordered, @code{beforep} puts any two -objects into a definite, consistent order. The @code{beforep} -function is used by the @kbd{V S} vector-sorting command, and also -by @kbd{a s} to put the terms of a product into canonical order: -This allows @samp{x y + y x} to be simplified easily to @samp{2 x y}. -@end defun - -@defun equal x y -This is the standard Lisp @code{equal} predicate; it returns true if -@var{x} and @var{y} are structurally identical. This is the usual way -to compare numbers for equality, but note that @code{equal} will treat -0 and 0.0 as different. -@end defun - -@defun math-equal x y -Returns true if @var{x} and @var{y} are numerically equal, either because -they are @code{equal}, or because their difference is @code{zerop}. In -@code{defmath}, the expression @samp{(= x y)} will automatically be -converted to @samp{(math-equal x y)}. -@end defun - -@defun equal-int x n -Returns true if @var{x} and @var{n} are numerically equal, where @var{n} -is a fixnum which is not a multiple of 10. This will automatically be -used by @code{defmath} in place of the more general @code{math-equal} -whenever possible. -@end defun - -@defun nearly-equal x y -Returns true if @var{x} and @var{y}, as floating-point numbers, are -equal except possibly in the last decimal place. For example, -314.159 and 314.166 are considered nearly equal if the current -precision is 6 (since they differ by 7 units), but not if the current -precision is 7 (since they differ by 70 units). Most functions which -use series expansions use @code{with-extra-prec} to evaluate the -series with 2 extra digits of precision, then use @code{nearly-equal} -to decide when the series has converged; this guards against cumulative -error in the series evaluation without doing extra work which would be -lost when the result is rounded back down to the current precision. -In @code{defmath}, this can be written @samp{(~= @var{x} @var{y})}. -The @var{x} and @var{y} can be numbers of any kind, including complex. -@end defun - -@defun nearly-zerop x y -Returns true if @var{x} is nearly zero, compared to @var{y}. This -checks whether @var{x} plus @var{y} would by be @code{nearly-equal} -to @var{y} itself, to within the current precision, in other words, -if adding @var{x} to @var{y} would have a negligible effect on @var{y} -due to roundoff error. @var{X} may be a real or complex number, but -@var{y} must be real. -@end defun - -@defun is-true x -Return true if the formula @var{x} represents a true value in -Calc, not Lisp, terms. It tests if @var{x} is a non-zero number -or a provably non-zero formula. -@end defun - -@defun reject-arg val pred -Abort the current function evaluation due to unacceptable argument values. -This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a -Lisp error which @code{normalize} will trap. The net effect is that the -function call which led here will be left in symbolic form. -@end defun - -@defun inexact-value -If Symbolic mode is enabled, this will signal an error that causes -@code{normalize} to leave the formula in symbolic form, with the message -``Inexact result.'' (This function has no effect when not in Symbolic mode.) -Note that if your function calls @samp{(sin 5)} in Symbolic mode, the -@code{sin} function will call @code{inexact-value}, which will cause your -function to be left unsimplified. You may instead wish to call -@samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic mode will -return the formula @samp{sin(5)} to your function. -@end defun - -@defun overflow -This signals an error that will be reported as a floating-point overflow. -@end defun - -@defun underflow -This signals a floating-point underflow. -@end defun - -@node Computational Lisp Functions, Vector Lisp Functions, Predicates, Internals -@subsubsection Computational Functions - -@noindent -The functions described here do the actual computational work of the -Calculator. In addition to these, note that any function described in -the main body of this manual may be called from Lisp; for example, if -the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command, -this means @code{calc-sqrt} is an interactive stack-based square-root -command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt}) -is the actual Lisp function for taking square roots. - -The functions @code{math-add}, @code{math-sub}, @code{math-mul}, -@code{math-div}, @code{math-mod}, and @code{math-neg} are not included -in this list, since @code{defmath} allows you to write native Lisp -@code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-}, -respectively, instead. - -@defun normalize val -(Full form: @code{math-normalize}.) -Reduce the value @var{val} to standard form. For example, if @var{val} -is a fixnum, it will be converted to a bignum if it is too large, and -if @var{val} is a bignum it will be normalized by clipping off trailing -(i.e., most-significant) zero digits and converting to a fixnum if it is -small. All the various data types are similarly converted to their standard -forms. Variables are left alone, but function calls are actually evaluated -in formulas. For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will -return 6. - -If a function call fails, because the function is void or has the wrong -number of parameters, or because it returns @code{nil} or calls -@code{reject-arg} or @code{inexact-result}, @code{normalize} returns -the formula still in symbolic form. - -If the current simplification mode is ``none'' or ``numeric arguments -only,'' @code{normalize} will act appropriately. However, the more -powerful simplification modes (like Algebraic Simplification) are -not handled by @code{normalize}. They are handled by @code{calc-normalize}, -which calls @code{normalize} and possibly some other routines, such -as @code{simplify} or @code{simplify-units}. Programs generally will -never call @code{calc-normalize} except when popping or pushing values -on the stack. -@end defun - -@defun evaluate-expr expr -Replace all variables in @var{expr} that have values with their values, -then use @code{normalize} to simplify the result. This is what happens -when you press the @kbd{=} key interactively. -@end defun - -@defmac with-extra-prec n body -Evaluate the Lisp forms in @var{body} with precision increased by @var{n} -digits. This is a macro which expands to - -@smallexample -(math-normalize - (let ((calc-internal-prec (+ calc-internal-prec @var{n}))) - @var{body})) -@end smallexample - -The surrounding call to @code{math-normalize} causes a floating-point -result to be rounded down to the original precision afterwards. This -is important because some arithmetic operations assume a number's -mantissa contains no more digits than the current precision allows. -@end defmac - -@defun make-frac n d -Build a fraction @samp{@var{n}:@var{d}}. This is equivalent to calling -@samp{(normalize (list 'frac @var{n} @var{d}))}, but more efficient. -@end defun - -@defun make-float mant exp -Build a floating-point value out of @var{mant} and @var{exp}, both -of which are arbitrary integers. This function will return a -properly normalized float value, or signal an overflow or underflow -if @var{exp} is out of range. -@end defun - -@defun make-sdev x sigma -Build an error form out of @var{x} and the absolute value of @var{sigma}. -If @var{sigma} is zero, the result is the number @var{x} directly. -If @var{sigma} is negative or complex, its absolute value is used. -If @var{x} or @var{sigma} is not a valid type of object for use in -error forms, this calls @code{reject-arg}. -@end defun - -@defun make-intv mask lo hi -Build an interval form out of @var{mask} (which is assumed to be an -integer from 0 to 3), and the limits @var{lo} and @var{hi}. If -@var{lo} is greater than @var{hi}, an empty interval form is returned. -This calls @code{reject-arg} if @var{lo} or @var{hi} is unsuitable. -@end defun - -@defun sort-intv mask lo hi -Build an interval form, similar to @code{make-intv}, except that if -@var{lo} is less than @var{hi} they are simply exchanged, and the -bits of @var{mask} are swapped accordingly. -@end defun - -@defun make-mod n m -Build a modulo form out of @var{n} and the modulus @var{m}. Since modulo -forms do not allow formulas as their components, if @var{n} or @var{m} -is not a real number or HMS form the result will be a formula which -is a call to @code{makemod}, the algebraic version of this function. -@end defun - -@defun float x -Convert @var{x} to floating-point form. Integers and fractions are -converted to numerically equivalent floats; components of complex -numbers, vectors, HMS forms, date forms, error forms, intervals, and -modulo forms are recursively floated. If the argument is a variable -or formula, this calls @code{reject-arg}. -@end defun - -@defun compare x y -Compare the numbers @var{x} and @var{y}, and return @mathit{-1} if -@samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})}, -0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is -undefined or cannot be determined. -@end defun - -@defun numdigs n -Return the number of digits of integer @var{n}, effectively -@samp{ceil(log10(@var{n}))}, but much more efficient. Zero is -considered to have zero digits. -@end defun - -@defun scale-int x n -Shift integer @var{x} left @var{n} decimal digits, or right @mathit{-@var{n}} -digits with truncation toward zero. -@end defun - -@defun scale-rounding x n -Like @code{scale-int}, except that a right shift rounds to the nearest -integer rather than truncating. -@end defun - -@defun fixnum n -Return the integer @var{n} as a fixnum, i.e., a native Lisp integer. -If @var{n} is outside the permissible range for Lisp integers (usually -24 binary bits) the result is undefined. -@end defun - -@defun sqr x -Compute the square of @var{x}; short for @samp{(* @var{x} @var{x})}. -@end defun - -@defun quotient x y -Divide integer @var{x} by integer @var{y}; return an integer quotient -and discard the remainder. If @var{x} or @var{y} is negative, the -direction of rounding is undefined. -@end defun - -@defun idiv x y -Perform an integer division; if @var{x} and @var{y} are both nonnegative -integers, this uses the @code{quotient} function, otherwise it computes -@samp{floor(@var{x}/@var{y})}. Thus the result is well-defined but -slower than for @code{quotient}. -@end defun - -@defun imod x y -Divide integer @var{x} by integer @var{y}; return the integer remainder -and discard the quotient. Like @code{quotient}, this works only for -integer arguments and is not well-defined for negative arguments. -For a more well-defined result, use @samp{(% @var{x} @var{y})}. -@end defun - -@defun idivmod x y -Divide integer @var{x} by integer @var{y}; return a cons cell whose -@code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr} -is @samp{(imod @var{x} @var{y})}. -@end defun - -@defun pow x y -Compute @var{x} to the power @var{y}. In @code{defmath} code, this can -also be written @samp{(^ @var{x} @var{y})} or -@w{@samp{(expt @var{x} @var{y})}}. -@end defun - -@defun abs-approx x -Compute a fast approximation to the absolute value of @var{x}. For -example, for a rectangular complex number the result is the sum of -the absolute values of the components. -@end defun - -@findex e -@findex gamma-const -@findex ln-2 -@findex ln-10 -@findex phi -@findex pi-over-2 -@findex pi-over-4 -@findex pi-over-180 -@findex sqrt-two-pi -@findex sqrt-e -@findex two-pi -@defun pi -The function @samp{(pi)} computes @samp{pi} to the current precision. -Other related constant-generating functions are @code{two-pi}, -@code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi}, -@code{e}, @code{sqrt-e}, @code{ln-2}, @code{ln-10}, @code{phi} and -@code{gamma-const}. Each function returns a floating-point value in the -current precision, and each uses caching so that all calls after the -first are essentially free. -@end defun - -@defmac math-defcache @var{func} @var{initial} @var{form} -This macro, usually used as a top-level call like @code{defun} or -@code{defvar}, defines a new cached constant analogous to @code{pi}, etc. -It defines a function @code{func} which returns the requested value; -if @var{initial} is non-@code{nil} it must be a @samp{(float @dots{})} -form which serves as an initial value for the cache. If @var{func} -is called when the cache is empty or does not have enough digits to -satisfy the current precision, the Lisp expression @var{form} is evaluated -with the current precision increased by four, and the result minus its -two least significant digits is stored in the cache. For example, -calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34 -digits, rounds it down to 32 digits for future use, then rounds it -again to 30 digits for use in the present request. -@end defmac - -@findex half-circle -@findex quarter-circle -@defun full-circle symb -If the current angular mode is Degrees or HMS, this function returns the -integer 360. In Radians mode, this function returns either the -corresponding value in radians to the current precision, or the formula -@samp{2*pi}, depending on the Symbolic mode. There are also similar -function @code{half-circle} and @code{quarter-circle}. -@end defun - -@defun power-of-2 n -Compute two to the integer power @var{n}, as a (potentially very large) -integer. Powers of two are cached, so only the first call for a -particular @var{n} is expensive. -@end defun - -@defun integer-log2 n -Compute the base-2 logarithm of @var{n}, which must be an integer which -is a power of two. If @var{n} is not a power of two, this function will -return @code{nil}. -@end defun - -@defun div-mod a b m -Divide @var{a} by @var{b}, modulo @var{m}. This returns @code{nil} if -there is no solution, or if any of the arguments are not integers. -@end defun - -@defun pow-mod a b m -Compute @var{a} to the power @var{b}, modulo @var{m}. If @var{a}, -@var{b}, and @var{m} are integers, this uses an especially efficient -algorithm. Otherwise, it simply computes @samp{(% (^ a b) m)}. -@end defun - -@defun isqrt n -Compute the integer square root of @var{n}. This is the square root -of @var{n} rounded down toward zero, i.e., @samp{floor(sqrt(@var{n}))}. -If @var{n} is itself an integer, the computation is especially efficient. -@end defun - -@defun to-hms a ang -Convert the argument @var{a} into an HMS form. If @var{ang} is specified, -it is the angular mode in which to interpret @var{a}, either @code{deg} -or @code{rad}. Otherwise, the current angular mode is used. If @var{a} -is already an HMS form it is returned as-is. -@end defun - -@defun from-hms a ang -Convert the HMS form @var{a} into a real number. If @var{ang} is specified, -it is the angular mode in which to express the result, otherwise the -current angular mode is used. If @var{a} is already a real number, it -is returned as-is. -@end defun - -@defun to-radians a -Convert the number or HMS form @var{a} to radians from the current -angular mode. -@end defun - -@defun from-radians a -Convert the number @var{a} from radians to the current angular mode. -If @var{a} is a formula, this returns the formula @samp{deg(@var{a})}. -@end defun - -@defun to-radians-2 a -Like @code{to-radians}, except that