Mercurial > libavcodec.hg
view aacpsy.c @ 10221:2791393081ff libavcodec
ARM: NEON optimisations for some dsputil functions
NEON versions of the following functions are added:
vector_fmul_scalar
vector_fmul_sv_scalar
sv_fmul_scalar
butterflies_float
author | mru |
---|---|
date | Tue, 22 Sep 2009 00:48:48 +0000 |
parents | c5ca5e520fe1 |
children | 7dd2a45249a9 |
line wrap: on
line source
/* * AAC encoder psychoacoustic model * Copyright (C) 2008 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file libavcodec/aacpsy.c * AAC encoder psychoacoustic model */ #include "avcodec.h" #include "aactab.h" #include "psymodel.h" /*********************************** * TODOs: * thresholds linearization after their modifications for attaining given bitrate * try other bitrate controlling mechanism (maybe use ratecontrol.c?) * control quality for quality-based output **********************************/ /** * constants for 3GPP AAC psychoacoustic model * @{ */ #define PSY_3GPP_SPREAD_LOW 1.5f // spreading factor for ascending threshold spreading (15 dB/Bark) #define PSY_3GPP_SPREAD_HI 3.0f // spreading factor for descending threshold spreading (30 dB/Bark) #define PSY_3GPP_RPEMIN 0.01f #define PSY_3GPP_RPELEV 2.0f /** * @} */ /** * information for single band used by 3GPP TS26.403-inspired psychoacoustic model */ typedef struct Psy3gppBand{ float energy; ///< band energy float ffac; ///< form factor float thr; ///< energy threshold float min_snr; ///< minimal SNR float thr_quiet; ///< threshold in quiet }Psy3gppBand; /** * single/pair channel context for psychoacoustic model */ typedef struct Psy3gppChannel{ Psy3gppBand band[128]; ///< bands information Psy3gppBand prev_band[128]; ///< bands information from the previous frame float win_energy; ///< sliding average of channel energy float iir_state[2]; ///< hi-pass IIR filter state uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence) enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame }Psy3gppChannel; /** * psychoacoustic model frame type-dependent coefficients */ typedef struct Psy3gppCoeffs{ float ath [64]; ///< absolute threshold of hearing per bands float barks [64]; ///< Bark value for each spectral band in long frame float spread_low[64]; ///< spreading factor for low-to-high threshold spreading in long frame float spread_hi [64]; ///< spreading factor for high-to-low threshold spreading in long frame }Psy3gppCoeffs; /** * 3GPP TS26.403-inspired psychoacoustic model specific data */ typedef struct Psy3gppContext{ Psy3gppCoeffs psy_coef[2]; Psy3gppChannel *ch; }Psy3gppContext; /** * Calculate Bark value for given line. */ static av_cold float calc_bark(float f) { return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f)); } #define ATH_ADD 4 /** * Calculate ATH value for given frequency. * Borrowed from Lame. */ static av_cold float ath(float f, float add) { f /= 1000.0f; return 3.64 * pow(f, -0.8) - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4)) + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7)) + (0.6 + 0.04 * add) * 0.001 * f * f * f * f; } static av_cold int psy_3gpp_init(FFPsyContext *ctx) { Psy3gppContext *pctx; float barks[1024]; int i, j, g, start; float prev, minscale, minath; ctx->model_priv_data = av_mallocz(sizeof(Psy3gppContext)); pctx = (Psy3gppContext*) ctx->model_priv_data; for (i = 0; i < 1024; i++) barks[i] = calc_bark(i * ctx->avctx->sample_rate / 2048.0); minath = ath(3410, ATH_ADD); for (j = 0; j < 2; j++) { Psy3gppCoeffs *coeffs = &pctx->psy_coef[j]; i = 0; prev = 0.0; for (g = 0; g < ctx->num_bands[j]; g++) { i += ctx->bands[j][g]; coeffs->barks[g] = (barks[i - 1] + prev) / 2.0; prev = barks[i - 1]; } for (g = 0; g < ctx->num_bands[j] - 1; g++) { coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW); coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI); } start = 0; for (g = 0; g < ctx->num_bands[j]; g++) { minscale = ath(ctx->avctx->sample_rate * start / 1024.0, ATH_ADD); for (i = 1; i < ctx->bands[j][g]; i++) minscale = FFMIN(minscale, ath(ctx->avctx->sample_rate * (start + i) / 1024.0 / 2.0, ATH_ADD)); coeffs->ath[g] = minscale - minath; start += ctx->bands[j][g]; } } pctx->ch = av_mallocz(sizeof(Psy3gppChannel) * ctx->avctx->channels); return 0; } /** * IIR filter used in block switching decision */ static