Mercurial > libavcodec.hg
annotate jfdctfst.c @ 1504:df7ab60d1ee0 libavcodec
This patch marks frames used in RPZA decoder as reference frames, from
Roberto Togni (rtogni at freemail.it)
author | tmmm |
---|---|
date | Sun, 05 Oct 2003 21:48:16 +0000 |
parents | 1e39f273ecd6 |
children | aa4dc16c0f18 |
rev | line source |
---|---|
0 | 1 /* |
2 * jfdctfst.c | |
3 * | |
4 * Copyright (C) 1994-1996, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains a fast, not so accurate integer implementation of the | |
9 * forward DCT (Discrete Cosine Transform). | |
10 * | |
11 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | |
12 * on each column. Direct algorithms are also available, but they are | |
13 * much more complex and seem not to be any faster when reduced to code. | |
14 * | |
15 * This implementation is based on Arai, Agui, and Nakajima's algorithm for | |
16 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |
17 * Japanese, but the algorithm is described in the Pennebaker & Mitchell | |
18 * JPEG textbook (see REFERENCES section in file README). The following code | |
19 * is based directly on figure 4-8 in P&M. | |
20 * While an 8-point DCT cannot be done in less than 11 multiplies, it is | |
21 * possible to arrange the computation so that many of the multiplies are | |
22 * simple scalings of the final outputs. These multiplies can then be | |
23 * folded into the multiplications or divisions by the JPEG quantization | |
24 * table entries. The AA&N method leaves only 5 multiplies and 29 adds | |
25 * to be done in the DCT itself. | |
26 * The primary disadvantage of this method is that with fixed-point math, | |
27 * accuracy is lost due to imprecise representation of the scaled | |
28 * quantization values. The smaller the quantization table entry, the less | |
29 * precise the scaled value, so this implementation does worse with high- | |
30 * quality-setting files than with low-quality ones. | |
31 */ | |
32 | |
1106 | 33 /** |
34 * @file jfdctfst.c | |
35 * Independent JPEG Group's fast AAN dct. | |
36 */ | |
37 | |
0 | 38 #include <stdlib.h> |
39 #include <stdio.h> | |
40 #include "common.h" | |
41 #include "dsputil.h" | |
42 | |
43 #define DCTSIZE 8 | |
44 #define GLOBAL(x) x | |
45 #define RIGHT_SHIFT(x, n) ((x) >> (n)) | |
46 #define SHIFT_TEMPS | |
47 | |
48 /* | |
49 * This module is specialized to the case DCTSIZE = 8. | |
50 */ | |
51 | |
52 #if DCTSIZE != 8 | |
53 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
54 #endif | |
55 | |
56 | |
57 /* Scaling decisions are generally the same as in the LL&M algorithm; | |
58 * see jfdctint.c for more details. However, we choose to descale | |
59 * (right shift) multiplication products as soon as they are formed, | |
60 * rather than carrying additional fractional bits into subsequent additions. | |
61 * This compromises accuracy slightly, but it lets us save a few shifts. | |
62 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) | |
63 * everywhere except in the multiplications proper; this saves a good deal | |
64 * of work on 16-bit-int machines. | |
65 * | |
66 * Again to save a few shifts, the intermediate results between pass 1 and | |
67 * pass 2 are not upscaled, but are represented only to integral precision. | |
68 * | |
69 * A final compromise is to represent the multiplicative constants to only | |
70 * 8 fractional bits, rather than 13. This saves some shifting work on some | |
71 * machines, and may also reduce the cost of multiplication (since there | |
72 * are fewer one-bits in the constants). | |
73 */ | |
74 | |
75 #define CONST_BITS 8 | |
76 | |
77 | |
78 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |
79 * causing a lot of useless floating-point operations at run time. | |
80 * To get around this we use the following pre-calculated constants. | |
81 * If you change CONST_BITS you may want to add appropriate values. | |
82 * (With a reasonable C compiler, you can just rely on the FIX() macro...) | |
83 */ | |
84 | |
85 #if CONST_BITS == 8 | |
1064 | 86 #define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */ |
87 #define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */ | |
88 #define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */ | |
89 #define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */ | |
0 | 90 #else |
91 #define FIX_0_382683433 FIX(0.382683433) | |
92 #define FIX_0_541196100 FIX(0.541196100) | |
93 #define FIX_0_707106781 FIX(0.707106781) | |
94 #define FIX_1_306562965 FIX(1.306562965) | |
95 #endif | |
96 | |
97 | |
98 /* We can gain a little more speed, with a further compromise in accuracy, | |
99 * by omitting the addition in a descaling shift. This yields an incorrectly | |
100 * rounded result half the time... | |
101 */ | |
102 | |
103 #ifndef USE_ACCURATE_ROUNDING | |
104 #undef DESCALE | |
105 #define DESCALE(x,n) RIGHT_SHIFT(x, n) | |