in Symbolic mode a degrees to -radians conversion yields a formula like @samp{@var{a}*pi/180}. -@end defun - -@defun from-radians-2 a -Like @code{from-radians}, except that in Symbolic mode a radians to -degrees conversion yields a formula like @samp{@var{a}*180/pi}. -@end defun - -@defun random-digit -Produce a random base-1000 digit in the range 0 to 999. -@end defun - -@defun random-digits n -Produce a random @var{n}-digit integer; this will be an integer -in the interval @samp{[0, 10^@var{n})}. -@end defun - -@defun random-float -Produce a random float in the interval @samp{[0, 1)}. -@end defun - -@defun prime-test n iters -Determine whether the integer @var{n} is prime. Return a list which has -one of these forms: @samp{(nil @var{f})} means the number is non-prime -because it was found to be divisible by @var{f}; @samp{(nil)} means it -was found to be non-prime by table look-up (so no factors are known); -@samp{(nil unknown)} means it is definitely non-prime but no factors -are known because @var{n} was large enough that Fermat's probabilistic -test had to be used; @samp{(t)} means the number is definitely prime; -and @samp{(maybe @var{i} @var{p})} means that Fermat's test, after @var{i} -iterations, is @var{p} percent sure that the number is prime. The -@var{iters} parameter is the number of Fermat iterations to use, in the -case that this is necessary. If @code{prime-test} returns ``maybe,'' -you can call it again with the same @var{n} to get a greater certainty; -@code{prime-test} remembers where it left off. -@end defun - -@defun to-simple-fraction f -If @var{f} is a floating-point number which can be represented exactly -as a small rational number. return that number, else return @var{f}. -For example, 0.75 would be converted to 3:4. This function is very -fast. -@end defun - -@defun to-fraction f tol -Find a rational approximation to floating-point number @var{f} to within -a specified tolerance @var{tol}; this corresponds to the algebraic -function @code{frac}, and can be rather slow. -@end defun - -@defun quarter-integer n -If @var{n} is an integer or integer-valued float, this function -returns zero. If @var{n} is a half-integer (i.e., an integer plus -@mathit{1:2} or 0.5), it returns 2. If @var{n} is a quarter-integer, -it returns 1 or 3. If @var{n} is anything else, this function -returns @code{nil}. -@end defun - -@node Vector Lisp Functions, Symbolic Lisp Functions, Computational Lisp Functions, Internals -@subsubsection Vector Functions - -@noindent -The functions described here perform various operations on vectors and -matrices. - -@defun math-concat x y -Do a vector concatenation; this operation is written @samp{@var{x} | @var{y}} -in a symbolic formula. @xref{Building Vectors}. -@end defun - -@defun vec-length v -Return the length of vector @var{v}. If @var{v} is not a vector, the -result is zero. If @var{v} is a matrix, this returns the number of -rows in the matrix. -@end defun - -@defun mat-dimens m -Determine the dimensions of vector or matrix @var{m}. If @var{m} is not -a vector, the result is an empty list. If @var{m} is a plain vector -but not a matrix, the result is a one-element list containing the length -of the vector. If @var{m} is a matrix with @var{r} rows and @var{c} columns, -the result is the list @samp{(@var{r} @var{c})}. Higher-order tensors -produce lists of more than two dimensions. Note that the object -@samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size, -and is treated by this and other Calc routines as a plain vector of two -elements. -@end defun - -@defun dimension-error -Abort the current function with a message of ``Dimension error.'' -The Calculator will leave the function being evaluated in symbolic -form; this is really just a special case of @code{reject-arg}. -@end defun - -@defun build-vector args -Return a Calc vector with @var{args} as elements. -For example, @samp{(build-vector 1 2 3)} returns the Calc vector -@samp{[1, 2, 3]}, stored internally as the list @samp{(vec 1 2 3)}. -@end defun - -@defun make-vec obj dims -Return a Calc vector or matrix all of whose elements are equal to -@var{obj}. For example, @samp{(make-vec 27 3 4)} returns a 3x4 matrix -filled with 27's. -@end defun - -@defun row-matrix v -If @var{v} is a plain vector, convert it into a row matrix, i.e., -a matrix whose single row is @var{v}. If @var{v} is already a matrix, -leave it alone. -@end defun - -@defun col-matrix v -If @var{v} is a plain vector, convert it into a column matrix, i.e., a -matrix with each element of @var{v} as a separate row. If @var{v} is -already a matrix, leave it alone. -@end defun - -@defun map-vec f v -Map the Lisp function @var{f} over the Calc vector @var{v}. For example, -@samp{(map-vec 'math-floor v)} returns a vector of the floored components -of vector @var{v}. -@end defun - -@defun map-vec-2 f a b -Map the Lisp function @var{f} over the two vectors @var{a} and @var{b}. -If @var{a} and @var{b} are vectors of equal length, the result is a -vector of the results of calling @samp{(@var{f} @var{ai} @var{bi})} -for each pair of elements @var{ai} and @var{bi}. If either @var{a} or -@var{b} is a scalar, it is matched with each value of the other vector. -For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v} -with each element increased by one. Note that using @samp{'+} would not -work here, since @code{defmath} does not expand function names everywhere, -just where they are in the function position of a Lisp expression. -@end defun - -@defun reduce-vec f v -Reduce the function @var{f} over the vector @var{v}. For example, if -@var{v} is @samp{[10, 20, 30, 40]}, this calls @samp{(f (f (f 10 20) 30) 40)}. -If @var{v} is a matrix, this reduces over the rows of @var{v}. -@end defun - -@defun reduce-cols f m -Reduce the function @var{f} over the columns of matrix @var{m}. For -example, if @var{m} is @samp{[[1, 2], [3, 4], [5, 6]]}, the result -is a vector of the two elements @samp{(f (f 1 3) 5)} and @samp{(f (f 2 4) 6)}. -@end defun - -@defun mat-row m n -Return the @var{n}th row of matrix @var{m}. This is equivalent to -@samp{(elt m n)}. For a slower but safer version, use @code{mrow}. -(@xref{Extracting Elements}.) -@end defun - -@defun mat-col m n -Return the @var{n}th column of matrix @var{m}, in the form of a vector. -The arguments are not checked for correctness. -@end defun - -@defun mat-less-row m n -Return a copy of matrix @var{m} with its @var{n}th row deleted. The -number @var{n} must be in range from 1 to the number of rows in @var{m}. -@end defun - -@defun mat-less-col m n -Return a copy of matrix @var{m} with its @var{n}th column deleted. -@end defun - -@defun transpose m -Return the transpose of matrix @var{m}. -@end defun - -@defun flatten-vector v -Flatten nested vector @var{v} into a vector of scalars. For example, -if @var{v} is @samp{[[1, 2, 3], [4, 5]]} the result is @samp{[1, 2, 3, 4, 5]}. -@end defun - -@defun copy-matrix m -If @var{m} is a matrix, return a copy of @var{m}. This maps -@code{copy-sequence} over the rows of @var{m}; in Lisp terms, each -element of the result matrix will be @code{eq} to the corresponding -element of @var{m}, but none of the @code{cons} cells that make up -the structure of the matrix will be @code{eq}. If @var{m} is a plain -vector, this is the same as @code{copy-sequence}. -@end defun - -@defun swap-rows m r1 r2 -Exchange rows @var{r1} and @var{r2} of matrix @var{m} in-place. In -other words, unlike most of the other functions described here, this -function changes @var{m} itself rather than building up a new result -matrix. The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)} -is true, with the side effect of exchanging the first two rows of -@var{m}. -@end defun - -@node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals -@subsubsection Symbolic Functions - -@noindent -The functions described here operate on symbolic formulas in the -Calculator. - -@defun calc-prepare-selection num -Prepare a stack entry for selection operations. If @var{num} is -omitted, the stack entry containing the cursor is used; otherwise, -it is the number of the stack entry to use. This function stores -useful information about the current stack entry into a set of -variables. @code{calc-selection-cache-num} contains the number of -the stack entry involved (equal to @var{num} if you specified it); -@code{calc-selection-cache-entry} contains the stack entry as a -list (such as @code{calc-top-list} would return with @code{entry} -as the selection mode); and @code{calc-selection-cache-comp} contains -a special ``tagged'' composition (@pxref{Formatting Lisp Functions}) -which allows Calc to relate cursor positions in the buffer with -their corresponding sub-formulas. - -A slight complication arises in the selection mechanism because -formulas may contain small integers. For example, in the vector -@samp{[1, 2, 1]} the first and last elements are @code{eq} to each -other; selections are recorded as the actual Lisp object that -appears somewhere in the tree of the whole formula, but storing -@code{1} would falsely select both @code{1}'s in the vector. So -@code{calc-prepare-selection} also checks the stack entry and -replaces any plain integers with ``complex number'' lists of the form -@samp{(cplx @var{n} 0)}. This list will be displayed the same as a -plain @var{n} and the change will be completely invisible to the -user, but it will guarantee that no two sub-formulas of the stack -entry will be @code{eq} to each other. Next time the stack entry -is involved in a computation, @code{calc-normalize} will replace -these lists with plain numbers again, again invisibly to the user. -@end defun - -@defun calc-encase-atoms x -This modifies the formula @var{x} to ensure that each part of the -formula is a unique atom, using the @samp{(cplx @var{n} 0)} trick -described above. This function may use @code{setcar} to modify -the formula in-place. -@end defun - -@defun calc-find-selected-part -Find the smallest sub-formula of the current formula that contains -the cursor. This assumes @code{calc-prepare-selection} has been -called already. If the cursor is not actually on any part of the -formula, this returns @code{nil}. -@end defun - -@defun calc-change-current-selection selection -Change the currently prepared stack element's selection to -@var{selection}, which should be @code{eq} to some sub-formula -of the stack element, or @code{nil} to unselect the formula. -The stack element's appearance in the Calc buffer is adjusted -to reflect the new selection. -@end defun - -@defun calc-find-nth-part expr n -Return the @var{n}th sub-formula of @var{expr}. This function is used -by the selection commands, and (unless @kbd{j b} has been used) treats -sums and products as flat many-element formulas. Thus if @var{expr} -is @samp{((a + b) - c) + d}, calling @code{calc-find-nth-part} with -@var{n} equal to four will return @samp{d}. -@end defun - -@defun calc-find-parent-formula expr part -Return the sub-formula of @var{expr} which immediately contains -@var{part}. If @var{expr} is @samp{a*b + (c+1)*d} and @var{part} -is @code{eq} to the @samp{c+1} term of @var{expr}, then this function -will return @samp{(c+1)*d}. If @var{part} turns out not to be a -sub-formula of @var{expr}, the function returns @code{nil}. If -@var{part} is @code{eq} to @var{expr}, the function returns @code{t}. -This function does not take associativity into account. -@end defun - -@defun calc-find-assoc-parent-formula expr part -This is the same as @code{calc-find-parent-formula}, except that -(unless @kbd{j b} has been used) it continues widening the selection -to contain a complete level of the formula. Given @samp{a} from -@samp{((a + b) - c) + d}, @code{calc-find-parent-formula} will -return @samp{a + b} but @code{calc-find-assoc-parent-formula} will -return the whole expression. -@end defun - -@defun calc-grow-assoc-formula expr part -This expands sub-formula @var{part} of @var{expr} to encompass a -complete level of the formula. If @var{part} and its immediate -parent are not compatible associative operators, or if @kbd{j b} -has been used, this simply returns @var{part}. -@end defun - -@defun calc-find-sub-formula expr part -This finds the immediate sub-formula of @var{expr} which contains -@var{part}. It returns an index @var{n} such that -@samp{(calc-find-nth-part @var{expr} @var{n})} would return @var{part}. -If @var{part} is not a sub-formula of @var{expr}, it returns @code{nil}. -If @var{part} is @code{eq} to @var{expr}, it returns @code{t}. This -function does not take associativity into account. -@end defun - -@defun calc-replace-sub-formula expr old new -This function returns a copy of formula @var{expr}, with the -sub-formula that is @code{eq} to @var{old} replaced by @var{new}. -@end defun - -@defun simplify expr -Simplify the expression @var{expr} by applying various algebraic rules. -This is what the @w{@kbd{a s}} (@code{calc-simplify}) command uses. This -always returns a copy of the expression; the structure @var{expr} points -to remains unchanged in memory. - -More precisely, here is what @code{simplify} does: The expression is -first normalized and evaluated by calling @code{normalize}. If any -@code{AlgSimpRules} have been defined, they are then applied. Then -the expression is traversed in a depth-first, bottom-up fashion; at -each level, any simplifications that can be made are made until no -further changes are possible. Once the entire formula has been -traversed in this way, it is compared with the original formula (from -before the call to @code{normalize}) and, if it has changed, -the entire procedure is repeated (starting with @code{normalize}) -until no further changes occur. Usually only two iterations are -needed:@: one to simplify the formula, and another to verify that no -further simplifications were possible. -@end defun - -@defun simplify-extended expr -Simplify the expression @var{expr}, with additional rules enabled that -help do a more thorough job, while not being entirely ``safe'' in all -circumstances. (For example, this mode will simplify @samp{sqrt(x^2)} -to @samp{x}, which is only valid when @var{x} is positive.) This is -implemented by temporarily binding the variable @code{math-living-dangerously} -to @code{t} (using a @code{let} form) and calling @code{simplify}. -Dangerous simplification rules are written to check this variable -before taking any action. -@end defun - -@defun simplify-units expr -Simplify the expression @var{expr}, treating variable names as units -whenever possible. This works by binding the variable -@code{math-simplifying-units} to @code{t} while calling @code{simplify}. -@end defun - -@defmac math-defsimplify funcs body -Register a new simplification rule; this is normally called as a top-level -form, like @code{defun} or @code{defmath}. If @var{funcs} is a symbol -(like @code{+} or @code{calcFunc-sqrt}), this simplification rule is -applied to the formulas which are calls to the specified function. Or, -@var{funcs} can be a list of such symbols; the rule applies to all -functions on the list. The @var{body} is written like the body of a -function with a single argument called @code{expr}. The body will be -executed with @code{expr} bound to a formula which is a call to one of -the functions @var{funcs}. If the function body returns @code{nil}, or -if it returns a result @code{equal} to the original @code{expr}, it is -ignored and Calc goes on to try the next simplification rule that applies. -If the function body returns something different, that new formula is -substituted for @var{expr} in the original formula. - -At each point in the formula, rules are tried in the order of the -original calls to @code{math-defsimplify}; the search stops after the -first rule that makes a change. Thus later rules for that same -function will not have a chance to trigger until the next iteration -of the main @code{simplify} loop. - -Note that, since @code{defmath} is not being used here, @var{body} must -be written in true Lisp code without the conveniences that @code{defmath} -provides. If you prefer, you can have @var{body} simply call another -function (defined with @code{defmath}) which does the real work. - -The arguments of a function call will already have been simplified -before any rules for the call itself are invoked. Since a new argument -list is consed up when this happens, this means that the rule's body is -allowed to rearrange the function's arguments destructively if that is -convenient. Here is a typical example of a simplification rule: - -@smallexample -(math-defsimplify calcFunc-arcsinh - (or (and (math-looks-negp (nth 1 expr)) - (math-neg (list 'calcFunc-arcsinh - (math-neg (nth 1 expr))))) - (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh) - (or math-living-dangerously - (math-known-realp (nth 1 (nth 1 expr)))) - (nth 1 (nth 1 expr))))) -@end smallexample - -This is really a pair of rules written with one @code{math-defsimplify} -for convenience; the first replaces @samp{arcsinh(-x)} with -@samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x}, -replaces @samp{arcsinh(sinh(x))} with @samp{x}. -@end defmac - -@defun common-constant-factor expr -Check @var{expr} to see if it is a sum of terms all multiplied by the -same rational value. If so, return this value. If not, return @code{nil}. -For example, if called on @samp{6x + 9y + 12z}, it would return 3, since -3 is a common factor of all the terms. -@end defun - -@defun cancel-common-factor expr factor -Assuming @var{expr} is a sum with @var{factor} as a common factor, -divide each term of the sum by @var{factor}. This is done by -destructively modifying parts of @var{expr}, on the assumption that -it is being used by a simplification rule (where such things are -allowed; see above). For example, consider this built-in rule for -square roots: - -@smallexample -(math-defsimplify calcFunc-sqrt - (let ((fac (math-common-constant-factor (nth 1 expr)))) - (and fac (not (eq fac 1)) - (math-mul (math-normalize (list 'calcFunc-sqrt fac)) - (math-normalize - (list 'calcFunc-sqrt - (math-cancel-common-factor - (nth 1 expr) fac))))))) -@end smallexample -@end defun - -@defun frac-gcd a b -Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be -rational numbers. This is the fraction composed of the GCD of the -numerators of @var{a} and @var{b}, over the GCD of the denominators. -It is used by @code{common-constant-factor}. Note that the standard -@code{gcd} function uses the LCM to combine the denominators. -@end defun - -@defun map-tree func expr many -Try applying Lisp function @var{func} to various sub-expressions of -@var{expr}. Initially, call @var{func} with @var{expr} itself as an -argument. If this returns an expression which is not @code{equal} to -@var{expr}, apply @var{func} again until eventually it does return -@var{expr} with no changes. Then, if @var{expr} is a function call, -recursively apply @var{func} to each of the arguments. This keeps going -until no changes occur anywhere in the expression; this final expression -is returned by @code{map-tree}. Note that, unlike simplification rules, -@var{func} functions may @emph{not} make destructive changes to -@var{expr}. If a third argument @var{many} is provided, it is an -integer which says how many times @var{func} may be applied; the -default, as described above, is infinitely many times. -@end defun - -@defun compile-rewrites rules -Compile the rewrite rule set specified by @var{rules}, which should -be a formula that is either a vector or a variable name. If the latter, -the compiled rules are saved so that later @code{compile-rules} calls -for that same variable can return immediately. If there are problems -with the rules, this function calls @code{error} with a suitable -message. -@end defun - -@defun apply-rewrites expr crules heads -Apply the compiled rewrite rule set @var{crules} to the expression -@var{expr}. This will make only one rewrite and only checks at the -top level of the expression. The result @code{nil} if no rules -matched, or if the only rules that matched did not actually change -the expression. The @var{heads} argument is optional; if is given, -it should be a list of all function names that (may) appear in -@var{expr}. The rewrite compiler tags each rule with the -rarest-looking function name in the rule; if you specify @var{heads}, -@code{apply-rewrites} can use this information to narrow its search -down to just a few rules in the rule set. -@end defun - -@defun rewrite-heads expr -Compute a @var{heads} list for @var{expr} suitable for use with -@code{apply-rewrites}, as discussed above. -@end defun - -@defun rewrite expr rules many -This is an all-in-one rewrite function. It compiles the rule set -specified by @var{rules}, then uses @code{map-tree} to apply the -rules throughout @var{expr} up to @var{many} (default infinity) -times. -@end defun - -@defun match-patterns pat vec not-flag -Given a Calc vector @var{vec} and an uncompiled pattern set or -pattern set variable @var{pat}, this function returns a new vector -of all elements of @var{vec} which do (or don't, if @var{not-flag} is -non-@code{nil}) match any of the patterns in @var{pat}. -@end defun - -@defun deriv expr var value symb -Compute the derivative of @var{expr} with respect to variable @var{var} -(which may actually be any sub-expression). If @var{value} is specified, -the derivative is evaluated at the value of @var{var}; otherwise, the -derivative is left in terms of @var{var}. If the expression contains -functions for which no derivative formula is known, new derivative -functions are invented by adding primes to the names; @pxref{Calculus}. -However, if @var{symb} is non-@code{nil}, the presence of undifferentiable -functions in @var{expr} instead cancels the whole differentiation, and -@code{deriv} returns @code{nil} instead. - -Derivatives of an @var{n}-argument function can be defined by -adding a @code{math-derivative-@var{n}} property to the property list -of the symbol for the function's derivative, which will be the -function name followed by an apostrophe. The value of the property -should be a Lisp function; it is called with the same arguments as the -original function call that is being differentiated. It should return -a formula for the derivative. For example, the derivative of @code{ln} -is defined by - -@smallexample -(put 'calcFunc-ln\' 'math-derivative-1 - (function (lambda (u) (math-div 1 u)))) -@end smallexample - -The two-argument @code{log} function has two derivatives, -@smallexample -(put 'calcFunc-log\' 'math-derivative-2 ; d(log(x,b)) / dx - (function (lambda (x b) ... ))) -(put 'calcFunc-log\'2 'math-derivative-2 ; d(log(x,b)) / db - (function (lambda (x b) ... ))) -@end smallexample -@end defun - -@defun tderiv expr var value symb -Compute the total derivative of @var{expr}. This is the same as -@code{deriv}, except that variables other than @var{var} are not -assumed to be constant with respect to @var{var}. -@end defun - -@defun integ expr var low high -Compute the integral of @var{expr} with respect to @var{var}. -@xref{Calculus}, for further details. -@end defun - -@defmac math-defintegral funcs body -Define a rule for integrating a function or functions of one argument; -this macro is very similar in format to @code{math-defsimplify}. -The main difference is that here @var{body} is the body of a function -with a single argument @code{u} which is bound to the argument to the -function being integrated, not the function call itself. Also, the -variable of integration is available as @code{math-integ-var}. If -evaluation of the integral requires doing further integrals, the body -should call @samp{(math-integral @var{x})} to find the integral of -@var{x} with respect to @code{math-integ-var}; this function returns -@code{nil} if the integral could not be done. Some examples: - -@smallexample -(math-defintegral calcFunc-conj - (let ((int (math-integral u))) - (and int - (list 'calcFunc-conj int)))) - -(math-defintegral calcFunc-cos - (and (equal u math-integ-var) - (math-from-radians-2 (list 'calcFunc-sin u)))) -@end smallexample - -In the @code{cos} example, we define only the integral of @samp{cos(x) dx}, -relying on the general integration-by-substitution facility to handle -cosines of more complicated arguments. An integration rule should return -@code{nil} if it can't do the integral; if several rules are defined for -the same function, they are tried in order until one returns a non-@code{nil} -result. -@end defmac - -@defmac math-defintegral-2 funcs body -Define a rule for integrating a function or functions of two arguments. -This is exactly analogous to @code{math-defintegral}, except that @var{body} -is written as the body of a function with two arguments, @var{u} and -@var{v}. -@end defmac - -@defun solve-for lhs rhs var full -Attempt to solve the equation @samp{@var{lhs} = @var{rhs}} by isolating -the variable @var{var} on the lefthand side; return the resulting righthand -side, or @code{nil} if the equation cannot be solved. The variable -@var{var} must appear at least once in @var{lhs} or @var{rhs}. Note that -the return value is a formula which does not contain @var{var}; this is -different from the user-level @code{solve} and @code{finv} functions, -which return a rearranged equation or a functional inverse, respectively. -If @var{full} is non-@code{nil}, a full solution including dummy signs -and dummy integers will be produced. User-defined inverses are provided -as properties in a manner similar to derivatives: - -@smallexample -(put 'calcFunc-ln 'math-inverse - (function (lambda (x) (list 'calcFunc-exp x)))) -@end smallexample - -This function can call @samp{(math-solve-get-sign @var{x})} to create -a new arbitrary sign variable, returning @var{x} times that sign, and -@samp{(math-solve-get-int @var{x})} to create a new arbitrary integer -variable multiplied by @var{x}. These functions simply return @var{x} -if the caller requested a non-``full'' solution. -@end defun - -@defun solve-eqn expr var full -This version of @code{solve-for} takes an expression which will -typically be an equation or inequality. (If it is not, it will be -interpreted as the equation @samp{@var{expr} = 0}.) It returns an -equation or inequality, or @code{nil} if no solution could be found. -@end defun - -@defun solve-system exprs vars full -This function solves a system of equations. Generally, @var{exprs} -and @var{vars} will be vectors of equal length. -@xref{Solving Systems of Equations}, for other options. -@end defun - -@defun expr-contains expr var -Returns a non-@code{nil} value if @var{var} occurs as a subexpression -of @var{expr}. - -This function might seem at first to be identical to -@code{calc-find-sub-formula}. The key difference is that -@code{expr-contains} uses @code{equal} to test for matches, whereas -@code{calc-find-sub-formula} uses @code{eq}. In the formula -@samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not -@code{eq} to each other. -@end defun - -@defun expr-contains-count expr var -Returns the number of occurrences of @var{var} as a subexpression -of @var{expr}, or @code{nil} if there are no occurrences. -@end defun - -@defun expr-depends expr var -Returns true if @var{expr} refers to any variable the occurs in @var{var}. -In other words, it checks if @var{expr} and @var{var} have any variables -in common. -@end defun - -@defun expr-contains-vars expr -Return true if @var{expr} contains any variables, or @code{nil} if @var{expr} -contains only constants and functions with constant arguments. -@end defun - -@defun expr-subst expr old new -Returns a copy of @var{expr}, with all occurrences of @var{old} replaced -by @var{new}. This treats @code{lambda} forms specially with respect -to the dummy argument variables, so that the effect is always to return -@var{expr} evaluated at @var{old} = @var{new}. -@end defun - -@defun multi-subst expr old new -This is like @code{expr-subst}, except that @var{old} and @var{new} -are lists of expressions to be substituted simultaneously. If one -list is shorter than the other, trailing elements of the longer list -are ignored. -@end defun - -@defun expr-weight expr -Returns the ``weight'' of @var{expr}, basically a count of the total -number of objects and function calls that appear in @var{expr}. For -``primitive'' objects, this will be one. -@end defun - -@defun expr-height expr -Returns the ``height'' of @var{expr}, which is the deepest level to -which function calls are nested. (Note that @samp{@var{a} + @var{b}} -counts as a function call.) For primitive objects, this returns zero. -@end defun - -@defun polynomial-p expr var -Check if @var{expr} is a polynomial in variable (or sub-expression) -@var{var}. If so, return the degree of the polynomial, that is, the -highest power of @var{var} that appears in @var{expr}. For example, -for @samp{(x^2 + 3)^3 + 4} this would return 6. This function returns -@code{nil} unless @var{expr}, when expanded out by @kbd{a x} -(@code{calc-expand}), would consist of a sum of terms in which @var{var} -appears only raised to nonnegative integer powers. Note that if -@var{var} does not occur in @var{expr}, then @var{expr} is considered -a polynomial of degree 0. -@end defun - -@defun is-polynomial expr var degree loose -Check if @var{expr} is a polynomial in variable or sub-expression -@var{var}, and, if so, return a list representation of the polynomial -where the elements of the list are coefficients of successive powers of -@var{var}: @samp{@var{a} + @var{b} x + @var{c} x^3} would produce the -list @samp{(@var{a} @var{b} 0 @var{c})}, and @samp{(x + 1)^2} would -produce the list @samp{(1 2 1)}. The highest element of the list will -be non-zero, with the special exception that if @var{expr} is the -constant zero, the returned value will be @samp{(0)}. Return @code{nil} -if @var{expr} is not a polynomial in @var{var}. If @var{degree} is -specified, this will not consider polynomials of degree higher than that -value. This is a good precaution because otherwise an input of -@samp{(x+1)^1000} will cause a huge coefficient list to be built. If -@var{loose} is non-@code{nil}, then a looser definition of a polynomial -is used in which coefficients are no longer required not to depend on -@var{var}, but are only required not to take the form of polynomials -themselves. For example, @samp{sin(x) x^2 + cos(x)} is a loose -polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin -x))}. The result will never be @code{nil} in loose mode, since any -expression can be interpreted as a ``constant'' loose polynomial. -@end defun - -@defun polynomial-base expr pred -Check if @var{expr} is a polynomial in any variable that occurs in it; -if so, return that variable. (If @var{expr} is a multivariate polynomial, -this chooses one variable arbitrarily.) If @var{pred} is specified, it should -be a Lisp function which is called as @samp{(@var{pred} @var{subexpr})}, -and which should return true if @code{mpb-top-expr} (a global name for -the original @var{expr}) is a suitable polynomial in @var{subexpr}. -The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})}; -you can use @var{pred} to specify additional conditions. Or, you could -have @var{pred} build up a list of every suitable @var{subexpr} that -is found. -@end defun - -@defun poly-simplify poly -Simplify polynomial coefficient list @var{poly} by (destructively) -clipping off trailing zeros. -@end defun - -@defun poly-mix a ac b bc -Mix two polynomial lists @var{a} and @var{b} (in the form returned by -@code{is-polynomial}) in a linear combination with coefficient expressions -@var{ac} and @var{bc}. The result is a (not necessarily simplified) -polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}. -@end defun - -@defun poly-mul a b -Multiply two polynomial coefficient lists @var{a} and @var{b}. The -result will be in simplified form if the inputs were simplified. -@end defun - -@defun build-polynomial-expr poly var -Construct a Calc formula which represents the polynomial coefficient -list @var{poly} applied to variable @var{var}. The @kbd{a c} -(@code{calc-collect}) command uses @code{is-polynomial} to turn an -expression into a coefficient list, then @code{build-polynomial-expr} -to turn the list back into an expression in regular form. -@end defun - -@defun check-unit-name var -Check if @var{var} is a variable which can be interpreted as a unit -name. If so, return the units table entry for that unit. This -will be a list whose first element is the unit name (not counting -prefix characters) as a symbol and whose second element is the -Calc expression which defines the unit. (Refer to the Calc sources -for details on the remaining elements of this list.) If @var{var} -is not a variable or is not a unit name, return @code{nil}. -@end defun - -@defun units-in-expr-p expr sub-exprs -Return true if @var{expr} contains any variables which can be -interpreted as units. If @var{sub-exprs} is @code{t}, the entire -expression is searched. If @var{sub-exprs} is @code{nil}, this -checks whether @var{expr} is directly a units expression. -@end defun - -@defun single-units-in-expr-p expr -Check whether @var{expr} contains exactly one units variable. If so, -return the units table entry for the variable. If @var{expr} does -not contain any units, return @code{nil}. If @var{expr} contains -two or more units, return the symbol @code{wrong}. -@end defun - -@defun to-standard-units expr which -Convert units expression @var{expr} to base units. If @var{which} -is @code{nil}, use Calc's native base units. Otherwise, @var{which} -can specify a units system, which is a list of two-element lists, -where the first element is a Calc base symbol name and the second -is an expression to substitute for it. -@end defun - -@defun remove-units expr -Return a copy of @var{expr} with all units variables replaced by ones. -This expression is generally normalized before use. -@end defun - -@defun extract-units expr -Return a copy of @var{expr} with everything but units variables replaced -by ones. -@end defun - -@node Formatting Lisp Functions, Hooks, Symbolic Lisp Functions, Internals -@subsubsection I/O and Formatting Functions - -@noindent -The functions described here are responsible for parsing and formatting -Calc numbers and formulas. - -@defun calc-eval str sep arg1 arg2 @dots{} -This is the simplest interface to the Calculator from another Lisp program. -@xref{Calling Calc from Your Programs}. -@end defun - -@defun read-number str -If string @var{str} contains a valid Calc number, either integer, -fraction, float, or HMS form, this function parses and returns that -number. Otherwise, it returns @code{nil}. -@end defun - -@defun read-expr str -Read an algebraic expression from string @var{str}. If @var{str} does -not have the form of a valid expression, return a list of the form -@samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index -into @var{str} of the general location of the error, and @var{msg} is -a string describing the problem. -@end defun - -@defun read-exprs str -Read a list of expressions separated by commas, and return it as a -Lisp list. If an error occurs in any expressions, an error list as -shown above is returned instead. -@end defun - -@defun calc-do-alg-entry initial prompt no-norm -Read an algebraic formula or formulas using the minibuffer. All -conventions of regular algebraic entry are observed. The return value -is a list of Calc formulas; there will be more than one if the user -entered a list of values separated by commas. The result is @code{nil} -if the user presses Return with a blank line. If @var{initial} is -given, it is a string which the minibuffer will initially contain. -If @var{prompt} is given, it is the prompt string to use; the default -is ``Algebraic:''. If @var{no-norm} is @code{t}, the formulas will -be returned exactly as parsed; otherwise, they will be passed through -@code{calc-normalize} first. - -To support the use of @kbd{$} characters in the algebraic entry, use -@code{let} to bind @code{calc-dollar-values} to a list of the values -to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind -@code{calc-dollar-used} to 0. Upon return, @code{calc-dollar-used} -will have been changed to the highest number of consecutive @kbd{$}s -that actually appeared in the input. -@end defun - -@defun format-number a -Convert the real or complex number or HMS form @var{a} to string form. -@end defun - -@defun format-flat-expr a prec -Convert the arbitrary Calc number or formula @var{a} to string form, -in the style used by the trail buffer and the @code{calc-edit} command. -This is a simple format designed -mostly to guarantee the string is of a form that can be re-parsed by -@code{read-expr}. Most formatting modes, such as digit grouping, -complex number format, and point character, are ignored to ensure the -result will be re-readable. The @var{prec} parameter is normally 0; if -you pass a large integer like 1000 instead, the expression will be -surrounded by parentheses unless it is a plain number or variable name. -@end defun - -@defun format-nice-expr a width -This is like @code{format-flat-expr} (with @var{prec} equal to 0), -except that newlines will be inserted to keep lines down to the -specified @var{width}, and vectors that look like matrices or rewrite -rules are written in a pseudo-matrix format. The @code{calc-edit} -command uses this when only one stack entry is being edited. -@end defun - -@defun format-value a width -Convert the Calc number or formula @var{a} to string form, using the -format seen in the stack buffer. Beware the string returned may -not be re-readable by @code{read-expr}, for example, because of digit -grouping. Multi-line objects like matrices produce strings that -contain newline characters to separate the lines. The @var{w} -parameter, if given, is the target window size for which to format -the expressions. If @var{w} is omitted, the width of the Calculator -window is used. -@end defun - -@defun compose-expr a prec -Format the Calc number or formula @var{a} according to the current -language mode, returning a ``composition.'' To learn about the -structure of compositions, see the comments in the Calc source code. -You can specify the format of a given type of function call by putting -a @code{math-compose-@var{lang}} property on the function's symbol, -whose value is a Lisp function that takes @var{a} and @var{prec} as -arguments and returns a composition. Here @var{lang} is a language -mode name, one of @code{normal}, @code{big}, @code{c}, @code{pascal}, -@code{fortran}, @code{tex}, @code{eqn}, @code{math}, or @code{maple}. -In Big mode, Calc actually tries @code{math-compose-big} first, then -tries @code{math-compose-normal}. If this property does not exist, -or if the function returns @code{nil}, the function is written in the -normal function-call notation for that language. -@end defun - -@defun composition-to-string c w -Convert a composition structure returned by @code{compose-expr} into -a string. Multi-line compositions convert to strings containing -newline characters. The target window size is given by @var{w}. -The @code{format-value} function basically calls @code{compose-expr} -followed by @code{composition-to-string}. -@end defun - -@defun comp-width c -Compute the width in characters of composition @var{c}. -@end defun - -@defun comp-height c -Compute the height in lines of composition @var{c}. -@end defun - -@defun comp-ascent c -Compute the portion of the height of composition @var{c} which is on or -above the baseline. For a one-line composition, this will be one. -@end defun - -@defun comp-descent c -Compute the portion of the height of composition @var{c} which is below -the baseline. For a one-line composition, this will be zero. -@end defun - -@defun comp-first-char c -If composition @var{c} is a ``flat'' composition, return the first -(leftmost) character of the composition as an integer. Otherwise, -return @code{nil}. -@end defun - -@defun comp-last-char c -If composition @var{c} is a ``flat'' composition, return the last -(rightmost) character, otherwise return @code{nil}. -@end defun - -@comment @node Lisp Variables, Hooks, Formatting Lisp Functions, Internals -@comment @subsubsection Lisp Variables -@comment -@comment @noindent -@comment (This section is currently unfinished.) - -@node Hooks, , Formatting Lisp Functions, Internals -@subsubsection Hooks - -@noindent -Hooks are variables which contain Lisp functions (or lists of functions) -which are called at various times. Calc defines a number of hooks -that help you to customize it in various ways. Calc uses the Lisp -function @code{run-hooks} to invoke the hooks shown below. Several -other customization-related variables are also described here. - -@defvar calc-load-hook -This hook is called at the end of @file{calc.el}, after the file has -been loaded, before any functions in it have been called, but after -@code{calc-mode-map} and similar variables have been set up. -@end defvar - -@defvar calc-ext-load-hook -This hook is called at the end of @file{calc-ext.el}. -@end defvar - -@defvar calc-start-hook -This hook is called as the last step in a @kbd{M-x calc} command. -At this point, the Calc buffer has been created and initialized if -necessary, the Calc window and trail window have been created, -and the ``Welcome to Calc'' message has been displayed. -@end defvar - -@defvar calc-mode-hook -This hook is called when the Calc buffer is being created. Usually -this will only happen once per Emacs session. The hook is called -after Emacs has switched to the new buffer, the mode-settings file -has been read if necessary, and all other buffer-local variables -have been set up. After this hook returns, Calc will perform a -@code{calc-refresh} operation, set up the mode line display, then -evaluate any deferred @code{calc-define} properties that have not -been evaluated yet. -@end defvar - -@defvar calc-trail-mode-hook -This hook is called when the Calc Trail buffer is being created. -It is called as the very last step of setting up the Trail buffer. -Like @code{calc-mode-hook}, this will normally happen only once -per Emacs session. -@end defvar - -@defvar calc-end-hook -This hook is called by @code{calc-quit}, generally because the user -presses @kbd{q} or @kbd{C-x * c} while in Calc. The Calc buffer will -be the current buffer. The hook is called as the very first -step, before the Calc window is destroyed. -@end defvar - -@defvar calc-window-hook -If this hook is non-@code{nil}, it is called to create the Calc window. -Upon return, this new Calc window should be the current window. -(The Calc buffer will already be the current buffer when the -hook is called.) If the hook is not defined, Calc will -generally use @code{split-window}, @code{set-window-buffer}, -and @code{select-window} to create the Calc window. -@end defvar - -@defvar calc-trail-window-hook -If this hook is non-@code{nil}, it is called to create the Calc Trail -window. The variable @code{calc-trail-buffer} will contain the buffer -which the window should use. Unlike @code{calc-window-hook}, this hook -must @emph{not} switch into the new window. -@end defvar - -@defvar calc-embedded-mode-hook -This hook is called the first time that Embedded mode is entered. -@end defvar - -@defvar calc-embedded-new-buffer-hook -This hook is called each time that Embedded mode is entered in a -new buffer. -@end defvar - -@defvar calc-embedded-new-formula-hook -This hook is called each time that Embedded mode is enabled for a -new formula. -@end defvar - -@defvar calc-edit-mode-hook -This hook is called by @code{calc-edit} (and the other ``edit'' -commands) when the temporary editing buffer is being created. -The buffer will have been selected and set up to be in -@code{calc-edit-mode}, but will not yet have been filled with -text. (In fact it may still have leftover text from a previous -@code{calc-edit} command.) -@end defvar - -@defvar calc-mode-save-hook -This hook is called by the @code{calc-save-modes} command, -after Calc's own mode features have been inserted into the -Calc init file and just before the ``End of mode settings'' -message is inserted. -@end defvar - -@defvar calc-reset-hook -This hook is called after @kbd{C-x * 0} (@code{calc-reset}) has -reset all modes. The Calc buffer will be the current buffer. -@end defvar - -@defvar calc-other-modes -This variable contains a list of strings. The strings are -concatenated at the end of the modes portion of the Calc -mode line (after standard modes such as ``Deg'', ``Inv'' and -``Hyp''). Each string should be a short, single word followed -by a space. The variable is @code{nil} by default. -@end defvar - -@defvar calc-mode-map -This is the keymap that is used by Calc mode. The best time -to adjust it is probably in a @code{calc-mode-hook}. If the -Calc extensions package (@file{calc-ext.el}) has not yet been -loaded, many of these keys will be bound to @code{calc-missing-key}, -which is a command that loads the extensions package and -``retypes'' the key. If your @code{calc-mode-hook} rebinds -one of these keys, it will probably be overridden when the -extensions are loaded. -@end defvar - -@defvar calc-digit-map -This is the keymap that is used during numeric entry. Numeric -entry uses the minibuffer, but this map binds every non-numeric -key to @code{calcDigit-nondigit} which generally calls -@code{exit-minibuffer} and ``retypes'' the key. -@end defvar - -@defvar