Mercurial > emacs
changeset 104222:f5dfc04abb5c
* calc.texi (Date Forms): Fix typos.
author | Chong Yidong <cyd@stupidchicken.com> |
---|---|
date | Sun, 09 Aug 2009 23:39:59 +0000 |
parents | fa27e8ea1c60 |
children | ec260849ffe1 |
files | doc/misc/ChangeLog doc/misc/calc.texi |
diffstat | 2 files changed, 19 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/misc/ChangeLog Sun Aug 09 22:27:45 2009 +0000 +++ b/doc/misc/ChangeLog Sun Aug 09 23:39:59 2009 +0000 @@ -1,3 +1,7 @@ +2009-08-09 Colin Williams <lackita@gmail.com> (tiny change) + + * calc.texi (Date Forms): Fix typos. + 2009-08-08 Glenn Morris <rgm@gnu.org> * org.texi (Agenda commands): Restore clobbered change.
--- a/doc/misc/calc.texi Sun Aug 09 22:27:45 2009 +0000 +++ b/doc/misc/calc.texi Sun Aug 09 23:39:59 2009 +0000 @@ -11093,29 +11093,29 @@ @cindex Julian day counting Another day counting system in common use is, confusingly, also called -``Julian.'' The Julian day number is the numbers of days since -12:00 noon (GMT) on Jan 1, 4713 BC, which in Calc's scheme (in GMT) +``Julian.'' The Julian day number is the numbers of days since +12:00 noon (GMT) on Jan 1, 4713 BC, which in Calc's scheme (in GMT) is @mathit{-1721423.5} (recall that Calc starts at midnight instead of noon). Thus to convert a Calc date code obtained by unpacking a date form into a Julian day number, simply add 1721423.5 after compensating for the time zone difference. The built-in @kbd{t J} command performs this conversion for you. -The Julian day number is based on the Julian cycle, which was invented +The Julian day number is based on the Julian cycle, which was invented in 1583 by Joseph Justus Scaliger. Scaliger named it the Julian cycle -since it is involves the Julian calendar, but some have suggested that +since it involves the Julian calendar, but some have suggested that Scaliger named it in honor of his father, Julius Caesar Scaliger. The -Julian cycle is based it on three other cycles: the indiction cycle, -the Metonic cycle, and the solar cycle. The indiction cycle is a 15 -year cycle originally used by the Romans for tax purposes but later -used to date medieval documents. The Metonic cycle is a 19 year -cycle; 19 years is close to being a common multiple of a solar year -and a lunar month, and so every 19 years the phases of the moon will -occur on the same days of the year. The solar cycle is a 28 year -cycle; the Julian calendar repeats itself every 28 years. The -smallest time period which contains multiples of all three cycles is -the least common multiple of 15 years, 19 years and 28 years, which -(since they're pairwise relatively prime) is +Julian cycle is based on three other cycles: the indiction cycle, the +Metonic cycle, and the solar cycle. The indiction cycle is a 15 year +cycle originally used by the Romans for tax purposes but later used to +date medieval documents. The Metonic cycle is a 19 year cycle; 19 +years is close to being a common multiple of a solar year and a lunar +month, and so every 19 years the phases of the moon will occur on the +same days of the year. The solar cycle is a 28 year cycle; the Julian +calendar repeats itself every 28 years. The smallest time period +which contains multiples of all three cycles is the least common +multiple of 15 years, 19 years and 28 years, which (since they're +pairwise relatively prime) is @texline @math{15\times 19\times 28 = 7980} years. @infoline 15*19*28 = 7980 years. This is the length of a Julian cycle. Working backwards, the previous