Mercurial > libavcodec.hg
annotate jrevdct.c @ 3624:7d8ef3c542a1 libavcodec
avoid reading exponent twice
author | michael |
---|---|
date | Fri, 25 Aug 2006 13:36:27 +0000 |
parents | bfabfdf9ce55 |
children | 9b98e18a1b1c |
rev | line source |
---|---|
0 | 1 /* |
2 * jrevdct.c | |
3 * | |
4 * Copyright (C) 1991, 1992, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains the basic inverse-DCT transformation subroutine. | |
9 * | |
10 * This implementation is based on an algorithm described in | |
11 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | |
12 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | |
13 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | |
14 * The primary algorithm described there uses 11 multiplies and 29 adds. | |
15 * We use their alternate method with 12 multiplies and 32 adds. | |
16 * The advantage of this method is that no data path contains more than one | |
17 * multiplication; this allows a very simple and accurate implementation in | |
18 * scaled fixed-point arithmetic, with a minimal number of shifts. | |
2967 | 19 * |
0 | 20 * I've made lots of modifications to attempt to take advantage of the |
21 * sparse nature of the DCT matrices we're getting. Although the logic | |
22 * is cumbersome, it's straightforward and the resulting code is much | |
23 * faster. | |
24 * | |
25 * A better way to do this would be to pass in the DCT block as a sparse | |
26 * matrix, perhaps with the difference cases encoded. | |
27 */ | |
2967 | 28 |
1106 | 29 /** |
30 * @file jrevdct.c | |
31 * Independent JPEG Group's LLM idct. | |
32 */ | |
2967 | 33 |
0 | 34 #include "common.h" |
35 #include "dsputil.h" | |
36 | |
37 #define EIGHT_BIT_SAMPLES | |
38 | |
39 #define DCTSIZE 8 | |
40 #define DCTSIZE2 64 | |
41 | |
42 #define GLOBAL | |
43 | |
44 #define RIGHT_SHIFT(x, n) ((x) >> (n)) | |
45 | |
46 typedef DCTELEM DCTBLOCK[DCTSIZE2]; | |
47 | |
48 #define CONST_BITS 13 | |
49 | |
50 /* | |
51 * This routine is specialized to the case DCTSIZE = 8. | |
52 */ | |
53 | |
54 #if DCTSIZE != 8 | |
55 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
56 #endif | |
57 | |
58 | |
59 /* | |
60 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT | |
61 * on each column. Direct algorithms are also available, but they are | |
62 * much more complex and seem not to be any faster when reduced to code. | |
63 * | |
64 * The poop on this scaling stuff is as follows: | |
65 * | |
66 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) | |
67 * larger than the true IDCT outputs. The final outputs are therefore | |
68 * a factor of N larger than desired; since N=8 this can be cured by | |
69 * a simple right shift at the end of the algorithm. The advantage of | |
70 * this arrangement is that we save two multiplications per 1-D IDCT, | |
71 * because the y0 and y4 inputs need not be divided by sqrt(N). | |
72 * | |
73 * We have to do addition and subtraction of the integer inputs, which | |
74 * is no problem, and multiplication by fractional constants, which is | |
75 * a problem to do in integer arithmetic. We multiply all the constants | |
76 * by CONST_SCALE and convert them to integer constants (thus retaining | |
77 * CONST_BITS bits of precision in the constants). After doing a | |
78 * multiplication we have to divide the product by CONST_SCALE, with proper | |
79 * rounding, to produce the correct output. This division can be done | |
80 * cheaply as a right shift of CONST_BITS bits. We postpone shifting | |
81 * as long as possible so that partial sums can be added together with | |
82 * full fractional precision. | |
83 * | |
84 * The outputs of the first pass are scaled up by PASS1_BITS bits so that | |
85 * they are represented to better-than-integral precision. These outputs | |
86 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | |
87 * with the recommended scaling. (To scale up 12-bit sample data further, an | |
88 * intermediate int32 array would be needed.) | |
89 * | |
90 * To avoid overflow of the 32-bit intermediate results in pass 2, we must | |
91 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | |
92 * shows that the values given below are the most effective. | |
93 */ | |
94 | |
95 #ifdef EIGHT_BIT_SAMPLES | |
96 #define PASS1_BITS 2 | |
97 #else | |
2979 | 98 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
0 | 99 #endif |
100 | |
2979 | 101 #define ONE ((int32_t) 1) |
0 | 102 |
103 #define CONST_SCALE (ONE << CONST_BITS) | |
104 | |
105 /* Convert a positive real constant to an integer scaled by CONST_SCALE. | |
106 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, | |
107 * you will pay a significant penalty in run time. In that case, figure | |
108 * the correct integer constant values and insert them by hand. | |
109 */ | |
110 | |
111 /* Actually FIX is no longer used, we precomputed them all */ | |
2979 | 112 #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5)) |
0 | 113 |
1064 | 114 /* Descale and correctly round an int32_t value that's scaled by N bits. |
0 | 115 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
116 * the fudge factor is correct for either sign of X. | |
117 */ | |
118 | |
119 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) | |
120 | |
1064 | 121 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. |
