Mercurial > libavcodec.hg
annotate jrevdct.c @ 1801:3f26dfb3eba4 libavcodec
replace a few pbBufPtr() by put_bits_count(), one of them was actually wrong
author | michael |
---|---|
date | Fri, 13 Feb 2004 20:59:48 +0000 |
parents | 1e39f273ecd6 |
children | 7e0b2e86afa9 |
rev | line source |
---|---|
0 | 1 /* |
2 * jrevdct.c | |
3 * | |
4 * Copyright (C) 1991, 1992, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains the basic inverse-DCT transformation subroutine. | |
9 * | |
10 * This implementation is based on an algorithm described in | |
11 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | |
12 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | |
13 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | |
14 * The primary algorithm described there uses 11 multiplies and 29 adds. | |
15 * We use their alternate method with 12 multiplies and 32 adds. | |
16 * The advantage of this method is that no data path contains more than one | |
17 * multiplication; this allows a very simple and accurate implementation in | |
18 * scaled fixed-point arithmetic, with a minimal number of shifts. | |
19 * | |
20 * I've made lots of modifications to attempt to take advantage of the | |
21 * sparse nature of the DCT matrices we're getting. Although the logic | |
22 * is cumbersome, it's straightforward and the resulting code is much | |
23 * faster. | |
24 * | |
25 * A better way to do this would be to pass in the DCT block as a sparse | |
26 * matrix, perhaps with the difference cases encoded. | |
27 */ | |
1106 | 28 |
29 /** | |
30 * @file jrevdct.c | |
31 * Independent JPEG Group's LLM idct. | |
32 */ | |
33 | |
0 | 34 #include "common.h" |
35 #include "dsputil.h" | |
36 | |
37 #define EIGHT_BIT_SAMPLES | |
38 | |
39 #define DCTSIZE 8 | |
40 #define DCTSIZE2 64 | |
41 | |
42 #define GLOBAL | |
43 | |
44 #define RIGHT_SHIFT(x, n) ((x) >> (n)) | |
45 | |
46 typedef DCTELEM DCTBLOCK[DCTSIZE2]; | |
47 | |
48 #define CONST_BITS 13 | |
49 | |
50 /* | |
51 * This routine is specialized to the case DCTSIZE = 8. | |
52 */ | |
53 | |
54 #if DCTSIZE != 8 | |
55 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
56 #endif | |
57 | |
58 | |
59 /* | |
60 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT | |
61 * on each column. Direct algorithms are also available, but they are | |
62 * much more complex and seem not to be any faster when reduced to code. | |
63 * | |
64 * The poop on this scaling stuff is as follows: | |
65 * | |
66 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) | |
67 * larger than the true IDCT outputs. The final outputs are therefore | |
68 * a factor of N larger than desired; since N=8 this can be cured by | |
69 * a simple right shift at the end of the algorithm. The advantage of | |
70 * this arrangement is that we save two multiplications per 1-D IDCT, | |
71 * because the y0 and y4 inputs need not be divided by sqrt(N). | |
72 * | |
73 * We have to do addition and subtraction of the integer inputs, which | |
74 * is no problem, and multiplication by fractional constants, which is | |
75 * a problem to do in integer arithmetic. We multiply all the constants | |
76 * by CONST_SCALE and convert them to integer constants (thus retaining | |
77 * CONST_BITS bits of precision in the constants). After doing a | |
78 * multiplication we have to divide the product by CONST_SCALE, with proper | |
79 * rounding, to produce the correct output. This division can be done | |
80 * cheaply as a right shift of CONST_BITS bits. We postpone shifting | |
81 * as long as possible so that partial sums can be added together with | |
82 * full fractional precision. | |
83 * | |
84 * The outputs of the first pass are scaled up by PASS1_BITS bits so that | |
85 * they are represented to better-than-integral precision. These outputs | |
86 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | |
87 * with the recommended scaling. (To scale up 12-bit sample data further, an | |
88 * intermediate int32 array would be needed.) | |
89 * | |
90 * To avoid overflow of the 32-bit intermediate results in pass 2, we must | |
91 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | |
92 * shows that the values given below are the most effective. | |
93 */ | |
94 | |
95 #ifdef EIGHT_BIT_SAMPLES | |
96 #define PASS1_BITS 2 | |
97 #else | |
98 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
99 #endif | |
100 | |
1064 | 101 #define ONE ((int32_t) 1) |
0 | 102 |
103 #define CONST_SCALE (ONE << CONST_BITS) | |
104 | |
105 /* Convert a positive real constant to an integer scaled by CONST_SCALE. | |
106 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, | |
107 * you will pay a significant penalty in run time. In that case, figure | |
108 * the correct integer constant values and insert them by hand. | |
109 */ | |
110 | |
111 /* Actually FIX is no longer used, we precomputed them all */ | |
1064 | 112 #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5)) |
0 | 113 |
1064 | 114 /* Descale and correctly round an int32_t value that's scaled by N bits. |
0 | 115 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
116 * the fudge factor is correct for either sign of X. | |
117 */ | |
118 | |
119 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) | |
120 | |
