Mercurial > emacs
changeset 96635:3b07c9c8f11d
(Manipulating Vectors): Clarify definition of `rnorm' and `cnorm'.
(Arithmetic Tutorial): Simplify the verification of prime factors.
author | Jay Belanger <jay.p.belanger@gmail.com> |
---|---|
date | Sun, 13 Jul 2008 04:50:39 +0000 |
parents | f9a35ef0a183 |
children | e3997bf73655 |
files | doc/misc/calc.texi |
diffstat | 1 files changed, 11 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/misc/calc.texi Sun Jul 13 04:37:44 2008 +0000 +++ b/doc/misc/calc.texi Sun Jul 13 04:50:39 2008 +0000 @@ -3002,10 +3002,9 @@ @end smallexample @noindent -You can verify these prime factors by using @kbd{v u} to ``unpack'' -this vector into 8 separate stack entries, then @kbd{M-8 *} to -multiply them back together. The result is the original number, -30045015. +You can verify these prime factors by using @kbd{V R *} to multiply +together the elements of this vector. The result is the original +number, 30045015. @cindex Hash tables Suppose a program you are writing needs a hash table with at least @@ -20040,22 +20039,22 @@ @kindex v n @pindex calc-rnorm @tindex rnorm -The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes -the row norm, or infinity-norm, of a vector or matrix. For a plain -vector, this is the maximum of the absolute values of the elements. -For a matrix, this is the maximum of the row-absolute-value-sums, -i.e., of the sums of the absolute values of the elements along the -various rows. +The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes the +infinity-norm of a vector, or the row norm of a matrix. For a plain +vector, this is the maximum of the absolute values of the elements. For +a matrix, this is the maximum of the row-absolute-value-sums, i.e., of +the sums of the absolute values of the elements along the various rows. @kindex V N @pindex calc-cnorm @tindex cnorm The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes -the column norm, or one-norm, of a vector or matrix. For a plain +the one-norm of a vector, or column norm of a matrix. For a plain vector, this is the sum of the absolute values of the elements. For a matrix, this is the maximum of the column-absolute-value-sums. General @expr{k}-norms for @expr{k} other than one or infinity are -not provided. +not provided. However, the 2-norm (or Frobenius norm) is provided for +vectors by the @kbd{A} (@code{calc-abs}) command. @kindex V C @pindex calc-cross