calc-alg-ent-map -This is the keymap that is used during algebraic entry. This is -mostly a copy of @code{minibuffer-local-map}. -@end defvar - -@defvar calc-store-var-map -This is the keymap that is used during entry of variable names for -commands like @code{calc-store} and @code{calc-recall}. This is -mostly a copy of @code{minibuffer-local-completion-map}. -@end defvar - -@defvar calc-edit-mode-map -This is the (sparse) keymap used by @code{calc-edit} and other -temporary editing commands. It binds @key{RET}, @key{LFD}, -and @kbd{C-c C-c} to @code{calc-edit-finish}. -@end defvar - -@defvar calc-mode-var-list -This is a list of variables which are saved by @code{calc-save-modes}. -Each entry is a list of two items, the variable (as a Lisp symbol) -and its default value. When modes are being saved, each variable -is compared with its default value (using @code{equal}) and any -non-default variables are written out. -@end defvar - -@defvar calc-local-var-list -This is a list of variables which should be buffer-local to the -Calc buffer. Each entry is a variable name (as a Lisp symbol). -These variables also have their default values manipulated by -the @code{calc} and @code{calc-quit} commands; @pxref{Multiple Calculators}. -Since @code{calc-mode-hook} is called after this list has been -used the first time, your hook should add a variable to the -list and also call @code{make-local-variable} itself. -@end defvar - -@node Copying, GNU Free Documentation License, Programming, Top -@appendix GNU GENERAL PUBLIC LICENSE -@include gpl.texi - -@node GNU Free Documentation License, Customizing Calc, Copying, Top -@appendix GNU Free Documentation License -@include doclicense.texi - -@node Customizing Calc, Reporting Bugs, GNU Free Documentation License, Top -@appendix Customizing Calc - -The usual prefix for Calc is the key sequence @kbd{C-x *}. If you wish -to use a different prefix, you can put - -@example -(global-set-key "NEWPREFIX" 'calc-dispatch) -@end example - -@noindent -in your .emacs file. -(@xref{Key Bindings,,Customizing Key Bindings,emacs, -The GNU Emacs Manual}, for more information on binding keys.) -A convenient way to start Calc is with @kbd{C-x * *}; to make it equally -convenient for users who use a different prefix, the prefix can be -followed by @kbd{=}, @kbd{&}, @kbd{#}, @kbd{\}, @kbd{/}, @kbd{+} or -@kbd{-} as well as @kbd{*} to start Calc, and so in many cases the last -character of the prefix can simply be typed twice. - -Calc is controlled by many variables, most of which can be reset -from within Calc. Some variables are less involved with actual -calculation, and can be set outside of Calc using Emacs's -customization facilities. These variables are listed below. -Typing @kbd{M-x customize-variable RET @var{variable-name} RET} -will bring up a buffer in which the variable's value can be redefined. -Typing @kbd{M-x customize-group RET calc RET} will bring up a buffer which -contains all of Calc's customizable variables. (These variables can -also be reset by putting the appropriate lines in your .emacs file; -@xref{Init File, ,Init File, emacs, The GNU Emacs Manual}.) - -Some of the customizable variables are regular expressions. A regular -expression is basically a pattern that Calc can search for. -See @ref{Regexp Search,, Regular Expression Search, emacs, The GNU Emacs Manual} -to see how regular expressions work. - -@defvar calc-settings-file -The variable @code{calc-settings-file} holds the file name in -which commands like @kbd{m m} and @kbd{Z P} store ``permanent'' -definitions. -If @code{calc-settings-file} is not your user init file (typically -@file{~/.emacs}) and if the variable @code{calc-loaded-settings-file} is -@code{nil}, then Calc will automatically load your settings file (if it -exists) the first time Calc is invoked. - -The default value for this variable is @code{"~/.calc.el"}. -@end defvar - -@defvar calc-gnuplot-name -See @ref{Graphics}.@* -The variable @code{calc-gnuplot-name} should be the name of the -GNUPLOT program (a string). If you have GNUPLOT installed on your -system but Calc is unable to find it, you may need to set this -variable. You may also need to set some Lisp variables to show Calc how -to run GNUPLOT on your system, see @ref{Devices, ,Graphical Devices} . -The default value of @code{calc-gnuplot-name} is @code{"gnuplot"}. -@end defvar - -@defvar calc-gnuplot-plot-command -@defvarx calc-gnuplot-print-command -See @ref{Devices, ,Graphical Devices}.@* -The variables @code{calc-gnuplot-plot-command} and -@code{calc-gnuplot-print-command} represent system commands to -display and print the output of GNUPLOT, respectively. These may be -@code{nil} if no command is necessary, or strings which can include -@samp{%s} to signify the name of the file to be displayed or printed. -Or, these variables may contain Lisp expressions which are evaluated -to display or print the output. - -The default value of @code{calc-gnuplot-plot-command} is @code{nil}, -and the default value of @code{calc-gnuplot-print-command} is -@code{"lp %s"}. -@end defvar - -@defvar calc-language-alist -See @ref{Basic Embedded Mode}.@* -The variable @code{calc-language-alist} controls the languages that -Calc will associate with major modes. When Calc embedded mode is -enabled, it will try to use the current major mode to -determine what language should be used. (This can be overridden using -Calc's mode changing commands, @xref{Mode Settings in Embedded Mode}.) -The variable @code{calc-language-alist} consists of a list of pairs of -the form @code{(@var{MAJOR-MODE} . @var{LANGUAGE})}; for example, -@code{(latex-mode . latex)} is one such pair. If Calc embedded is -activated in a buffer whose major mode is @var{MAJOR-MODE}, it will set itself -to use the language @var{LANGUAGE}. - -The default value of @code{calc-language-alist} is -@example - ((latex-mode . latex) - (tex-mode . tex) - (plain-tex-mode . tex) - (context-mode . tex) - (nroff-mode . eqn) - (pascal-mode . pascal) - (c-mode . c) - (c++-mode . c) - (fortran-mode . fortran) - (f90-mode . fortran)) -@end example -@end defvar - -@defvar calc-embedded-announce-formula -@defvarx calc-embedded-announce-formula-alist -See @ref{Customizing Embedded Mode}.@* -The variable @code{calc-embedded-announce-formula} helps determine -what formulas @kbd{C-x * a} will activate in a buffer. It is a -regular expression, and when activating embedded formulas with -@kbd{C-x * a}, it will tell Calc that what follows is a formula to be -activated. (Calc also uses other patterns to find formulas, such as -@samp{=>} and @samp{:=}.) - -The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which checks -for @samp{%Embed} followed by any number of lines beginning with -@samp{%} and a space. - -The variable @code{calc-embedded-announce-formula-alist} is used to -set @code{calc-embedded-announce-formula} to different regular -expressions depending on the major mode of the editing buffer. -It consists of a list of pairs of the form @code{(@var{MAJOR-MODE} . -@var{REGEXP})}, and its default value is -@example - ((c++-mode . "//Embed\n\\(// .*\n\\)*") - (c-mode . "/\\*Embed\\*/\n\\(/\\* .*\\*/\n\\)*") - (f90-mode . "!Embed\n\\(! .*\n\\)*") - (fortran-mode . "C Embed\n\\(C .*\n\\)*") - (html-helper-mode . "\n\\(\n\\)*") - (html-mode . "\n\\(\n\\)*") - (nroff-mode . "\\\\\"Embed\n\\(\\\\\" .*\n\\)*") - (pascal-mode . "@{Embed@}\n\\(@{.*@}\n\\)*") - (sgml-mode . "\n\\(\n\\)*") - (xml-mode . "\n\\(\n\\)*") - (texinfo-mode . "@@c Embed\n\\(@@c .*\n\\)*")) -@end example -Any major modes added to @code{calc-embedded-announce-formula-alist} -should also be added to @code{calc-embedded-open-close-plain-alist} -and @code{calc-embedded-open-close-mode-alist}. -@end defvar - -@defvar calc-embedded-open-formula -@defvarx calc-embedded-close-formula -@defvarx calc-embedded-open-close-formula-alist -See @ref{Customizing Embedded Mode}.@* -The variables @code{calc-embedded-open-formula} and -@code{calc-embedded-open-formula} control the region that Calc will -activate as a formula when Embedded mode is entered with @kbd{C-x * e}. -They are regular expressions; -Calc normally scans backward and forward in the buffer for the -nearest text matching these regular expressions to be the ``formula -delimiters''. - -The simplest delimiters are blank lines. Other delimiters that -Embedded mode understands by default are: -@enumerate -@item -The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$}, -@samp{\[ \]}, and @samp{\( \)}; -@item -Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters); -@item -Lines beginning with @samp{@@} (Texinfo delimiters). -@item -Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters); -@item -Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else. -@end enumerate - -The variable @code{calc-embedded-open-close-formula-alist} is used to -set @code{calc-embedded-open-formula} and -@code{calc-embedded-close-formula} to different regular -expressions depending on the major mode of the editing buffer. -It consists of a list of lists of the form -@code{(@var{MAJOR-MODE} @var{OPEN-FORMULA-REGEXP} -@var{CLOSE-FORMULA-REGEXP})}, and its default value is -@code{nil}. -@end defvar - -@defvar calc-embedded-open-word -@defvarx calc-embedded-close-word -@defvarx calc-embedded-open-close-word-alist -See @ref{Customizing Embedded Mode}.@* -The variables @code{calc-embedded-open-word} and -@code{calc-embedded-close-word} control the region that Calc will -activate when Embedded mode is entered with @kbd{C-x * w}. They are -regular expressions. - -The default values of @code{calc-embedded-open-word} and -@code{calc-embedded-close-word} are @code{"^\\|[^-+0-9.eE]"} and -@code{"$\\|[^-+0-9.eE]"} respectively. - -The variable @code{calc-embedded-open-close-word-alist} is used to -set @code{calc-embedded-open-word} and -@code{calc-embedded-close-word} to different regular -expressions depending on the major mode of the editing buffer. -It consists of a list of lists of the form -@code{(@var{MAJOR-MODE} @var{OPEN-WORD-REGEXP} -@var{CLOSE-WORD-REGEXP})}, and its default value is -@code{nil}. -@end defvar - -@defvar calc-embedded-open-plain -@defvarx calc-embedded-close-plain -@defvarx calc-embedded-open-close-plain-alist -See @ref{Customizing Embedded Mode}.@* -The variables @code{calc-embedded-open-plain} and -@code{calc-embedded-open-plain} are used to delimit ``plain'' -formulas. Note that these are actual strings, not regular -expressions, because Calc must be able to write these string into a -buffer as well as to recognize them. - -The default string for @code{calc-embedded-open-plain} is -@code{"%%% "}, note the trailing space. The default string for -@code{calc-embedded-close-plain} is @code{" %%%\n"}, without -the trailing newline here, the first line of a Big mode formula -that followed might be shifted over with respect to the other lines. - -The variable @code{calc-embedded-open-close-plain-alist} is used to -set @code{calc-embedded-open-plain} and -@code{calc-embedded-close-plain} to different strings -depending on the major mode of the editing buffer. -It consists of a list of lists of the form -@code{(@var{MAJOR-MODE} @var{OPEN-PLAIN-STRING} -@var{CLOSE-PLAIN-STRING})}, and its default value is -@example - ((c++-mode "// %% " " %%\n") - (c-mode "/* %% " " %% */\n") - (f90-mode "! %% " " %%\n") - (fortran-mode "C %% " " %%\n") - (html-helper-mode "\n") - (html-mode "\n") - (nroff-mode "\\\" %% " " %%\n") - (pascal-mode "@{%% " " %%@}\n") - (sgml-mode "\n") - (xml-mode "\n") - (texinfo-mode "@@c %% " " %%\n")) -@end example -Any major modes added to @code{calc-embedded-open-close-plain-alist} -should also be added to @code{calc-embedded-announce-formula-alist} -and @code{calc-embedded-open-close-mode-alist}. -@end defvar - -@defvar calc-embedded-open-new-formula -@defvarx calc-embedded-close-new-formula -@defvarx calc-embedded-open-close-new-formula-alist -See @ref{Customizing Embedded Mode}.@* -The variables @code{calc-embedded-open-new-formula} and -@code{calc-embedded-close-new-formula} are strings which are -inserted before and after a new formula when you type @kbd{C-x * f}. - -The default value of @code{calc-embedded-open-new-formula} is -@code{"\n\n"}. If this string begins with a newline character and the -@kbd{C-x * f} is typed at the beginning of a line, @kbd{C-x * f} will skip -this first newline to avoid introducing unnecessary blank lines in the -file. The default value of @code{calc-embedded-close-new-formula} is -also @code{"\n\n"}. The final newline is omitted by @w{@kbd{C-x * f}} -if typed at the end of a line. (It follows that if @kbd{C-x * f} is -typed on a blank line, both a leading opening newline and a trailing -closing newline are omitted.) - -The variable @code{calc-embedded-open-close-new-formula-alist} is used to -set @code{calc-embedded-open-new-formula} and -@code{calc-embedded-close-new-formula} to different strings -depending on the major mode of the editing buffer. -It consists of a list of lists of the form -@code{(@var{MAJOR-MODE} @var{OPEN-NEW-FORMULA-STRING} -@var{CLOSE-NEW-FORMULA-STRING})}, and its default value is -@code{nil}. -@end defvar - -@defvar calc-embedded-open-mode -@defvarx calc-embedded-close-mode -@defvarx calc-embedded-open-close-mode-alist -See @ref{Customizing Embedded Mode}.