1064 | 121 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. |
0 | 122 * For 8-bit samples with the recommended scaling, all the variable |
123 * and constant values involved are no more than 16 bits wide, so a | |
124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; | |
125 * this provides a useful speedup on many machines. | |
126 * There is no way to specify a 16x16->32 multiply in portable C, but | |
127 * some C compilers will do the right thing if you provide the correct | |
128 * combination of casts. | |
129 * NB: for 12-bit samples, a full 32-bit multiplication will be needed. | |
130 */ | |
131 | |
132 #ifdef EIGHT_BIT_SAMPLES | |
133 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ | |
1064 | 134 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const))) |
0 | 135 #endif |
136 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ | |
1064 | 137 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const))) |
0 | 138 #endif |
139 #endif | |
140 | |
141 #ifndef MULTIPLY /* default definition */ | |
142 #define MULTIPLY(var,const) ((var) * (const)) | |
143 #endif | |
144 | |
145 | |
146 /* | |
147 Unlike our decoder where we approximate the FIXes, we need to use exact | |
148 ones here or successive P-frames will drift too much with Reference frame coding | |
149 */ | |
150 #define FIX_0_211164243 1730 | |
151 #define FIX_0_275899380 2260 | |
152 #define FIX_0_298631336 2446 | |
153 #define FIX_0_390180644 3196 | |
154 #define FIX_0_509795579 4176 | |
155 #define FIX_0_541196100 4433 | |
156 #define FIX_0_601344887 4926 | |
157 #define FIX_0_765366865 6270 | |
158 #define FIX_0_785694958 6436 | |
159 #define FIX_0_899976223 7373 | |
160 #define FIX_1_061594337 8697 | |
161 #define FIX_1_111140466 9102 | |
162 #define FIX_1_175875602 9633 | |
163 #define FIX_1_306562965 10703 | |
164 #define FIX_1_387039845 11363 | |
165 #define FIX_1_451774981 11893 | |
166 #define FIX_1_501321110 12299 | |
167 #define FIX_1_662939225 13623 | |
168 #define FIX_1_847759065 15137 | |
169 #define FIX_1_961570560 16069 | |
170 #define FIX_2_053119869 16819 | |
171 #define FIX_2_172734803 17799 | |
172 #define FIX_2_562915447 20995 | |
173 #define FIX_3_072711026 25172 | |
174 | |
175 /* | |
176 * Perform the inverse DCT on one block of coefficients. | |
177 */ | |
178 | |
179 void j_rev_dct(DCTBLOCK data) | |
180 { | |
1064 | 181 int32_t tmp0, tmp1, tmp2, tmp3; |
182 int32_t tmp10, tmp11, tmp12, tmp13; | |
183 int32_t z1, z2, z3, z4, z5; | |
184 int32_t d0, d1, d2, d3, d4, d5, d6, d7; | |
0 | 185 register DCTELEM *dataptr; |
186 int rowctr; | |
187 | |
188 /* Pass 1: process rows. */ | |
189 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
190 /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
191 | |
192 dataptr = data; | |
193 | |
194 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
195 /* Due to quantization, we will usually find that many of the input | |
196 * coefficients are zero, especially the AC terms. We can exploit this | |
197 * by short-circuiting the IDCT calculation for any row in which all | |
198 * the AC terms are zero. In that case each output is equal to the | |
199 * DC coefficient (with scale factor as needed). | |
200 * With typical images and quantization tables, half or more of the | |
201 * row DCT calculations can be simplified this way. | |
202 */ | |
203 | |
204 register int *idataptr = (int*)dataptr; | |
205 | |
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
206 /* WARNING: we do the same permutation as MMX idct to simplify the |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
207 video core */ |
0 | 208 d0 = dataptr[0]; |
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
209 d2 = dataptr[1]; |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
210 d4 = dataptr[2]; |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
211 d6 = dataptr[3]; |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
212 d1 = dataptr[4]; |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
213 d3 = dataptr[5]; |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
214 d5 = dataptr[6]; |
0 | 215 d7 = dataptr[7]; |
216 | |
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
217 if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { |
0 | 218 /* AC terms all zero */ |
219 if (d0) { | |
220 /* Compute a 32 bit value to assign. */ | |
221 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); | |
222 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); | |
223 | |
224 idataptr[0] = v; | |
225 idataptr[1] = v; | |
226 idataptr[2] = v; | |
227 idataptr[3] = v; | |
228 } | |
229 | |
230 dataptr += DCTSIZE; /* advance pointer to next row */ | |
231 continue; | |
232 } | |
233 | |
234 /* Even part: reverse the even part of the forward DCT. */ | |
235 /* The rotator is sqrt(2)*c(-6). */ | |
236 { | |
237 if (d6) { | |
238 if (d4) { | |
239 if (d2) { | |
240 if (d0) { | |
241 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
242 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
243 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
244 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
245 | |
246 tmp0 = (d0 + d4) << CONST_BITS; | |
247 tmp1 = (d0 - d4) << CONST_BITS; | |
248 | |
249 tmp10 = tmp0 + tmp3; | |
