Mercurial > geeqie.yaz
view src/similar.c @ 1582:8c018844df9a
Backed out changeset ffc44762e706
author | Yoshiki Yazawa <yaz@honeyplanet.jp> |
---|---|
date | Fri, 01 May 2009 15:48:27 +0900 |
parents | a6f9ba6fd751 |
children |
line wrap: on
line source
/* * Geeqie * (C) 2004 John Ellis * Copyright (C) 2008 - 2009 The Geeqie Team * * Author: John Ellis * * This software is released under the GNU General Public License (GNU GPL). * Please read the included file COPYING for more information. * This software comes with no warranty of any kind, use at your own risk! */ #include "main.h" #include "similar.h" /* * These functions are intended to find images with similar color content. For * example when an image was saved at different compression levels or dimensions * (scaled down/up) the contents are similar, but these files do not match by file * size, dimensions, or checksum. * * These functions create a 32 x 32 array for each color channel (red, green, blue). * The array represents the average color of each corresponding part of the * image. (imagine the image cut into 1024 rectangles, or a 32 x 32 grid. * Each grid is then processed for the average color value, this is what * is stored in the array) * * To compare two images, generate a ImageSimilarityData for each image, then * pass them to the compare function. The return value is the percent match * of the two images. (for this, simple comparisons are used, basically the return * is an average of the corresponding array differences) * * for image_sim_compare(), the return is 0.0 to 1.0: * 1.0 for exact matches (an image is compared to itself) * 0.0 for exact opposite images (compare an all black to an all white image) * generally only a match of > 0.85 are significant at all, and >.95 is useful to * find images that have been re-saved to other formats, dimensions, or compression. */ /* * The experimental (alternate) algorithm is only for testing of new techniques to * improve the result, and hopes to reduce false positives. */ static gboolean alternate_enabled = FALSE; void image_sim_alternate_set(gboolean enable) { alternate_enabled = enable; } gboolean image_sim_alternate_enabled(void) { return alternate_enabled; } ImageSimilarityData *image_sim_new(void) { ImageSimilarityData *sd = g_new0(ImageSimilarityData, 1); return sd; } void image_sim_free(ImageSimilarityData *sd) { g_free(sd); } static gint image_sim_channel_eq_sort_cb(gconstpointer a, gconstpointer b) { gint *pa = (gpointer)a; gint *pb = (gpointer)b; if (pa[1] < pb[1]) return -1; if (pa[1] > pb[1]) return 1; return 0; } static void image_sim_channel_equal(guint8 *pix, gint len) { gint *buf; gint i; gint p; buf = g_new0(gint, len * 2); p = 0; for (i = 0; i < len; i++) { buf[p] = i; p++; buf[p] = (gint)pix[i]; p++; } qsort(buf, len, sizeof(gint) * 2, image_sim_channel_eq_sort_cb); p = 0; for (i = 0; i < len; i++) { gint n; n = buf[p]; p += 2; pix[n] = (guint8)(255 * i / len); } g_free(buf); } static void image_sim_channel_norm(guint8 *pix, gint len) { guint8 l, h, delta; gint i; gdouble scale; l = h = pix[0]; for (i = 0; i < len; i++) { if (pix[i] < l) l = pix[i]; if (pix[i] > h) h = pix[i]; } delta = h - l; scale = (delta != 0) ? 255.0 / (gdouble)(delta) : 1.0; for (i = 0; i < len; i++) { pix[i] = (guint8)((gdouble)(pix[i] - l) * scale); } } /* * define these to enable various components of the experimental compare functions * * Convert the thumbprint to greyscale (ignore all color information when comparing) * #define ALTERNATE_USES_GREYSCALE 1 * * Take into account the difference in change from one pixel to the next * #define ALTERNATE_INCLUDE_COMPARE_CHANGE 1 */ void image_sim_alternate_processing(ImageSimilarityData *sd) { #ifdef ALTERNATE_USES_GREYSCALE gint i; #endif if (!alternate_enabled) return; image_sim_channel_norm(sd->avg_r, sizeof(sd->avg_r)); image_sim_channel_norm(sd->avg_g, sizeof(sd->avg_g)); image_sim_channel_norm(sd->avg_b, sizeof(sd->avg_b)); image_sim_channel_equal(sd->avg_r, sizeof(sd->avg_r)); image_sim_channel_equal(sd->avg_g, sizeof(sd->avg_g)); image_sim_channel_equal(sd->avg_b, sizeof(sd->avg_b)); #ifdef ALTERNATE_USES_GREYSCALE for (i = 0; i < sizeof(sd->avg_r); i++) { guint8 n; n = (guint8)((gint)(sd->avg_r[i] + sd->avg_g[i] + sd->avg_b[i]) / 3); sd->avg_r[i] = sd->avg_g[i] = sd->avg_b[i] = n; } #endif } void image_sim_fill_data(ImageSimilarityData *sd, GdkPixbuf *pixbuf) { gint w, h; gint rs; guchar *pix; gboolean has_alpha; gint p_step; guchar *p; gint i; gint j; gint x_inc, y_inc, xy_inc; gint xs, ys; gboolean x_small = FALSE; /* if less than 32 w or h, set TRUE */ gboolean y_small = FALSE; if (!sd || !pixbuf) return; w = gdk_pixbuf_get_width(pixbuf); h = gdk_pixbuf_get_height(pixbuf); rs = gdk_pixbuf_get_rowstride(pixbuf); pix = gdk_pixbuf_get_pixels(pixbuf); has_alpha = gdk_pixbuf_get_has_alpha(pixbuf); p_step = has_alpha ? 4 : 3; x_inc = w / 32; y_inc = h / 32; if (x_inc < 1) { x_inc = 1; x_small = TRUE; } if (y_inc < 1) { y_inc = 1; y_small = TRUE; } xy_inc = x_inc * y_inc; j = 0; for (ys = 0; ys < 32; ys++) { if (y_small) j = (gdouble)h / 32 * ys; i = 0; for (xs = 0; xs < 32; xs++) { gint x, y; gint r, g, b; gint t; guchar *xpos; if (x_small) i = (gdouble)w / 32 * xs; r = g = b = 0; xpos = pix + (i * p_step); for (y = j; y < j + y_inc; y++) { p = xpos + (y * rs); for (x = i; x < i + x_inc; x++) { r += *p; p++; g += *p; p++; b += *p; p++; if (has_alpha) p++; } } r /= xy_inc; g /= xy_inc; b /= xy_inc; t = ys * 32 + xs; sd->avg_r[t] = r; sd->avg_g[t] = g; sd->avg_b[t] = b; i += x_inc; } j += y_inc; } sd->filled = TRUE; } ImageSimilarityData *image_sim_new_from_pixbuf(GdkPixbuf *pixbuf) { ImageSimilarityData *sd; sd = image_sim_new(); image_sim_fill_data(sd, pixbuf); return sd; } #ifdef ALTERNATE_INCLUDE_COMPARE_CHANGE static gdouble alternate_image_sim_compare_fast(ImageSimilarityData *a, ImageSimilarityData *b, gdouble min) { gint sim; gint i; gint j; gint ld; if (!a || !b || !a->filled || !b->filled) return 0.0; min = 1.0 - min; sim = 0.0; ld = 0; for (j = 0; j < 1024; j += 32) { for (i = j; i < j + 32; i++) { gint cr, cg, cb; gint cd; cr = abs(a->avg_r[i] - b->avg_r[i]); cg = abs(a->avg_g[i] - b->avg_g[i]); cb = abs(a->avg_b[i] - b->avg_b[i]); cd = cr + cg + cb; sim += cd + abs(cd - ld); ld = cd / 3; } /* check for abort, if so return 0.0 */ if ((gdouble)sim / (255.0 * 1024.0 * 4.0) > min) return 0.0; } return (1.0 - ((gdouble)sim / (255.0 * 1024.0 * 4.0)) ); } #endif gdouble image_sim_compare(ImageSimilarityData *a, ImageSimilarityData *b) { gint sim; gint i; if (!a || !b || !a->filled || !b->filled) return 0.0; sim = 0.0; for (i = 0; i < 1024; i++) { sim += abs(a->avg_r[i] - b->avg_r[i]); sim += abs(a->avg_g[i] - b->avg_g[i]); sim += abs(a->avg_b[i] - b->avg_b[i]); } return 1.0 - ((gdouble)sim / (255.0 * 1024.0 * 3.0)); } /* this uses a cutoff point so that it can abort early when it gets to * a point that can simply no longer make the cut-off point. */ gdouble image_sim_compare_fast(ImageSimilarityData *a, ImageSimilarityData *b, gdouble min) { gint sim; gint i; gint j; #ifdef ALTERNATE_INCLUDE_COMPARE_CHANGE if (alternate_enabled) return alternate_image_sim_compare_fast(a, b, min); #endif if (!a || !b || !a->filled || !b->filled) return 0.0; min = 1.0 - min; sim = 0.0; for (j = 0; j < 1024; j += 32) { for (i = j; i < j + 32; i++) { sim += abs(a->avg_r[i] - b->avg_r[i]); sim += abs(a->avg_g[i] - b->avg_g[i]); sim += abs(a->avg_b[i] - b->avg_b[i]); } /* check for abort, if so return 0.0 */ if ((gdouble)sim / (255.0 * 1024.0 * 3.0) > min) return 0.0; } return (1.0 - ((gdouble)sim / (255.0 * 1024.0 * 3.0)) ); } /* vim: set shiftwidth=8 softtabstop=0 cindent cinoptions={1s: */