@* -The variables @code{calc-embedded-open-mode} and -@code{calc-embedded-close-mode} are strings which Calc will place before -and after any mode annotations that it inserts. Calc never scans for -these strings; Calc always looks for the annotation itself, so it is not -necessary to add them to user-written annotations. - -The default value of @code{calc-embedded-open-mode} is @code{"% "} -and the default value of @code{calc-embedded-close-mode} is -@code{"\n"}. -If you change the value of @code{calc-embedded-close-mode}, it is a good -idea still to end with a newline so that mode annotations will appear on -lines by themselves. - -The variable @code{calc-embedded-open-close-mode-alist} is used to -set @code{calc-embedded-open-mode} and -@code{calc-embedded-close-mode} to different strings -expressions depending on the major mode of the editing buffer. -It consists of a list of lists of the form -@code{(@var{MAJOR-MODE} @var{OPEN-MODE-STRING} -@var{CLOSE-MODE-STRING})}, and its default value is -@example - ((c++-mode "// " "\n") - (c-mode "/* " " */\n") - (f90-mode "! " "\n") - (fortran-mode "C " "\n") - (html-helper-mode "\n") - (html-mode "\n") - (nroff-mode "\\\" " "\n") - (pascal-mode "@{ " " @}\n") - (sgml-mode "\n") - (xml-mode "\n") - (texinfo-mode "@@c " "\n")) -@end example -Any major modes added to @code{calc-embedded-open-close-mode-alist} -should also be added to @code{calc-embedded-announce-formula-alist} -and @code{calc-embedded-open-close-plain-alist}. -@end defvar - -@defvar calc-multiplication-has-precedence -The variable @code{calc-multiplication-has-precedence} determines -whether multiplication has precedence over division in algebraic formulas -in normal language modes. If @code{calc-multiplication-has-precedence} -is non-@code{nil}, then multiplication has precedence, and so for -example @samp{a/b*c} will be interpreted as @samp{a/(b*c)}. If -@code{calc-multiplication-has-precedence} is @code{nil}, then -multiplication has the same precedence as division, and so for example -@samp{a/b*c} will be interpreted as @samp{(a/b)*c}. The default value -of @code{calc-multiplication-has-precedence} is @code{t}. -@end defvar - -@node Reporting Bugs, Summary, Customizing Calc, Top -@appendix Reporting Bugs - -@noindent -If you find a bug in Calc, send e-mail to Jay Belanger, - -@example -jay.p.belanger@@gmail.com -@end example - -@noindent -There is an automatic command @kbd{M-x report-calc-bug} which helps -you to report bugs. This command prompts you for a brief subject -line, then leaves you in a mail editing buffer. Type @kbd{C-c C-c} to -send your mail. Make sure your subject line indicates that you are -reporting a Calc bug; this command sends mail to the maintainer's -regular mailbox. - -If you have suggestions for additional features for Calc, please send -them. Some have dared to suggest that Calc is already top-heavy with -features; this obviously cannot be the case, so if you have ideas, send -them right in. - -At the front of the source file, @file{calc.el}, is a list of ideas for -future work. If any enthusiastic souls wish to take it upon themselves -to work on these, please send a message (using @kbd{M-x report-calc-bug}) -so any efforts can be coordinated. - -The latest version of Calc is available from Savannah, in the Emacs -CVS tree. See @uref{http://savannah.gnu.org/projects/emacs}. - -@c [summary] -@node Summary, Key Index, Reporting Bugs, Top -@appendix Calc Summary - -@noindent -This section includes a complete list of Calc 2.1 keystroke commands. -Each line lists the stack entries used by the command (top-of-stack -last), the keystrokes themselves, the prompts asked by the command, -and the result of the command (also with top-of-stack last). -The result is expressed using the equivalent algebraic function. -Commands which put no results on the stack show the full @kbd{M-x} -command name in that position. Numbers preceding the result or -command name refer to notes at the end. - -Algebraic functions and @kbd{M-x} commands that don't have corresponding -keystrokes are not listed in this summary. -@xref{Command Index}. @xref{Function Index}. - -@iftex -@begingroup -@tex -\vskip-2\baselineskip \null -\gdef\sumrow#1{\sumrowx#1\relax}% -\gdef\sumrowx#1\:#2\:#3\:#4\:#5\:#6\relax{% -\leavevmode% -{\smallfonts -\hbox to5em{\sl\hss#1}% -\hbox to5em{\tt#2\hss}% -\hbox to4em{\sl#3\hss}% -\hbox to5em{\rm\hss#4}% -\thinspace% -{\tt#5}% -{\sl#6}% -}}% -\gdef\sumlpar{{\rm(}}% -\gdef\sumrpar{{\rm)}}% -\gdef\sumcomma{{\rm,\thinspace}}% -\gdef\sumexcl{{\rm!}}% -\gdef\sumbreak{\vskip-2.5\baselineskip\goodbreak}% -\gdef\minus#1{{\tt-}}% -@end tex -@let@:=@sumsep -@let@r=@sumrow -@catcode`@(=@active @let(=@sumlpar -@catcode`@)=@active @let)=@sumrpar -@catcode`@,=@active @let,=@sumcomma -@catcode`@!=@active @let!=@sumexcl -@end iftex -@format -@iftex -@advance@baselineskip-2.5pt -@let@c@sumbreak -@end iftex -@r{ @: C-x * a @: @: 33 @:calc-embedded-activate@:} -@r{ @: C-x * b @: @: @:calc-big-or-small@:} -@r{ @: C-x * c @: @: @:calc@:} -@r{ @: C-x * d @: @: @:calc-embedded-duplicate@:} -@r{ @: C-x * e @: @: 34 @:calc-embedded@:} -@r{ @: C-x * f @:formula @: @:calc-embedded-new-formula@:} -@r{ @: C-x * g @: @: 35 @:calc-grab-region@:} -@r{ @: C-x * i @: @: @:calc-info@:} -@r{ @: C-x * j @: @: @:calc-embedded-select@:} -@r{ @: C-x * k @: @: @:calc-keypad@:} -@r{ @: C-x * l @: @: @:calc-load-everything@:} -@r{ @: C-x * m @: @: @:read-kbd-macro@:} -@r{ @: C-x * n @: @: 4 @:calc-embedded-next@:} -@r{ @: C-x * o @: @: @:calc-other-window@:} -@r{ @: C-x * p @: @: 4 @:calc-embedded-previous@:} -@r{ @: C-x * q @:formula @: @:quick-calc@:} -@r{ @: C-x * r @: @: 36 @:calc-grab-rectangle@:} -@r{ @: C-x * s @: @: @:calc-info-summary@:} -@r{ @: C-x * t @: @: @:calc-tutorial@:} -@r{ @: C-x * u @: @: @:calc-embedded-update-formula@:} -@r{ @: C-x * w @: @: @:calc-embedded-word@:} -@r{ @: C-x * x @: @: @:calc-quit@:} -@r{ @: C-x * y @: @:1,28,49 @:calc-copy-to-buffer@:} -@r{ @: C-x * z @: @: @:calc-user-invocation@:} -@r{ @: C-x * : @: @: 36 @:calc-grab-sum-down@:} -@r{ @: C-x * _ @: @: 36 @:calc-grab-sum-across@:} -@r{ @: C-x * ` @:editing @: 30 @:calc-embedded-edit@:} -@r{ @: C-x * 0 @:(zero) @: @:calc-reset@:} - -@c -@r{ @: 0-9 @:number @: @:@:number} -@r{ @: . @:number @: @:@:0.number} -@r{ @: _ @:number @: @:-@:number} -@r{ @: e @:number @: @:@:1e number} -@r{ @: # @:number @: @:@:current-radix@tfn{#}number} -@r{ @: P @:(in number) @: @:+/-@:} -@r{ @: M @:(in number) @: @:mod@:} -@r{ @: @@ ' " @: (in number)@: @:@:HMS form} -@r{ @: h m s @: (in number)@: @:@:HMS form} - -@c -@r{ @: ' @:formula @: 37,46 @:@:formula} -@r{ @: $ @:formula @: 37,46 @:$@:formula} -@r{ @: " @:string @: 37,46 @:@:string} - -@c -@r{ a b@: + @: @: 2 @:add@:(a,b) a+b} -@r{ a b@: - @: @: 2 @:sub@:(a,b) a@minus{}b} -@r{ a b@: * @: @: 2 @:mul@:(a,b) a b, a*b} -@r{ a b@: / @: @: 2 @:div@:(a,b) a/b} -@r{ a b@: ^ @: @: 2 @:pow@:(a,b) a^b} -@r{ a b@: I ^ @: @: 2 @:nroot@:(a,b) a^(1/b)} -@r{ a b@: % @: @: 2 @:mod@:(a,b) a%b} -@r{ a b@: \ @: @: 2 @:idiv@:(a,b) a\b} -@r{ a b@: : @: @: 2 @:fdiv@:(a,b)} -@r{ a b@: | @: @: 2 @:vconcat@:(a,b) a|b} -@r{ a b@: I | @: @: @:vconcat@:(b,a) b|a} -@r{ a b@: H | @: @: 2 @:append@:(a,b)} -@r{ a b@: I H | @: @: @:append@:(b,a)} -@r{ a@: & @: @: 1 @:inv@:(a) 1/a} -@r{ a@: ! @: @: 1 @:fact@:(a) a!} -@r{ a@: = @: @: 1 @:evalv@:(a)} -@r{ a@: M-% @: @: @:percent@:(a) a%} - -@c -@r{ ... a@: @key{RET} @: @: 1 @:@:... a a} -@r{ ... a@: @key{SPC} @: @: 1 @:@:... a a} -@r{... a b@: @key{TAB} @: @: 3 @:@:... b a} -@r{. a b c@: M-@key{TAB} @: @: 3 @:@:... b c a} -@r{... a b@: @key{LFD} @: @: 1 @:@:... a b a} -@r{ ... a@: @key{DEL} @: @: 1 @:@:...} -@r{... a b@: M-@key{DEL} @: @: 1 @:@:... b} -@r{ @: M-@key{RET} @: @: 4 @:calc-last-args@:} -@r{ a@: ` @:editing @: 1,30 @:calc-edit@:} - -@c -@r{ ... a@: C-d @: @: 1 @:@:...} -@r{ @: C-k @: @: 27 @:calc-kill@:} -@r{ @: C-w @: @: 27 @:calc-kill-region@:} -@r{ @: C-y @: @: @:calc-yank@:} -@r{ @: C-_ @: @: 4 @:calc-undo@:} -@r{ @: M-k @: @: 27 @:calc-copy-as-kill@:} -@r{ @: M-w @: @: 27 @:calc-copy-region-as-kill@:} - -@c -@r{ @: [ @: @: @:@:[...} -@r{[.. a b@: ] @: @: @:@:[a,b]} -@r{ @: ( @: @: @:@:(...} -@r{(.. a b@: ) @: @: @:@:(a,b)} -@r{ @: , @: @: @:@:vector or rect complex} -@r{ @: ; @: @: @:@:matrix or polar complex} -@r{ @: .. @: @: @:@:interval} - -@c -@r{ @: ~ @: @: @:calc-num-prefix@:} -@r{ @: < @: @: 4 @:calc-scroll-left@:} -@r{ @: > @: @: 4 @:calc-scroll-right@:} -@r{ @: @{ @: @: 4 @:calc-scroll-down@:} -@r{ @: @} @: @: 4 @:calc-scroll-up@:} -@r{ @: ? @: @: @:calc-help@:} - -@c -@r{ a@: n @: @: 1 @:neg@:(a) @minus{}a} -@r{ @: o @: @: 4 @:calc-realign@:} -@r{ @: p @:precision @: 31 @:calc-precision@:} -@r{ @: q @: @: @:calc-quit@:} -@r{ @: w @: @: @:calc-why@:} -@r{ @: x @:command @: @:M-x calc-@:command} -@r{ a@: y @: @:1,28,49 @:calc-copy-to-buffer@:} - -@c -@r{ a@: A @: @: 1 @:abs@:(a)} -@r{ a b@: B @: @: 2 @:log@:(a,b)} -@r{ a b@: I B @: @: 2 @:alog@:(a,b) b^a} -@r{ a@: C @: @: 1 @:cos@:(a)} -@r{ a@: I C @: @: 1 @:arccos@:(a)} -@r{ a@: H C @: @: 1 @:cosh@:(a)} -@r{ a@: I H C @: @: 1 @:arccosh@:(a)} -@r{ @: D @: @: 4 @:calc-redo@:} -@r{ a@: E @: @: 1 @:exp@:(a)} -@r{ a@: H E @: @: 1 @:exp10@:(a) 10.^a} -@r{ a@: F @: @: 1,11 @:floor@:(a,d)} -@r{ a@: I F @: @: 1,11 @:ceil@:(a,d)} -@r{ a@: H F @: @: 1,11 @:ffloor@:(a,d)} -@r{ a@: I H F @: @: 1,11 @:fceil@:(a,d)} -@r{ a@: G @: @: 1 @:arg@:(a)} -@r{ @: H @:command @: 32 @:@:Hyperbolic} -@r{ @: I @:command @: 32 @:@:Inverse} -@r{ a@: J @: @: 1 @:conj@:(a)} -@r{ @: K @:command @: 32 @:@:Keep-args} -@r{ a@: L @: @: 1 @:ln@:(a)} -@r{ a@: H L @: @: 1 @:log10@:(a)} -@r{ @: M @: @: @:calc-more-recursion-depth@:} -@r{ @: I M @: @: @:calc-less-recursion-depth@:} -@r{ a@: N @: @: 5 @:evalvn@:(a)} -@r{ @: P @: @: @:@:pi} -@r{ @: I P @: @: @:@:gamma} -@r{ @: H P @: @: @:@:e} -@r{ @: I H P @: @: @:@:phi} -@r{ a@: Q @: @: 1 @:sqrt@:(a)} -@r{ a@: I Q @: @: 1 @:sqr@:(a) a^2} -@r{ a@: R @: @: 1,11 @:round@:(a,d)} -@r{ a@: I R @: @: 1,11 @:trunc@:(a,d)} -@r{ a@: H R @: @: 1,11 @:fround@:(a,d)} -@r{ a@: I H R @: @: 1,11 @:ftrunc@:(a,d)} -@r{ a@: S @: @: 1 @:sin@:(a)} -@r{ a@: I S @: @: 1 @:arcsin@:(a)} -@r{ a@: H S @: @: 1 @:sinh@:(a)} -@r{ a@: I H S @: @: 1 @:arcsinh@:(a)} -@r{ a@: T @: @: 1 @:tan@:(a)} -@r{ a@: I T @: @: 1 @:arctan@:(a)} -@r{ a@: H T @: @: 1 @:tanh@:(a)} -@r{ a@: I H T @: @: 1 @:arctanh@:(a)} -@r{ @: U @: @: 4 @:calc-undo@:} -@r{ @: X @: @: 4 @:calc-call-last-kbd-macro@:} - -@c -@r{ a b@: a = @: @: 2 @:eq@:(a,b) a=b} -@r{ a b@: a # @: @: 2 @:neq@:(a,b) a!=b} -@r{ a b@: a < @: @: 2 @:lt@:(a,b) a @: @: 2 @:gt@:(a,b) a>b} -@r{ a b@: a [ @: @: 2 @:leq@:(a,b) a<=b} -@r{ a b@: a ] @: @: 2 @:geq@:(a,b) a>=b} -@r{ a b@: a @{ @: @: 2 @:in@:(a,b)} -@r{ a b@: a & @: @: 2,45 @:land@:(a,b) a&&b} -@r{ a b@: a | @: @: 2,45 @:lor@:(a,b) a||b} -@r{ a@: a ! @: @: 1,45 @:lnot@:(a) !a} -@r{ a b c@: a : @: @: 45 @:if@:(a,b,c) a?b:c} -@r{ a@: a . @: @: 1 @:rmeq@:(a)} -@r{ a@: a " @: @: 7,8 @:calc-expand-formula@:} - -@c -@r{ a@: a + @:i, l, h @: 6,38 @:sum@:(a,i,l,h)} -@r{ a@: a - @:i, l, h @: 6,38 @:asum@:(a,i,l,h)} -@r{ a@: a * @:i, l, h @: 6,38 @:prod@:(a,i,l,h)} -@r{ a b@: a _ @: @: 2 @:subscr@:(a,b) a_b} - -@c -@r{ a b@: a \ @: @: 2 @:pdiv@:(a,b)} -@r{ a b@: a % @: @: 2 @:prem@:(a,b)} -@r{ a b@: a / @: @: 2 @:pdivrem@:(a,b) [q,r]} -@r{ a b@: H a / @: @: 2 @:pdivide@:(a,b) q+r/b} - -@c -@r{ a@: a a @: @: 1 @:apart@:(a)} -@r{ a@: a b @:old, new @: 38 @:subst@:(a,old,new)} -@r{ a@: a c @:v @: 38 @:collect@:(a,v)} -@r{ a@: a d @:v @: 4,38 @:deriv@:(a,v)} -@r{ a@: H a d @:v @: 4,38 @:tderiv@:(a,v)} -@r{ a@: a e @: @: @:esimplify@:(a)} -@r{ a@: a f @: @: 1 @:factor@:(a)} -@r{ a@: H a f @: @: 1 @:factors@:(a)} -@r{ a b@: a g @: @: 2 @:pgcd@:(a,b)} -@r{ a@: a i @:v @: 38 @:integ@:(a,v)} -@r{ a@: a m @:pats @: 38 @:match@:(a,pats)} -@r{ a@: I a m @:pats @: 38 @:matchnot@:(a,pats)} -@r{ data x@: a p @: @: 28 @:polint@:(data,x)} -@r{ data x@: H a p @: @: 28 @:ratint@:(data,x)} -@r{ a@: a n @: @: 1 @:nrat@:(a)} -@r{ a@: a r @:rules @:4,8,38 @:rewrite@:(a,rules,n)} -@r{ a@: a s @: @: @:simplify@:(a)} -@r{ a@: a t @:v, n @: 31,39 @:taylor@:(a,v,n)} -@r{ a@: a v @: @: 7,8 @:calc-alg-evaluate@:} -@r{ a@: a x @: @: 4,8 @:expand@:(a)} - -@c -@r{ data@: a F @:model, vars @: 48 @:fit@:(m,iv,pv,data)} -@r{ data@: I a F @:model, vars @: 48 @:xfit@:(m,iv,pv,data)} -@r{ data@: H a F @:model, vars @: 48 @:efit@:(m,iv,pv,data)} -@r{ a@: a I @:v, l, h @: 38 @:ninteg@:(a,v,l,h)} -@r{ a b@: a M @:op @: 22 @:mapeq@:(op,a,b)} -@r{ a b@: I a M @:op @: 22 @:mapeqr@:(op,a,b)} -@r{ a b@: H a M @:op @: 22 @:mapeqp@:(op,a,b)} -@r{ a g@: a N @:v @: 38 @:minimize@:(a,v,g)} -@r{ a g@: H a N @:v @: 38 @:wminimize@:(a,v,g)} -@r{ a@: a P @:v @: 38 @:roots@:(a,v)} -@r{ a g@: a R @:v @: 38 @:root@:(a,v,g)} -@r{ a g@: H a R @:v @: 38 @:wroot@:(a,v,g)} -@r{ a@: a S @:v @: 38 @:solve@:(a,v)} -@r{ a@: I a S @:v @: 38 @:finv@:(a,v)} -@r{ a@: H a S @:v @: 38 @:fsolve@:(a,v)} -@r{ a@: I H a S @:v @: 38 @:ffinv@:(a,v)} -@r{ a@: a T @:i, l, h @: 6,38 @:table@:(a,i,l,h)} -@r{ a g@: a X @:v @: 38 @:maximize@:(a,v,g)} -@r{ a g@: H a X @:v @: 38 @:wmaximize@:(a,v,g)} - -@c -@r{ a b@: b a @: @: 9 @:and@:(a,b,w)} -@r{ a@: b c @: @: 9 @:clip@:(a,w)} -@r{ a b@: b d @: @: 9 @:diff@:(a,b,w)} -@r{ a@: b l @: @: 10 @:lsh@:(a,n,w)} -@r{ a n@: H b l @: @: 9 @:lsh@:(a,n,w)} -@r{ a@: b n @: @: 9 @:not@:(a,w)} -@r{ a b@: b o @: @: 9 @:or@:(a,b,w)} -@r{ v@: b p @: @: 1 @:vpack@:(v)} -@r{ a@: b r @: @: 10 @:rsh@:(a,n,w)} -@r{ a n@: H b r @: @: 9 @:rsh@:(a,n,w)} -@r{ a@: b t @: @: 10 @:rot@:(a,n,w)} -@r{ a n@: H b t @: @: 9 @:rot@:(a,n,w)} -@r{ a@: b u @: @: 1 @:vunpack@:(a)} -@r{ @: b w @:w @: 9,50 @:calc-word-size@:} -@r{ a b@: b x @: @: 9 @:xor@:(a,b,w)} - -@c -@r{c s l p@: b D @: @: @:ddb@:(c,s,l,p)} -@r{ r n p@: b F @: @: @:fv@:(r,n,p)} -@r{ r n p@: I b F @: @: @:fvb@:(r,n,p)} -@r{ r n p@: H b F @: @: @:fvl@:(r,n,p)} -@r{ v@: b I @: @: 19 @:irr@:(v)} -@r{ v@: I b I @: @: 19 @:irrb@:(v)} -@r{ a@: b L @: @: 10 @:ash@:(a,n,w)} -@r{ a n@: H b L @: @: 9 @:ash@:(a,n,w)} -@r{ r n a@: b M @: @: @:pmt@:(r,n,a)} -@r{ r n a@: I b M @: @: @:pmtb@:(r,n,a)} -@r{ r n a@: H b M @: @: @:pmtl@:(r,n,a)} -@r{ r v@: b N @: @: 19 @:npv@:(r,v)} -@r{ r v@: I b N @: @: 19 @:npvb@:(r,v)} -@r{ r n p@: b P @: @: @:pv@:(r,n,p)} -@r{ r n p@: I b P @: @: @:pvb@:(r,n,p)} -@r{ r n p@: H b P @: @: @:pvl@:(r,n,p)} -@r{ a@: b R @: @: 10 @:rash@:(a,n,w)} -@r{ a n@: H b R @: @: 9 @:rash@:(a,n,w)} -@r{ c s l@: b S @: @: @:sln@:(c,s,l)} -@r{ n p a@: b T @: @: @:rate@:(n,p,a)} -@r{ n p a@: I b T @: @: @:rateb@:(n,p,a)} -@r{ n p a@: H b T @: @: @:ratel@:(n,p,a)} -@r{c s l p@: b Y @: @: @:syd@:(c,s,l,p)} - -@r{ r p a@: b # @: @: @:nper@:(r,p,a)} -@r{ r p a@: I b # @: @: @:nperb@:(r,p,a)} -@r{ r p a@: H b # @: @: @:nperl@:(r,p,a)} -@r{ a b@: b % @: @: @:relch@:(a,b)} - -@c -@r{ a@: c c @: @: 5 @:pclean@:(a,p)} -@r{ a@: c 0-9 @: @: @:pclean@:(a,p)} -@r{ a@: H c c @: @: 5 @:clean@:(a,p)} -@r{ a@: H c 0-9 @: @: @:clean@:(a,p)} -@r{ a@: c d @: @: 1 @:deg@:(a)} -@r{ a@: c f @: @: 1 @:pfloat@:(a)} -@r{ a@: H c f @: @: 1 @:float@:(a)} -@r{ a@: c h @: @: 1 @:hms@:(a)} -@r{ a@: c p @: @: @:polar@:(a)} -@r{ a@: I c p @: @: @:rect@:(a)} -@r{ a@: c r @: @: 1 @:rad@:(a)} - -@c -@r{ a@: c F @: @: 5 @:pfrac@:(a,p)} -@r{ a@: H c F @: @: 5 @:frac@:(a,p)} - -@c -@r{ a@: c % @: @: @:percent@:(a*100)} - -@c -@r{ @: d . @:char @: 50 @:calc-point-char@:} -@r{ @: d , @:char @: 50 @:calc-group-char@:} -@r{ @: d < @: @: 13,50 @:calc-left-justify@:} -@r{ @: d = @: @: 13,50 @:calc-center-justify@:} -@r{ @: d > @: @: 13,50 @:calc-right-justify@:} -@r{ @: d @{ @:label @: 50 @:calc-left-label@:} -@r{ @: d @} @:label @: 50 @:calc-right-label@:} -@r{ @: d [ @: @: 4 @:calc-truncate-up@:} -@r{ @: d ] @: @: 4 @:calc-truncate-down@:} -@r{ @: d " @: @: 12,50 @:calc-display-strings@:} -@r{ @: d @key{SPC} @: @: @:calc-refresh@:} -@r{ @: d @key{RET} @: @: 1 @:calc-refresh-top@:} - -@c -@r{ @: d 0 @: @: 50 @:calc-decimal-radix@:} -@r{ @: d 2 @: @: 50 @:calc-binary-radix@:} -@r{ @: d 6 @: @: 50 @:calc-hex-radix@:} -@r{ @: d 8 @: @: 50 @:calc-octal-radix@:} - -@c -@r{ @: d b @: @:12,13,50 @:calc-line-breaking@:} -@r{ @: d c @: @: 50 @:calc-complex-notation@:} -@r{ @: d d @:format @: 50 @:calc-date-notation@:} -@r{ @: d e @: @: 5,50 @:calc-eng-notation@:} -@r{ @: d f @:num @: 31,50 @:calc-fix-notation@:} -@r{ @: d g @: @:12,13,50 @:calc-group-digits@:} -@r{ @: d h @:format @: 50 @:calc-hms-notation@:} -@r{ @: d i @: @: 50 @:calc-i-notation@:} -@r{ @: d j @: @: 50 @:calc-j-notation@:} -@r{ @: d l @: @: 12,50 @:calc-line-numbering@:} -@r{ @: d n @: @: 5,50 @:calc-normal-notation@:} -@r{ @: d o @:format @: 50 @:calc-over-notation@:} -@r{ @: d p @: @: 12,50 @:calc-show-plain@:} -@r{ @: d r @:radix @: 31,50 @:calc-radix@:} -@r{ @: d s @: @: 5,50 @:calc-sci-notation@:} -@r{ @: d t @: @: 27 @:calc-truncate-stack@:} -@r{ @: d w @: @: 12,13 @:calc-auto-why@:} -@r{ @: d z @: @: 12,50 @:calc-leading-zeros@:} - -@c -@r{ @: d B @: @: 50 @:calc-big-language@:} -@r{ @: d C @: @: 50 @:calc-c-language@:} -@r{ @: d E @: @: 50 @:calc-eqn-language@:} -@r{ @: d F @: @: 50 @:calc-fortran-language@:} -@r{ @: d M @: @: 50 @:calc-mathematica-language@:} -@r{ @: d N @: @: 50 @:calc-normal-language@:} -@r{ @: d O @: @: 50 @:calc-flat-language@:} -@r{ @: d P @: @: 50 @:calc-pascal-language@:} -@r{ @: d T @: @: 50 @:calc-tex-language@:} -@r{ @: d L @: @: 50 @:calc-latex-language@:} -@r{ @: d U @: @: 50 @:calc-unformatted-language@:} -@r{ @: d W @: @: 50 @:calc-maple-language@:} - -@c -@r{ a@: f [ @: @: 4 @:decr@:(a,n)} -@r{ a@: f ] @: @: 4 @:incr@:(a,n)} - -@c -@r{ a b@: f b @: @: 2 @:beta@:(a,b)} -@r{ a@: f e @: @: 1 @:erf@:(a)} -@r{ a@: I f e @: @: 1 @:erfc@:(a)} -@r{ a@: f g @: @: 1 @:gamma@:(a)} -@r{ a b@: f h @: @: 2 @:hypot@:(a,b)} -@r{ a@: f i @: @: 1 @:im@:(a)} -@r{ n a@: f j @: @: 2 @:besJ@:(n,a)} -@r{ a b@: f n @: @: 2 @:min@:(a,b)} -@r{ a@: f r @: @: 1 @:re@:(a)} -@r{ a@: f s @: @: 1 @:sign@:(a)} -@r{ a b@: f x @: @: 2 @:max@:(a,b)} -@r{ n a@: f y @: @: 2 @:besY@:(n,a)} - -@c -@r{ a@: f A @: @: 1 @:abssqr@:(a)} -@r{ x a b@: f B @: @: @:betaI@:(x,a,b)} -@r{ x a b@: H f B @: @: @:betaB@:(x,a,b)} -@r{ a@: f E @: @: 1 @:expm1@:(a)} -@r{ a x@: f G @: @: 2 @:gammaP@:(a,x)} -@r{ a x@: I f G @: @: 2 @:gammaQ@:(a,x)} -@r{ a x@: H f G @: @: 2 @:gammag@:(a,x)} -@r{ a x@: I H f G @: @: 2 @:gammaG@:(a,x)} -@r{ a b@: f I @: @: 2 @:ilog@:(a,b)} -@r{ a b@: I f I @: @: 2 @:alog@:(a,b) b^a} -@r{ a@: f L @: @: 1 @:lnp1@:(a)} -@r{ a@: f M @: @: 1 @:mant@:(a)} -@r{ a@: f Q @: @: 1 @:isqrt@:(a)} -@r{ a@: I f Q @: @: 1 @:sqr@:(a) a^2} -@r{ a n@: f S @: @: 2 @:scf@:(a,n)} -@r{ y x@: f T @: @: @:arctan2@:(y,x)} -@r{ a@: f X @: @: 1 @:xpon@:(a)} - -@c -@r{ x y@: g a @: @: 28,40 @:calc-graph-add@:} -@r{ @: g b @: @: 12 @:calc-graph-border@:} -@r{ @: g c @: @: @:calc-graph-clear@:} -@r{ @: g d @: @: 41 @:calc-graph-delete@:} -@r{ x y@: g f @: @: 28,40 @:calc-graph-fast@:} -@r{ @: g g @: @: 12 @:calc-graph-grid@:} -@r{ @: g h @:title @: @:calc-graph-header@:} -@r{ @: g j @: @: 4 @:calc-graph-juggle@:} -@r{ @: g k @: @: 12 @:calc-graph-key@:} -@r{ @: g l @: @: 12 @:calc-graph-log-x@:} -@r{ @: g n @:name @: @:calc-graph-name@:} -@r{ @: g p @: @: 42 @:calc-graph-plot@:} -@r{ @: g q @: @: @:calc-graph-quit@:} -@r{ @: g r @:range @: @:calc-graph-range-x@:} -@r{ @: g s @: @: 12,13 @:calc-graph-line-style@:} -@r{ @: g t @:title @: @:calc-graph-title-x@:} -@r{ @: g v @: @: @:calc-graph-view-commands@:} -@r{ @: g x @:display @: @:calc-graph-display@:} -@r{ @: g z @: @: 12 @:calc-graph-zero-x@:} - -@c -@r{ x y z@: g A @: @: 28,40 @:calc-graph-add-3d@:} -@r{ @: g C @:command @: @:calc-graph-command@:} -@r{ @: g D @:device @: 43,44 @:calc-graph-device@:} -@r{ x y z@: g F @: @: 28,40 @:calc-graph-fast-3d@:} -@r{ @: g H @: @: 12 @:calc-graph-hide@:} -@r{ @: g K @: @: @:calc-graph-kill@:} -@r{ @: g L @: @: 12 @:calc-graph-log-y@:} -@r{ @: g N @:number @: 43,51 @:calc-graph-num-points@:} -@r{ @: g O @:filename @: 43,44 @:calc-graph-output@:} -@r{ @: g P @: @: 42 @:calc-graph-print@:} -@r{ @: g R @:range @: @:calc-graph-range-y@:} -@r{ @: g S @: @: 12,13 @:calc-graph-point-style@:} -@r{ @: g T @:title @: @:calc-graph-title-y@:} -@r{ @: g V @: @: @:calc-graph-view-trail@:} -@r{ @: g X @:format @: @:calc-graph-geometry@:} -@r{ @: g Z @: @: 12 @:calc-graph-zero-y@:} - -@c -@r{ @: g C-l @: @: 12 @:calc-graph-log-z@:} -@r{ @: g C-r @:range @: @:calc-graph-range-z@:} -@r{ @: g C-t @:title @: @:calc-graph-title-z@:} - -@c -@r{ @: h b @: @: @:calc-describe-bindings@:} -@r{ @: h c @:key @: @:calc-describe-key-briefly@:} -@r{ @: h f @:function @: @:calc-describe-function@:} -@r{ @: h h @: @: @:calc-full-help@:} -@r{ @: h i @: @: @:calc-info@:} -@r{ @: h k @:key @: @:calc-describe-key@:} -@r{ @: h n @: @: @:calc-view-news@:} -@r{ @: h s @: @: @:calc-info-summary@:} -@r{ @: h t @: @: @:calc-tutorial@:} -@r{ @: h v @:var @: @:calc-describe-variable@:} - -@c -@r{ @: j 1-9 @: @: @:calc-select-part@:} -@r{ @: j @key{RET} @: @: 27 @:calc-copy-selection@:} -@r{ @: j @key{DEL} @: @: 27 @:calc-del-selection@:} -@r{ @: j ' @:formula @: 27 @:calc-enter-selection@:} -@r{ @: j ` @:editing @: 27,30 @:calc-edit-selection@:} -@r{ @: j " @: @: 7,27 @:calc-sel-expand-formula@:} - -@c -@r{ @: j + @:formula @: 27 @:calc-sel-add-both-sides@:} -@r{ @: j - @:formula @: 27 @:calc-sel-sub-both-sides@:} -@r{ @: j * @:formula @: 27 @:calc-sel-mul-both-sides@:} -@r{ @: j / @:formula @: 27 @:calc-sel-div-both-sides@:} -@r{ @: j & @: @: 27 @:calc-sel-invert@:} - -@c -@r{ @: j a @: @: 27 @:calc-select-additional@:} -@r{ @: j b @: @: 12 @:calc-break-selections@:} -@r{ @: j c @: @: @:calc-clear-selections@:} -@r{ @: j d @: @: 12,50 @:calc-show-selections@:} -@r{ @: j e @: @: 12 @:calc-enable-selections@:} -@r{ @: j l @: @: 4,27 @:calc-select-less@:} -@r{ @: j m @: @: 4,27 @:calc-select-more@:} -@r{ @: j n @: @: 4 @:calc-select-next@:} -@r{ @: j o @: @: 4,27 @:calc-select-once@:} -@r{ @: j p @: @: 4 @:calc-select-previous@:} -@r{ @: j r @:rules @:4,8,27 @:calc-rewrite-selection@:} -@r{ @: j s @: @: 4,27 @:calc-select-here@:} -@r{ @: j u @: @: 27 @:calc-unselect@:} -@r{ @: j v @: @: 7,27 @:calc-sel-evaluate@:} - -@c -@r{ @: j C @: @: 27 @:calc-sel-commute@:} -@r{ @: j D @: @: 4,27 @:calc-sel-distribute@:} -@r{ @: j E @: @: 27 @:calc-sel-jump-equals@:} -@r{ @: j I @: @: 27 @:calc-sel-isolate@:} -@r{ @: H j I @: @: 27 @:calc-sel-isolate@: (full)} -@r{ @: j L @: @: 4,27 @:calc-commute-left@:} -@r{ @: j M @: @: 27 @:calc-sel-merge@:} -@r{ @: j N @: @: 27 @:calc-sel-negate@:} -@r{ @: j O @: @: 4,27 @:calc-select-once-maybe@:} -@r{ @: j R @: @: 4,27 @:calc-commute-right@:} -@r{ @: j S @: @: 4,27 @:calc-select-here-maybe@:} -@r{ @: j U @: @: 27 @:calc-sel-unpack@:} - -@c -@r{ @: k a @: @: @:calc-random-again@:} -@r{ n@: k b @: @: 1 @:bern@:(n)} -@r{ n x@: H k b @: @: 2 @:bern@:(n,x)} -@r{ n m@: k c @: @: 2 @:choose@:(n,m)} -@r{ n m@: H k c @: @: 2 @:perm@:(n,m)} -@r{ n@: k d @: @: 1 @:dfact@:(n) n!!} -@r{ n@: k e @: @: 1 @:euler@:(n)} -@r{ n x@: H k e @: @: 2 @:euler@:(n,x)} -@r{ n@: k f @: @: 4 @:prfac@:(n)} -@r{ n m@: k g @: @: 2 @:gcd@:(n,m)} -@r{ m n@: k h @: @: 14 @:shuffle@:(n,m)} -@r{ n m@: k l @: @: 2 @:lcm@:(n,m)} -@r{ n@: k m @: @: 1 @:moebius@:(n)} -@r{ n@: k n @: @: 4 @:nextprime@:(n)} -@r{ n@: I k n @: @: 4 @:prevprime@:(n)} -@r{ n@: k p @: @: 4,28 @:calc-prime-test@:} -@r{ m@: k r @: @: 14 @:random@:(m)} -@r{ n m@: k s @: @: 2 @:stir1@:(n,m)} -@r{ n m@: H k s @: @: 2 @:stir2@:(n,m)} -@r{ n@: k t @: @: 1 @:totient@:(n)} - -@c -@r{ n p x@: k B @: @: @:utpb@:(x,n,p)} -@r{ n p x@: I k B @: @: @:ltpb@:(x,n,p)} -@r{ v x@: k C @: @: @:utpc@:(x,v)} -@r{ v x@: I k C @: @: @:ltpc@:(x,v)} -@r{ n m@: k E @: @: @:egcd@:(n,m)} -@r{v1 v2 x@: k F @: @: @:utpf@:(x,v1,v2)} -@r{v1 v2 x@: I k F @: @: @:ltpf@:(x,v1,v2)} -@r{ m s x@: k N @: @: @:utpn@:(x,m,s)} -@r{ m s x@: I k N @: @: @:ltpn@:(x,m,s)} -@r{ m x@: k P @: @: @:utpp@:(x,m)} -@r{ m x@: I k P @: @: @:ltpp@:(x,m)} -@r{ v x@: k T @: @: @:utpt@:(x,v)} -@r{ v x@: I k T @: @: @:ltpt@:(x,v)} - -@c -@r{ @: m a @: @: 12,13 @:calc-algebraic-mode@:} -@r{ @: m d @: @: @:calc-degrees-mode@:} -@r{ @: m e @: @: @:calc-embedded-preserve-modes@:} -@r{ @: m f @: @: 12 @:calc-frac-mode@:} -@r{ @: m g @: @: 52 @:calc-get-modes@:} -@r{ @: m h @: @: @:calc-hms-mode@:} -@r{ @: m i @: @: 12,13 @:calc-infinite-mode@:} -@r{ @: m m @: @: @:calc-save-modes@:} -@r{ @: m p @: @: 12 @:calc-polar-mode@:} -@r{ @: m r @: @: @:calc-radians-mode@:} -@r{ @: m s @: @: 12 @:calc-symbolic-mode@:} -@r{ @: m t @: @: 12 @:calc-total-algebraic-mode@:} -@r{ @: m v @: @: 12,13 @:calc-matrix-mode@:} -@r{ @: m w @: @: 13 @:calc-working@:} -@r{ @: m x @: @: @:calc-always-load-extensions@:} - -@c -@r{ @: m A @: @: 12 @:calc-alg-simplify-mode@:} -@r{ @: m B @: @: 12 @:calc-bin-simplify-mode@:} -@r{ @: m C @: @: 12 @:calc-auto-recompute@:} -@r{ @: m D @: @: @:calc-default-simplify-mode@:} -@r{ @: m E @: @: 12 @:calc-ext-simplify-mode@:} -@r{ @: m F @:filename @: 13 @:calc-settings-file-name@:} -@r{ @: m N @: @: 12 @:calc-num-simplify-mode@:} -@r{ @: m O @: @: 12 @:calc-no-simplify-mode@:} -@r{ @: m R @: @: 12,13 @:calc-mode-record-mode@:} -@r{ @: m S @: @: 12 @:calc-shift-prefix@:} -@r{ @: m U @: @: 12 @:calc-units-simplify-mode@:} - -@c -@r{ @: s c @:var1, var2 @: 29 @:calc-copy-variable@:} -@r{ @: s d @:var, decl @: @:calc-declare-variable@:} -@r{ @: s e @:var, editing @: 29,30 @:calc-edit-variable@:} -@r{ @: s i @:buffer @: @:calc-insert-variables@:} -@r{ @: s k @:const, var @: 29 @:calc-copy-special-constant@:} -@r{ a b@: s l @:var @: 29 @:@:a (letting var=b)} -@r{ a ...@: s m @:op, var @: 22,29 @:calc-store-map@:} -@r{ @: s n @:var @: 29,47 @:calc-store-neg@: (v/-1)} -@r{ @: s p @:var @: 29 @:calc-permanent-variable@:} -@r{ @: s r @:var @: 29 @:@:v (recalled value)} -@r{ @: r 0-9 @: @: @:calc-recall-quick@:} -@r{ a@: s s @:var @: 28,29 @:calc-store@:} -@r{ a@: s 0-9 @: @: @:calc-store-quick@:} -@r{ a@: s t @:var @: 29 @:calc-store-into@:} -@r{ a@: t 0-9 @: @: @:calc-store-into-quick@:} -@r{ @: s u @:var @: 29 @:calc-unstore@:} -@r{ a@: s x @:var @: 29 @:calc-store-exchange@:} - -@c -@r{ @: s A @:editing @: 30 @:calc-edit-AlgSimpRules@:} -@r{ @: s D @:editing @: 30 @:calc-edit-Decls@:} -@r{ @: s E @:editing @: 30 @:calc-edit-EvalRules@:} -@r{ @: s F @:editing @: 30 @:calc-edit-FitRules@:} -@r{ @: s G @:editing @: 30 @:calc-edit-GenCount@:} -@r{ @: s H @:editing @: 30 @:calc-edit-Holidays@:} -@r{ @: s I @:editing @: 30 @:calc-edit-IntegLimit@:} -@r{ @: s L @:editing @: 30 @:calc-edit-LineStyles@:} -@r{ @: s P @:editing @: 30 @:calc-edit-PointStyles@:} -@r{ @: s R @:editing @: 30 @:calc-edit-PlotRejects@:} -@r{ @: s T @:editing @: 30 @:calc-edit-TimeZone@:} -@r{ @: s U @:editing @: 30 @:calc-edit-Units@:} -@r{ @: s X @:editing @: 30 @:calc-edit-ExtSimpRules@:} - -@c -@r{ a@: s + @:var @: 29,47 @:calc-store-plus@: (v+a)} -@r{ a@: s - @:var @: 29,47 @:calc-store-minus@: (v-a)} -@r{ a@: s * @:var @: 29,47 @:calc-store-times@: (v*a)} -@r{ a@: s / @:var @: 29,47 @:calc-store-div@: (v/a)} -@r{ a@: s ^ @:var @: 29,47 @:calc-store-power@: (v^a)} -@r{ a@: s | @:var @: 29,47 @:calc-store-concat@: (v|a)} -@r{ @: s & @:var @: 29,47 @:calc-store-inv@: (v^-1)} -@r{ @: s [ @:var @: 29,47 @:calc-store-decr@: (v-1)} -@r{ @: s ] @:var @: 29,47 @:calc-store-incr@: (v-(-1))} -@r{ a b@: s : @: @: 2 @:assign@:(a,b) a @tfn{:=} b} -@r{ a@: s = @: @: 1 @:evalto@:(a,b) a @tfn{=>}} - -@c -@r{ @: t [ @: @: 4 @:calc-trail-first@:} -@r{ @: t ] @: @: 4 @:calc-trail-last@:} -@r{ @: t < @: @: 4 @:calc-trail-scroll-left@:} -@r{ @: t > @: @: 4 @:calc-trail-scroll-right@:} -@r{ @: t . @: @: 12 @:calc-full-trail-vectors@:} - -@c -@r{ @: t b @: @: 4 @:calc-trail-backward@:} -@r{ @: t d @: @: 12,50 @:calc-trail-display@:} -@r{ @: t f @: @: 4 @:calc-trail-forward@:} -@r{ @: t h @: @: @:calc-trail-here@:} -@r{ @: t i @: @: @:calc-trail-in@:} -@r{ @: t k @: @: 4 @:calc-trail-kill@:} -@r{ @: t m @:string @: @:calc-trail-marker@:} -@r{ @: t n @: @: 4 @:calc-trail-next@:} -@r{ @: t o @: @: @:calc-trail-out@:} -@r{ @: t p @: @: 4 @:calc-trail-previous@:} -@r{ @: t r @:string @: @:calc-trail-isearch-backward@:} -@r{ @: t s @:string @: @:calc-trail-isearch-forward@:} -@r{ @: t y @: @: 4 @:calc-trail-yank@:} - -@c -@r{ d@: t C @:oz, nz @: @:tzconv@:(d,oz,nz)} -@r{d oz nz@: t C @:$ @: @:tzconv@:(d,oz,nz)} -@r{ d@: t D @: @: 15 @:date@:(d)} -@r{ d@: t I @: @: 4 @:incmonth@:(d,n)} -@r{ d@: t J @: @: 16 @:julian@:(d,z)} -@r{ d@: t M @: @: 17 @:newmonth@:(d,n)} -@r{ @: t N @: @: 16 @:now@:(z)} -@r{ d@: t P @:1 @: 31 @:year@:(d)} -@r{ d@: t P @:2 @: 31 @:month@:(d)} -@r{ d@: t P @:3 @: 31 @:day@:(d)} -@r{ d@: t P @:4 @: 31 @:hour@:(d)} -@r{ d@: t P @:5 @: 31 @:minute@:(d)} -@r{ d@: t P @:6 @: 31 @:second@:(d)} -@r{ d@: t P @:7 @: 31 @:weekday@:(d)} -@r{ d@: t P @:8 @: 31 @:yearday@:(d)} -@r{ d@: t P @:9 @: 31 @:time@:(d)} -@r{ d@: t U @: @: 16 @:unixtime@:(d,z)} -@r{ d@: t W @: @: 17 @:newweek@:(d,w)} -@r{ d@: t Y @: @: 17 @:newyear@:(d,n)} - -@c -@r{ a b@: t + @: @: 2 @:badd@:(a,b)} -@r{ a b@: t - @: @: 2 @:bsub@:(a,b)} - -@c -@r{ @: u a @: @: 12 @:calc-autorange-units@:} -@r{ a@: u b @: @: @:calc-base-units@:} -@r{ a@: u c @:units @: 18 @:calc-convert-units@:} -@r{ defn@: u d @:unit, descr @: @:calc-define-unit@:} -@r{ @: u e @: @: @:calc-explain-units@:} -@r{ @: u g @:unit @: @:calc-get-unit-definition@:} -@r{ @: u p @: @: @:calc-permanent-units@:} -@r{ a@: u r @: @: @:calc-remove-units@:} -@r{ a@: u s @: @: @:usimplify@:(a)} -@r{ a@: u t @:units @: 18 @:calc-convert-temperature@:} -@r{ @: u u @:unit @: @:calc-undefine-unit@:} -@r{ @: u v @: @: @:calc-enter-units-table@:} -@r{ a@: u x @: @: @:calc-extract-units@:} -@r{ a@: u 0-9 @: @: @:calc-quick-units@:} - -@c -@r{ v1 v2@: u C @: @: 20 @:vcov@:(v1,v2)} -@r{ v1 v2@: I u C @: @: 20 @:vpcov@:(v1,v2)} -@r{ v1 v2@: H u C @: @: 20 @:vcorr@:(v1,v2)} -@r{ v@: u G @: @: 19 @:vgmean@:(v)} -@r{ a b@: H u G @: @: 2 @:agmean@:(a,b)} -@r{ v@: u M @: @: 19 @:vmean@:(v)} -@r{ v@: I u M @: @: 19 @:vmeane@:(v)} -@r{ v@: H u M @: @: 19 @:vmedian@:(v)} -@r{ v@: I H u M @: @: 19 @:vhmean@:(v)} -@r{ v@: u N @: @: 19 @:vmin@:(v)} -@r{ v@: u S @: @: 19 @:vsdev@:(v)} -@r{ v@: I u S @: @: 19 @:vpsdev@:(v)} -@r{ v@: H u S @: @: 19 @:vvar@:(v)} -@r{ v@: I H u S @: @: 19 @:vpvar@:(v)} -@r{ @: u V @: @: @:calc-view-units-table@:} -@r{ v@: u X @: @: 19 @:vmax@:(v)} - -@c -@r{ v@: u + @: @: 19 @:vsum@:(v)} -@r{ v@: u * @: @: 19 @:vprod@:(v)} -@r{ v@: u # @: @: 19 @:vcount@:(v)} - -@c -@r{ @: V ( @: @: 50 @:calc-vector-parens@:} -@r{ @: V @{ @: @: 50 @:calc-vector-braces@:} -@r{ @: V [ @: @: 50 @:calc-vector-brackets@:} -@r{ @: V ] @:ROCP @: 50 @:calc-matrix-brackets@:} -@r{ @: V , @: @: 50 @:calc-vector-commas@:} -@r{ @: V < @: @: 50 @:calc-matrix-left-justify@:} -@r{ @: V = @: @: 50 @:calc-matrix-center-justify@:} -@r{ @: V > @: @: 50 @:calc-matrix-right-justify@:} -@r{ @: V / @: @: 12,50 @:calc-break-vectors@:} -@r{ @: V . @: @: 12,50 @:calc-full-vectors@:} - -@c -@r{ s t@: V ^ @: @: 2 @:vint@:(s,t)} -@r{ s t@: V - @: @: 2 @:vdiff@:(s,t)} -@r{ s@: V ~ @: @: 1 @:vcompl@:(s)} -@r{ s@: V # @: @: 1 @:vcard@:(s)} -@r{ s@: V : @: @: 1 @:vspan@:(s)} -@r{ s@: V + @: @: 1 @:rdup@:(s)} - -@c -@r{ m@: V & @: @: 1 @:inv@:(m) 1/m} - -@c -@r{ v@: v a @:n @: @:arrange@:(v,n)} -@r{ a@: v b @:n @: @:cvec@:(a,n)} -@r{ v@: v c @:n >0 @: 21,31 @:mcol@:(v,n)} -@r{ v@: v c @:n <0 @: 31 @:mrcol@:(v,-n)} -@r{ m@: v c @:0 @: 31 @:getdiag@:(m)} -@r{ v@: v d @: @: 25 @:diag@:(v,n)} -@r{ v m@: v e @: @: 2 @:vexp@:(v,m)} -@r{ v m f@: H v e @: @: 2 @:vexp@:(v,m,f)} -@r{ v a@: v f @: @: 26 @:find@:(v,a,n)} -@r{ v@: v h @: @: 1 @:head@:(v)} -@r{ v@: I v h @: @: 1 @:tail@:(v)} -@r{ v@: H v h @: @: 1 @:rhead@:(v)} -@r{ v@: I H v h @: @: 1 @:rtail@:(v)} -@r{ @: v i @:n @: 31 @:idn@:(1,n)} -@r{ @: v i @:0 @: 31 @:idn@:(1)} -@r{ h t@: v k @: @: 2 @:cons@:(h,t)} -@r{ h t@: H v k @: @: 2 @:rcons@:(h,t)} -@r{ v@: v l @: @: 1 @:vlen@:(v)} -@r{ v@: H v l @: @: 1 @:mdims@:(v)} -@r{ v m@: v m @: @: 2 @:vmask@:(v,m)} -@r{ v@: v n @: @: 1 @:rnorm@:(v)} -@r{ a b c@: v p @: @: 24 @:calc-pack@:} -@r{ v@: v r @:n >0 @: 21,31 @:mrow@:(v,n)} -@r{ v@: v r @:n <0 @: 31 @:mrrow@:(v,-n)} -@r{ m@: v r @:0 @: 31 @:getdiag@:(m)} -@r{ v i j@: v s @: @: @:subvec@:(v,i,j)} -@r{ v i j@: I v s @: @: @:rsubvec@:(v,i,j)} -@r{ m@: v t @: @: 1 @:trn@:(m)} -@r{ v@: v u @: @: 24 @:calc-unpack@:} -@r{ v@: v v @: @: 1 @:rev@:(v)} -@r{ @: v x @:n @: 31 @:index@:(n)} -@r{ n s i@: C-u v x @: @: @:index@:(n,s,i)} - -@c -@r{ v@: V A @:op @: 22 @:apply@:(op,v)} -@r{ v1 v2@: V C @: @: 2 @:cross@:(v1,v2)} -@r{ m@: V D @: @: 1 @:det@:(m)} -@r{ s@: V E @: @: 1 @:venum@:(s)} -@r{ s@: V F @: @: 1 @:vfloor@:(s)} -@r{ v@: V G @: @: @:grade@:(v)} -@r{ v@: I V G @: @: @:rgrade@:(v)} -@r{ v@: V H @:n @: 31 @:histogram@:(v,n)} -@r{ v w@: H V H @:n @: 31 @:histogram@:(v,w,n)} -@r{ v1 v2@: V I @:mop aop @: 22 @:inner@:(mop,aop,v1,v2)} -@r{ m@: V J @: @: 1 @:ctrn@:(m)} -@r{ m@: V L @: @: 1 @:lud@:(m)} -@r{ v@: V M @:op @: 22,23 @:map@:(op,v)} -@r{ v@: V N @: @: 1 @:cnorm@:(v)} -@r{ v1 v2@: V O @:op @: 22 @:outer@:(op,v1,v2)} -@r{ v@: V R @:op @: 22,23 @:reduce@:(op,v)} -@r{ v@: I V R @:op @: 22,23 @:rreduce@:(op,v)} -@r{ a n@: H V R @:op @: 22 @:nest@:(op,a,n)} -@r{ a@: I H V R @:op @: 22 @:fixp@:(op,a)} -@r{ v@: V S @: @: @:sort@:(v)} -@r{ v@: I V S @: @: @:rsort@:(v)} -@r{ m@: V T @: @: 1 @:tr@:(m)} -@r{ v@: V U @:op @: 22 @:accum@:(op,v)} -@r{ v@: I V U @:op @: 22 @:raccum@:(op,v)} -@r{ a n@: H V U @:op @: 22 @:anest@:(op,a,n)} -@r{ a@: I H V U @:op @: 22 @:afixp@:(op,a)} -@r{ s t@: V V @: @: 2 @:vunion@:(s,t)} -@r{ s t@: V X @: @: 2 @:vxor@:(s,t)} - -@c -@r{ @: Y @: @: @:@:user commands} - -@c -@r{ @: z @: @: @:@:user commands} - -@c -@r{ c@: Z [ @: @: 45 @:calc-kbd-if@:} -@r{ c@: Z | @: @: 45 @:calc-kbd-else-if@:} -@r{ @: Z : @: @: @:calc-kbd-else@:} -@r{ @: Z ] @: @: @:calc-kbd-end-if@:} - -@c -@r{ @: Z @{ @: @: 4 @:calc-kbd-loop@:} -@r{ c@: Z / @: @: 45 @:calc-kbd-break@:} -@r{ @: Z @} @: @: @:calc-kbd-end-loop@:} -@r{ n@: Z < @: @: @:calc-kbd-repeat@:} -@r{ @: Z > @: @: @:calc-kbd-end-repeat@:} -@r{ n m@: Z ( @: @: @:calc-kbd-for@:} -@r{ s@: Z ) @: @: @:calc-kbd-end-for@:} - -@c -@r{ @: Z C-g @: @: @:@:cancel if/loop command} - -@c -@r{ @: Z ` @: @: @:calc-kbd-push@:} -@r{ @: Z ' @: @: @:calc-kbd-pop@:} -@r{ @: Z # @: @: @:calc-kbd-query@:} - -@c -@r{ comp@: Z C @:func, args @: 50 @:calc-user-define-composition@:} -@r{ @: Z D @:key, command @: @:calc-user-define@:} -@r{ @: Z E @:key, editing @: 30 @:calc-user-define-edit@:} -@r{ defn@: Z F @:k, c, f, a, n@: 28 @:calc-user-define-formula@:} -@r{ @: Z G @:key @: @:calc-get-user-defn@:} -@r{ @: Z I @: @: @:calc-user-define-invocation@:} -@r{ @: Z K @:key, command @: @:calc-user-define-kbd-macro@:} -@r{ @: Z P @:key @: @:calc-user-define-permanent@:} -@r{ @: Z S @: @: 30 @:calc-edit-user-syntax@:} -@r{ @: Z T @: @: 12 @:calc-timing@:} -@r{ @: Z U @:key @: @:calc-user-undefine@:} - -@end format - -@noindent -NOTES - -@enumerate -@c 1 -@item -Positive prefix arguments apply to @expr{n} stack entries. -Negative prefix arguments apply to the @expr{-n}th stack entry. -A prefix of zero applies to the entire stack. (For @key{LFD} and -@kbd{M-@key{DEL}}, the meaning of the sign is reversed.) - -@c 2 -@item -Positive prefix arguments apply to @expr{n} stack entries. -Negative prefix arguments apply to the top stack entry -and the next @expr{-n} stack entries. - -@c 3 -@item -Positive prefix arguments rotate top @expr{n} stack entries by one. -Negative prefix arguments rotate the entire stack by @expr{-n}. -A prefix of zero reverses the entire stack. - -@c 4 -@item -Prefix argument specifies a repeat count or distance. - -@c 5 -@item -Positive prefix arguments specify a precision @expr{p}. -Negative prefix arguments reduce the current precision by @expr{-p}. - -@c 6 -@item -A prefix argument is interpreted as an additional step-size parameter. -A plain @kbd{C-u} prefix means to prompt for the step size. - -@c 7 -@item -A prefix argument specifies simplification level and depth. -1=Default, 2=like @kbd{a s}, 3=like @kbd{a e}. - -@c 8 -@item -A negative prefix operates only on the top level of the input formula. - -@c 9 -@item -Positive prefix arguments specify a word size of @expr{w} bits, unsigned. -Negative prefix arguments specify a word size of @expr{w} bits, signed. - -@c 10 -@item -Prefix arguments specify the shift amount @expr{n}. The @expr{w} argument -cannot be specified in the keyboard version of this command. - -@c 11 -@item -From the keyboard, @expr{d} is omitted and defaults to zero. - -@c 12 -@item -Mode is toggled; a positive prefix always sets the mode, and a negative -prefix always clears the mode. - -@c 13 -@item -Some prefix argument values provide special variations of the mode. - -@c 14 -@item -A prefix argument, if any, is used for @expr{m} instead of taking -@expr{m} from the stack. @expr{M} may take any of these values: -@iftex -{@advance@tableindent10pt -@end iftex -@table @asis -@item Integer -Random integer in the interval @expr{[0 .. m)}. -@item Float -Random floating-point number in the interval @expr{[0 .. m)}. -@item 0.0 -Gaussian with mean 1 and standard deviation 0. -@item Error form -Gaussian with specified mean and standard deviation. -@item Interval -Random integer or floating-point number in that interval. -@item Vector -Random element from the vector. -@end table -@iftex -} -@end iftex - -@c 15 -@item -A prefix argument from 1 to 6 specifies number of date components -to remove from the stack. @xref{Date Conversions}. - -@c 16 -@item -A prefix argument specifies a time zone; @kbd{C-u} says to take the -time zone number or name from the top of the stack. @xref{Time Zones}. - -@c 17 -@item -A prefix argument specifies a day number (0-6, 0-31, or 0-366). - -@c 18 -@item -If the input has no units, you will be prompted for both the old and -the new units. - -@c 19 -@item -With a prefix argument, collect that many stack entries to form the -input data set. Each entry may be a single value or a vector of values. - -@c 20 -@item -With a prefix argument of 1, take a single -@texline @var{n}@math{\times2} -@infoline @mathit{@var{N}x2} -matrix from the stack instead of two separate data vectors. - -@c 21 -@item -The row or column number @expr{n} may be given as a numeric prefix -argument instead. A plain @kbd{C-u} prefix says to take @expr{n} -from the top of the stack. If @expr{n} is a vector or interval, -a subvector/submatrix of the input is created. - -@c 22 -@item -The @expr{op} prompt can be answered with the key sequence for the -desired function, or with @kbd{x} or @kbd{z} followed by a function name, -or with @kbd{$} to take a formula from the top of the stack, or with -@kbd{'} and a typed formula. In the last two cases, the formula may -be a nameless function like @samp{<#1+#2>} or @samp{}, or it -may include @kbd{$}, @kbd{$$}, etc. (where @kbd{$} will correspond to the -last argument of the created function), or otherwise you will be -prompted for an argument list. The number of vectors popped from the -stack by @kbd{V M} depends on the number of arguments of the function. - -@c 23 -@item -One of the mapping direction keys @kbd{_} (horizontal, i.e., map -by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or -reduce down), or @kbd{=} (map or reduce by rows) may be used before -entering @expr{op}; these modify the function name by adding the letter -@code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,'' -or @code{d} for ``down.'' - -@c 24 -@item -The prefix argument specifies a packing mode. A nonnegative mode -is the number of items (for @kbd{v p}) or the number of levels -(for @kbd{v u}). A negative mode is as described below. With no -prefix argument, the mode is taken from the top of the stack and -may be an integer or a vector of integers. -@iftex -{@advance@tableindent-20pt -@end iftex -@table @cite -@item -1 -(@var{2}) Rectangular complex number. -@item -2 -(@var{2}) Polar complex number. -@item -3 -(@var{3}) HMS form. -@item -4 -(@var{2}) Error form. -@item -5 -(@var{2}) Modulo form. -@item -6 -(@var{2}) Closed interval. -@item -7 -(@var{2}) Closed .. open interval. -@item -8 -(@var{2}) Open .. closed interval. -@item -9 -(@var{2}) Open interval. -@item -10 -(@var{2}) Fraction. -@item -11 -(@var{2}) Float with integer mantissa. -@item -12 -(@var{2}) Float with mantissa in @expr{[1 .. 10)}. -@item -13 -(@var{1}) Date form (using date numbers). -@item -14 -(@var{3}) Date form (using year, month, day). -@item -15 -(@var{6}) Date form (using year, month, day, hour, minute, second). -@end table -@iftex -} -@end iftex - -@c 25 -@item -A prefix argument specifies the size @expr{n} of the matrix. With no -prefix argument, @expr{n} is omitted and the size is inferred from -the input vector. - -@c 26 -@item -The prefix argument specifies the starting position @expr{n} (default 1). - -@c 27 -@item -Cursor position within stack buffer affects this command. - -@c 28 -@item -Arguments are not actually removed from the stack by this command. - -@c 29 -@item -Variable name may be a single digit or a full name. - -@c 30 -@item -Editing occurs in a separate buffer. Press @kbd{C-c C-c} (or -@key{LFD}, or in some cases @key{RET}) to finish the edit, or kill the -buffer with @kbd{C-x k} to cancel the edit. The @key{LFD} key prevents evaluation -of the result of the edit. - -@c 31 -@item -The number prompted for can also be provided as a prefix argument. - -@c 32 -@item -Press this key a second time to cancel the prefix. - -@c 33 -@item -With a negative prefix, deactivate all formulas. With a positive -prefix, deactivate and then reactivate from scratch. - -@c 34 -@item -Default is to scan for nearest formula delimiter symbols. With a -prefix of zero, formula is delimited by mark and point. With a -non-zero prefix, formula is delimited by scanning forward or -backward by that many lines. - -@c 35 -@item -Parse the region between point and mark as a vector. A nonzero prefix -parses @var{n} lines before or after point as a vector. A zero prefix -parses the current line as a vector. A @kbd{C-u} prefix parses the -region between point and mark as a single formula. - -@c 36 -@item -Parse the rectangle defined by point and mark as a matrix. A positive -prefix @var{n} divides the rectangle into columns of width @var{n}. -A zero or @kbd{C-u} prefix parses each line as one formula. A negative -prefix suppresses special treatment of bracketed portions of a line. - -@c 37 -@item -A numeric prefix causes the current language mode to be ignored. - -@c 38 -@item -Responding to a prompt with a blank line answers that and all -later prompts by popping additional stack entries. - -@c 39 -@item -Answer for @expr{v} may also be of the form @expr{v = v_0} or -@expr{v - v_0}. - -@c 40 -@item -With a positive prefix argument, stack contains many @expr{y}'s and one -common @expr{x}. With a zero prefix, stack contains a vector of -@expr{y}s and a common @expr{x}. With a negative prefix, stack -contains many @expr{[x,y]} vectors. (For 3D plots, substitute -@expr{z} for @expr{y} and @expr{x,y} for @expr{x}.) - -@c 41 -@item -With any prefix argument, all curves in the graph are deleted. - -@c 42 -@item -With a positive prefix, refines an existing plot with more data points. -With a negative prefix, forces recomputation of the plot data. - -@c 43 -@item -With any prefix argument, set the default value instead of the -value for this graph. - -@c 44 -@item -With a negative prefix argument, set the value for the printer. - -@c 45 -@item -Condition is considered ``true'' if it is a nonzero real or complex -number, or a formula whose value is known to be nonzero; it is ``false'' -otherwise. - -@c 46 -@item -Several formulas separated by commas are pushed as multiple stack -entries. Trailing @kbd{)}, @kbd{]}, @kbd{@}}, @kbd{>}, and @kbd{"} -delimiters may be omitted. The notation @kbd{$$$} refers to the value -in stack level three, and causes the formula to replace the top three -stack levels. The notation @kbd{$3} refers to stack level three without -causing that value to be removed from the stack. Use @key{LFD} in place -of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET} -to evaluate variables. - -@c 47 -@item -The variable is replaced by the formula shown on the right. The -Inverse flag reverses the order of the operands, e.g., @kbd{I s - x} -assigns -@texline @math{x \coloneq a-x}. -@infoline @expr{x := a-x}. - -@c 48 -@item -Press @kbd{?} repeatedly to see how to choose a model. Answer the -variables prompt with @expr{iv} or @expr{iv;pv} to specify -independent and parameter variables. A positive prefix argument -takes @mathit{@var{n}+1} vectors from the stack; a zero prefix takes a matrix -and a vector from the stack. - -@c 49 -@item -With a plain @kbd{C-u} prefix, replace the current region of the -destination buffer with the yanked text instead of inserting. - -@c 50 -@item -All stack entries are reformatted; the @kbd{H} prefix inhibits this. -The @kbd{I} prefix sets the mode temporarily, redraws the top stack -entry, then restores the original setting of the mode. - -@c 51 -@item -A negative prefix sets the default 3D resolution instead of the -default 2D resolution. - -@c 52 -@item -This grabs a vector of the form [@var{prec}, @var{wsize}, @var{ssize}, -@var{radix}, @var{flfmt}, @var{ang}, @var{frac}, @var{symb}, @var{polar}, -@var{matrix}, @var{simp}, @var{inf}]. A prefix argument from 1 to 12 -grabs the @var{n}th mode value only. -@end enumerate - -@iftex -(Space is provided below for you to keep your own written notes.) -@page -@endgroup -@end iftex - - -@c [end-summary] - -@node Key Index, Command Index, Summary, Top -@unnumbered Index of Key Sequences - -@printindex ky - -@node Command Index, Function Index, Key Index, Top -@unnumbered Index of Calculator Commands - -Since all Calculator commands begin with the prefix @samp{calc-}, the -@kbd{x} key has been provided as a variant of @kbd{M-x} which automatically -types @samp{calc-} for you. Thus, @kbd{x last-args} is short for -@kbd{M-x calc-last-args}. - -@printindex pg - -@node Function Index, Concept Index, Command Index, Top -@unnumbered Index of Algebraic Functions - -This is a list of built-in functions and operators usable in algebraic -expressions. Their full Lisp names are derived by adding the prefix -@samp{calcFunc-}, as in @code{calcFunc-sqrt}. -@iftex -All functions except those noted with ``*'' have corresponding -Calc keystrokes and can also be found in the Calc Summary. -@end iftex - -@printindex tp - -@node Concept Index, Variable Index, Function Index, Top -@unnumbered Concept Index - -@printindex cp - -@node Variable Index, Lisp Function Index, Concept Index, Top -@unnumbered Index of Variables - -The variables in this list that do not contain dashes are accessible -as Calc variables. Add a @samp{var-} prefix to get the name of the -corresponding Lisp variable. - -The remaining variables are Lisp variables suitable for @code{setq}ing -in your Calc init file or @file{.emacs} file. - -@printindex vr - -@node Lisp Function Index, , Variable Index, Top -@unnumbered Index of Lisp Math Functions - -The following functions are meant to be used with @code{defmath}, not -@code{defun} definitions. For names that do not start with @samp{calc-}, -the corresponding full Lisp name is derived by adding a prefix of -@samp{math-}. - -@printindex fn - -@bye - - -@ignore - arch-tag: 77a71809-fa4d-40be-b2cc-da3e8fb137c0 -@end ignore