Mercurial > libavutil.hg
annotate lls.c @ 168:8ebd419dcff9 libavutil
stealing reimars XOR_BLOCK
author | michael |
---|---|
date | Sun, 14 Jan 2007 12:40:32 +0000 |
parents | d76a36742464 |
children | f13e5473611e |
rev | line source |
---|---|
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
1 /* |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
2 * linear least squares model |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
3 * |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
4 * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at> |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
5 * |
116
d76a36742464
Change license headers to say 'FFmpeg' instead of 'this program/this library'
diego
parents:
90
diff
changeset
|
6 * This file is part of FFmpeg. |
d76a36742464
Change license headers to say 'FFmpeg' instead of 'this program/this library'
diego
parents:
90
diff
changeset
|
7 * |
d76a36742464
Change license headers to say 'FFmpeg' instead of 'this program/this library'
diego
parents:
90
diff
changeset
|
8 * FFmpeg is free software; you can redistribute it and/or |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
9 * modify it under the terms of the GNU Lesser General Public |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
10 * License as published by the Free Software Foundation; either |
116
d76a36742464
Change license headers to say 'FFmpeg' instead of 'this program/this library'
diego
parents:
90
diff
changeset
|
11 * version 2.1 of the License, or (at your option) any later version. |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
12 * |
116
d76a36742464
Change license headers to say 'FFmpeg' instead of 'this program/this library'
diego
parents:
90
diff
changeset
|
13 * FFmpeg is distributed in the hope that it will be useful, |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
16 * Lesser General Public License for more details. |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
17 * |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
18 * You should have received a copy of the GNU Lesser General Public |
116
d76a36742464
Change license headers to say 'FFmpeg' instead of 'this program/this library'
diego
parents:
90
diff
changeset
|
19 * License along with FFmpeg; if not, write to the Free Software |
90 | 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
21 */ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
22 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
23 /** |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
24 * @file lls.c |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
25 * linear least squares model |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
26 */ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
27 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
28 #include <math.h> |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
29 #include <string.h> |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
30 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
31 #include "lls.h" |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
32 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
33 #ifdef TEST |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
34 #define av_log(a,b,...) printf(__VA_ARGS__) |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
35 #endif |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
36 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
37 void av_init_lls(LLSModel *m, int indep_count){ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
38 memset(m, 0, sizeof(LLSModel)); |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
39 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
40 m->indep_count= indep_count; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
41 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
42 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
43 void av_update_lls(LLSModel *m, double *var, double decay){ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
44 int i,j; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
45 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
46 for(i=0; i<=m->indep_count; i++){ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
47 for(j=i; j<=m->indep_count; j++){ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
48 m->covariance[i][j] *= decay; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
49 m->covariance[i][j] += var[i]*var[j]; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
50 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
51 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
52 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
53 |
79
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
54 void av_solve_lls(LLSModel *m, double threshold, int min_order){ |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
55 int i,j,k; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
56 double (*factor)[MAX_VARS+1]= &m->covariance[1][0]; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
57 double (*covar )[MAX_VARS+1]= &m->covariance[1][1]; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
58 double *covar_y = m->covariance[0]; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
59 int count= m->indep_count; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
60 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
61 for(i=0; i<count; i++){ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
62 for(j=i; j<count; j++){ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
63 double sum= covar[i][j]; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
64 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
65 for(k=i-1; k>=0; k--) |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
66 sum -= factor[i][k]*factor[j][k]; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
67 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
68 if(i==j){ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
69 if(sum < threshold) |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
70 sum= 1.0; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
71 factor[i][i]= sqrt(sum); |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
72 }else |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
73 factor[j][i]= sum / factor[i][i]; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
74 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
75 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
76 for(i=0; i<count; i++){ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
77 double sum= covar_y[i+1]; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
78 for(k=i-1; k>=0; k--) |
79
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
79 sum -= factor[i][k]*m->coeff[0][k]; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
80 m->coeff[0][i]= sum / factor[i][i]; |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
81 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
82 |
79
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
83 for(j=count-1; j>=min_order; j--){ |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
84 for(i=j; i>=0; i--){ |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
85 double sum= m->coeff[0][i]; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
86 for(k=i+1; k<=j; k++) |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
87 sum -= factor[k][i]*m->coeff[j][k]; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
88 m->coeff[j][i]= sum / factor[i][i]; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
89 } |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
90 |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
91 m->variance[j]= covar_y[0]; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
92 for(i=0; i<=j; i++){ |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
93 double sum= m->coeff[j][i]*covar[i][i] - 2*covar_y[i+1]; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
94 for(k=0; k<i; k++) |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
95 sum += 2*m->coeff[j][k]*covar[k][i]; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
96 m->variance[j] += m->coeff[j][i]*sum; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
97 } |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
98 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
99 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
100 |
79
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
101 double av_evaluate_lls(LLSModel *m, double *param, int order){ |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
102 int i; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
103 double out= 0; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
104 |
79
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
105 for(i=0; i<=order; i++) |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
106 out+= param[i]*m->coeff[order][i]; |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
107 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
108 return out; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
109 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
110 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
111 #ifdef TEST |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
112 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
113 #include <stdlib.h> |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
114 #include <stdio.h> |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
115 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
116 int main(){ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
117 LLSModel m; |
79
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
118 int i, order; |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
119 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
120 av_init_lls(&m, 3); |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
121 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
122 for(i=0; i<100; i++){ |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
123 double var[4]; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
124 double eval, variance; |
79
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
125 #if 0 |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
126 var[1] = rand() / (double)RAND_MAX; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
127 var[2] = rand() / (double)RAND_MAX; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
128 var[3] = rand() / (double)RAND_MAX; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
129 |
79
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
130 var[2]= var[1] + var[3]/2; |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
131 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
132 var[0] = var[1] + var[2] + var[3] + var[1]*var[2]/100; |
79
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
133 #else |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
134 var[0] = (rand() / (double)RAND_MAX - 0.5)*2; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
135 var[1] = var[0] + rand() / (double)RAND_MAX - 0.5; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
136 var[2] = var[1] + rand() / (double)RAND_MAX - 0.5; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
137 var[3] = var[2] + rand() / (double)RAND_MAX - 0.5; |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
138 #endif |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
139 av_update_lls(&m, var, 0.99); |
79
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
140 av_solve_lls(&m, 0.001, 0); |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
141 for(order=0; order<3; order++){ |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
142 eval= av_evaluate_lls(&m, var+1, order); |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
143 av_log(NULL, AV_LOG_DEBUG, "real:%f order:%d pred:%f var:%f coeffs:%f %f %f\n", |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
144 var[0], order, eval, sqrt(m.variance[order] / (i+1)), |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
145 m.coeff[order][0], m.coeff[order][1], m.coeff[order][2]); |
adbb5540fa47
calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
michael
parents:
78
diff
changeset
|
146 } |
76
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
147 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
148 return 0; |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
149 } |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
150 |
8c75234388b5
linear least squares solver using cholesky factorization
michael
parents:
diff
changeset
|
151 #endif |