106 #endif | |
107 | |
108 | |
1064 | 109 /* Multiply a DCTELEM variable by an int32_t constant, and immediately |
0 | 110 * descale to yield a DCTELEM result. |
111 */ | |
112 | |
113 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) | |
114 | |
115 | |
116 /* | |
117 * Perform the forward DCT on one block of samples. | |
118 */ | |
119 | |
120 GLOBAL(void) | |
474
11dbd00682fc
avoid name clash with libjpeg - added missing externs
bellard
parents:
440
diff
changeset
|
121 fdct_ifast (DCTELEM * data) |
0 | 122 { |
123 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
124 DCTELEM tmp10, tmp11, tmp12, tmp13; | |
125 DCTELEM z1, z2, z3, z4, z5, z11, z13; | |
126 DCTELEM *dataptr; | |
127 int ctr; | |
128 SHIFT_TEMPS | |
129 | |
130 /* Pass 1: process rows. */ | |
131 | |
132 dataptr = data; | |
133 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
134 tmp0 = dataptr[0] + dataptr[7]; | |
135 tmp7 = dataptr[0] - dataptr[7]; | |
136 tmp1 = dataptr[1] + dataptr[6]; | |
137 tmp6 = dataptr[1] - dataptr[6]; | |
138 tmp2 = dataptr[2] + dataptr[5]; | |
139 tmp5 = dataptr[2] - dataptr[5]; | |
140 tmp3 = dataptr[3] + dataptr[4]; | |
141 tmp4 = dataptr[3] - dataptr[4]; | |
142 | |
143 /* Even part */ | |
144 | |
145 tmp10 = tmp0 + tmp3; /* phase 2 */ | |
146 tmp13 = tmp0 - tmp3; | |
147 tmp11 = tmp1 + tmp2; | |
148 tmp12 = tmp1 - tmp2; | |
149 | |
150 dataptr[0] = tmp10 + tmp11; /* phase 3 */ | |
151 dataptr[4] = tmp10 - tmp11; | |
152 | |
153 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | |
154 dataptr[2] = tmp13 + z1; /* phase 5 */ | |
155 dataptr[6] = tmp13 - z1; | |
156 | |
157 /* Odd part */ | |
158 | |
159 tmp10 = tmp4 + tmp5; /* phase 2 */ | |
160 tmp11 = tmp5 + tmp6; | |
161 tmp12 = tmp6 + tmp7; | |
162 | |
163 /* The rotator is modified from fig 4-8 to avoid extra negations. */ | |
164 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | |
165 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | |
166 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | |
167 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | |
168 | |
169 z11 = tmp7 + z3; /* phase 5 */ | |
170 z13 = tmp7 - z3; | |
171 | |
172 dataptr[5] = z13 + z2; /* phase 6 */ | |
173 dataptr[3] = z13 - z2; | |
174 dataptr[1] = z11 + z4; | |
175 dataptr[7] = z11 - z4; | |
176 | |
177 dataptr += DCTSIZE; /* advance pointer to next row */ | |
178 } | |
179 | |
180 /* Pass 2: process columns. */ | |
181 | |
182 dataptr = data; | |
183 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
184 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |
185 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |
186 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |
187 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |
188 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |
189 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |
190 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |
191 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |
192 | |
193 /* Even part */ | |
194 | |
195 tmp10 = tmp0 + tmp3; /* phase 2 */ | |
196 tmp13 = tmp0 - tmp3; | |
197 tmp11 = tmp1 + tmp2; | |
198 tmp12 = tmp1 - tmp2; | |
199 | |
200 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | |
201 dataptr[DCTSIZE*4] = tmp10 - tmp11; | |
202 | |
203 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | |
204 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | |
205 dataptr[DCTSIZE*6] = tmp13 - z1; | |
206 | |
207 /* Odd part */ | |
208 | |
209 tmp10 = tmp4 + tmp5; /* phase 2 */ | |
210 tmp11 = tmp5 + tmp6; | |
211 tmp12 = tmp6 + tmp7; | |
212 | |
213 /* The rotator is modified from fig 4-8 to avoid extra negations. */ | |
214 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | |
215 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | |
216 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | |
217 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | |
218 | |
219 z11 = tmp7 + z3; /* phase 5 */ | |
220 z13 = tmp7 - z3; | |
221 | |
222 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | |
223 dataptr[DCTSIZE*3] = z13 - z2; | |
224 dataptr[DCTSIZE*1] = z11 + z4; | |
225 dataptr[DCTSIZE*7] = z11 - z4; | |
226 | |
227 dataptr++; /* advance pointer to next column */ | |
228 } | |
229 } | |
440
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
0
diff
changeset
|
230 |
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
0
diff
changeset
|
231 |
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
0
diff
changeset
|
232 #undef GLOBAL |
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
0
diff
changeset
|
233 #undef CONST_BITS |
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
0
diff
changeset
|
234 #undef DESCALE |
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
0
diff
changeset
|
235 #undef FIX_0_541196100 |
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
0
diff
changeset
|
236 #undef FIX_1_306562965 |