float iir_filter(int in, float state[2]) { float ret; ret = 0.7548f * (in - state[0]) + 0.5095f * state[1]; state[0] = in; state[1] = ret; return ret; } /** * window grouping information stored as bits (0 - new group, 1 - group continues) */ static const uint8_t window_grouping[9] = { 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36 }; /** * Tell encoder which window types to use. * @see 3GPP TS26.403 5.4.1 "Blockswitching" */ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, const int16_t *audio, const int16_t *la, int channel, int prev_type) { int i, j; int br = ctx->avctx->bit_rate / ctx->avctx->channels; int attack_ratio = br <= 16000 ? 18 : 10; Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data; Psy3gppChannel *pch = &pctx->ch[channel]; uint8_t grouping = 0; FFPsyWindowInfo wi; memset(&wi, 0, sizeof(wi)); if (la) { float s[8], v; int switch_to_eight = 0; float sum = 0.0, sum2 = 0.0; int attack_n = 0; for (i = 0; i < 8; i++) { for (j = 0; j < 128; j++) { v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state); sum += v*v; } s[i] = sum; sum2 += sum; } for (i = 0; i < 8; i++) { if (s[i] > pch->win_energy * attack_ratio) { attack_n = i + 1; switch_to_eight = 1; break; } } pch->win_energy = pch->win_energy*7/8 + sum2/64; wi.window_type[1] = prev_type; switch (prev_type) { case ONLY_LONG_SEQUENCE: wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; break; case LONG_START_SEQUENCE: wi.window_type[0] = EIGHT_SHORT_SEQUENCE; grouping = pch->next_grouping; break; case LONG_STOP_SEQUENCE: wi.window_type[0] = ONLY_LONG_SEQUENCE; break; case EIGHT_SHORT_SEQUENCE: wi.window_type[0] = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; grouping = switch_to_eight ? pch->next_grouping : 0; break; } pch->next_grouping = window_grouping[attack_n]; } else { for (i = 0; i < 3; i++) wi.window_type[i] = prev_type; grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; } wi.window_shape = 1; if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { wi.num_windows = 1; wi.grouping[0] = 1; } else { int lastgrp = 0; wi.num_windows = 8; for (i = 0; i < 8; i++) { if (!((grouping >> i) & 1)) lastgrp = i; wi.grouping[lastgrp]++; } } return wi; } /** * Calculate band thresholds as suggested in 3GPP TS26.403 */ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float *coefs, FFPsyWindowInfo *wi) { Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data; Psy3gppChannel *pch = &pctx->ch[channel]; int start = 0; int i, w, g; const int num_bands = ctx->num_bands[wi->num_windows == 8]; const uint8_t* band_sizes = ctx->bands[wi->num_windows == 8]; Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8]; //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" for (w = 0; w < wi->num_windows*16; w += 16) { for (g = 0; g < num_bands; g++) { Psy3gppBand *band = &pch->band[w+g]; band->energy = 0.0f; for (i = 0; i < band_sizes[g]; i++) band->energy += coefs[start+i] * coefs[start+i]; band->energy *= 1.0f / (512*512); band->thr = band->energy * 0.001258925f; start += band_sizes[g]; ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].energy = band->energy; } } //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation" for (w = 0; w < wi->num_windows*16; w += 16) { Psy3gppBand *band = &pch->band[w]; for (g = 1; g < num_bands; g++) band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]); for (g = num_bands - 2; g >= 0; g--) band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]); for (g = 0; g < num_bands; g++) { band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]); if (wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE) band[g].thr_quiet = FFMAX(PSY_3GPP_RPEMIN*band[g].thr_quiet, FFMIN(band[g].thr_quiet, PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); band[g].thr = FFMAX(band[g].thr, band[g].thr_quiet * 0.25); ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].threshold = band[g].thr; } } memcpy(pch->prev_band, pch->band, sizeof(pch->band)); } static av_cold void psy_3gpp_end(FFPsyContext *apc) { Psy3gppContext *pctx = (Psy3gppContext*) apc->model_priv_data; av_freep(&pctx->ch); av_freep(&apc->model_priv_data); } const FFPsyModel ff_aac_psy_model = { .name = "3GPP TS 26.403-inspired model", .init = psy_3gpp_init, .window = psy_3gpp_window, .analyze = psy_3gpp_analyze, .end = psy_3gpp_end, };