0
|
1 /* fdctref.c, forward discrete cosine transform, double precision */
|
|
2
|
|
3 /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
|
|
4
|
|
5 /*
|
|
6 * Disclaimer of Warranty
|
|
7 *
|
|
8 * These software programs are available to the user without any license fee or
|
|
9 * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
|
|
10 * any and all warranties, whether express, implied, or statuary, including any
|
|
11 * implied warranties or merchantability or of fitness for a particular
|
|
12 * purpose. In no event shall the copyright-holder be liable for any
|
|
13 * incidental, punitive, or consequential damages of any kind whatsoever
|
|
14 * arising from the use of these programs.
|
|
15 *
|
|
16 * This disclaimer of warranty extends to the user of these programs and user's
|
|
17 * customers, employees, agents, transferees, successors, and assigns.
|
|
18 *
|
|
19 * The MPEG Software Simulation Group does not represent or warrant that the
|
|
20 * programs furnished hereunder are free of infringement of any third-party
|
|
21 * patents.
|
|
22 *
|
|
23 * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
|
|
24 * are subject to royalty fees to patent holders. Many of these patents are
|
|
25 * general enough such that they are unavoidable regardless of implementation
|
|
26 * design.
|
|
27 *
|
|
28 */
|
|
29
|
|
30 #include <math.h>
|
|
31
|
|
32 #ifndef PI
|
|
33 # ifdef M_PI
|
|
34 # define PI M_PI
|
|
35 # else
|
|
36 # define PI 3.14159265358979323846
|
|
37 # endif
|
|
38 #endif
|
|
39
|
|
40 /* global declarations */
|
|
41 void init_fdct (void);
|
|
42 void fdct (short *block);
|
|
43
|
|
44 /* private data */
|
|
45 static double c[8][8]; /* transform coefficients */
|
|
46
|
|
47 void init_fdct()
|
|
48 {
|
|
49 int i, j;
|
|
50 double s;
|
|
51
|
|
52 for (i=0; i<8; i++)
|
|
53 {
|
|
54 s = (i==0) ? sqrt(0.125) : 0.5;
|
|
55
|
|
56 for (j=0; j<8; j++)
|
|
57 c[i][j] = s * cos((PI/8.0)*i*(j+0.5));
|
|
58 }
|
|
59 }
|
|
60
|
|
61 void fdct(block)
|
|
62 short *block;
|
|
63 {
|
|
64 register int i, j;
|
|
65 double s;
|
|
66 double tmp[64];
|
|
67
|
|
68 for(i = 0; i < 8; i++)
|
|
69 for(j = 0; j < 8; j++)
|
|
70 {
|
|
71 s = 0.0;
|
|
72
|
|
73 /*
|
|
74 * for(k = 0; k < 8; k++)
|
|
75 * s += c[j][k] * block[8 * i + k];
|
|
76 */
|
|
77 s += c[j][0] * block[8 * i + 0];
|
|
78 s += c[j][1] * block[8 * i + 1];
|
|
79 s += c[j][2] * block[8 * i + 2];
|
|
80 s += c[j][3] * block[8 * i + 3];
|
|
81 s += c[j][4] * block[8 * i + 4];
|
|
82 s += c[j][5] * block[8 * i + 5];
|
|
83 s += c[j][6] * block[8 * i + 6];
|
|
84 s += c[j][7] * block[8 * i + 7];
|
|
85
|
|
86 tmp[8 * i + j] = s;
|
|
87 }
|
|
88
|
|
89 for(j = 0; j < 8; j++)
|
|
90 for(i = 0; i < 8; i++)
|
|
91 {
|
|
92 s = 0.0;
|
|
93
|
|
94 /*
|
|
95 * for(k = 0; k < 8; k++)
|
|
96 * s += c[i][k] * tmp[8 * k + j];
|
|
97 */
|
|
98 s += c[i][0] * tmp[8 * 0 + j];
|
|
99 s += c[i][1] * tmp[8 * 1 + j];
|
|
100 s += c[i][2] * tmp[8 * 2 + j];
|
|
101 s += c[i][3] * tmp[8 * 3 + j];
|
|
102 s += c[i][4] * tmp[8 * 4 + j];
|
|
103 s += c[i][5] * tmp[8 * 5 + j];
|
|
104 s += c[i][6] * tmp[8 * 6 + j];
|
|
105 s += c[i][7] * tmp[8 * 7 + j];
|
|
106
|
|
107 block[8 * i + j] = (short)floor(s + 0.499999);
|
|
108 /*
|
|
109 * reason for adding 0.499999 instead of 0.5:
|
|
110 * s is quite often x.5 (at least for i and/or j = 0 or 4)
|
|
111 * and setting the rounding threshold exactly to 0.5 leads to an
|
|
112 * extremely high arithmetic implementation dependency of the result;
|
|
113 * s being between x.5 and x.500001 (which is now incorrectly rounded
|
|
114 * downwards instead of upwards) is assumed to occur less often
|
|
115 * (if at all)
|
|
116 */
|
|
117 }
|
|
118 }
|
35
|
119
|
|
120 /* perform IDCT matrix multiply for 8x8 coefficient block */
|
|
121
|
|
122 void idct(block)
|
|
123 short *block;
|
|
124 {
|
|
125 int i, j, k, v;
|
|
126 double partial_product;
|
|
127 double tmp[64];
|
|
128
|
|
129 for (i=0; i<8; i++)
|
|
130 for (j=0; j<8; j++)
|
|
131 {
|
|
132 partial_product = 0.0;
|
|
133
|
|
134 for (k=0; k<8; k++)
|
|
135 partial_product+= c[k][j]*block[8*i+k];
|
|
136
|
|
137 tmp[8*i+j] = partial_product;
|
|
138 }
|
|
139
|
|
140 /* Transpose operation is integrated into address mapping by switching
|
|
141 loop order of i and j */
|
|
142
|
|
143 for (j=0; j<8; j++)
|
|
144 for (i=0; i<8; i++)
|
|
145 {
|
|
146 partial_product = 0.0;
|
|
147
|
|
148 for (k=0; k<8; k++)
|
|
149 partial_product+= c[k][i]*tmp[8*k+j];
|
|
150
|
|
151 v = (int) floor(partial_product+0.5);
|
|
152 block[8*i+j] = v;
|
|
153 }
|
|
154 }
|