view fft.c @ 11980:263b4ef7ad87 libavcodec

tablegen: implement and use WRITE_ARRAY macros Two macros (WRITE_ARRAY and WRITE_ARRAY_2D) take the prefix (modifiers) (not all tables are static, and they might not be constant either), the type, and the name of the array. It'll be copied with same name and type, and with the correct size of the currently-defined object.
author flameeyes
date Sun, 27 Jun 2010 12:21:12 +0000
parents 7dd2a45249a9
children c80c7a717156
line wrap: on
line source

/*
 * FFT/IFFT transforms
 * Copyright (c) 2008 Loren Merritt
 * Copyright (c) 2002 Fabrice Bellard
 * Partly based on libdjbfft by D. J. Bernstein
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * FFT/IFFT transforms.
 */

#include <stdlib.h>
#include <string.h>
#include "libavutil/mathematics.h"
#include "fft.h"

/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
#if !CONFIG_HARDCODED_TABLES
COSTABLE(16);
COSTABLE(32);
COSTABLE(64);
COSTABLE(128);
COSTABLE(256);
COSTABLE(512);
COSTABLE(1024);
COSTABLE(2048);
COSTABLE(4096);
COSTABLE(8192);
COSTABLE(16384);
COSTABLE(32768);
COSTABLE(65536);
#endif
COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
    NULL, NULL, NULL, NULL,
    ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
    ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
};

static int split_radix_permutation(int i, int n, int inverse)
{
    int m;
    if(n <= 2) return i&1;
    m = n >> 1;
    if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
    m >>= 1;
    if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
    else                  return split_radix_permutation(i, m, inverse)*4 - 1;
}

av_cold void ff_init_ff_cos_tabs(int index)
{
#if !CONFIG_HARDCODED_TABLES
    int i;
    int m = 1<<index;
    double freq = 2*M_PI/m;
    FFTSample *tab = ff_cos_tabs[index];
    for(i=0; i<=m/4; i++)
        tab[i] = cos(i*freq);
    for(i=1; i<m/4; i++)
        tab[m/2-i] = tab[i];
#endif
}

av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
{
    int i, j, m, n;
    float alpha, c1, s1, s2;
    int av_unused has_vectors;

    if (nbits < 2 || nbits > 16)
        goto fail;
    s->nbits = nbits;
    n = 1 << nbits;

    s->tmp_buf = NULL;
    s->exptab  = av_malloc((n / 2) * sizeof(FFTComplex));
    if (!s->exptab)
        goto fail;
    s->revtab = av_malloc(n * sizeof(uint16_t));
    if (!s->revtab)
        goto fail;
    s->inverse = inverse;

    s2 = inverse ? 1.0 : -1.0;

    s->fft_permute = ff_fft_permute_c;
    s->fft_calc    = ff_fft_calc_c;
#if CONFIG_MDCT
    s->imdct_calc  = ff_imdct_calc_c;
    s->imdct_half  = ff_imdct_half_c;
    s->mdct_calc   = ff_mdct_calc_c;
#endif
    s->exptab1     = NULL;
    s->split_radix = 1;

    if (ARCH_ARM)     ff_fft_init_arm(s);
    if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
    if (HAVE_MMX)     ff_fft_init_mmx(s);

    if (s->split_radix) {
        for(j=4; j<=nbits; j++) {
            ff_init_ff_cos_tabs(j);
        }
        for(i=0; i<n; i++)
            s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
        s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
    } else {
        int np, nblocks, np2, l;
        FFTComplex *q;

        for(i=0; i<(n/2); i++) {
            alpha = 2 * M_PI * (float)i / (float)n;
            c1 = cos(alpha);
            s1 = sin(alpha) * s2;
            s->exptab[i].re = c1;
            s->exptab[i].im = s1;
        }

        np = 1 << nbits;
        nblocks = np >> 3;
        np2 = np >> 1;
        s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
        if (!s->exptab1)
            goto fail;
        q = s->exptab1;
        do {
            for(l = 0; l < np2; l += 2 * nblocks) {
                *q++ = s->exptab[l];
                *q++ = s->exptab[l + nblocks];

                q->re = -s->exptab[l].im;
                q->im = s->exptab[l].re;
                q++;
                q->re = -s->exptab[l + nblocks].im;
                q->im = s->exptab[l + nblocks].re;
                q++;
            }
            nblocks = nblocks >> 1;
        } while (nblocks != 0);
        av_freep(&s->exptab);

        /* compute bit reverse table */
        for(i=0;i<n;i++) {
            m=0;
            for(j=0;j<nbits;j++) {
                m |= ((i >> j) & 1) << (nbits-j-1);
            }
            s->revtab[i]=m;
        }
    }

    return 0;
 fail:
    av_freep(&s->revtab);
    av_freep(&s->exptab);
    av_freep(&s->exptab1);
    av_freep(&s->tmp_buf);
    return -1;
}

void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
{
    int j, k, np;
    FFTComplex tmp;
    const uint16_t *revtab = s->revtab;
    np = 1 << s->nbits;

    if (s->tmp_buf) {
        /* TODO: handle split-radix permute in a more optimal way, probably in-place */
        for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
        memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
        return;
    }

