Mercurial > libavcodec.hg
view jrevdct.c @ 9363:203dc1dc297c libavcodec
cosmetics: Reformat comment paragraph and fix a few typos in it.
author | diego |
---|---|
date | Thu, 09 Apr 2009 10:06:54 +0000 |
parents | e9d9d946f213 |
children | ab2daba3e200 |
line wrap: on
line source
/* * jrevdct.c * * This file is part of the Independent JPEG Group's software. * * The authors make NO WARRANTY or representation, either express or implied, * with respect to this software, its quality, accuracy, merchantability, or * fitness for a particular purpose. This software is provided "AS IS", and * you, its user, assume the entire risk as to its quality and accuracy. * * This software is copyright (C) 1991, 1992, Thomas G. Lane. * All Rights Reserved except as specified below. * * Permission is hereby granted to use, copy, modify, and distribute this * software (or portions thereof) for any purpose, without fee, subject to * these conditions: * (1) If any part of the source code for this software is distributed, then * this README file must be included, with this copyright and no-warranty * notice unaltered; and any additions, deletions, or changes to the original * files must be clearly indicated in accompanying documentation. * (2) If only executable code is distributed, then the accompanying * documentation must state that "this software is based in part on the work * of the Independent JPEG Group". * (3) Permission for use of this software is granted only if the user accepts * full responsibility for any undesirable consequences; the authors accept * NO LIABILITY for damages of any kind. * * These conditions apply to any software derived from or based on the IJG * code, not just to the unmodified library. If you use our work, you ought * to acknowledge us. * * Permission is NOT granted for the use of any IJG author's name or company * name in advertising or publicity relating to this software or products * derived from it. This software may be referred to only as "the Independent * JPEG Group's software". * * We specifically permit and encourage the use of this software as the basis * of commercial products, provided that all warranty or liability claims are * assumed by the product vendor. * * This file contains the basic inverse-DCT transformation subroutine. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. * * I've made lots of modifications to attempt to take advantage of the * sparse nature of the DCT matrices we're getting. Although the logic * is cumbersome, it's straightforward and the resulting code is much * faster. * * A better way to do this would be to pass in the DCT block as a sparse * matrix, perhaps with the difference cases encoded. */ /** * @file libavcodec/jrevdct.c * Independent JPEG Group's LLM idct. */ #include "libavutil/common.h" #include "dsputil.h" #define EIGHT_BIT_SAMPLES #define DCTSIZE 8 #define DCTSIZE2 64 #define GLOBAL #define RIGHT_SHIFT(x, n) ((x) >> (n)) typedef DCTELEM DCTBLOCK[DCTSIZE2]; #define CONST_BITS 13 /* * This routine is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * The poop on this scaling stuff is as follows: * * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) * larger than the true IDCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D IDCT, * because the y0 and y4 inputs need not be divided by sqrt(N). * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (To scale up 12-bit sample data further, an * intermediate int32 array would be needed.