Mercurial > emacs
changeset 81524:2f789d8d9f93
Change ifinfo to ifnottex (as appropriate) throughout.
(About This Manual): Remove redundant information.
(Getting Started): Mention author.
author | Jay Belanger <jay.p.belanger@gmail.com> |
---|---|
date | Thu, 21 Jun 2007 03:28:16 +0000 |
parents | 5ead004f767a |
children | 225a1895f8dd |
files | man/calc.texi |
diffstat | 1 files changed, 105 insertions(+), 109 deletions(-) [+] |
line wrap: on
line diff
--- a/man/calc.texi Wed Jun 20 22:10:31 2007 +0000 +++ b/man/calc.texi Thu Jun 21 03:28:16 2007 +0000 @@ -124,28 +124,32 @@ @end titlepage @c [begin] -@ifinfo +@ifnottex @node Top, Getting Started, (dir), (dir) @chapter The GNU Emacs Calculator @noindent @dfn{Calc} is an advanced desk calculator and mathematical tool -that runs as part of the GNU Emacs environment. - -This manual is divided into three major parts: ``Getting Started,'' -the ``Calc Tutorial,'' and the ``Calc Reference.'' The Tutorial -introduces all the major aspects of Calculator use in an easy, -hands-on way. The remainder of the manual is a complete reference to -the features of the Calculator. - +written by Dave Gillespie that runs as part of the GNU Emacs environment. + +This manual, also written (mostly) by Dave Gillespie, is divided into +three major parts: ``Getting Started,'' the ``Calc Tutorial,'' and the +``Calc Reference.'' The Tutorial introduces all the major aspects of +Calculator use in an easy, hands-on way. The remainder of the manual is +a complete reference to the features of the Calculator. +@end ifnottex + +@ifinfo For help in the Emacs Info system (which you are using to read this file), type @kbd{?}. (You can also type @kbd{h} to run through a longer Info tutorial.) - @end ifinfo + @menu * Getting Started:: General description and overview. +@ifinfo * Interactive Tutorial:: +@end ifinfo * Tutorial:: A step-by-step introduction for beginners. * Introduction:: Introduction to the Calc reference manual. @@ -179,7 +183,12 @@ * Lisp Function Index:: Internal Lisp math functions. @end menu +@ifinfo @node Getting Started, Interactive Tutorial, Top, Top +@end ifinfo +@ifnotinfo +@node Getting Started, Tutorial, Top, Top +@end ifnotinfo @chapter Getting Started @noindent This chapter provides a general overview of Calc, the GNU Emacs @@ -267,12 +276,6 @@ this manual ought to be readable even if you don't know or use Emacs regularly. -@ifinfo -The manual is divided into three major parts:@: the ``Getting -Started'' chapter you are reading now, the Calc tutorial (chapter 2), -and the Calc reference manual (the remaining chapters and appendices). -@end ifinfo -@iftex The manual is divided into three major parts:@: the ``Getting Started'' chapter you are reading now, the Calc tutorial (chapter 2), and the Calc reference manual (the remaining chapters and appendices). @@ -280,7 +283,6 @@ @c This manual has been printed in two volumes, the @dfn{Tutorial} and the @c @dfn{Reference}. Both volumes include a copy of the ``Getting Started'' @c chapter. -@end iftex If you are in a hurry to use Calc, there is a brief ``demonstration'' below which illustrates the major features of Calc in just a couple of @@ -321,6 +323,7 @@ function, or variable using @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v}, respectively. @xref{Help Commands}. +@ifnottex The Calc manual can be printed, but because the manual is so large, you should only make a printed copy if you really need it. To print the manual, you will need the @TeX{} typesetting program (this is a free @@ -347,7 +350,7 @@ @example dvips calc.dvi @end example - +@end ifnottex @c Printed copies of this manual are also available from the Free Software @c Foundation. @@ -543,13 +546,13 @@ Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas. (That's a letter @kbd{l}, not a numeral @kbd{1}.) -@iftex +@ifnotinfo @strong{Help functions.} You can read about any command in the on-line manual. Type @kbd{C-x * c} to return to Calc after each of these commands: @kbd{h k t N} to read about the @kbd{t N} command, @kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and @kbd{h s} to read the Calc summary. -@end iftex +@end ifnotinfo @ifinfo @strong{Help functions.