comparison jfdctint.c @ 625:bb6a69f9d409 libavcodec

slow but accurate integer dct from IJG (should be ok with the LGPL as the old DCT is the fast integer DCT from IJG) per context DCT selection
author michaelni
date Thu, 29 Aug 2002 23:55:32 +0000
parents
children de12d5b9c9ad
comparison
equal deleted inserted replaced
624:35353e4520d8 625:bb6a69f9d409
1 /*
2 * jfdctint.c
3 *
4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains a slow-but-accurate integer implementation of the
9 * forward DCT (Discrete Cosine Transform).
10 *
11 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12 * on each column. Direct algorithms are also available, but they are
13 * much more complex and seem not to be any faster when reduced to code.
14 *
15 * This implementation is based on an algorithm described in
16 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
17 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
18 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
19 * The primary algorithm described there uses 11 multiplies and 29 adds.
20 * We use their alternate method with 12 multiplies and 32 adds.
21 * The advantage of this method is that no data path contains more than one
22 * multiplication; this allows a very simple and accurate implementation in
23 * scaled fixed-point arithmetic, with a minimal number of shifts.
24 */
25
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include "common.h"
29 #include "dsputil.h"
30
31 #define SHIFT_TEMPS
32 #define DCTSIZE 8
33 #define GLOBAL(x) x
34 #define RIGHT_SHIFT(x, n) ((x) >> (n))
35
36 #if 1 //def USE_ACCURATE_ROUNDING
37 #define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
38 #else
39 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
40 #endif
41
42
43 /*
44 * This module is specialized to the case DCTSIZE = 8.
45 */
46
47 #if DCTSIZE != 8
48 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
49 #endif
50
51
52 /*
53 * The poop on this scaling stuff is as follows:
54 *
55 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
56 * larger than the true DCT outputs. The final outputs are therefore
57 * a factor of N larger than desired; since N=8 this can be cured by
58 * a simple right shift at the end of the algorithm. The advantage of
59 * this arrangement is that we save two multiplications per 1-D DCT,
60 * because the y0 and y4 outputs need not be divided by sqrt(N).
61 * In the IJG code, this factor of 8 is removed by the quantization step
62 * (in jcdctmgr.c), NOT in this module.
63 *
64 * We have to do addition and subtraction of the integer inputs, which
65 * is no problem, and multiplication by fractional constants, which is
66 * a problem to do in integer arithmetic. We multiply all the constants
67 * by CONST_SCALE and convert them to integer constants (thus retaining
68 * CONST_BITS bits of precision in the constants). After doing a
69 * multiplication we have to divide the product by CONST_SCALE, with proper
70 * rounding, to produce the correct output. This division can be done
71 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
72 * as long as possible so that partial sums can be added together with
73 * full fractional precision.
74 *
75 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
76 * they are represented to better-than-integral precision. These outputs
77 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
78 * with the recommended scaling. (For 12-bit sample data, the intermediate
79 * array is INT32 anyway.)
80 *
81 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
82 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
83 * shows that the values given below are the most effective.
84 */
85
86 #if BITS_IN_JSAMPLE == 8
87 #define CONST_BITS 13
88 #define PASS1_BITS 2
89 #else
90 #define CONST_BITS 13
91 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
92 #endif
93
94 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
95 * causing a lot of useless floating-point operations at run time.
96 * To get around this we use the following pre-calculated constants.
97 * If you change CONST_BITS you may want to add appropriate values.
98 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
99 */
100
101 #if CONST_BITS == 13
102 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
103 #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
104 #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
105 #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
106 #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
107 #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
108 #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
109 #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
110 #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
111 #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
112 #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
113 #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
114 #else
115 #define FIX_0_298631336 FIX(0.298631336)
116 #define FIX_0_390180644 FIX(0.390180644)
117 #define FIX_0_541196100 FIX(0.541196100)
118 #define FIX_0_765366865 FIX(0.765366865)
119 #define FIX_0_899976223 FIX(0.899976223)
120 #define FIX_1_175875602 FIX(1.175875602)
121 #define FIX_1_501321110 FIX(1.501321110)
122 #define FIX_1_847759065 FIX(1.847759065)
123 #define FIX_1_961570560 FIX(1.961570560)
124 #define FIX_2_053119869 FIX(2.053119869)
125 #define FIX_2_562915447 FIX(2.562915447)
126 #define FIX_3_072711026 FIX(3.072711026)
127 #endif
128
129
130 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
131 * For 8-bit samples with the recommended scaling, all the variable
132 * and constant values involved are no more than 16 bits wide, so a
133 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
134 * For 12-bit samples, a full 32-bit multiplication will be needed.
