changeset 108542:f69005ce0acc

calc.texi: Remove "\turnoffactive" commands throughout.
author Jay Belanger <jay.p.belanger@gmail.com>
date Thu, 13 May 2010 17:33:11 -0500
parents ce09b34d4a43
children 2cfa49f6fadb 255a042e399d
files doc/misc/ChangeLog doc/misc/calc.texi
diffstat 2 files changed, 4 insertions(+), 43 deletions(-) [+]
line wrap: on
line diff
--- a/doc/misc/ChangeLog	Thu May 13 17:52:20 2010 -0400
+++ b/doc/misc/ChangeLog	Thu May 13 17:33:11 2010 -0500
@@ -1,3 +1,7 @@
+2010-05-13  Jay Belanger  <jay.p.belanger@gmail.com>
+
+	* calc.texi: Remove "\turnoffactive" commands througout.
+
 2010-05-08  Štěpán Němec  <stepnem@gmail.com>  (tiny change)
 
 	* url.texi (HTTP language/coding, Customization):
--- a/doc/misc/calc.texi	Thu May 13 17:52:20 2010 -0400
+++ b/doc/misc/calc.texi	Thu May 13 17:33:11 2010 -0500
@@ -76,7 +76,6 @@
 @newcount@calcpageno
 @newtoks@calcoldeverypar @calcoldeverypar=@everypar
 @everypar={@calceverypar@the@calcoldeverypar}
-@ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi
 @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
 @catcode`@\=0 \catcode`\@=11
 \r@ggedbottomtrue
@@ -1804,7 +1803,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
 \afterdisplay
@@ -3358,7 +3356,6 @@
 @end group
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplayh
 $$ \openup1\jot \tabskip=0pt plus1fil
 \halign to\displaywidth{\tabskip=0pt
@@ -3385,7 +3382,6 @@
 @end group
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
    \times
@@ -3457,7 +3453,6 @@
 @end group
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ \eqalign{ x &+ a y = 6 \cr
              x &+ b y = 10}
@@ -3483,7 +3478,6 @@
 @samp{trn(A)*A*X = trn(A)*B}.
 @end ifnottex
 @tex
-\turnoffactive
 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
 @end tex
 Now 
@@ -3506,7 +3500,6 @@
 @end group
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplayh
 $$ \openup1\jot \tabskip=0pt plus1fil
 \halign to\displaywidth{\tabskip=0pt
@@ -3778,7 +3771,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ m = {N \sum x y - \sum x \sum y  \over
         N \sum x^2 - \left( \sum x \right)^2} $$
@@ -3820,7 +3812,6 @@
 @samp{sum(x y)}.)
 @end ifnottex
 @tex
-\turnoffactive
 These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
 respectively.  (We could have used \kbd{*} to compute $\sum x^2$ and
 $\sum x y$.)
@@ -3874,7 +3865,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ b = {\sum y - m \sum x \over N} $$
 \afterdisplay
@@ -5223,7 +5213,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ \displaylines{
       \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
@@ -5245,7 +5234,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
            + f(a+(n-2)h) + f(a+(n-1)h)) $$
@@ -5686,7 +5674,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
 \afterdisplay
@@ -5704,7 +5691,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
 \afterdisplay
@@ -6336,7 +6322,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ \eqalign{ s(n,n)   &= 1 \qquad \hbox{for } n \ge 0,  \cr
              s(n,0)   &= 0 \qquad \hbox{for } n > 0, \cr
@@ -6875,7 +6860,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ \eqalign{ x &+ a y = 6 \cr
              x &+ b y = 10}
@@ -6939,7 +6923,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplayh
 $$ \openup1\jot \tabskip=0pt plus1fil
 \halign to\displaywidth{\tabskip=0pt
@@ -7074,7 +7057,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ m \times x + b \times 1 = y $$
 \afterdisplay
@@ -7865,7 +7847,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ 3 (3 a + b - 511 m) + c - 511 n $$
 \afterdisplay
@@ -7881,7 +7862,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
 \afterdisplay
@@ -7899,7 +7879,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ 9 a + 3 b + c - 511 n^{\prime} $$
 \afterdisplay
@@ -14408,7 +14387,6 @@
 @end group
 @end example
 @tex
-\turnoffactive
 $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
 @end tex
 @sp 1
@@ -14434,7 +14412,6 @@
 @end group
 @end example
 @tex
-\turnoffactive
 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
 @end tex
 @sp 2
@@ -14467,7 +14444,6 @@
 @end group
 @end example
 @tex
-\turnoffactive
 $$ 2 + 3 \to 5 $$
 $$ 5 $$
 @end tex
@@ -14482,7 +14458,6 @@
 @end group
 @end example
 @tex
-\turnoffactive
 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
 {\let\to\Rightarrow
 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
@@ -14499,7 +14474,6 @@
 @end group
 @end example
 @tex
-\turnoffactive
 $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
 $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
 @end tex
@@ -17935,7 +17909,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
 $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
 $$ \code{fvl}(r, n, p) = p (1 + r)^n $$
@@ -18591,7 +18564,6 @@
 and @kbd{H I f G} [@code{gammaG}] commands.
 @end ifnottex
 @tex
-\turnoffactive
 The functions corresponding to the integrals that define $P(a,x)$
 and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
 factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
@@ -20559,7 +20531,6 @@
 @texline @math{1 /\sigma^2}.
 @infoline @expr{1 / s^2}.
 @tex
-\turnoffactive
 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
            \displaystyle \sum { 1 \over \sigma_i^2 } } $$
 @end tex
@@ -20593,7 +20564,6 @@
 of the input errors.  (I.e., the variance is the reciprocal of the
 sum of the reciprocals of the variances.)
 @tex
-\turnoffactive
 $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
 @end tex
 If the inputs are plain
@@ -20603,7 +20573,6 @@
 then assuming each value's error is equal to this standard
 deviation.)
 @tex
-\turnoffactive
 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
 @end tex
 