0 | 122 * For 8-bit samples with the recommended scaling, all the variable |
123 * and constant values involved are no more than 16 bits wide, so a | |
124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; | |
125 * this provides a useful speedup on many machines. | |
126 * There is no way to specify a 16x16->32 multiply in portable C, but | |
127 * some C compilers will do the right thing if you provide the correct | |
128 * combination of casts. | |
129 * NB: for 12-bit samples, a full 32-bit multiplication will be needed. | |
130 */ | |
131 | |
132 #ifdef EIGHT_BIT_SAMPLES | |
2979 | 133 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
1064 | 134 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const))) |
0 | 135 #endif |
2979 | 136 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ |
1064 | 137 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const))) |
0 | 138 #endif |
139 #endif | |
140 | |
2979 | 141 #ifndef MULTIPLY /* default definition */ |
0 | 142 #define MULTIPLY(var,const) ((var) * (const)) |
143 #endif | |
144 | |
145 | |
2967 | 146 /* |
0 | 147 Unlike our decoder where we approximate the FIXes, we need to use exact |
2967 | 148 ones here or successive P-frames will drift too much with Reference frame coding |
0 | 149 */ |
150 #define FIX_0_211164243 1730 | |
151 #define FIX_0_275899380 2260 | |
152 #define FIX_0_298631336 2446 | |
153 #define FIX_0_390180644 3196 | |
154 #define FIX_0_509795579 4176 | |
155 #define FIX_0_541196100 4433 | |
156 #define FIX_0_601344887 4926 | |
157 #define FIX_0_765366865 6270 | |
158 #define FIX_0_785694958 6436 | |
159 #define FIX_0_899976223 7373 | |
160 #define FIX_1_061594337 8697 | |
161 #define FIX_1_111140466 9102 | |
162 #define FIX_1_175875602 9633 | |
163 #define FIX_1_306562965 10703 | |
164 #define FIX_1_387039845 11363 | |
165 #define FIX_1_451774981 11893 | |
166 #define FIX_1_501321110 12299 | |
167 #define FIX_1_662939225 13623 | |
168 #define FIX_1_847759065 15137 | |
169 #define FIX_1_961570560 16069 | |
170 #define FIX_2_053119869 16819 | |
171 #define FIX_2_172734803 17799 | |
172 #define FIX_2_562915447 20995 | |
173 #define FIX_3_072711026 25172 | |
174 | |
175 /* | |
176 * Perform the inverse DCT on one block of coefficients. | |
177 */ | |
178 | |
179 void j_rev_dct(DCTBLOCK data) | |
180 { | |
1064 | 181 int32_t tmp0, tmp1, tmp2, tmp3; |
182 int32_t tmp10, tmp11, tmp12, tmp13; | |
183 int32_t z1, z2, z3, z4, z5; | |
184 int32_t d0, d1, d2, d3, d4, d5, d6, d7; | |
0 | 185 register DCTELEM *dataptr; |
186 int rowctr; | |
2967 | 187 |
0 | 188 /* Pass 1: process rows. */ |
189 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
190 /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
191 | |
192 dataptr = data; | |
193 | |
194 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
195 /* Due to quantization, we will usually find that many of the input | |
196 * coefficients are zero, especially the AC terms. We can exploit this | |
197 * by short-circuiting the IDCT calculation for any row in which all | |
198 * the AC terms are zero. In that case each output is equal to the | |
199 * DC coefficient (with scale factor as needed). | |
200 * With typical images and quantization tables, half or more of the | |
201 * row DCT calculations can be simplified this way. | |
202 */ | |
203 | |
204 register int *idataptr = (int*)dataptr; | |
205 | |
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
206 /* WARNING: we do the same permutation as MMX idct to simplify the |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
207 video core */ |
0 | 208 d0 = dataptr[0]; |
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
209 d2 = dataptr[1]; |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
210 d4 = dataptr[2]; |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
211 d6 = dataptr[3]; |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
212 d1 = dataptr[4]; |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
213 d3 = dataptr[5]; |
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
214 d5 = dataptr[6]; |
0 | 215 d7 = dataptr[7]; |
216 | |
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
217 if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { |
0 | 218 /* AC terms all zero */ |
219 if (d0) { | |
2979 | 220 /* Compute a 32 bit value to assign. */ |
221 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); | |
222 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); | |
2967 | 223 |
2979 | 224 idataptr[0] = v; |
225 idataptr[1] = v; | |
226 idataptr[2] = v; | |
227 idataptr[3] = v; | |
0 | 228 } |
2967 | 229 |
2979 | 230 dataptr += DCTSIZE; /* advance pointer to next row */ |
0 | 231 continue; |
232 } | |
233 | |
234 /* Even part: reverse the even part of the forward DCT. */ | |
235 /* The rotator is sqrt(2)*c(-6). */ | |
236 { | |
237 if (d6) { | |
2979 | 238 if (d2) { |
239 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
240 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
241 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
242 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
0 | 243 |
2979 | 244 tmp0 = (d0 + d4) << CONST_BITS; |
245 tmp1 = (d0 - d4) << CONST_BITS; | |
0 | 246 |
2979 | 247 tmp10 = tmp0 + tmp3; |
248 tmp13 = tmp0 - tmp3; | |
249 tmp11 = tmp1 + tmp2; | |