135 */
136
137 #if BITS_IN_JSAMPLE == 8
138 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
139 #else
140 #define MULTIPLY(var,const) ((var) * (const))
141 #endif
142
143
144 /*
145 * Perform the forward DCT on one block of samples.
146 */
147
148 GLOBAL(void)
149 ff_jpeg_fdct_islow (DCTELEM * data)
150 {
151 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
152 INT32 tmp10, tmp11, tmp12, tmp13;
153 INT32 z1, z2, z3, z4, z5;
154 DCTELEM *dataptr;
155 int ctr;
156 SHIFT_TEMPS
157
158 /* Pass 1: process rows. */
159 /* Note results are scaled up by sqrt(8) compared to a true DCT; */
160 /* furthermore, we scale the results by 2**PASS1_BITS. */
161
162 dataptr = data;
163 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
164 tmp0 = dataptr[0] + dataptr[7];
165 tmp7 = dataptr[0] - dataptr[7];
166 tmp1 = dataptr[1] + dataptr[6];
167 tmp6 = dataptr[1] - dataptr[6];
168 tmp2 = dataptr[2] + dataptr[5];
169 tmp5 = dataptr[2] - dataptr[5];
170 tmp3 = dataptr[3] + dataptr[4];
171 tmp4 = dataptr[3] - dataptr[4];
172
173 /* Even part per LL&M figure 1 --- note that published figure is faulty;
174 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
175 */
176
177 tmp10 = tmp0 + tmp3;
178 tmp13 = tmp0 - tmp3;
179 tmp11 = tmp1 + tmp2;
180 tmp12 = tmp1 - tmp2;
181
182 dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
183 dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
184
185 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
186 dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
187 CONST_BITS-PASS1_BITS);
188 dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
189 CONST_BITS-PASS1_BITS);
190
191 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
192 * cK represents cos(K*pi/16).
193 * i0..i3 in the paper are tmp4..tmp7 here.
194 */
195
196 z1 = tmp4 + tmp7;
197 z2 = tmp5 + tmp6;
198 z3 = tmp4 + tmp6;
199 z4 = tmp5 + tmp7;
200 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
201
202 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
203 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
204 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
205 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
206 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
207 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
208 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
209 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
210
211 z3 += z5;
212 z4 += z5;
213
214 dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
215 dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
216 dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
217 dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
218
219 dataptr += DCTSIZE; /* advance pointer to next row */
220 }
221
222 /* Pass 2: process columns.
223 * We remove the PASS1_BITS scaling, but leave the results scaled up
224 * by an overall factor of 8.
225 */
226
227 dataptr = data;
228 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
229 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
230 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
231 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
232 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
233 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
234 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
235 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
236 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
237
238 /* Even part per LL&M figure 1 --- note that published figure is faulty;
239 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
240 */
241
242 tmp10 = tmp0 + tmp3;
243 tmp13 = tmp0 - tmp3;
244 tmp11 = tmp1 + tmp2;
245 tmp12 = tmp1 - tmp2;
246
247 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
248 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
249
250 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
251 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
252 CONST_BITS+PASS1_BITS);
253 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
254 CONST_BITS+PASS1_BITS);
255
256 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
257 * cK represents cos(K*pi/16).
258 * i0..i3 in the paper are tmp4..tmp7 here.
259 */
260
261 z1 = tmp4 + tmp7;
262 z2 = tmp5 + tmp6;
263 z3 = tmp4 + tmp6;
264 z4 = tmp5 + tmp7;
265 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
266
267 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
268 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
269 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
270 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
271 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
272 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
273 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
274 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
275
276 z3 += z5;
277 z4 += z5;
278
279 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
280 CONST_BITS+PASS1_BITS);
281 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
282 CONST_BITS+PASS1_BITS);
283 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
284 CONST_BITS+PASS1_BITS);
285 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
286 CONST_BITS+PASS1_BITS);
287
288 dataptr++; /* advance pointer to next column */
289 }
290 }