Mercurial > libavcodec.hg
comparison rdft.c @ 8694:68fd157bab48 libavcodec
Add the rdft family of transforms (fft/ifft of an all real sequence) to dsputil.
author | alexc |
---|---|
date | Fri, 30 Jan 2009 20:15:48 +0000 |
parents | |
children | e9d9d946f213 |
comparison
equal
deleted
inserted
replaced
8693:18737839ed27 | 8694:68fd157bab48 |
---|---|
1 /* | |
2 * (I)RDFT transforms | |
3 * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com> | |
4 * | |
5 * This file is part of FFmpeg. | |
6 * | |
7 * FFmpeg is free software; you can redistribute it and/or | |
8 * modify it under the terms of the GNU Lesser General Public | |
9 * License as published by the Free Software Foundation; either | |
10 * version 2.1 of the License, or (at your option) any later version. | |
11 * | |
12 * FFmpeg is distributed in the hope that it will be useful, | |
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 * Lesser General Public License for more details. | |
16 * | |
17 * You should have received a copy of the GNU Lesser General Public | |
18 * License along with FFmpeg; if not, write to the Free Software | |
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
20 */ | |
21 #include <math.h> | |
22 #include "dsputil.h" | |
23 | |
24 /** | |
25 * @file rdft.c | |
26 * (Inverse) Real Discrete Fourier Transforms. | |
27 */ | |
28 | |
29 /* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */ | |
30 DECLARE_ALIGNED_16(FFTSample, ff_sin_16[8]); | |
31 DECLARE_ALIGNED_16(FFTSample, ff_sin_32[16]); | |
32 DECLARE_ALIGNED_16(FFTSample, ff_sin_64[32]); | |
33 DECLARE_ALIGNED_16(FFTSample, ff_sin_128[64]); | |
34 DECLARE_ALIGNED_16(FFTSample, ff_sin_256[128]); | |
35 DECLARE_ALIGNED_16(FFTSample, ff_sin_512[256]); | |
36 DECLARE_ALIGNED_16(FFTSample, ff_sin_1024[512]); | |
37 DECLARE_ALIGNED_16(FFTSample, ff_sin_2048[1024]); | |
38 DECLARE_ALIGNED_16(FFTSample, ff_sin_4096[2048]); | |
39 DECLARE_ALIGNED_16(FFTSample, ff_sin_8192[4096]); | |
40 DECLARE_ALIGNED_16(FFTSample, ff_sin_16384[8192]); | |
41 DECLARE_ALIGNED_16(FFTSample, ff_sin_32768[16384]); | |
42 DECLARE_ALIGNED_16(FFTSample, ff_sin_65536[32768]); | |
43 FFTSample *ff_sin_tabs[] = { | |
44 ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024, | |
45 ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536, | |
46 }; | |
47 | |
48 av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans) | |
49 { | |
50 int n = 1 << nbits; | |
51 int i; | |
52 const double theta = (trans == RDFT || trans == IRIDFT ? -1 : 1)*2*M_PI/n; | |
53 | |
54 s->nbits = nbits; | |
55 s->inverse = trans == IRDFT || trans == IRIDFT; | |
56 s->sign_convention = trans == RIDFT || trans == IRIDFT ? 1 : -1; | |
57 | |
58 if (nbits < 4 || nbits > 16) | |
59 return -1; | |
60 | |
61 if (ff_fft_init(&s->fft, nbits-1, trans == IRDFT || trans == RIDFT) < 0) | |
62 return -1; | |
63 | |
64 s->tcos = ff_cos_tabs[nbits-4]; | |
65 s->tsin = ff_sin_tabs[nbits-4]+(trans == RDFT || trans == IRIDFT)*(n>>2); | |
66 for (i = 0; i < (n>>2); i++) { | |
67 s->tcos[i] = cos(i*theta); | |
68 s->tsin[i] = sin(i*theta); | |
69 } | |
70 return 0; | |
71 } | |
72 | |
73 /** Map one real FFT into two parallel real even and odd FFTs. Then interleave | |
74 * the two real FFTs into one complex FFT. Unmangle the results. | |
75 * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM | |
76 */ | |
77 void ff_rdft_calc_c(RDFTContext* s, FFTSample* data) | |
78 { | |
79 int i, i1, i2; | |
80 FFTComplex ev, od; | |
81 const int n = 1 << s->nbits; | |
82 const float k1 = 0.5; | |
83 const float k2 = 0.5 - s->inverse; | |
84 const FFTSample *tcos = s->tcos; | |
85 const FFTSample *tsin = s->tsin; | |
86 | |
87 if (!s->inverse) { | |
88 ff_fft_permute(&s->fft, (FFTComplex*)data); | |
89 ff_fft_calc(&s->fft, (FFTComplex*)data); | |
90 } | |
91 /* i=0 is a special case because of packing, the DC term is real, so we | |
92 are going to throw the N/2 term (also real) in with it. */ | |
93 ev.re = data[0]; | |
94 data[0] = ev.re+data[1]; | |
95 data[1] = ev.re-data[1]; | |
96 for (i = 1; i < (n>>2); i++) { | |
97 i1 = 2*i; | |
98 i2 = n-i1; | |
99 /* Separate even and odd FFTs */ | |
100 ev.re = k1*(data[i1 ]+data[i2 ]); | |
101 od.im = -k2*(data[i1 ]-data[i2 ]); | |
102 ev.im = k1*(data[i1+1]-data[i2+1]); | |
103 od.re = k2*(data[i1+1]+data[i2+1]); | |
104 /* Apply twiddle factors to the odd FFT and add to the even FFT */ | |
105 data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i]; | |
106 data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i]; | |
107 data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i]; | |
108 data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i]; | |
109 } | |
110 data[2*i+1]=s->sign_convention*data[2*i+1]; | |
111 if (s->inverse) { | |
112 data[0] *= k1; | |
113 data[1] *= k1; | |
114 ff_fft_permute(&s->fft, (FFTComplex*)data); | |
115 ff_fft_calc(&s->fft, (FFTComplex*)data); | |
116 } | |
117 } | |
118 | |
119 void ff_rdft_calc(RDFTContext *s, FFTSample *data) | |
120 { | |
121 ff_rdft_calc_c(s, data); | |
122 } | |
123 | |
124 av_cold void ff_rdft_end(RDFTContext *s) | |
125 { | |
126 ff_fft_end(&s->fft); | |
127 } |