250 tmp12 = tmp1 - tmp2; | |
251 } else { | |
252 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
253 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
254 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
0 | 255 |
2979 | 256 tmp0 = (d0 + d4) << CONST_BITS; |
257 tmp1 = (d0 - d4) << CONST_BITS; | |
0 | 258 |
2979 | 259 tmp10 = tmp0 + tmp3; |
260 tmp13 = tmp0 - tmp3; | |
261 tmp11 = tmp1 + tmp2; | |
262 tmp12 = tmp1 - tmp2; | |
263 } | |
2263 | 264 } else { |
2979 | 265 if (d2) { |
266 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
267 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
268 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
0 | 269 |
2979 | 270 tmp0 = (d0 + d4) << CONST_BITS; |
271 tmp1 = (d0 - d4) << CONST_BITS; | |
0 | 272 |
2979 | 273 tmp10 = tmp0 + tmp3; |
274 tmp13 = tmp0 - tmp3; | |
275 tmp11 = tmp1 + tmp2; | |
276 tmp12 = tmp1 - tmp2; | |
277 } else { | |
278 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
279 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
280 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
281 } | |
0 | 282 } |
283 | |
284 /* Odd part per figure 8; the matrix is unitary and hence its | |
285 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
286 */ | |
287 | |
288 if (d7) { | |
2979 | 289 if (d5) { |
290 if (d3) { | |
291 if (d1) { | |
292 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
293 z1 = d7 + d1; | |
294 z2 = d5 + d3; | |
295 z3 = d7 + d3; | |
296 z4 = d5 + d1; | |
297 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
2967 | 298 |
2979 | 299 tmp0 = MULTIPLY(d7, FIX_0_298631336); |
300 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
301 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
302 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
303 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
304 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
305 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
306 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
2967 | 307 |
2979 | 308 z3 += z5; |
309 z4 += z5; | |
2967 | 310 |
2979 | 311 tmp0 += z1 + z3; |
312 tmp1 += z2 + z4; | |
313 tmp2 += z2 + z3; | |
314 tmp3 += z1 + z4; | |
315 } else { | |
316 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
317 z2 = d5 + d3; | |
318 z3 = d7 + d3; | |
319 z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
2967 | 320 |
2979 | 321 tmp0 = MULTIPLY(d7, FIX_0_298631336); |
322 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
323 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
324 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
325 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
326 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
327 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
2967 | 328 |
2979 | 329 z3 += z5; |
330 z4 += z5; | |
2967 | 331 |
2979 | 332 tmp0 += z1 + z3; |
333 tmp1 += z2 + z4; | |
334 tmp2 += z2 + z3; | |
335 tmp3 = z1 + z4; | |
336 } | |
337 } else { | |
338 if (d1) { | |
339 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
340 z1 = d7 + d1; | |
341 z4 = d5 + d1; | |
342 z5 = MULTIPLY(d7 + z4, FIX_1_175875602); | |
2967 | 343 |
2979 | 344 tmp0 = MULTIPLY(d7, FIX_0_298631336); |
345 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
346 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
347 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
348 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
349 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
350 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
2967 | 351 |
2979 | 352 z3 += z5; |
353 z4 += z5; | |
2967 | 354 |
2979 | 355 tmp0 += z1 + z3; |
356 tmp1 += z2 + z4; | |
357 tmp2 = z2 + z3; | |
358 tmp3 += z1 + z4; | |
359 } else { | |
360 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
361 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
362 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
363 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
364 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
365 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
366 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
367 z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
2967 | 368 |
2979 | 369 z3 += z5; |
370 z4 += z5; | |
2967 | 371 |
2979 | 372 tmp0 += z3; |
373 tmp1 += z4; | |
374 tmp2 = z2 + z3; | |
375 tmp3 = z1 + z4; | |
376 } | |
377 } | |
378 } else { | |
379 if (d3) { | |
380 if (d1) { | |
381 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
382 z1 = d7 + d1; | |
383 z3 = d7 + d3; | |
384 z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
2967 | 385 |
2979 | 386 tmp0 = MULTIPLY(d7, FIX_0_298631336); |
387 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
388 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
389 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
390 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
391 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
392 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
2967 | 393 |
2979 | 394 z3 += z5; |
395 z4 += z5; | |
2967 | 396 |
2979 | 397 tmp0 += z1 + z3; |
398 tmp1 = z2 + z4; | |
399 tmp2 += z2 + z3; | |
400 tmp3 += z1 + z4; | |
401 } else { | |
402 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
403 z3 = d7 + d3; | |