@@ -20636,7 +20605,6 @@
 defined as the reciprocal of the arithmetic mean of the reciprocals
 of the values.
 @tex
-\turnoffactive
 $$ { N \over \displaystyle \sum {1 \over x_i} } $$
 @end tex
 
@@ -20650,7 +20618,6 @@
 equal to the @code{exp} of the arithmetic mean of the logarithms
 of the data values.
 @tex
-\turnoffactive
 $$ \exp \left ( \sum { \ln x_i } \right ) =
    \left ( \prod { x_i } \right)^{1 / N} $$
 @end tex
@@ -20662,7 +20629,6 @@
 replacing the two numbers with their arithmetic mean and geometric
 mean, then repeating until the two values converge.
 @tex
-\turnoffactive
 $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
 @end tex
 
@@ -20685,7 +20651,6 @@
 the differences between the values and the mean of the @expr{N} values,
 divided by @expr{N-1}.
 @tex
-\turnoffactive
 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
 @end tex
 
@@ -20712,7 +20677,6 @@
 data values, so that the mean computed from the input is itself
 only an estimate of the true mean.
 @tex
-\turnoffactive
 $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
 @end tex
 
@@ -20777,7 +20741,6 @@
 is taken as the square root of the sum of the squares of the two
 input errors.
 @tex
-\turnoffactive
 $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
 $$ \sigma_{x\!y}^2 =
     {\displaystyle {1 \over N-1}
@@ -20805,7 +20768,6 @@
 product of their standard deviations.  (There is no difference
 between sample or population statistics here.)
 @tex
-\turnoffactive
 $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
 @end tex
 
@@ -24361,8 +24323,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
-\turnoffactive
 \beforedisplay
 $$ \pmatrix{ 1 & 2 & 3 & 4  & 5  \cr
              5 & 7 & 9 & 11 & 13 }
@@ -24422,7 +24382,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
 \afterdisplay
@@ -24613,7 +24572,6 @@
 @end example
 @end ifnottex
 @tex
-\turnoffactive
 \beforedisplay
 $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
 \afterdisplay
@@ -25388,7 +25346,6 @@
 the stack.  Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
 produces the result 55.
 @tex
-\turnoffactive
 $$ \sum_{k=1}^5 k^2 = 55 $$
 @end tex