Mercurial > emacs
changeset 108542:f69005ce0acc
calc.texi: Remove "\turnoffactive" commands throughout.
author | Jay Belanger <jay.p.belanger@gmail.com> |
---|---|
date | Thu, 13 May 2010 17:33:11 -0500 |
parents | ce09b34d4a43 |
children | 2cfa49f6fadb 255a042e399d |
files | doc/misc/ChangeLog doc/misc/calc.texi |
diffstat | 2 files changed, 4 insertions(+), 43 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/misc/ChangeLog Thu May 13 17:52:20 2010 -0400 +++ b/doc/misc/ChangeLog Thu May 13 17:33:11 2010 -0500 @@ -1,3 +1,7 @@ +2010-05-13 Jay Belanger <jay.p.belanger@gmail.com> + + * calc.texi: Remove "\turnoffactive" commands througout. + 2010-05-08 Štěpán Němec <stepnem@gmail.com> (tiny change) * url.texi (HTTP language/coding, Customization):
--- a/doc/misc/calc.texi Thu May 13 17:52:20 2010 -0400 +++ b/doc/misc/calc.texi Thu May 13 17:33:11 2010 -0500 @@ -76,7 +76,6 @@ @newcount@calcpageno @newtoks@calcoldeverypar @calcoldeverypar=@everypar @everypar={@calceverypar@the@calcoldeverypar} -@ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi @catcode`@\=0 \catcode`\@=11 \r@ggedbottomtrue @@ -1804,7 +1803,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$ \afterdisplay @@ -3358,7 +3356,6 @@ @end group @end ifnottex @tex -\turnoffactive \beforedisplayh $$ \openup1\jot \tabskip=0pt plus1fil \halign to\displaywidth{\tabskip=0pt @@ -3385,7 +3382,6 @@ @end group @end ifnottex @tex -\turnoffactive \beforedisplay $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 } \times @@ -3457,7 +3453,6 @@ @end group @end ifnottex @tex -\turnoffactive \beforedisplay $$ \eqalign{ x &+ a y = 6 \cr x &+ b y = 10} @@ -3483,7 +3478,6 @@ @samp{trn(A)*A*X = trn(A)*B}. @end ifnottex @tex -\turnoffactive $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}. @end tex Now @@ -3506,7 +3500,6 @@ @end group @end ifnottex @tex -\turnoffactive \beforedisplayh $$ \openup1\jot \tabskip=0pt plus1fil \halign to\displaywidth{\tabskip=0pt @@ -3778,7 +3771,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ m = {N \sum x y - \sum x \sum y \over N \sum x^2 - \left( \sum x \right)^2} $$ @@ -3820,7 +3812,6 @@ @samp{sum(x y)}.) @end ifnottex @tex -\turnoffactive These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$, respectively. (We could have used \kbd{*} to compute $\sum x^2$ and $\sum x y$.) @@ -3874,7 +3865,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ b = {\sum y - m \sum x \over N} $$ \afterdisplay @@ -5223,7 +5213,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \displaylines{ \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots @@ -5245,7 +5234,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots + f(a+(n-2)h) + f(a+(n-1)h)) $$ @@ -5686,7 +5674,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$ \afterdisplay @@ -5704,7 +5691,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$ \afterdisplay @@ -6336,7 +6322,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \eqalign{ s(n,n) &= 1 \qquad \hbox{for } n \ge 0, \cr s(n,0) &= 0 \qquad \hbox{for } n > 0, \cr @@ -6875,7 +6860,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \eqalign{ x &+ a y = 6 \cr x &+ b y = 10} @@ -6939,7 +6923,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplayh $$ \openup1\jot \tabskip=0pt plus1fil \halign to\displaywidth{\tabskip=0pt @@ -7074,7 +7057,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ m \times x + b \times 1 = y $$ \afterdisplay @@ -7865,7 +7847,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ 3 (3 a + b - 511 m) + c - 511 n $$ \afterdisplay @@ -7881,7 +7862,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ 9 a + 3 b + c - 511\times3 m - 511 n $$ \afterdisplay @@ -7899,7 +7879,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ 9 a + 3 b + c - 511 n^{\prime} $$ \afterdisplay @@ -14408,7 +14387,6 @@ @end group @end example @tex -\turnoffactive $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$ @end tex @sp 1 @@ -14434,7 +14412,6 @@ @end group @end example @tex -\turnoffactive $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$ @end tex @sp 2 @@ -14467,7 +14444,6 @@ @end group @end example @tex -\turnoffactive $$ 2 + 3 \to 5 $$ $$ 5 $$ @end tex @@ -14482,7 +14458,6 @@ @end group @end example @tex -\turnoffactive $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$ {\let\to\Rightarrow $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$} @@ -14499,7 +14474,6 @@ @end group @end example @tex -\turnoffactive $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$ $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$ @end tex @@ -17935,7 +17909,6 @@ @end example @end ifnottex @tex -\turnoffactive $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$ $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$ $$ \code{fvl}(r, n, p) = p (1 + r)^n $$ @@ -18591,7 +18564,6 @@ and @kbd{H I f G} [@code{gammaG}] commands. @end ifnottex @tex -\turnoffactive The functions corresponding to the integrals that define $P(a,x)$ and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$ factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively. @@ -20559,7 +20531,6 @@ @texline @math{1 /\sigma^2}. @infoline @expr{1 / s^2}. @tex -\turnoffactive $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over \displaystyle \sum { 1 \over \sigma_i^2 } } $$ @end tex @@ -20593,7 +20564,6 @@ of the input errors. (I.e., the variance is the reciprocal of the sum of the reciprocals of the variances.) @tex -\turnoffactive $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$ @end tex If the inputs are plain @@ -20603,7 +20573,6 @@ then assuming each value's error is equal to this standard deviation.) @tex -\turnoffactive $$ \sigma_\mu^2 = {\sigma^2 \over N} $$ @end tex @@ -20636,7 +20605,6 @@ defined as the reciprocal of the arithmetic mean of the reciprocals of the values. @tex -\turnoffactive $$ { N \over \displaystyle \sum {1 \over x_i} } $$ @end tex @@ -20650,7 +20618,6 @@ equal to the @code{exp} of the arithmetic mean of the logarithms of the data values. @tex -\turnoffactive $$ \exp \left ( \sum { \ln x_i } \right ) = \left ( \prod { x_i } \right)^{1 / N} $$ @end tex @@ -20662,7 +20629,6 @@ replacing the two numbers with their arithmetic mean and geometric mean, then repeating until the two values converge. @tex -\turnoffactive $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$ @end tex @@ -20685,7 +20651,6 @@ the differences between the values and the mean of the @expr{N} values, divided by @expr{N-1}. @tex -\turnoffactive $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$ @end tex @@ -20712,7 +20677,6 @@ data values, so that the mean computed from the input is itself only an estimate of the true mean. @tex -\turnoffactive $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$ @end tex @@ -20777,7 +20741,6 @@ is taken as the square root of the sum of the squares of the two input errors. @tex -\turnoffactive $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$ $$ \sigma_{x\!y}^2 = {\displaystyle {1 \over N-1} @@ -20805,7 +20768,6 @@ product of their standard deviations. (There is no difference between sample or population statistics here.) @tex -\turnoffactive $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$ @end tex @@ -24361,8 +24323,6 @@ @end example @end ifnottex @tex -\turnoffactive -\turnoffactive \beforedisplay $$ \pmatrix{ 1 & 2 & 3 & 4 & 5 \cr 5 & 7 & 9 & 11 & 13 } @@ -24422,7 +24382,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$ \afterdisplay @@ -24613,7 +24572,6 @@ @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$ \afterdisplay @@ -25388,7 +25346,6 @@ the stack. Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}} produces the result 55. @tex -\turnoffactive $$ \sum_{k=1}^5 k^2 = 55 $$ @end tex