2967 | 404 |
2979 | 405 tmp0 = MULTIPLY(-d7, FIX_0_601344887); |
406 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
407 tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
408 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
409 z5 = MULTIPLY(z3, FIX_1_175875602); | |
410 z3 = MULTIPLY(-z3, FIX_0_785694958); | |
2967 | 411 |
2979 | 412 tmp0 += z3; |
413 tmp1 = z2 + z5; | |
414 tmp2 += z3; | |
415 tmp3 = z1 + z5; | |
416 } | |
417 } else { | |
418 if (d1) { | |
419 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
420 z1 = d7 + d1; | |
421 z5 = MULTIPLY(z1, FIX_1_175875602); | |
0 | 422 |
2979 | 423 z1 = MULTIPLY(z1, FIX_0_275899380); |
424 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
425 tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
426 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
427 tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
0 | 428 |
2979 | 429 tmp0 += z1; |
430 tmp1 = z4 + z5; | |
431 tmp2 = z3 + z5; | |
432 tmp3 += z1; | |
433 } else { | |
434 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
435 tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
436 tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
437 tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
438 tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
439 } | |
440 } | |
441 } | |
0 | 442 } else { |
2979 | 443 if (d5) { |
444 if (d3) { | |
445 if (d1) { | |
446 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
447 z2 = d5 + d3; | |
448 z4 = d5 + d1; | |
449 z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
2967 | 450 |
2979 | 451 tmp1 = MULTIPLY(d5, FIX_2_053119869); |
452 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
453 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
454 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
455 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
456 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
457 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
2967 | 458 |
2979 | 459 z3 += z5; |
460 z4 += z5; | |
2967 | 461 |
2979 | 462 tmp0 = z1 + z3; |
463 tmp1 += z2 + z4; | |
464 tmp2 += z2 + z3; | |
465 tmp3 += z1 + z4; | |
466 } else { | |
467 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
468 z2 = d5 + d3; | |
2967 | 469 |
2979 | 470 z5 = MULTIPLY(z2, FIX_1_175875602); |
471 tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
472 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
473 z2 = MULTIPLY(-z2, FIX_1_387039845); | |
474 tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
475 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
2967 | 476 |
2979 | 477 tmp0 = z3 + z5; |
478 tmp1 += z2; | |
479 tmp2 += z2; | |
480 tmp3 = z4 + z5; | |
481 } | |
482 } else { | |
483 if (d1) { | |
484 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
485 z4 = d5 + d1; | |
2967 | 486 |
2979 | 487 z5 = MULTIPLY(z4, FIX_1_175875602); |
488 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
489 tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
490 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
491 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
492 z4 = MULTIPLY(z4, FIX_0_785694958); | |
2967 | 493 |
2979 | 494 tmp0 = z1 + z5; |
495 tmp1 += z4; | |
496 tmp2 = z2 + z5; | |
497 tmp3 += z4; | |
498 } else { | |
499 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
500 tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
501 tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
502 tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
503 tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
504 } | |
505 } | |
506 } else { | |
507 if (d3) { | |
508 if (d1) { | |
509 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
510 z5 = d1 + d3; | |
511 tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
512 tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
513 z1 = MULTIPLY(d1, FIX_1_061594337); | |
514 z2 = MULTIPLY(-d3, FIX_2_172734803); | |
515 z4 = MULTIPLY(z5, FIX_0_785694958); | |
516 z5 = MULTIPLY(z5, FIX_1_175875602); | |
2967 | 517 |
2979 | 518 tmp0 = z1 - z4; |
519 tmp1 = z2 + z4; | |
520 tmp2 += z5; | |
521 tmp3 += z5; | |
522 } else { | |
523 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
524 tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
525 tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
526 tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
527 tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
528 } | |
529 } else { | |
530 if (d1) { | |
531 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
532 tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
533 tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
534 tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
535 tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
536 } else { | |
537 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
538 tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
539 } | |
540 } | |
541 } | |
0 | 542 } |
543 } | |
544 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
545 | |
546 dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); | |
547 dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); | |
548 dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); | |
549 dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); | |
