changeset 54945:70fd47f8342a

Add anchors. Some other minor changes.
author Luc Teirlinck <teirllm@auburn.edu>
date Sat, 17 Apr 2004 00:52:46 +0000
parents 205e2027ce65
children dc1950724cd9
files lispref/lists.texi
diffstat 1 files changed, 5 insertions(+), 3 deletions(-) [+]
line wrap: on
line diff
--- a/lispref/lists.texi	Fri Apr 16 23:56:04 2004 +0000
+++ b/lispref/lists.texi	Sat Apr 17 00:52:46 2004 +0000
@@ -327,6 +327,7 @@
 @end example
 @end defmac
 
+@anchor{Definition of nth}
 @defun nth n list
 This function returns the @var{n}th element of @var{list}.  Elements
 are numbered starting with zero, so the @sc{car} of @var{list} is
@@ -391,6 +392,7 @@
 if @var{n} is bigger than @var{list}'s length.
 @end defun
 
+@anchor{Definition of safe-length}
 @defun safe-length list
 This function returns the length of @var{list}, with no risk
 of either an error or an infinite loop.
@@ -565,7 +567,7 @@
 @sc{cdr} of the last cons cell in the new list.  If the final argument
 is itself a list, then its elements become in effect elements of the
 result list.  If the final element is not a list, the result is a
-``dotted list'' since its final @sc{cdr} is not @code{nil} as required
+dotted list since its final @sc{cdr} is not @code{nil} as required
 in a true list.
 
 In Emacs 20 and before, the @code{append} function also allowed
@@ -708,7 +710,7 @@
 @end defun
 
 @defun copy-tree tree &optional vecp
-This function returns a copy the tree @code{tree}.  If @var{tree} is a
+This function returns a copy of the tree @code{tree}.  If @var{tree} is a
 cons cell, this makes a new cons cell with the same @sc{car} and
 @sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
 same way.
@@ -732,7 +734,7 @@
 floating point arguments can be tricky, because floating point
 arithmetic is inexact.  For instance, depending on the machine, it may
 quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
-the one element list @code{(0.4)}, whereas 
+the one element list @code{(0.4)}, whereas
 @code{(number-sequence 0.4 0.8 0.2)} returns a list with three
 elements.  The @var{n}th element of the list is computed by the exact
 formula @code{(+ @var{from} (* @var{n} @var{separation}))}.  Thus, if