250 tmp13 = tmp0 - tmp3; | |
251 tmp11 = tmp1 + tmp2; | |
252 tmp12 = tmp1 - tmp2; | |
253 } else { | |
254 /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ | |
255 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
256 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
257 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
258 | |
259 tmp0 = d4 << CONST_BITS; | |
260 | |
261 tmp10 = tmp0 + tmp3; | |
262 tmp13 = tmp0 - tmp3; | |
263 tmp11 = tmp2 - tmp0; | |
264 tmp12 = -(tmp0 + tmp2); | |
265 } | |
266 } else { | |
267 if (d0) { | |
268 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
269 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
270 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
271 | |
272 tmp0 = (d0 + d4) << CONST_BITS; | |
273 tmp1 = (d0 - d4) << CONST_BITS; | |
274 | |
275 tmp10 = tmp0 + tmp3; | |
276 tmp13 = tmp0 - tmp3; | |
277 tmp11 = tmp1 + tmp2; | |
278 tmp12 = tmp1 - tmp2; | |
279 } else { | |
280 /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ | |
281 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
282 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
283 | |
284 tmp0 = d4 << CONST_BITS; | |
285 | |
286 tmp10 = tmp0 + tmp3; | |
287 tmp13 = tmp0 - tmp3; | |
288 tmp11 = tmp2 - tmp0; | |
289 tmp12 = -(tmp0 + tmp2); | |
290 } | |
291 } | |
292 } else { | |
293 if (d2) { | |
294 if (d0) { | |
295 /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ | |
296 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
297 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
298 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
299 | |
300 tmp0 = d0 << CONST_BITS; | |
301 | |
302 tmp10 = tmp0 + tmp3; | |
303 tmp13 = tmp0 - tmp3; | |
304 tmp11 = tmp0 + tmp2; | |
305 tmp12 = tmp0 - tmp2; | |
306 } else { | |
307 /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ | |
308 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
309 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
310 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
311 | |
312 tmp10 = tmp3; | |
313 tmp13 = -tmp3; | |
314 tmp11 = tmp2; | |
315 tmp12 = -tmp2; | |
316 } | |
317 } else { | |
318 if (d0) { | |
319 /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ | |
320 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
321 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
322 | |
323 tmp0 = d0 << CONST_BITS; | |
324 | |
325 tmp10 = tmp0 + tmp3; | |
326 tmp13 = tmp0 - tmp3; | |
327 tmp11 = tmp0 + tmp2; | |
328 tmp12 = tmp0 - tmp2; | |
329 } else { | |
330 /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ | |
331 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
332 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
333 | |
334 tmp10 = tmp3; | |
335 tmp13 = -tmp3; | |
336 tmp11 = tmp2; | |
337 tmp12 = -tmp2; | |
338 } | |
339 } | |
340 } | |
341 } else { | |
342 if (d4) { | |
343 if (d2) { | |
344 if (d0) { | |
345 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
346 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
347 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
348 | |
349 tmp0 = (d0 + d4) << CONST_BITS; | |
350 tmp1 = (d0 - d4) << CONST_BITS; | |
351 | |
352 tmp10 = tmp0 + tmp3; | |
353 tmp13 = tmp0 - tmp3; | |
354 tmp11 = tmp1 + tmp2; | |
355 tmp12 = tmp1 - tmp2; | |
356 } else { | |
357 /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ | |
358 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
359 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
360 | |
361 tmp0 = d4 << CONST_BITS; | |
362 | |
363 tmp10 = tmp0 + tmp3; | |
364 tmp13 = tmp0 - tmp3; | |
365 tmp11 = tmp2 - tmp0; | |
366 tmp12 = -(tmp0 + tmp2); | |
367 } | |
368 } else { | |
369 if (d0) { | |
370 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
371 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
372 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
373 } else { | |
374 /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ | |
375 tmp10 = tmp13 = d4 << CONST_BITS; | |
376 tmp11 = tmp12 = -tmp10; | |
377 } | |
378 } | |
379 } else { | |
380 if (d2) { | |
381 if (d0) { | |
382 /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ | |
383 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
384 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
385 | |
386 tmp0 = d0 << CONST_BITS; | |
387 | |
388 tmp10 = tmp0 + tmp3; | |
389 tmp13 = tmp0 - tmp3; | |
390 tmp11 = tmp0 + tmp2; | |
391 tmp12 = tmp0 - tmp2; | |
392 } else { | |
393 /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ | |
394 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
395 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
396 | |
397 tmp10 = tmp3; | |
398 tmp13 = -tmp3; | |
399 tmp11 = tmp2; | |
400 tmp12 = -tmp2; | |
401 } | |
402 } else { | |
403 if (d0) { | |
404 /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ | |
405 tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; | |
406 } else { | |
407 /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ | |
408 tmp10 = tmp13 = tmp11 = tmp12 = 0; | |
409 } | |
410 } | |
411 } | |
412 } | |
413 | |
414 /* Odd part per figure 8; the matrix is unitary and hence its | |
415 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
416 */ | |
417 | |
418 if (d7) { | |
419 if (d5) { | |
