Mercurial > libavcodec.hg
view jfdctint.c @ 7463:5515e19b9137 libavcodec
Add graceful error handling to avcodec_get_pix_fmt_name() and avcodec_get_pix_fmt().
author | pross |
---|---|
date | Sun, 03 Aug 2008 00:41:31 +0000 |
parents | f7cbb7733146 |
children | e9d9d946f213 |
line wrap: on
line source
/* * jfdctint.c * * This file is part of the Independent JPEG Group's software. * * The authors make NO WARRANTY or representation, either express or implied, * with respect to this software, its quality, accuracy, merchantability, or * fitness for a particular purpose. This software is provided "AS IS", and * you, its user, assume the entire risk as to its quality and accuracy. * * This software is copyright (C) 1991-1996, Thomas G. Lane. * All Rights Reserved except as specified below. * * Permission is hereby granted to use, copy, modify, and distribute this * software (or portions thereof) for any purpose, without fee, subject to * these conditions: * (1) If any part of the source code for this software is distributed, then * this README file must be included, with this copyright and no-warranty * notice unaltered; and any additions, deletions, or changes to the original * files must be clearly indicated in accompanying documentation. * (2) If only executable code is distributed, then the accompanying * documentation must state that "this software is based in part on the work * of the Independent JPEG Group". * (3) Permission for use of this software is granted only if the user accepts * full responsibility for any undesirable consequences; the authors accept * NO LIABILITY for damages of any kind. * * These conditions apply to any software derived from or based on the IJG * code, not just to the unmodified library. If you use our work, you ought * to acknowledge us. * * Permission is NOT granted for the use of any IJG author's name or company * name in advertising or publicity relating to this software or products * derived from it. This software may be referred to only as "the Independent * JPEG Group's software". * * We specifically permit and encourage the use of this software as the basis * of commercial products, provided that all warranty or liability claims are * assumed by the product vendor. * * This file contains a slow-but-accurate integer implementation of the * forward DCT (Discrete Cosine Transform). * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. */ /** * @file jfdctint.c * Independent JPEG Group's slow & accurate dct. */ #include <stdlib.h> #include <stdio.h> #include "libavutil/common.h" #include "dsputil.h" #define SHIFT_TEMPS #define DCTSIZE 8 #define BITS_IN_JSAMPLE 8 #define GLOBAL(x) x #define RIGHT_SHIFT(x, n) ((x) >> (n)) #define MULTIPLY16C16(var,const) ((var)*(const)) #if 1 //def USE_ACCURATE_ROUNDING #define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n) #else #define DESCALE(x,n) RIGHT_SHIFT(x, n) #endif /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * The poop on this scaling stuff is as follows: * * Each 1-D DCT step produces outputs which are a factor of sqrt(N) * larger than the true DCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D DCT, * because the y0 and y4 outputs need not be divided by sqrt(N). * In the IJG code, this factor of 8 is removed by the quantization step * (in jcdctmgr.c), NOT in this module. * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (For 12-bit sample data, the intermediate * array is int32_t anyway.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 4 /* set this to 2 if 16x16 multiplies are faster */ #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_298631336 ((int32_t) 2446) /* FIX(0.298631336) */ #define FIX_0_390180644 ((int32_t) 3196) /* FIX(0.390180644) */ #define FIX_0_541196100 ((int32_t) 4433) /* FIX(0.541196100) */ #define FIX_0_765366865 ((int32_t) 6270) /* FIX(0.765366865) */ #define FIX_0_899976223 ((int32_t) 7373) /* FIX(0.899976223) */ #define FIX_1_175875602 ((int32_t) 9633) /* FIX(1.175875602) */ #define FIX_1_501321110 ((int32_t) 12299) /* FIX(1.501321110) */ #define FIX_1_847759065 ((int32_t) 15137) /* FIX(1.847759065) */ #define FIX_1_961570560 ((int32_t) 16069) /* FIX(1.961570560) */ #define FIX_2_053119869 ((int32_t) 16819) /* FIX(2.053119869) */ #define FIX_2_562915447 ((int32_t) 20995) /* FIX(2.562915447) */ #define FIX_3_072711026 ((int32_t) 25172) /* FIX(3.072711026) */ #else #define FIX_0_298631336 FIX(0.298631336) #define FIX_0_390180644 FIX(0.390180644) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_175875602 FIX(1.175875602) #define FIX_1_501321110 FIX(1.501321110) #define FIX_1_847759065 FIX(1.847759065) #define FIX_1_961570560 FIX(1.961570560) #define FIX_2_053119869 FIX(2.053119869) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_072711026 FIX(3.072711026) #endif /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) #else #define MULTIPLY(var,const) ((var) * (const)) #endif static av_always_inline void row_fdct(DCTELEM * data){ int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; int_fast32_t tmp10, tmp11, tmp12, tmp13; int_fast32_t z1, z2, z3, z4, z5; DCTELEM *dataptr; int ctr; SHIFT_TEMPS /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true DCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part per LL&M figure 1 --- note that published figure is faulty; * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". */ tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), CONST_BITS-PASS1_BITS); dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), CONST_BITS-PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). * cK represents cos(K*pi/16). * i0..i3 in the paper are tmp4..tmp7 here. */ z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; z3 = tmp4 + tmp6; z4 = tmp5 + tmp7; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); dataptr += DCTSIZE; /* advance pointer to next row */ } } /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) ff_jpeg_fdct_islow (DCTELEM * data) { int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; int_fast32_t tmp10, tmp11, tmp12, tmp13; int_fast32_t z1, z2, z3, z4, z5; DCTELEM *dataptr; int ctr; SHIFT_TEMPS row_fdct(data); /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; /* Even part per LL&M figure 1 --- note that published figure is faulty; * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". */ tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), CONST_BITS+PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). * cK represents cos(K*pi/16). * i0..i3 in the paper are tmp4..tmp7 here. */ z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; z3 = tmp4 + tmp6; z4 = tmp5 + tmp7; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS+PASS1_BITS); dataptr++; /* advance pointer to next column */ } } /* * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT * on the rows and then, instead of doing even and odd, part on the colums * you do even part two times. */ GLOBAL(void) ff_fdct248_islow (DCTELEM * data) { int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; int_fast32_t tmp10, tmp11, tmp12, tmp13; int_fast32_t z1; DCTELEM *dataptr; int ctr; SHIFT_TEMPS row_fdct(data); /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1]; tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1]; tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; tmp10 = tmp0 + tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; tmp13 = tmp0 - tmp3; dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), CONST_BITS+PASS1_BITS); tmp10 = tmp4 + tmp7; tmp11 = tmp5 + tmp6; tmp12 = tmp5 - tmp6; tmp13 = tmp4 - tmp7; dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), CONST_BITS+PASS1_BITS); dataptr++; /* advance pointer to next column */ } }