} You can read about any command in the on-line manual. Remember to type the letter @kbd{l}, then @kbd{C-x * c}, to @@ -1251,9 +1254,12 @@ @menu * Tutorial:: @end menu -@end ifinfo @node Tutorial, Introduction, Interactive Tutorial, Top +@end ifinfo +@ifnotinfo +@node Tutorial, Introduction, Getting Started, Top +@end ifnotinfo @chapter Tutorial @noindent @@ -1272,32 +1278,22 @@ self-explanatory. @xref{Embedded Mode}, for a description of the Embedded mode interface. -@ifinfo The easiest way to read this tutorial on-line is to have two windows on your Emacs screen, one with Calc and one with the Info system. (If you have a printed copy of the manual you can use that instead.) Press @kbd{C-x * c} to turn Calc on or to switch into the Calc window, and press @kbd{C-x * i} to start the Info system or to switch into its window. -Or, you may prefer to use the tutorial in printed form. -@end ifinfo -@iftex -The easiest way to read this tutorial on-line is to have two windows on -your Emacs screen, one with Calc and one with the Info system. (If you -have a printed copy of the manual you can use that instead.) Press -@kbd{C-x * c} to turn Calc on or to switch into the Calc window, and -press @kbd{C-x * i} to start the Info system or to switch into its window. -@end iftex This tutorial is designed to be done in sequence. But the rest of this manual does not assume you have gone through the tutorial. The tutorial does not cover everything in the Calculator, but it touches on most general areas. -@ifinfo +@ifnottex You may wish to print out a copy of the Calc Summary and keep notes on it as you learn Calc. @xref{About This Manual}, to see how to make a printed summary. @xref{Summary}. -@end ifinfo +@end ifnottex @iftex The Calc Summary at the end of the reference manual includes some blank space for your own use. You may wish to keep notes there as you learn @@ -1334,13 +1330,13 @@ @subsection RPN Calculations and the Stack @cindex RPN notation -@ifinfo +@ifnottex @noindent Calc normally uses RPN notation. You may be familiar with the RPN system from Hewlett-Packard calculators, FORTH, or PostScript. (Reverse Polish Notation, RPN, is named after the Polish mathematician Jan Lukasiewicz.) -@end ifinfo +@end ifnottex @tex \noindent Calc normally uses RPN notation. You may be familiar with the RPN @@ -1769,7 +1765,7 @@ @noindent or, in large mathematical notation, -@ifinfo +@ifnottex @example @group 3 * 4 * 5 @@ -1778,7 +1774,7 @@ 6 * 7 @end group @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -3325,7 +3321,7 @@ Matrix inverses are related to systems of linear equations in algebra. Suppose we had the following set of equations: -@ifinfo +@ifnottex @group @example a + 2b + 3c = 6 @@ -3333,7 +3329,7 @@ 7a + 6b = 3 @end example @end group -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplayh @@ -3352,7 +3348,7 @@ @noindent This can be cast into the matrix equation, -@ifinfo +@ifnottex @group @example [ [ 1, 2, 3 ] [ [ a ] [ [ 6 ] @@ -3360,7 +3356,7 @@ [ 7, 6, 0 ] ] [ c ] ] [ 3 ] ] @end example @end group -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -3425,14 +3421,14 @@ system of equations to get expressions for @expr{x} and @expr{y} in terms of @expr{a} and @expr{b}. -@ifinfo +@ifnottex @group @example x + a y = 6 x + b y = 10 @end example @end group -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -3456,9 +3452,9 @@ is not square for an over-determined system. Matrix inversion works only for square matrices. One common trick is to multiply both sides on the left by the transpose of @expr{A}: -@ifinfo +@ifnottex @samp{trn(A)*A*X = trn(A)*B}. -@end ifinfo +@end ifnottex @tex \turnoffactive $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}. @@ -3472,7 +3468,7 @@ of equations. Use Calc to solve the following over-determined system: -@ifinfo +@ifnottex @group @example a + 2b + 3c = 6 @@ -3481,7 +3477,7 @@ 2a + 4b + 6c = 11 @end example @end group -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplayh @@ -3749,11 +3745,11 @@ In a least squares fit, the slope @expr{m} is given by the formula -@ifinfo +@ifnottex @example m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2) @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -3790,12 +3786,12 @@ @end group @end smallexample -@ifinfo +@ifnottex @noindent These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)}, respectively. (We could have used @kbd{*} to compute @samp{sum(x^2)} and @samp{sum(x y)}.) -@end ifinfo +@end ifnottex @tex \turnoffactive These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$, @@ -3845,11 +3841,11 @@ That gives us the slope @expr{m}. The y-intercept @expr{b} can now be found with the simple formula, -@ifinfo +@ifnottex @example b = (sum(y) - m sum(x)) / N @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -3987,14 +3983,14 @@ with or without surrounding vector brackets. @xref{List Answer 3, 3}. (@bullet{}) -@ifinfo +@ifnottex As another example, a theorem about binomial coefficients tells us that the alternating sum of binomial coefficients @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so on up to @var{n}-choose-@var{n}, always comes out to zero. Let's verify this for @expr{n=6}. -@end ifinfo +@end ifnottex @tex As another example, a theorem about binomial coefficients tells us that the alternating sum of binomial coefficients @@ -5193,12 +5189,12 @@ that the steps are not required to be flat. Simpson's rule boils down to the formula, -@ifinfo +@ifnottex @example (h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ... + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h)) @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -5215,12 +5211,12 @@ For reference, here is the corresponding formula for the stairstep method: -@ifinfo +@ifnottex @example h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ... + f(a+(n-2)*h) + f(a+(n-1)*h)) @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -5657,11 +5653,11 @@ infinite series that exactly equals the value of that function at values of @expr{x} near zero. -@ifinfo +@ifnottex @example cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ... @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -5675,11 +5671,11 @@ Mathematicians often write a truncated series using a ``big-O'' notation that records what was the lowest term that was truncated. -@ifinfo +@ifnottex @example cos(x) = 1 - x^2 / 2! + O(x^3) @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -6204,11 +6200,11 @@ @expr{x_0} which is reasonably close to the desired solution, apply this formula over and over: -@ifinfo +@ifnottex @example new_x = x - f(x)/f'(x) @end example -@end ifinfo +@end ifnottex @tex \beforedisplay $$ x_{\rm new} = x - {f(x) \over f'(x)} $$ @@ -6242,11 +6238,11 @@ @infoline @expr{ln(gamma(z))}. For large values of @expr{z}, it can be approximated by the infinite sum -@ifinfo +@ifnottex @example psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf) @end example -@end ifinfo +@end ifnottex @tex \beforedisplay $$ \psi(z) \approx \ln z - {1\over2z} - @@ -6305,13 +6301,13 @@ (@bullet{}) @strong{Exercise 11.} The @dfn{Stirling numbers of the first kind} are defined by the recurrences, -@ifinfo +@ifnottex @example s(n,n) = 1 for n >= 0, s(n,0) = 0 for n > 0, s(n+1,m) = s(n,m-1) - n s(n,m) for n >= m >= 1. @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -6843,14 +6839,14 @@ @node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises @subsection Matrix Tutorial Exercise 2 -@ifinfo +@ifnottex @example @group x + a y = 6 x + b y = 10 @end group @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -6905,7 +6901,7 @@ @infoline @expr{A2 * X = B2} which we can solve using Calc's @samp{/} command. -@ifinfo +@ifnottex @example @group a + 2b + 3c = 6 @@ -6914,7 +6910,7 @@ 2a + 4b + 6c = 11 @end group @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplayh @@ -7045,11 +7041,11 @@ Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before, the first job is to form the matrix that describes the problem. -@ifinfo +@ifnottex @example m*x + b*1 = y @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -7836,11 +7832,11 @@ subtracting off enough 511's to put the result in the desired range. So the result when we take the modulo after every step is, -@ifinfo +@ifnottex @example 3 (3 a + b - 511 m) + c - 511 n @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -7852,11 +7848,11 @@ for some suitable integers @expr{m} and @expr{n}. Expanding out by the distributive law yields -@ifinfo +@ifnottex @example 9 a + 3 b + c - 511*3 m - 511 n @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -7870,11 +7866,11 @@ term. So we can take it out to get an equivalent formula with @expr{n' = 3m + n}, -@ifinfo +@ifnottex @example 9 a + 3 b + c - 511 n' @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -11285,7 +11281,7 @@ of the possible range of values a computation will produce, given the set of possible values of the input. -@ifinfo +@ifnottex Calc supports several varieties of intervals, including @dfn{closed} intervals of the type shown above, @dfn{open} intervals such as @samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4 @@ -11296,7 +11292,7 @@ @samp{[2 ..@: 4)} represents @expr{2 <= x < 4}, @samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and @samp{(2 ..