420 if (d3) { | |
421 if (d1) { | |
422 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
423 z1 = d7 + d1; | |
424 z2 = d5 + d3; | |
425 z3 = d7 + d3; | |
426 z4 = d5 + d1; | |
427 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
428 | |
429 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
430 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
431 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
432 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
433 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
434 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
435 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
436 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
437 | |
438 z3 += z5; | |
439 z4 += z5; | |
440 | |
441 tmp0 += z1 + z3; | |
442 tmp1 += z2 + z4; | |
443 tmp2 += z2 + z3; | |
444 tmp3 += z1 + z4; | |
445 } else { | |
446 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
447 z2 = d5 + d3; | |
448 z3 = d7 + d3; | |
449 z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
450 | |
451 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
452 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
453 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
454 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
455 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
456 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
457 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
458 | |
459 z3 += z5; | |
460 z4 += z5; | |
461 | |
462 tmp0 += z1 + z3; | |
463 tmp1 += z2 + z4; | |
464 tmp2 += z2 + z3; | |
465 tmp3 = z1 + z4; | |
466 } | |
467 } else { | |
468 if (d1) { | |
469 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
470 z1 = d7 + d1; | |
471 z4 = d5 + d1; | |
472 z5 = MULTIPLY(d7 + z4, FIX_1_175875602); | |
473 | |
474 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
475 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
476 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
477 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
478 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
479 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
480 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
481 | |
482 z3 += z5; | |
483 z4 += z5; | |
484 | |
485 tmp0 += z1 + z3; | |
486 tmp1 += z2 + z4; | |
487 tmp2 = z2 + z3; | |
488 tmp3 += z1 + z4; | |
489 } else { | |
490 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
491 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
492 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
493 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
494 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
495 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
496 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
497 z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
498 | |
499 z3 += z5; | |
500 z4 += z5; | |
501 | |
502 tmp0 += z3; | |
503 tmp1 += z4; | |
504 tmp2 = z2 + z3; | |
505 tmp3 = z1 + z4; | |
506 } | |
507 } | |
508 } else { | |
509 if (d3) { | |
510 if (d1) { | |
511 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
512 z1 = d7 + d1; | |
513 z3 = d7 + d3; | |
514 z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
515 | |
516 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
517 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
518 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
519 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
520 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
521 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
522 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
523 | |
524 z3 += z5; | |
525 z4 += z5; | |
526 | |
527 tmp0 += z1 + z3; | |
528 tmp1 = z2 + z4; | |
529 tmp2 += z2 + z3; | |
530 tmp3 += z1 + z4; | |
531 } else { | |
532 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
533 z3 = d7 + d3; | |
534 | |
535 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
536 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
537 tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
538 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
539 z5 = MULTIPLY(z3, FIX_1_175875602); | |
540 z3 = MULTIPLY(-z3, FIX_0_785694958); | |
541 | |
542 tmp0 += z3; | |
543 tmp1 = z2 + z5; | |
544 tmp2 += z3; | |
545 tmp3 = z1 + z5; | |
546 } | |
547 } else { | |
548 if (d1) { | |
549 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
550 z1 = d7 + d1; | |
551 z5 = MULTIPLY(z1, FIX_1_175875602); | |
552 | |
553 z1 = MULTIPLY(z1, FIX_0_275899380); | |
554 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
555 tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
556 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
557 tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
558 | |
559 tmp0 += z1; | |
560 tmp1 = z4 + z5; | |
561 tmp2 = z3 + z5; | |
562 tmp3 += z1; | |
563 } else { | |
564 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
565 tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
566 tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
567 tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
568 tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
569 } | |
570 } | |
571 } | |
572 } else { | |
573 if (d5) { | |
574 if (d3) { | |
575 if (d1) { | |