550 dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); | |
551 dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); | |
552 dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); | |
553 dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); | |
554 | |
2979 | 555 dataptr += DCTSIZE; /* advance pointer to next row */ |
0 | 556 } |
557 | |
558 /* Pass 2: process columns. */ | |
559 /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
560 /* and also undo the PASS1_BITS scaling. */ | |
561 | |
562 dataptr = data; | |
563 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
564 /* Columns of zeroes can be exploited in the same way as we did with rows. | |
565 * However, the row calculation has created many nonzero AC terms, so the | |
566 * simplification applies less often (typically 5% to 10% of the time). | |
567 * On machines with very fast multiplication, it's possible that the | |
568 * test takes more time than it's worth. In that case this section | |
569 * may be commented out. | |
570 */ | |
571 | |
572 d0 = dataptr[DCTSIZE*0]; | |
573 d1 = dataptr[DCTSIZE*1]; | |
574 d2 = dataptr[DCTSIZE*2]; | |
575 d3 = dataptr[DCTSIZE*3]; | |
576 d4 = dataptr[DCTSIZE*4]; | |
577 d5 = dataptr[DCTSIZE*5]; | |
578 d6 = dataptr[DCTSIZE*6]; | |
579 d7 = dataptr[DCTSIZE*7]; | |
580 | |
581 /* Even part: reverse the even part of the forward DCT. */ | |
582 /* The rotator is sqrt(2)*c(-6). */ | |
583 if (d6) { | |
2979 | 584 if (d2) { |
585 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
586 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
587 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
588 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
0 | 589 |
2979 | 590 tmp0 = (d0 + d4) << CONST_BITS; |
591 tmp1 = (d0 - d4) << CONST_BITS; | |
0 | 592 |
2979 | 593 tmp10 = tmp0 + tmp3; |
594 tmp13 = tmp0 - tmp3; | |
595 tmp11 = tmp1 + tmp2; | |
596 tmp12 = tmp1 - tmp2; | |
597 } else { | |
598 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
599 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
600 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
0 | 601 |
2979 | 602 tmp0 = (d0 + d4) << CONST_BITS; |
603 tmp1 = (d0 - d4) << CONST_BITS; | |
0 | 604 |
2979 | 605 tmp10 = tmp0 + tmp3; |
606 tmp13 = tmp0 - tmp3; | |
607 tmp11 = tmp1 + tmp2; | |
608 tmp12 = tmp1 - tmp2; | |
609 } | |
2263 | 610 } else { |
2979 | 611 if (d2) { |
612 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
613 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
614 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
0 | 615 |
2979 | 616 tmp0 = (d0 + d4) << CONST_BITS; |
617 tmp1 = (d0 - d4) << CONST_BITS; | |
0 | 618 |
2979 | 619 tmp10 = tmp0 + tmp3; |
620 tmp13 = tmp0 - tmp3; | |
621 tmp11 = tmp1 + tmp2; | |
622 tmp12 = tmp1 - tmp2; | |
623 } else { | |
624 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
625 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
626 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
627 } | |
0 | 628 } |
629 | |
630 /* Odd part per figure 8; the matrix is unitary and hence its | |
631 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
632 */ | |
633 if (d7) { | |
2979 | 634 if (d5) { |
635 if (d3) { | |
636 if (d1) { | |
637 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
638 z1 = d7 + d1; | |
639 z2 = d5 + d3; | |
640 z3 = d7 + d3; | |
641 z4 = d5 + d1; | |
642 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
2967 | 643 |
2979 | 644 tmp0 = MULTIPLY(d7, FIX_0_298631336); |
645 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
646 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
647 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
648 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
649 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
650 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
651 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
2967 | 652 |
2979 | 653 z3 += z5; |
654 z4 += z5; | |
2967 | 655 |
2979 | 656 tmp0 += z1 + z3; |
657 tmp1 += z2 + z4; | |
658 tmp2 += z2 + z3; | |
659 tmp3 += z1 + z4; | |
660 } else { | |
661 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
662 z1 = d7; | |
663 z2 = d5 + d3; | |
664 z3 = d7 + d3; | |
665 z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
2967 | 666 |
2979 | 667 tmp0 = MULTIPLY(d7, FIX_0_298631336); |
668 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
669 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
670 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
671 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
672 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
673 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
2967 | 674 |
2979 | 675 z3 += z5; |
676 z4 += z5; | |
2967 | 677 |
2979 | 678 tmp0 += z1 + z3; |
679 tmp1 += z2 + z4; | |
680 tmp2 += z2 + z3; | |
681 tmp3 = z1 + z4; | |
682 } | |
683 } else { | |
684 if (d1) { | |
685 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
686 z1 = d7 + d1; | |
687 z2 = d5; | |
688 z3 = d7; | |
689 z4 = d5 + d1; | |
690 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
2967 | 691 |
2979 | 692 tmp0 = MULTIPLY(d7, FIX_0_298631336); |
693 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
694 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