@: 4)} represents @expr{2 < x < 4}. -@end ifinfo +@end ifnottex @tex Calc supports several varieties of intervals, including \dfn{closed} intervals of the type shown above, \dfn{open} intervals such as @@ -11929,14 +11925,14 @@ @pindex calc-trail-isearch-forward @kindex t r @pindex calc-trail-isearch-backward -@ifinfo +@ifnottex The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r} (@code{calc-trail-isearch-backward}) commands perform an incremental search forward or backward through the trail. You can press @key{RET} to terminate the search; the trail pointer moves to the current line. If you cancel the search with @kbd{C-g}, the trail pointer stays where it was when the search began. -@end ifinfo +@end ifnottex @tex The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r} (@code{calc-trail-isearch-backward}) com\-mands perform an incremental @@ -14237,10 +14233,10 @@ Also, the ``discretionary multiplication sign'' @samp{\*} is read the same as @samp{*}. -@ifinfo +@ifnottex The @TeX{} version of this manual includes some printed examples at the end of this section. -@end ifinfo +@end ifnottex @iftex Here are some examples of how various Calc formulas are formatted in @TeX{}: @@ -17656,7 +17652,7 @@ (@code{calc-expand-formula}) command, or when taking derivatives or integrals or solving equations involving the functions. -@ifinfo +@ifnottex These formulas are shown using the conventions of Big display mode (@kbd{d B}); for example, the formula for @code{fv} written linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}. @@ -17736,7 +17732,7 @@ ddb(cost, salv, life, per) = --------, book = cost - depreciation so far life @end example -@end ifinfo +@end ifnottex @tex \turnoffactive $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$ @@ -18385,14 +18381,14 @@ You can think of this as taking the other half of the integral, from @expr{x} to infinity. -@ifinfo +@ifnottex The functions corresponding to the integrals that define @expr{P(a,x)} and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)} factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively (where @expr{g} and @expr{G} represent the lower- and upper-case Greek letter gamma). You can obtain these using the @kbd{H f G} [@code{gammag}] and @kbd{H I f G} [@code{gammaG}] commands. -@end ifinfo +@end ifnottex @tex \turnoffactive The functions corresponding to the integrals that define $P(a,x)$ @@ -18908,10 +18904,10 @@ @kindex H k c @pindex calc-perm @tindex perm -@ifinfo +@ifnottex The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the number-of-permutations function @expr{N! / (N-M)!}. -@end ifinfo +@end ifnottex @tex The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the number-of-perm\-utations function $N! \over (N-M)!\,$. @@ -23151,13 +23147,13 @@ command will again prompt for an integration variable, then prompt for a lower limit and an upper limit. -@ifinfo +@ifnottex If you use the @code{integ} function directly in an algebraic formula, you can also write @samp{integ(f,x,v)} which expresses the resulting indefinite integral in terms of variable @code{v} instead of @code{x}. With four arguments, @samp{integ(f(x),x,a,b)} represents a definite integral from @code{a} to @code{b}. -@end ifinfo +@end ifnottex @tex If you use the @code{integ} function directly in an algebraic formula, you can also write @samp{integ(f,x,v)} which expresses the resulting @@ -24038,14 +24034,14 @@ For example, suppose the data matrix -@ifinfo +@ifnottex @example @group [ [ 1, 2, 3, 4, 5 ] [ 5, 7, 9, 11, 13 ] ] @end group @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \turnoffactive @@ -24102,11 +24098,11 @@ the method of least squares. The idea is to define the @dfn{chi-square} error measure -@ifinfo +@ifnottex @example chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N) @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -24291,11 +24287,11 @@ @infoline @expr{chi^2} statistic is now, -@ifinfo +@ifnottex @example chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N) @end example -@end ifinfo +@end ifnottex @tex \turnoffactive \beforedisplay @@ -27613,9 +27609,9 @@ @tex for \AA ngstroms. @end tex -@ifinfo +@ifnottex for Angstroms. -@end ifinfo +@end ifnottex The unit @code{pt} stands for pints; the name @code{point} stands for a typographical point, defined by @samp{72 point = 1 in}. This is @@ -34535,9 +34531,9 @@ @iftex @unnumberedsec TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION @end iftex -@ifinfo +@ifnottex @center TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION -@end ifinfo +@end ifnottex @enumerate 0 @item @@ -34760,9 +34756,9 @@ @iftex @heading NO WARRANTY @end iftex -@ifinfo +@ifnottex @center NO WARRANTY -@end ifinfo +@end ifnottex @item BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY @@ -34790,9 +34786,9 @@ @iftex @heading END OF TERMS AND CONDITIONS @end iftex -@ifinfo +@ifnottex @center END OF TERMS AND CONDITIONS -@end ifinfo +@end ifnottex @page @unnumberedsec Appendix: How to Apply These Terms to Your New Programs