576 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
577 z2 = d5 + d3; | |
578 z4 = d5 + d1; | |
579 z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
580 | |
581 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
582 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
583 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
584 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
585 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
586 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
587 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
588 | |
589 z3 += z5; | |
590 z4 += z5; | |
591 | |
592 tmp0 = z1 + z3; | |
593 tmp1 += z2 + z4; | |
594 tmp2 += z2 + z3; | |
595 tmp3 += z1 + z4; | |
596 } else { | |
597 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
598 z2 = d5 + d3; | |
599 | |
600 z5 = MULTIPLY(z2, FIX_1_175875602); | |
601 tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
602 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
603 z2 = MULTIPLY(-z2, FIX_1_387039845); | |
604 tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
605 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
606 | |
607 tmp0 = z3 + z5; | |
608 tmp1 += z2; | |
609 tmp2 += z2; | |
610 tmp3 = z4 + z5; | |
611 } | |
612 } else { | |
613 if (d1) { | |
614 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
615 z4 = d5 + d1; | |
616 | |
617 z5 = MULTIPLY(z4, FIX_1_175875602); | |
618 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
619 tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
620 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
621 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
622 z4 = MULTIPLY(z4, FIX_0_785694958); | |
623 | |
624 tmp0 = z1 + z5; | |
625 tmp1 += z4; | |
626 tmp2 = z2 + z5; | |
627 tmp3 += z4; | |
628 } else { | |
629 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
630 tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
631 tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
632 tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
633 tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
634 } | |
635 } | |
636 } else { | |
637 if (d3) { | |
638 if (d1) { | |
639 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
640 z5 = d1 + d3; | |
641 tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
642 tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
643 z1 = MULTIPLY(d1, FIX_1_061594337); | |
644 z2 = MULTIPLY(-d3, FIX_2_172734803); | |
645 z4 = MULTIPLY(z5, FIX_0_785694958); | |
646 z5 = MULTIPLY(z5, FIX_1_175875602); | |
647 | |
648 tmp0 = z1 - z4; | |
649 tmp1 = z2 + z4; | |
650 tmp2 += z5; | |
651 tmp3 += z5; | |
652 } else { | |
653 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
654 tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
655 tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
656 tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
657 tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
658 } | |
659 } else { | |
660 if (d1) { | |
661 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
662 tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
663 tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
664 tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
665 tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
666 } else { | |
667 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
668 tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
669 } | |
670 } | |
671 } | |
672 } | |
673 } | |
674 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
675 | |
676 dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); | |
677 dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); | |
678 dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); | |
679 dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); | |
680 dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); | |
681 dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); | |
682 dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); | |
683 dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); | |
684 | |
685 dataptr += DCTSIZE; /* advance pointer to next row */ | |
686 } | |
687 | |
688 /* Pass 2: process columns. */ | |
689 /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
690 /* and also undo the PASS1_BITS scaling. */ | |
691 | |
692 dataptr = data; | |
693 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
694 /* Columns of zeroes can be exploited in the same way as we did with rows. | |
695 * However, the row calculation has created many nonzero AC terms, so the | |
696 * simplification applies less often (typically 5% to 10% of the time). | |
697 * On machines with very fast multiplication, it's possible that the | |
698 * test takes more time than it's worth. In that case this section | |
699 * may be commented out. | |
700 */ | |
701 | |
702 d0 = dataptr[DCTSIZE*0]; | |
703 d1 = dataptr[DCTSIZE*1]; | |
704 d2 = dataptr[DCTSIZE*2]; | |
705 d3 = dataptr[DCTSIZE*3]; | |
706 d4 = dataptr[DCTSIZE*4]; | |
707 d5 = dataptr[DCTSIZE*5]; | |
708 d6 = dataptr[DCTSIZE*6]; | |
709 d7 = dataptr[DCTSIZE*7]; | |
710 | |
711 /* Even part: reverse the even part of the forward DCT. */ | |
712 /* The rotator is sqrt(2)*c(-6). */ | |
713 if (d6) { | |
714 if (d4) { | |