695 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
696 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
697 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
698 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
2967 | 699 |
2979 | 700 z3 += z5; |
701 z4 += z5; | |
2967 | 702 |
2979 | 703 tmp0 += z1 + z3; |
704 tmp1 += z2 + z4; | |
705 tmp2 = z2 + z3; | |
706 tmp3 += z1 + z4; | |
707 } else { | |
708 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
709 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
710 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
711 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
712 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
713 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
714 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
715 z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
2967 | 716 |
2979 | 717 z3 += z5; |
718 z4 += z5; | |
2967 | 719 |
2979 | 720 tmp0 += z3; |
721 tmp1 += z4; | |
722 tmp2 = z2 + z3; | |
723 tmp3 = z1 + z4; | |
724 } | |
725 } | |
726 } else { | |
727 if (d3) { | |
728 if (d1) { | |
729 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
730 z1 = d7 + d1; | |
731 z3 = d7 + d3; | |
732 z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
2967 | 733 |
2979 | 734 tmp0 = MULTIPLY(d7, FIX_0_298631336); |
735 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
736 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
737 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
738 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
739 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
740 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
2967 | 741 |
2979 | 742 z3 += z5; |
743 z4 += z5; | |
2967 | 744 |
2979 | 745 tmp0 += z1 + z3; |
746 tmp1 = z2 + z4; | |
747 tmp2 += z2 + z3; | |
748 tmp3 += z1 + z4; | |
749 } else { | |
750 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
751 z3 = d7 + d3; | |
2967 | 752 |
2979 | 753 tmp0 = MULTIPLY(-d7, FIX_0_601344887); |
754 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
755 tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
756 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
757 z5 = MULTIPLY(z3, FIX_1_175875602); | |
758 z3 = MULTIPLY(-z3, FIX_0_785694958); | |
2967 | 759 |
2979 | 760 tmp0 += z3; |
761 tmp1 = z2 + z5; | |
762 tmp2 += z3; | |
763 tmp3 = z1 + z5; | |
764 } | |
765 } else { | |
766 if (d1) { | |
767 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
768 z1 = d7 + d1; | |
769 z5 = MULTIPLY(z1, FIX_1_175875602); | |
0 | 770 |
2979 | 771 z1 = MULTIPLY(z1, FIX_0_275899380); |
772 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
773 tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
774 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
775 tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
0 | 776 |
2979 | 777 tmp0 += z1; |
778 tmp1 = z4 + z5; | |
779 tmp2 = z3 + z5; | |
780 tmp3 += z1; | |
781 } else { | |
782 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
783 tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
784 tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
785 tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
786 tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
787 } | |
788 } | |
789 } | |
0 | 790 } else { |
2979 | 791 if (d5) { |
792 if (d3) { | |
793 if (d1) { | |
794 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
795 z2 = d5 + d3; | |
796 z4 = d5 + d1; | |
797 z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
2967 | 798 |
2979 | 799 tmp1 = MULTIPLY(d5, FIX_2_053119869); |
800 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
801 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
802 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
803 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
804 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
805 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
2967 | 806 |
2979 | 807 z3 += z5; |
808 z4 += z5; | |
2967 | 809 |
2979 | 810 tmp0 = z1 + z3; |
811 tmp1 += z2 + z4; | |
812 tmp2 += z2 + z3; | |
813 tmp3 += z1 + z4; | |
814 } else { | |
815 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
816 z2 = d5 + d3; | |
2967 | 817 |
2979 | 818 z5 = MULTIPLY(z2, FIX_1_175875602); |
819 tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
820 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
821 z2 = MULTIPLY(-z2, FIX_1_387039845); | |
822 tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
823 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
2967 | 824 |
2979 | 825 tmp0 = z3 + z5; |
826 tmp1 += z2; | |
827 tmp2 += z2; | |
828 tmp3 = z4 + z5; | |
829 } | |
830 } else { | |
831 if (d1) { | |
832 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
833 z4 = d5 + d1; | |
2967 | 834 |
2979 | 835 z5 = MULTIPLY(z4, FIX_1_175875602); |
836 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
837 tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
838 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
839 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
840 z4 = MULTIPLY(z4, FIX_0_785694958); | |
2967 | 841 |
2979 | 842 tmp0 = z1 + z5; |
843 tmp1 += z4; | |
844 tmp2 = z2 + z5; | |
845 tmp3 += z4; | |
846 } else { | |
847 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