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */ #ifdef EIGHT_BIT_SAMPLES #define PASS1_BITS 2 #else #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif #define ONE ((int32_t) 1) #define CONST_SCALE (ONE << CONST_BITS) /* Convert a positive real constant to an integer scaled by CONST_SCALE. * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, * you will pay a significant penalty in run time. In that case, figure * the correct integer constant values and insert them by hand. */ /* Actually FIX is no longer used, we precomputed them all */ #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5)) /* Descale and correctly round an int32_t value that's scaled by N bits. * We assume RIGHT_SHIFT rounds towards minus infinity, so adding * the fudge factor is correct for either sign of X. */ #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; * this provides a useful speedup on many machines. * There is no way to specify a 16x16->32 multiply in portable C, but * some C compilers will do the right thing if you provide the correct * combination of casts. * NB: for 12-bit samples, a full 32-bit multiplication will be needed. */ #ifdef EIGHT_BIT_SAMPLES #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const))) #endif #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const))) #endif #endif #ifndef MULTIPLY /* default definition */ #define MULTIPLY(var,const) ((var) * (const)) #endif /* Unlike our decoder where we approximate the FIXes, we need to use exact ones here or successive P-frames will drift too much with Reference frame coding */ #define FIX_0_211164243 1730 #define FIX_0_275899380 2260 #define FIX_0_298631336 2446 #define FIX_0_390180644 3196 #define FIX_0_509795579 4176 #define FIX_0_541196100 4433 #define FIX_0_601344887 4926 #define FIX_0_765366865 6270 #define FIX_0_785694958 6436 #define FIX_0_899976223 7373 #define FIX_1_061594337 8697 #define FIX_1_111140466 9102 #define FIX_1_175875602 9633 #define FIX_1_306562965 10703 #define FIX_1_387039845 11363 #define FIX_1_451774981 11893 #define FIX_1_501321110 12299 #define FIX_1_662939225 13623 #define FIX_1_847759065 15137 #define FIX_1_961570560 16069 #define FIX_2_053119869 16819 #define FIX_2_172734803 17799 #define FIX_2_562915447 20995 #define FIX_3_072711026 25172 /* * Perform the inverse DCT on one block of coefficients. */ void j_rev_dct(DCTBLOCK data) { int32_t tmp0, tmp1, tmp2, tmp3; int32_t tmp10, tmp11, tmp12, tmp13; int32_t z1, z2, z3, z4, z5; int32_t d0, d1, d2, d3, d4, d5, d6, d7; register DCTELEM *dataptr; int rowctr; /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ dataptr = data; for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any row in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * row DCT calculations can be simplified this way. */ register int *idataptr = (int*)dataptr; /* WARNING: we do the same permutation as MMX idct to simplify the video core */ d0 = dataptr[0]; d2 = dataptr[1]; d4 = dataptr[2]; d6 = dataptr[3]; d1 = dataptr[4]; d3 = dataptr[5]; d5 = dataptr[6]; d7 = dataptr[7]; if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { /* AC terms all zero */ if (d0) { /* Compute a 32 bit value to assign. */ DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); idataptr[0] = v; idataptr[1] = v; idataptr[2] = v; idataptr[3] = v; } dataptr += DCTSIZE; /* advance pointer to next row */ continue; } /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ { if (d6) { if (d2) { /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ z1 = MULTIPLY(d2 + d6, FIX_0_541196100); tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ tmp2 = MULTIPLY(-d6, FIX_1_306562965); tmp3 = MULTIPLY(d6, FIX_0_541196100); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } } else { if (d2) { /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ tmp2 = MULTIPLY(d2, FIX_0_541196100); tmp3 = MULTIPLY(d2, FIX_1_306562965); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ tmp10 = tmp13 = (d0 + d4) << CONST_BITS; tmp11 = tmp12 = (d0 - d4) << CONST_BITS; } } /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ if (d7) { if (d5) { if (d3) { if (d1) { /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ z1 = d7 + d1; z2 = d5 + d3; z3 = d7 + d3; z4 = d5 + d1; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); tmp0 = MULTIPLY(d7, FIX_0_298631336); tmp1 = MULTIPLY(d5, FIX_2_053119869); tmp2 = MULTIPLY(d3, FIX_3_072711026); tmp3 = MULTIPLY(d1, FIX_1_501321110); z1 = MULTIPLY(-z1, FIX_0_899976223); z2 = MULTIPLY(-z2, FIX_2_562915447); z3 = MULTIPLY(-z3, FIX_1_961570560); z4 = MULTIPLY(-z4, FIX_0_390180644); z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; } else { /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ z2 = d5 + d3; z3 = d7 + d3; z5 = MULTIPLY(z3 + d5, FIX_1_175875602); tmp0 = MULTIPLY(d7, FIX_0_298631336); tmp1 = MULTIPLY(d5, FIX_2_053119869); tmp2 = MULTIPLY(d3, FIX_3_072711026); z1 = MULTIPLY(-d7, FIX_0_899976223); z2 = MULTIPLY(-z2, FIX_2_562915447); z3 = MULTIPLY(-z3, FIX_1_961570560); z4 = MULTIPLY(-d5, FIX_0_390180644); z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 = z1 + z4; } } else { if (d1) { /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ z1 = d7 + d1; z4 = d5 + d1; z5 = MULTIPLY(d7 + z4, FIX_1_175875602); tmp0 = MULTIPLY(d7, FIX_0_298631336); tmp1 = MULTIPLY(d5, FIX_2_053119869); tmp3 = MULTIPLY(d1, FIX_1_501321110); z1 = MULTIPLY(-z1, FIX_0_899976223); z2 = MULTIPLY(-d5, FIX_2_562915447); z3 = MULTIPLY(-d7, FIX_1_961570560); z4 = MULTIPLY(-z4, FIX_0_390180644); z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 = z2 + z3; tmp3 += z1 + z4; } else { /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ tmp0 = MULTIPLY(-d7, FIX_0_601344887); z1 = MULTIPLY(-d7, FIX_0_899976223); z3 = MULTIPLY(-d7, FIX_1_961570560); tmp1 = MULTIPLY(-d5, FIX_0_509795579); z2 = MULTIPLY(-d5, FIX_2_562915447); z4 = MULTIPLY(-d5, FIX_0_390180644); z5 = MULTIPLY(d5 + d7, FIX_1_175875602); z3 += z5; z4 += z5; tmp0 += z3; tmp1 += z4; tmp2 = z2 + z3; tmp3 = z1 + z4; } } } else { if (d3) { if (d1) { /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ z1 = d7 + d1; z3 = d7 + d3; z5 = MULTIPLY(z3 + d1, FIX_1_175875602); tmp0 = MULTIPLY(d7, FIX_0_298631336); tmp2 = MULTIPLY(d3, FIX_3_072711026); tmp3 = MULTIPLY(d1, FIX_1_501321110); z1 = MULTIPLY(-z1, FIX_0_899976223); z2 = MULTIPLY(-d3, FIX_2_562915447); z3 = MULTIPLY(-z3, FIX_1_961570560); z4 = MULTIPLY(-d1, FIX_0_390180644); z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 = z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; } else { /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ z3 = d7 + d3; tmp0 = MULTIPLY(-d7, FIX_0_601344887); z1 = MULTIPLY(-d7, FIX_0_899976223); tmp2 = MULTIPLY(d3, FIX_0_509795579); z2 = MULTIPLY(-d3, FIX_2_562915447); z5 = MULTIPLY(z3, FIX_1_175875602); z3 = MULTIPLY(-z3, FIX_0_785694958); tmp0 += z3; tmp1 = z2 + z5; tmp2 += z3; tmp3 = z1 + z5; } } else { if (d1) { /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ z1 = d7 + d1; z5 = MULTIPLY(z1, FIX_1_175875602); z1 = MULTIPLY(z1, FIX_0_275899380); z3 = MULTIPLY(-d7, FIX_1_961570560); tmp0 = MULTIPLY(-d7, FIX_1_662939225); z4 = MULTIPLY(-d1, FIX_0_390180644); tmp3 = MULTIPLY(d1, FIX_1_111140466); tmp0 += z1; tmp1 = z4 + z5; tmp2 = z3 + z5; tmp3 += z1; } else { /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ tmp0 = MULTIPLY(-d7, FIX_1_387039845); tmp1 = MULTIPLY(d7, FIX_1_175875602); tmp2 = MULTIPLY(-d7, FIX_0_785694958); tmp3 = MULTIPLY(d7, FIX_0_275899380); } } } } else { if (d5) { if (d3) { if (d1) { /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ z2 = d5 + d3; z4 = d5 + d1; z5 = MULTIPLY(d3 + z4, FIX_1_175875602); tmp1 = MULTIPLY(d5, FIX_2_053119869); tmp2 = MULTIPLY(d3, FIX_3_072711026); tmp3 = MULTIPLY(d1, FIX_1_501321110); z1 = MULTIPLY(-d1, FIX_0_899976223); z2 = MULTIPLY(-z2, FIX_2_562915447); z3 = MULTIPLY(-d3, FIX_1_961570560); z4 = MULTIPLY(-z4, FIX_0_390180644); z3 += z5; z4 += z5; tmp0 = z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; } else { /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ z2 = d5 + d3; z5 = MULTIPLY(z2, FIX_1_175875602); tmp1 = MULTIPLY(d5, FIX_1_662939225); z4 = MULTIPLY(-d5, FIX_0_390180644); z2 = MULTIPLY(-z2, FIX_1_387039845); tmp2 = MULTIPLY(d3, FIX_1_111140466); z3 = MULTIPLY(-d3, FIX_1_961570560); tmp0 = z3 + z5; tmp1 += z2; tmp2 += z2; tmp3 = z4 + z5; } } else { if (d1) { /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ z4 = d5 + d1; z5 = MULTIPLY(z4, FIX_1_175875602); z1 = MULTIPLY(-d1, FIX_0_899976223); tmp3 = MULTIPLY(d1, FIX_0_601344887); tmp1 = MULTIPLY(-d5, FIX_0_509795579); z2 = MULTIPLY(-d5, FIX_2_562915447); z4 = MULTIPLY(z4, FIX_0_785694958); tmp0 = z1 + z5; tmp1 += z4; tmp2 = z2 + z5; tmp3 += z4; } else { /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ tmp0 = MULTIPLY(d5, FIX_1_175875602); tmp1 = MULTIPLY(d5, FIX_0_275899380); tmp2 = MULTIPLY(-d5, FIX_1_387039845); tmp3 = MULTIPLY(d5, FIX_0_785694958); } } } else { if (d3) { if (d1) { /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ z5 = d1 + d3; tmp3 = MULTIPLY(d1, FIX_0_211164243); tmp2 = MULTIPLY(-d3, FIX_1_451774981); z1 = MULTIPLY(d1, FIX_1_061594337); z2 = MULTIPLY(-d3, FIX_2_172734803); z4 = MULTIPLY(z5, FIX_0_785694958); z5 = MULTIPLY(z5, FIX_1_175875602); tmp0 = z1 - z4; tmp1 = z2 + z4; tmp2 += z5; tmp3 += z5; } else { /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ tmp0 = MULTIPLY(-d3, FIX_0_785694958); tmp1 = MULTIPLY(-d3, FIX_1_387039845); tmp2 = MULTIPLY(-d3, FIX_0_275899380); tmp3 = MULTIPLY(d3, FIX_1_175875602); } } else { if (d1) { /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ tmp0 = MULTIPLY(d1, FIX_0_275899380); tmp1 = MULTIPLY(d1, FIX_0_785694958); tmp2 = MULTIPLY(d1, FIX_1_175875602); tmp3 = MULTIPLY(d1, FIX_1_387039845); } else { /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ tmp0 = tmp1 = tmp2 = tmp3 = 0; } } } } } /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ dataptr = data; for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { /* Columns of zeroes can be exploited in the same way as we did with rows. * However, the row calculation has created many nonzero AC terms, so the * simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ d0 = dataptr[DCTSIZE*0]; d1 = dataptr[DCTSIZE*1]; d2 = dataptr[DCTSIZE*2]; d3 = dataptr[DCTSIZE*3]; d4 = dataptr[DCTSIZE*4]; d5 = dataptr[DCTSIZE*5]; d6 = dataptr[DCTSIZE*6]; d7 = dataptr[DCTSIZE*7]; /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ if (d6) { if (d2) { /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ z1 = MULTIPLY(d2 + d6, FIX_0_541196100); tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ tmp2 = MULTIPLY(-d6, FIX_1_306562965); tmp3 = MULTIPLY(d6, FIX_0_541196100); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } } else { if (d2) { /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ tmp2 = MULTIPLY(d2, FIX_0_541196100); tmp3 = MULTIPLY(d2, FIX_1_306562965); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ tmp10 = tmp13 = (d0 + d4) << CONST_BITS; tmp11 = tmp12 = (d0 - d4) << CONST_BITS; } } /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ if (d7) { if (d5) { if (d3) { if (d1) { /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ z1 = d7 + d1; z2 = d5 + d3; z3 = d7 + d3; z4 = d5 + d1; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); tmp0 = MULTIPLY(d7, FIX_0_298631336); tmp1 = MULTIPLY(d5, FIX_2_053119869); tmp2 = MULTIPLY(d3, FIX_3_072711026); tmp3 = MULTIPLY(d1, FIX_1_501321110); z1 = MULTIPLY(-z1, FIX_0_899976223); z2 = MULTIPLY(-z2, FIX_2_562915447); z3 = MULTIPLY(-z3, FIX_1_961570560); z4 = MULTIPLY(-z4, FIX_0_390180644); z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; } else { /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ z1 = d7; z2 = d5 + d3; z3 = d7 + d3; z5 = MULTIPLY(z3 + d5, FIX_1_175875602); tmp0 = MULTIPLY(d7, FIX_0_298631336); tmp1 = MULTIPLY(d5, FIX_2_053119869); tmp2 = MULTIPLY(d3, FIX_3_072711026); z1 = MULTIPLY(-d7, FIX_0_899976223); z2 = MULTIPLY(-z2, FIX_2_562915447); z3 = MULTIPLY(-z3, FIX_1_961570560); z4 = MULTIPLY(-d5, FIX_0_390180644); z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 = z1 + z4; } } else { if (d1) { /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ z1 = d7 + d1; z2 = d5; z3 = d7; z4 = d5 + d1; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); tmp0 = MULTIPLY(d7, FIX_0_298631336); tmp1 = MULTIPLY(d5, FIX_2_053119869); tmp3 = MULTIPLY(d1, FIX_1_501321110); z1 = MULTIPLY(-z1, FIX_0_899976223); z2 = MULTIPLY(-d5, FIX_2_562915447); z3 = MULTIPLY(-d7, FIX_1_961570560); z4 = MULTIPLY(-z4, FIX_0_390180644); z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 = z2 + z3; tmp3 += z1 + z4; } else { /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ tmp0 = MULTIPLY(-d7, FIX_0_601344887); z1 = MULTIPLY(-d7, FIX_0_899976223); z3 = MULTIPLY(-d7, FIX_1_961570560); tmp1 = MULTIPLY(-d5, FIX_0_509795579); z2 = MULTIPLY(-d5, FIX_2_562915447); z4 = MULTIPLY(-d5, FIX_0_390180644); z5 = MULTIPLY(d5 + d7, FIX_1_175875602); z3 += z5; z4 += z5; tmp0 += z3; tmp1 += z4; tmp2 = z2 + z3; tmp3 = z1 + z4; } } } else { if (d3) { if (d1) { /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ z1 = d7 + d1; z3 = d7 + d3; z5 = MULTIPLY(z3 + d1, FIX_1_175875602); tmp0 = MULTIPLY(d7, FIX_0_298631336); tmp2 = MULTIPLY(d3, FIX_3_072711026); tmp3 = MULTIPLY(d1, FIX_1_501321110); z1 = MULTIPLY(-z1, FIX_0_899976223); z2 = MULTIPLY(-d3, FIX_2_562915447); z3 = MULTIPLY(-z3, FIX_1_961570560); z4 = MULTIPLY(-d1, FIX_0_390180644); z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 = z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; } else { /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ z3 = d7 + d3; tmp0 = MULTIPLY(-d7, FIX_0_601344887); z1 = MULTIPLY(-d7, FIX_0_899976223); tmp2 = MULTIPLY(d3, FIX_0_509795579); z2 = MULTIPLY(-d3, FIX_2_562915447); z5 = MULTIPLY(z3, FIX_1_175875602); z3 = MULTIPLY(-z3, FIX_0_785694958); tmp0 += z3; tmp1 = z2 + z5; tmp2 += z3; tmp3 = z1 + z5; } } else { if (d1) { /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ z1 = d7 + d1; z5 = MULTIPLY(z1, FIX_1_175875602); z1 = MULTIPLY(z1, FIX_0_275899380); z3 = MULTIPLY(-d7, FIX_1_961570560); tmp0 = MULTIPLY(-d7, FIX_1_662939225); z4 = MULTIPLY(-d1, FIX_0_390180644); tmp3 = MULTIPLY(d1, FIX_1_111140466); tmp0 += z1; tmp1 = z4 + z5; tmp2 = z3 + z5; tmp3 += z1; } else { /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ tmp0 = MULTIPLY(-d7, FIX_1_387039845); tmp1 = MULTIPLY(d7, FIX_1_175875602); tmp2 = MULTIPLY(-d7, FIX_0_785694958); tmp3 = MULTIPLY(d7, FIX_0_275899380); } } } } else { if (d5) { if (d3) { if (d1) { /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ z2 = d5 + d3; z4 = d5 + d1; z5 = MULTIPLY(d3 + z4, FIX_1_175875602); tmp1 = MULTIPLY(d5, FIX_2_053119869); tmp2 = MULTIPLY(d3, FIX_3_072711026); tmp3 = MULTIPLY(d1, FIX_1_501321110); z1 = MULTIPLY(-d1, FIX_0_899976223); z2 = MULTIPLY(-z2, FIX_2_562915447); z3 = MULTIPLY(-d3, FIX_1_961570560); z4 = MULTIPLY(-z4, FIX_0_390180644); z3 += z5; z4 += z5; tmp0 = z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; } else { /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ z2 = d5 + d3; z5 = MULTIPLY(z2, FIX_1_175875602); tmp1 = MULTIPLY(d5, FIX_1_662939225); z4 = MULTIPLY(-d5, FIX_0_390180644); z2 = MULTIPLY(-z2, FIX_1_387039845); tmp2 = MULTIPLY(d3, FIX_1_111140466); z3 = MULTIPLY(-d3, FIX_1_961570560); tmp0 = z3 + z5; tmp1 += z2; tmp2 += z2; tmp3 = z4 + z5; } } else { if (d1) { /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ z4 = d5 + d1; z5 = MULTIPLY(z4, FIX_1_175875602); z1 = MULTIPLY(-d1, FIX_0_899976223); tmp3 = MULTIPLY(d1, FIX_0_601344887); tmp1 = MULTIPLY(-d5, FIX_0_509795579); z2 = MULTIPLY(-d5, FIX_2_562915447); z4 = MULTIPLY(z4, FIX_0_785694958); tmp0 = z1 + z5; tmp1 += z4; tmp2 = z2 + z5; tmp3 += z4; } else { /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ tmp0 = MULTIPLY(d5, FIX_1_175875602); tmp1 = MULTIPLY(d5, FIX_0_275899380); tmp2 = MULTIPLY(-d5, FIX_1_387039845); tmp3 = MULTIPLY(d5, FIX_0_785694958); } } } else { if (d3) { if (d1) { /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ z5 = d1 + d3; tmp3 = MULTIPLY(d1, FIX_0_211164243); tmp2 = MULTIPLY(-d3, FIX_1_451774981); z1 = MULTIPLY(d1, FIX_1_061594337); z2 = MULTIPLY(-d3, FIX_2_172734803); z4 = MULTIPLY(z5, FIX_0_785694958); z5 = MULTIPLY(z5, FIX_1_175875602); tmp0 = z1 - z4; tmp1 = z2 + z4; tmp2 += z5; tmp3 += z5; } else { /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ tmp0 = MULTIPLY(-d3, FIX_0_785694958); tmp1 = MULTIPLY(-d3, FIX_1_387039845); tmp2 = MULTIPLY(-d3, FIX_0_275899380); tmp3 = MULTIPLY(d3, FIX_1_175875602); } } else { if (d1) { /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ tmp0 = MULTIPLY(d1, FIX_0_275899380); tmp1 = MULTIPLY(d1, FIX_0_785694958); tmp2 = MULTIPLY(d1, FIX_1_175875602); tmp3 = MULTIPLY(d1, FIX_1_387039845); } else { /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ tmp0 = tmp1 = tmp2 = tmp3 = 0; } } } } /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3); dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS+PASS1_BITS+3); dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS+PASS1_BITS+3); dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS+PASS1_BITS+3); dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS+PASS1_BITS+3); dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS+PASS1_BITS+3); dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS+PASS1_BITS+3); dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3); dataptr++; /* advance pointer to next column */ } } #undef DCTSIZE #define DCTSIZE 4 #define DCTSTRIDE 8 