715 if (d2) { | |
716 if (d0) { | |
717 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
718 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
719 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
720 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
721 | |
722 tmp0 = (d0 + d4) << CONST_BITS; | |
723 tmp1 = (d0 - d4) << CONST_BITS; | |
724 | |
725 tmp10 = tmp0 + tmp3; | |
726 tmp13 = tmp0 - tmp3; | |
727 tmp11 = tmp1 + tmp2; | |
728 tmp12 = tmp1 - tmp2; | |
729 } else { | |
730 /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ | |
731 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
732 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
733 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
734 | |
735 tmp0 = d4 << CONST_BITS; | |
736 | |
737 tmp10 = tmp0 + tmp3; | |
738 tmp13 = tmp0 - tmp3; | |
739 tmp11 = tmp2 - tmp0; | |
740 tmp12 = -(tmp0 + tmp2); | |
741 } | |
742 } else { | |
743 if (d0) { | |
744 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
745 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
746 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
747 | |
748 tmp0 = (d0 + d4) << CONST_BITS; | |
749 tmp1 = (d0 - d4) << CONST_BITS; | |
750 | |
751 tmp10 = tmp0 + tmp3; | |
752 tmp13 = tmp0 - tmp3; | |
753 tmp11 = tmp1 + tmp2; | |
754 tmp12 = tmp1 - tmp2; | |
755 } else { | |
756 /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ | |
757 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
758 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
759 | |
760 tmp0 = d4 << CONST_BITS; | |
761 | |
762 tmp10 = tmp0 + tmp3; | |
763 tmp13 = tmp0 - tmp3; | |
764 tmp11 = tmp2 - tmp0; | |
765 tmp12 = -(tmp0 + tmp2); | |
766 } | |
767 } | |
768 } else { | |
769 if (d2) { | |
770 if (d0) { | |
771 /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ | |
772 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
773 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
774 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
775 | |
776 tmp0 = d0 << CONST_BITS; | |
777 | |
778 tmp10 = tmp0 + tmp3; | |
779 tmp13 = tmp0 - tmp3; | |
780 tmp11 = tmp0 + tmp2; | |
781 tmp12 = tmp0 - tmp2; | |
782 } else { | |
783 /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ | |
784 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
785 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
786 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
787 | |
788 tmp10 = tmp3; | |
789 tmp13 = -tmp3; | |
790 tmp11 = tmp2; | |
791 tmp12 = -tmp2; | |
792 } | |
793 } else { | |
794 if (d0) { | |
795 /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ | |
796 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
797 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
798 | |
799 tmp0 = d0 << CONST_BITS; | |
800 | |
801 tmp10 = tmp0 + tmp3; | |
802 tmp13 = tmp0 - tmp3; | |
803 tmp11 = tmp0 + tmp2; | |
804 tmp12 = tmp0 - tmp2; | |
805 } else { | |
806 /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ | |
807 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
808 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
809 | |
810 tmp10 = tmp3; | |
811 tmp13 = -tmp3; | |
812 tmp11 = tmp2; | |
813 tmp12 = -tmp2; | |
814 } | |
815 } | |
816 } | |
817 } else { | |
818 if (d4) { | |
819 if (d2) { | |
820 if (d0) { | |
821 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
822 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
823 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
824 | |
825 tmp0 = (d0 + d4) << CONST_BITS; | |
826 tmp1 = (d0 - d4) << CONST_BITS; | |
827 | |
828 tmp10 = tmp0 + tmp3; | |
829 tmp13 = tmp0 - tmp3; | |
830 tmp11 = tmp1 + tmp2; | |
831 tmp12 = tmp1 - tmp2; | |
832 } else { | |
833 /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ | |
834 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
835 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
836 | |
837 tmp0 = d4 << CONST_BITS; | |
838 | |
839 tmp10 = tmp0 + tmp3; | |
840 tmp13 = tmp0 - tmp3; | |
841 tmp11 = tmp2 - tmp0; | |
842 tmp12 = -(tmp0 + tmp2); | |
843 } | |
844 } else { | |
845 if (d0) { | |
846 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
847 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
848 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
849 } else { | |
850 /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ | |
851 tmp10 = tmp13 = d4 << CONST_BITS; | |
852 tmp11 = tmp12 = -tmp10; | |
853 } | |
854 } | |
855 } else { | |
856 if (d2) { | |
857 if (d0) { | |
858 /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ | |
859 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
860 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
861 | |
862 tmp0 = d0 << CONST_BITS; | |
863 | |
864 tmp10 = tmp0 + tmp3; | |
865 tmp13 = tmp0 - tmp3; | |
866 tmp11 = tmp0 + tmp2; | |
867 tmp12 = tmp0 - tmp2; | |
868 } else { | |
869 /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ | |
870 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
871 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
872 | |
873 tmp10 = tmp3; | |
874 tmp13 = -tmp3; | |
875 tmp11 = tmp2; | |
876 tmp12 = -tmp2; | |
877 } | |
878 } else { | |
879 if (d0) { | |
880 /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ | |
881 tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; | |
882 } else { | |
883 /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ | |
884 tmp10 = tmp13 = tmp11 = tmp12 = 0; | |
885 } | |
886 } | |
887 } | |
888 } | |
889 | |
890 /* Odd part per figure 8; the matrix is unitary and hence its | |
891 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
892 */ | |
893 if (d7) { | |
894 if (d5) { | |
895 if (d3) { | |
896 if (d1) { | |
897 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
898 z1 = d7 + d1; | |
899 z2 = d5 + d3; | |
900 z3 = d7 + d3; | |
901 z4 = d5 + d1; | |
902 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
903 | |
904 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
905 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
906 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
907 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
908 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
909 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
910 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
911 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
912 | |
913 z3 += z5; | |
914 z4 += z5; | |
915 | |
916 tmp0 += z1 + z3; | |
917 tmp1 += z2 + z4; | |
918 tmp2 += z2 + z3; | |
919 tmp3 += z1 + z4; | |
920 } else { | |
921 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
922 z1 = d7; | |
923 z2 = d5 + d3; | |
924 z3 = d7 + d3; | |
925 z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
926 | |
927 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
928 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
929 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
930 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
931 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
932 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
933 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
934 | |
935 z3 += z5; | |
936 z4 += z5; | |
937 | |
938 tmp0 += z1 + z3; | |
939 tmp1 += z2 + z4; | |
940 tmp2 += z2 + z3; | |
941 tmp3 = z1 + z4; | |
942 } | |
943 } else { | |
944 if (d1) { | |
945 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
946 z1 = d7 + d1; | |
947 z2 = d5; | |
948 z3 = d7; | |
949 z4 = d5 + d1; | |
950 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
951 | |
952 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
953 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
954 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
955 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
956 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
957 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
958 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
959 | |
960 z3 += z5; | |
961 z4 += z5; | |
962 | |
963 tmp0 += z1 + z3; | |
964 tmp1 += z2 + z4; | |
965 tmp2 = z2 + z3; | |
966 tmp3 += z1 + z4; | |
967 } else { | |
968 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
969 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
970 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
971 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
972 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
973 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
974 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
975 z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
976 | |
977 z3 += z5; | |
978 z4 += z5; | |
979 | |
980 tmp0 += z3; | |
981 tmp1 += z4; | |
982 tmp2 = z2 + z3; | |
983 tmp3 = z1 + z4; | |
984 } | |
985 } | |
986 } else { | |
987 if (d3) { | |
988 if (d1) { | |
989 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
990 z1 = d7 + d1; | |
991 z3 = d7 + d3; | |
992 z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
993 | |
994 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
995 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
996 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
997 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
998 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
999 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
1000 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
1001 | |
1002 z3 += z5; | |
1003 z4 += z5; | |
1004 | |
1005 tmp0 += z1 + z3; | |
1006 tmp1 = z2 + z4; | |
1007 tmp2 += z2 + z3; | |
1008 tmp3 += z1 + z4; | |
1009 } else { | |
1010 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
1011 z3 = d7 + d3; | |
1012 | |
1013 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
1014 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
1015 tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
1016 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
1017 z5 = MULTIPLY(z3, FIX_1_175875602); | |
1018 z3 = MULTIPLY(-z3, FIX_0_785694958); | |
1019 | |
1020 tmp0 += z3; | |
1021 tmp1 = z2 + z5; | |
1022 tmp2 += z3; | |
1023 tmp3 = z1 + z5; | |
1024 } | |
1025 } else { | |
1026 if (d1) { | |
1027 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
1028 z1 = d7 + d1; | |
1029 z5 = MULTIPLY(z1, FIX_1_175875602); | |
1030 | |
1031 z1 = MULTIPLY(z1, FIX_0_275899380); | |
1032 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
1033 tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
1034 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
1035 tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