848 tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
849 tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
850 tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
851 tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
852 } | |
853 } | |
854 } else { | |
855 if (d3) { | |
856 if (d1) { | |
857 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
858 z5 = d1 + d3; | |
859 tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
860 tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
861 z1 = MULTIPLY(d1, FIX_1_061594337); | |
862 z2 = MULTIPLY(-d3, FIX_2_172734803); | |
863 z4 = MULTIPLY(z5, FIX_0_785694958); | |
864 z5 = MULTIPLY(z5, FIX_1_175875602); | |
2967 | 865 |
2979 | 866 tmp0 = z1 - z4; |
867 tmp1 = z2 + z4; | |
868 tmp2 += z5; | |
869 tmp3 += z5; | |
870 } else { | |
871 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
872 tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
873 tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
874 tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
875 tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
876 } | |
877 } else { | |
878 if (d1) { | |
879 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
880 tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
881 tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
882 tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
883 tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
884 } else { | |
885 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
886 tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
887 } | |
888 } | |
889 } | |
0 | 890 } |
891 | |
892 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
893 | |
894 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3, | |
2979 | 895 CONST_BITS+PASS1_BITS+3); |
0 | 896 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3, |
2979 | 897 CONST_BITS+PASS1_BITS+3); |
0 | 898 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2, |
2979 | 899 CONST_BITS+PASS1_BITS+3); |
0 | 900 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2, |
2979 | 901 CONST_BITS+PASS1_BITS+3); |
0 | 902 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1, |
2979 | 903 CONST_BITS+PASS1_BITS+3); |
0 | 904 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1, |
2979 | 905 CONST_BITS+PASS1_BITS+3); |
0 | 906 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0, |
2979 | 907 CONST_BITS+PASS1_BITS+3); |
0 | 908 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0, |
2979 | 909 CONST_BITS+PASS1_BITS+3); |
2967 | 910 |
2979 | 911 dataptr++; /* advance pointer to next column */ |
0 | 912 } |
913 } | |
914 | |
2256 | 915 #undef DCTSIZE |
916 #define DCTSIZE 4 | |
917 #define DCTSTRIDE 8 | |
918 | |
919 void j_rev_dct4(DCTBLOCK data) | |
920 { | |
921 int32_t tmp0, tmp1, tmp2, tmp3; | |
922 int32_t tmp10, tmp11, tmp12, tmp13; | |
923 int32_t z1; | |
924 int32_t d0, d2, d4, d6; | |
925 register DCTELEM *dataptr; | |
926 int rowctr; | |
2262 | 927 |
2256 | 928 /* Pass 1: process rows. */ |
929 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
930 /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
931 | |
2262 | 932 data[0] += 4; |
2967 | 933 |
2256 | 934 dataptr = data; |
935 | |
936 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
937 /* Due to quantization, we will usually find that many of the input | |
938 * coefficients are zero, especially the AC terms. We can exploit this | |
939 * by short-circuiting the IDCT calculation for any row in which all | |
940 * the AC terms are zero. In that case each output is equal to the | |
941 * DC coefficient (with scale factor as needed). | |
942 * With typical images and quantization tables, half or more of the | |
943 * row DCT calculations can be simplified this way. | |
944 */ | |
945 | |
946 register int *idataptr = (int*)dataptr; | |
947 | |
948 d0 = dataptr[0]; | |
949 d2 = dataptr[1]; | |
950 d4 = dataptr[2]; | |
951 d6 = dataptr[3]; | |
952 | |
953 if ((d2 | d4 | d6) == 0) { | |
954 /* AC terms all zero */ | |
955 if (d0) { | |
2979 | 956 /* Compute a 32 bit value to assign. */ |
957 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); | |
958 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); | |
2967 | 959 |
2979 | 960 idataptr[0] = v; |
961 idataptr[1] = v; | |
2256 | 962 } |
2967 | 963 |
2979 | 964 dataptr += DCTSTRIDE; /* advance pointer to next row */ |
2256 | 965 continue; |
966 } | |
2967 | 967 |
2256 | 968 /* Even part: reverse the even part of the forward DCT. */ |
969 /* The rotator is sqrt(2)*c(-6). */ | |
970 if (d6) { | |
2979 | 971 if (d2) { |
972 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
973 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
974 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
975 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
2256 | 976 |
2979 | 977 tmp0 = (d0 + d4) << CONST_BITS; |
978 tmp1 = (d0 - d4) << CONST_BITS; | |
2256 | 979 |
2979 | 980 tmp10 = tmp0 + tmp3; |
981 tmp13 = tmp0 - tmp3; | |
982 tmp11 = tmp1 + tmp2; | |
983 tmp12 = tmp1 - tmp2; | |
984 } else { | |
985 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
986 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
987 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
2256 | 988 |
2979 | 989 tmp0 = (d0 + d4) << CONST_BITS; |