    /* reverse */
    for(j=0;j<np;j++) {
        k = revtab[j];
        if (k < j) {
            tmp = z[k];
            z[k] = z[j];
            z[j] = tmp;
        }
    }
}

av_cold void ff_fft_end(FFTContext *s)
{
    av_freep(&s->revtab);
    av_freep(&s->exptab);
    av_freep(&s->exptab1);
    av_freep(&s->tmp_buf);
}

#define sqrthalf (float)M_SQRT1_2

#define BF(x,y,a,b) {\
    x = a - b;\
    y = a + b;\
}

#define BUTTERFLIES(a0,a1,a2,a3) {\
    BF(t3, t5, t5, t1);\
    BF(a2.re, a0.re, a0.re, t5);\
    BF(a3.im, a1.im, a1.im, t3);\
    BF(t4, t6, t2, t6);\
    BF(a3.re, a1.re, a1.re, t4);\
    BF(a2.im, a0.im, a0.im, t6);\
}

// force loading all the inputs before storing any.
// this is slightly slower for small data, but avoids store->load aliasing
// for addresses separated by large powers of 2.
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
    FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
    BF(t3, t5, t5, t1);\
    BF(a2.re, a0.re, r0, t5);\
    BF(a3.im, a1.im, i1, t3);\
    BF(t4, t6, t2, t6);\
    BF(a3.re, a1.re, r1, t4);\
    BF(a2.im, a0.im, i0, t6);\
}

#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
    t1 = a2.re * wre + a2.im * wim;\
    t2 = a2.im * wre - a2.re * wim;\
    t5 = a3.re * wre - a3.im * wim;\
    t6 = a3.im * wre + a3.re * wim;\
    BUTTERFLIES(a0,a1,a2,a3)\
}

#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
    t1 = a2.re;\
    t2 = a2.im;\
    t5 = a3.re;\
    t6 = a3.im;\
    BUTTERFLIES(a0,a1,a2,a3)\
}

/* z[0...8n-1], w[1...2n-1] */
#define PASS(name)\
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
{\
    FFTSample t1, t2, t3, t4, t5, t6;\
    int o1 = 2*n;\
    int o2 = 4*n;\
    int o3 = 6*n;\
    const FFTSample *wim = wre+o1;\
    n--;\
\
    TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
    TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
    do {\
        z += 2;\
        wre += 2;\
        wim -= 2;\
        TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
        TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
    } while(--n);\
}

PASS(pass)
#undef BUTTERFLIES
#define BUTTERFLIES BUTTERFLIES_BIG
PASS(pass_big)

#define DECL_FFT(n,n2,n4)\
static void fft##n(FFTComplex *z)\
{\
    fft##n2(z);\
    fft##n4(z+n4*2);\
    fft##n4(z+n4*3);\
    pass(z,ff_cos_##n,n4/2);\
}

static void fft4(FFTComplex *z)
{
    FFTSample t1, t2, t3, t4, t5, t6, t7, t8;

    BF(t3, t1, z[0].re, z[1].re);
    BF(t8, t6, z[3].re, z[2].re);
    BF(z[2].re, z[0].re, t1, t6);
    BF(t4, t2, z[0].im, z[1].im);
    BF(t7, t5, z[2].im, z[3].im);
    BF(z[3].im, z[1].im, t4, t8);
    BF(z[3].re, z[1].re, t3, t7);
    BF(z[2].im, z[0].im, t2, t5);
}

static void fft8(FFTComplex *z)
{
    FFTSample t1, t2, t3, t4, t5, t6, t7, t8;

    fft4(z);

    BF(t1, z[5].re, z[4].re, -z[5].re);
    BF(t2, z[5].im, z[4].im, -z[5].im);
    BF(t3, z[7].re, z[6].re, -z[7].re);
    BF(t4, z[7].im, z[6].im, -z[7].im);
    BF(t8, t1, t3, t1);
    BF(t7, t2, t2, t4);
    BF(z[4].re, z[0].re, z[0].re, t1);
    BF(z[4].im, z[0].im, z[0].im, t2);
    BF(z[6].re, z[2].re, z[2].re, t7);
    BF(z[6].im, z[2].im, z[2].im, t8);

    TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
}

#if !CONFIG_SMALL
static void fft16(FFTComplex *z)
{
    FFTSample t1, t2, t3, t4, t5, t6;

    fft8(z);
    fft4(z+8);
    fft4(z+12);

    TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
    TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
    TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
    TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
}
#else
DECL_FFT(16,8,4)
#endif
DECL_FFT(32,16,8)
DECL_FFT(64,32,16)
DECL_FFT(128,64,32)
DECL_FFT(256,128,64)
DECL_FFT(512,256,128)
#if !CONFIG_SMALL
#define pass pass_big
#endif
DECL_FFT(1024,512,256)
DECL_FFT(2048,1024,512)
DECL_FFT(4096,2048,1024)
DECL_FFT(8192,4096,2048)
DECL_FFT(16384,8192,4096)
DECL_FFT(32768,16384,8192)
DECL_FFT(65536,32768,16384)

static void (* const fft_dispatch[])(FFTComplex*) = {
    fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
    fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
};

void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
{
    fft_dispatch[s->nbits-2](z);
}