1036 | |
1037 tmp0 += z1; | |
1038 tmp1 = z4 + z5; | |
1039 tmp2 = z3 + z5; | |
1040 tmp3 += z1; | |
1041 } else { | |
1042 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
1043 tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
1044 tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
1045 tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
1046 tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
1047 } | |
1048 } | |
1049 } | |
1050 } else { | |
1051 if (d5) { | |
1052 if (d3) { | |
1053 if (d1) { | |
1054 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
1055 z2 = d5 + d3; | |
1056 z4 = d5 + d1; | |
1057 z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
1058 | |
1059 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
1060 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
1061 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
1062 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
1063 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
1064 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
1065 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
1066 | |
1067 z3 += z5; | |
1068 z4 += z5; | |
1069 | |
1070 tmp0 = z1 + z3; | |
1071 tmp1 += z2 + z4; | |
1072 tmp2 += z2 + z3; | |
1073 tmp3 += z1 + z4; | |
1074 } else { | |
1075 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
1076 z2 = d5 + d3; | |
1077 | |
1078 z5 = MULTIPLY(z2, FIX_1_175875602); | |
1079 tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
1080 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
1081 z2 = MULTIPLY(-z2, FIX_1_387039845); | |
1082 tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
1083 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
1084 | |
1085 tmp0 = z3 + z5; | |
1086 tmp1 += z2; | |
1087 tmp2 += z2; | |
1088 tmp3 = z4 + z5; | |
1089 } | |
1090 } else { | |
1091 if (d1) { | |
1092 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
1093 z4 = d5 + d1; | |
1094 | |
1095 z5 = MULTIPLY(z4, FIX_1_175875602); | |
1096 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
1097 tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
1098 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
1099 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
1100 z4 = MULTIPLY(z4, FIX_0_785694958); | |
1101 | |
1102 tmp0 = z1 + z5; | |
1103 tmp1 += z4; | |
1104 tmp2 = z2 + z5; | |
1105 tmp3 += z4; | |
1106 } else { | |
1107 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
1108 tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
1109 tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
1110 tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
1111 tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
1112 } | |
1113 } | |
1114 } else { | |
1115 if (d3) { | |
1116 if (d1) { | |
1117 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
1118 z5 = d1 + d3; | |
1119 tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
1120 tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
1121 z1 = MULTIPLY(d1, FIX_1_061594337); | |
1122 z2 = MULTIPLY(-d3, FIX_2_172734803); | |
1123 z4 = MULTIPLY(z5, FIX_0_785694958); | |
1124 z5 = MULTIPLY(z5, FIX_1_175875602); | |
1125 | |
1126 tmp0 = z1 - z4; | |
1127 tmp1 = z2 + z4; | |
1128 tmp2 += z5; | |
1129 tmp3 += z5; | |
1130 } else { | |
1131 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
1132 tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
1133 tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
1134 tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
1135 tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
1136 } | |
1137 } else { | |
1138 if (d1) { | |
1139 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
1140 tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
1141 tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
1142 tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
1143 tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
1144 } else { | |
1145 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
1146 tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
1147 } | |
1148 } | |
1149 } | |
1150 } | |
1151 | |
1152 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
1153 | |
1154 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3, | |
1155 CONST_BITS+PASS1_BITS+3); | |
1156 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3, | |
1157 CONST_BITS+PASS1_BITS+3); | |
1158 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2, | |
1159 CONST_BITS+PASS1_BITS+3); | |
1160 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2, | |
1161 CONST_BITS+PASS1_BITS+3); | |
1162 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1, | |
1163 CONST_BITS+PASS1_BITS+3); | |
1164 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1, | |
1165 CONST_BITS+PASS1_BITS+3); | |
1166 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0, | |
1167 CONST_BITS+PASS1_BITS+3); | |
1168 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0, | |
1169 CONST_BITS+PASS1_BITS+3); | |
1170 | |
1171 dataptr++; /* advance pointer to next column */ | |
1172 } | |
1173 } | |
1174 | |
440
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
36
diff
changeset
|
1175 #undef FIX |
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
36
diff
changeset
|
1176 #undef CONST_BITS |