990 tmp1 = (d0 - d4) << CONST_BITS; | |
2256 | 991 |
2979 | 992 tmp10 = tmp0 + tmp3; |
993 tmp13 = tmp0 - tmp3; | |
994 tmp11 = tmp1 + tmp2; | |
995 tmp12 = tmp1 - tmp2; | |
996 } | |
2262 | 997 } else { |
2979 | 998 if (d2) { |
999 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
1000 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
1001 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
2256 | 1002 |
2979 | 1003 tmp0 = (d0 + d4) << CONST_BITS; |
1004 tmp1 = (d0 - d4) << CONST_BITS; | |
2256 | 1005 |
2979 | 1006 tmp10 = tmp0 + tmp3; |
1007 tmp13 = tmp0 - tmp3; | |
1008 tmp11 = tmp1 + tmp2; | |
1009 tmp12 = tmp1 - tmp2; | |
1010 } else { | |
1011 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
1012 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
1013 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
1014 } | |
2256 | 1015 } |
1016 | |
1017 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
1018 | |
1019 dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); | |
1020 dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); | |
1021 dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); | |
1022 dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); | |
1023 | |
2979 | 1024 dataptr += DCTSTRIDE; /* advance pointer to next row */ |
2256 | 1025 } |
1026 | |
1027 /* Pass 2: process columns. */ | |
1028 /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
1029 /* and also undo the PASS1_BITS scaling. */ | |
1030 | |
1031 dataptr = data; | |
1032 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
1033 /* Columns of zeroes can be exploited in the same way as we did with rows. | |
1034 * However, the row calculation has created many nonzero AC terms, so the | |
1035 * simplification applies less often (typically 5% to 10% of the time). | |
1036 * On machines with very fast multiplication, it's possible that the | |
1037 * test takes more time than it's worth. In that case this section | |
1038 * may be commented out. | |
1039 */ | |
1040 | |
1041 d0 = dataptr[DCTSTRIDE*0]; | |
1042 d2 = dataptr[DCTSTRIDE*1]; | |
1043 d4 = dataptr[DCTSTRIDE*2]; | |
1044 d6 = dataptr[DCTSTRIDE*3]; | |
1045 | |
1046 /* Even part: reverse the even part of the forward DCT. */ | |
1047 /* The rotator is sqrt(2)*c(-6). */ | |
1048 if (d6) { | |
2979 | 1049 if (d2) { |
1050 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
1051 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
1052 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
1053 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
2256 | 1054 |
2979 | 1055 tmp0 = (d0 + d4) << CONST_BITS; |
1056 tmp1 = (d0 - d4) << CONST_BITS; | |
2256 | 1057 |
2979 | 1058 tmp10 = tmp0 + tmp3; |
1059 tmp13 = tmp0 - tmp3; | |
1060 tmp11 = tmp1 + tmp2; | |
1061 tmp12 = tmp1 - tmp2; | |
1062 } else { | |
1063 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
1064 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
1065 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
2256 | 1066 |
2979 | 1067 tmp0 = (d0 + d4) << CONST_BITS; |
1068 tmp1 = (d0 - d4) << CONST_BITS; | |
2256 | 1069 |
2979 | 1070 tmp10 = tmp0 + tmp3; |
1071 tmp13 = tmp0 - tmp3; | |
1072 tmp11 = tmp1 + tmp2; | |
1073 tmp12 = tmp1 - tmp2; | |
1074 } | |
2262 | 1075 } else { |
2979 | 1076 if (d2) { |
1077 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
1078 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
1079 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
2256 | 1080 |
2979 | 1081 tmp0 = (d0 + d4) << CONST_BITS; |
1082 tmp1 = (d0 - d4) << CONST_BITS; | |
2256 | 1083 |
2979 | 1084 tmp10 = tmp0 + tmp3; |
1085 tmp13 = tmp0 - tmp3; | |
1086 tmp11 = tmp1 + tmp2; | |
1087 tmp12 = tmp1 - tmp2; | |
1088 } else { | |
1089 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
1090 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
1091 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
1092 } | |
2256 | 1093 } |
1094 | |
1095 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
1096 | |
2262 | 1097 dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3); |
1098 dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3); | |
1099 dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3); | |
1100 dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3); | |
2967 | 1101 |
2979 | 1102 dataptr++; /* advance pointer to next column */ |
2256 | 1103 } |
1104 } | |
1105 | |
2257 | 1106 void j_rev_dct2(DCTBLOCK data){ |
1107 int d00, d01, d10, d11; | |
1108 | |
1109 data[0] += 4; | |
1110 d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE]; | |
1111 d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE]; | |
1112 d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE]; | |
1113 d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE]; | |
2967 | 1114 |
2257 | 1115 data[0+0*DCTSTRIDE]= (d00 + d10)>>3; |
1116 data[1+0*DCTSTRIDE]= (d01 + d11)>>3; | |
1117 data[0+1*DCTSTRIDE]= (d00 - d10)>>3; | |
1118 data[1+1*DCTSTRIDE]= (d01 - d11)>>3; | |
1119 } | |
2256 | 1120 |
2259 | 1121 void j_rev_dct1(DCTBLOCK data){ |
1122 data[0] = (data[0] + 4)>>3; | |
1123 } | |
1124 | |
440
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
36
diff
changeset
|
1125 #undef FIX |
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
36
diff
changeset
|
1126 #undef CONST_BITS |