void j_rev_dct4(DCTBLOCK data) { int32_t tmp0, tmp1, tmp2, tmp3; int32_t tmp10, tmp11, tmp12, tmp13; int32_t z1; int32_t d0, d2, d4, d6; register DCTELEM *dataptr; int rowctr; /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ data[0] += 4; dataptr = data; for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any row in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * row DCT calculations can be simplified this way. */ register int *idataptr = (int*)dataptr; d0 = dataptr[0]; d2 = dataptr[1]; d4 = dataptr[2]; d6 = dataptr[3]; if ((d2 | d4 | d6) == 0) { /* AC terms all zero */ if (d0) { /* Compute a 32 bit value to assign. */ DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); idataptr[0] = v; idataptr[1] = v; } dataptr += DCTSTRIDE; /* advance pointer to next row */ continue; } /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ if (d6) { if (d2) { /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ z1 = MULTIPLY(d2 + d6, FIX_0_541196100); tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ tmp2 = MULTIPLY(-d6, FIX_1_306562965); tmp3 = MULTIPLY(d6, FIX_0_541196100); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } } else { if (d2) { /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ tmp2 = MULTIPLY(d2, FIX_0_541196100); tmp3 = MULTIPLY(d2, FIX_1_306562965); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ tmp10 = tmp13 = (d0 + d4) << CONST_BITS; tmp11 = tmp12 = (d0 - d4) << CONST_BITS; } } /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); dataptr += DCTSTRIDE; /* advance pointer to next row */ } /* Pass 2: process columns. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ dataptr = data; for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { /* Columns of zeroes can be exploited in the same way as we did with rows. * However, the row calculation has created many nonzero AC terms, so the * simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ d0 = dataptr[DCTSTRIDE*0]; d2 = dataptr[DCTSTRIDE*1]; d4 = dataptr[DCTSTRIDE*2]; d6 = dataptr[DCTSTRIDE*3]; /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ if (d6) { if (d2) { /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ z1 = MULTIPLY(d2 + d6, FIX_0_541196100); tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ tmp2 = MULTIPLY(-d6, FIX_1_306562965); tmp3 = MULTIPLY(d6, FIX_0_541196100); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } } else { if (d2) { /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ tmp2 = MULTIPLY(d2, FIX_0_541196100); tmp3 = MULTIPLY(d2, FIX_1_306562965); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ tmp10 = tmp13 = (d0 + d4) << CONST_BITS; tmp11 = tmp12 = (d0 - d4) << CONST_BITS; } } /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3); dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3); dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3); dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3); dataptr++; /* advance pointer to next column */ } } void j_rev_dct2(DCTBLOCK data){ int d00, d01, d10, d11; data[0] += 4; d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE]; d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE]; d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE]; d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE]; data[0+0*DCTSTRIDE]= (d00 + d10)>>3; data[1+0*DCTSTRIDE]= (d01 + d11)>>3; data[0+1*DCTSTRIDE]= (d00 - d10)>>3; data[1+1*DCTSTRIDE]= (d01 - d11)>>3; } void j_rev_dct1(DCTBLOCK data){ data[0] = (data[0] + 4)>>3; } #undef FIX #undef CONST_BITS