1106
|
1 /**
|
|
2 * @file fdctref.c
|
|
3 * forward discrete cosine transform, double precision.
|
|
4 */
|
0
|
5
|
|
6 /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
|
|
7
|
|
8 /*
|
|
9 * Disclaimer of Warranty
|
|
10 *
|
|
11 * These software programs are available to the user without any license fee or
|
|
12 * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
|
|
13 * any and all warranties, whether express, implied, or statuary, including any
|
|
14 * implied warranties or merchantability or of fitness for a particular
|
|
15 * purpose. In no event shall the copyright-holder be liable for any
|
|
16 * incidental, punitive, or consequential damages of any kind whatsoever
|
|
17 * arising from the use of these programs.
|
|
18 *
|
|
19 * This disclaimer of warranty extends to the user of these programs and user's
|
|
20 * customers, employees, agents, transferees, successors, and assigns.
|
|
21 *
|
|
22 * The MPEG Software Simulation Group does not represent or warrant that the
|
|
23 * programs furnished hereunder are free of infringement of any third-party
|
|
24 * patents.
|
|
25 *
|
|
26 * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
|
|
27 * are subject to royalty fees to patent holders. Many of these patents are
|
|
28 * general enough such that they are unavoidable regardless of implementation
|
|
29 * design.
|
|
30 *
|
|
31 */
|
|
32
|
|
33 #include <math.h>
|
|
34
|
|
35 #ifndef PI
|
|
36 # ifdef M_PI
|
|
37 # define PI M_PI
|
|
38 # else
|
|
39 # define PI 3.14159265358979323846
|
|
40 # endif
|
|
41 #endif
|
|
42
|
|
43 /* global declarations */
|
|
44 void init_fdct (void);
|
|
45 void fdct (short *block);
|
|
46
|
|
47 /* private data */
|
|
48 static double c[8][8]; /* transform coefficients */
|
|
49
|
|
50 void init_fdct()
|
|
51 {
|
|
52 int i, j;
|
|
53 double s;
|
|
54
|
|
55 for (i=0; i<8; i++)
|
|
56 {
|
|
57 s = (i==0) ? sqrt(0.125) : 0.5;
|
|
58
|
|
59 for (j=0; j<8; j++)
|
|
60 c[i][j] = s * cos((PI/8.0)*i*(j+0.5));
|
|
61 }
|
|
62 }
|
|
63
|
|
64 void fdct(block)
|
|
65 short *block;
|
|
66 {
|
|
67 register int i, j;
|
|
68 double s;
|
|
69 double tmp[64];
|
|
70
|
|
71 for(i = 0; i < 8; i++)
|
|
72 for(j = 0; j < 8; j++)
|
|
73 {
|
|
74 s = 0.0;
|
|
75
|
|
76 /*
|
|
77 * for(k = 0; k < 8; k++)
|
|
78 * s += c[j][k] * block[8 * i + k];
|
|
79 */
|
|
80 s += c[j][0] * block[8 * i + 0];
|
|
81 s += c[j][1] * block[8 * i + 1];
|
|
82 s += c[j][2] * block[8 * i + 2];
|
|
83 s += c[j][3] * block[8 * i + 3];
|
|
84 s += c[j][4] * block[8 * i + 4];
|
|
85 s += c[j][5] * block[8 * i + 5];
|
|
86 s += c[j][6] * block[8 * i + 6];
|
|
87 s += c[j][7] * block[8 * i + 7];
|
|
88
|
|
89 tmp[8 * i + j] = s;
|
|
90 }
|
|
91
|
|
92 for(j = 0; j < 8; j++)
|
|
93 for(i = 0; i < 8; i++)
|
|
94 {
|
|
95 s = 0.0;
|
|
96
|
|
97 /*
|
|
98 * for(k = 0; k < 8; k++)
|
|
99 * s += c[i][k] * tmp[8 * k + j];
|
|
100 */
|
|
101 s += c[i][0] * tmp[8 * 0 + j];
|
|
102 s += c[i][1] * tmp[8 * 1 + j];
|
|
103 s += c[i][2] * tmp[8 * 2 + j];
|
|
104 s += c[i][3] * tmp[8 * 3 + j];
|
|
105 s += c[i][4] * tmp[8 * 4 + j];
|
|
106 s += c[i][5] * tmp[8 * 5 + j];
|
|
107 s += c[i][6] * tmp[8 * 6 + j];
|
|
108 s += c[i][7] * tmp[8 * 7 + j];
|
635
|
109 s*=8.0;
|
0
|
110
|
|
111 block[8 * i + j] = (short)floor(s + 0.499999);
|
|
112 /*
|
|
113 * reason for adding 0.499999 instead of 0.5:
|
|
114 * s is quite often x.5 (at least for i and/or j = 0 or 4)
|
|
115 * and setting the rounding threshold exactly to 0.5 leads to an
|
|
116 * extremely high arithmetic implementation dependency of the result;
|
|
117 * s being between x.5 and x.500001 (which is now incorrectly rounded
|
|
118 * downwards instead of upwards) is assumed to occur less often
|
|
119 * (if at all)
|
|
120 */
|
|
121 }
|
|
122 }
|
35
|
123
|
|
124 /* perform IDCT matrix multiply for 8x8 coefficient block */
|
|
125
|
|
126 void idct(block)
|
|
127 short *block;
|
|
128 {
|
|
129 int i, j, k, v;
|
|
130 double partial_product;
|
|
131 double tmp[64];
|
|
132
|
|
133 for (i=0; i<8; i++)
|
|
134 for (j=0; j<8; j++)
|
|
135 {
|
|
136 partial_product = 0.0;
|
|
137
|
|
138 for (k=0; k<8; k++)
|
|
139 partial_product+= c[k][j]*block[8*i+k];
|
|
140
|
|
141 tmp[8*i+j] = partial_product;
|
|
142 }
|
|
143
|
|
144 /* Transpose operation is integrated into address mapping by switching
|
|
145 loop order of i and j */
|
|
146
|
|
147 for (j=0; j<8; j++)
|
|
148 for (i=0; i<8; i++)
|
|
149 {
|
|
150 partial_product = 0.0;
|
|
151
|
|
152 for (k=0; k<8; k++)
|
|
153 partial_product+= c[k][i]*tmp[8*k+j];
|
|
154
|
|
155 v = (int) floor(partial_product+0.5);
|
|
156 block[8*i+j] = v;
|
|
157 }
|
|
158 }
|