Mercurial > libavutil.hg
comparison pca.c @ 550:200789f57b62 libavutil
Principal component analysis
(will be cleaned up in next commits)
author | michael |
---|---|
date | Sun, 17 Aug 2008 15:28:12 +0000 |
parents | |
children | fe6d70cb51a6 |
comparison
equal
deleted
inserted
replaced
549:2ae03a413238 | 550:200789f57b62 |
---|---|
1 /* | |
2 * Principal component analysis | |
3 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> | |
4 * | |
5 * This library is free software; you can redistribute it and/or | |
6 * modify it under the terms of the GNU Lesser General Public | |
7 * License as published by the Free Software Foundation; either | |
8 * version 2 of the License, or (at your option) any later version. | |
9 * | |
10 * This library is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
13 * Lesser General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU Lesser General Public | |
16 * License along with this library; if not, write to the Free Software | |
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
18 * | |
19 */ | |
20 | |
21 /** | |
22 * @file pca.c | |
23 * Principal component analysis | |
24 */ | |
25 | |
26 #include <math.h> | |
27 #include "avcodec.h" | |
28 #include "pca.h" | |
29 | |
30 int ff_pca_init(PCA *pca, int n){ | |
31 if(n<=0) | |
32 return -1; | |
33 | |
34 pca->n= n; | |
35 pca->count=0; | |
36 pca->covariance= av_mallocz(sizeof(double)*n*n); | |
37 pca->mean= av_mallocz(sizeof(double)*n); | |
38 | |
39 return 0; | |
40 } | |
41 | |
42 void ff_pca_free(PCA *pca){ | |
43 av_freep(&pca->covariance); | |
44 av_freep(&pca->mean); | |
45 } | |
46 | |
47 void ff_pca_add(PCA *pca, double *v){ | |
48 int i, j; | |
49 const int n= pca->n; | |
50 | |
51 for(i=0; i<n; i++){ | |
52 pca->mean[i] += v[i]; | |
53 for(j=i; j<n; j++) | |
54 pca->covariance[j + i*n] += v[i]*v[j]; | |
55 } | |
56 pca->count++; | |
57 } | |
58 | |
59 int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){ | |
60 int i, j, k, pass; | |
61 const int n= pca->n; | |
62 double z[n]; | |
63 | |
64 memset(eigenvector, 0, sizeof(double)*n*n); | |
65 | |
66 for(j=0; j<n; j++){ | |
67 pca->mean[j] /= pca->count; | |
68 eigenvector[j + j*n] = 1.0; | |
69 for(i=0; i<=j; i++){ | |
70 pca->covariance[j + i*n] /= pca->count; | |
71 pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j]; | |
72 pca->covariance[i + j*n] = pca->covariance[j + i*n]; | |
73 } | |
74 eigenvalue[j]= pca->covariance[j + j*n]; | |
75 z[j]= 0; | |
76 } | |
77 | |
78 for(pass=0; pass < 50; pass++){ | |
79 double sum=0; | |
80 | |
81 for(i=0; i<n; i++) | |
82 for(j=i+1; j<n; j++) | |
83 sum += fabs(pca->covariance[j + i*n]); | |
84 | |
85 if(sum == 0){ | |
86 for(i=0; i<n; i++){ | |
87 double maxvalue= -1; | |
88 for(j=i; j<n; j++){ | |
89 if(eigenvalue[j] > maxvalue){ | |
90 maxvalue= eigenvalue[j]; | |
91 k= j; | |
92 } | |
93 } | |
94 eigenvalue[k]= eigenvalue[i]; | |
95 eigenvalue[i]= maxvalue; | |
96 for(j=0; j<n; j++){ | |
97 double tmp= eigenvector[k + j*n]; | |
98 eigenvector[k + j*n]= eigenvector[i + j*n]; | |
99 eigenvector[i + j*n]= tmp; | |
100 } | |
101 } | |
102 return pass; | |
103 } | |
104 | |
105 for(i=0; i<n; i++){ | |
106 for(j=i+1; j<n; j++){ | |
107 double covar= pca->covariance[j + i*n]; | |
108 double t,c,s,tau,theta, h; | |
109 | |
110 if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3 | |
111 continue; | |
112 if(fabs(covar) == 0.0) //FIXME shouldnt be needed | |
113 continue; | |
114 if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){ | |
115 pca->covariance[j + i*n]=0.0; | |
116 continue; | |
117 } | |
118 | |
119 h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]); | |
120 theta=0.5*h/covar; | |
121 t=1.0/(fabs(theta)+sqrt(1.0+theta*theta)); | |
122 if(theta < 0.0) t = -t; | |
123 | |
124 c=1.0/sqrt(1+t*t); | |
125 s=t*c; | |
126 tau=s/(1.0+c); | |
127 z[i] -= t*covar; | |
128 z[j] += t*covar; | |
129 | |
130 #define ROTATE(a,i,j,k,l)\ | |
131 double g=a[j + i*n];\ | |
132 double h=a[l + k*n];\ | |
133 a[j + i*n]=g-s*(h+g*tau);\ | |
134 a[l + k*n]=h+s*(g-h*tau); | |
135 for(k=0; k<n; k++) { | |
136 if(k!=i && k!=j){ | |
137 ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j)) | |
138 } | |
139 ROTATE(eigenvector,k,i,k,j) | |
140 } | |
141 pca->covariance[j + i*n]=0.0; | |
142 } | |
143 } | |
144 for (i=0; i<n; i++) { | |
145 eigenvalue[i] += z[i]; | |
146 z[i]=0.0; | |
147 } | |
148 } | |
149 | |
150 return -1; | |
151 } | |
152 | |
153 #if 1 | |
154 | |
155 #undef printf | |
156 #include <stdio.h> | |
157 #include <stdlib.h> | |
158 | |
159 int main(){ | |
160 PCA pca; | |
161 int i, j, k; | |
162 #define LEN 8 | |
163 double eigenvector[LEN*LEN]; | |
164 double eigenvalue[LEN]; | |
165 | |
166 ff_pca_init(&pca, LEN); | |
167 | |
168 for(i=0; i<9000000; i++){ | |
169 double v[2*LEN+100]; | |
170 double sum=0; | |
171 int pos= random()%LEN; | |
172 int v2= (random()%101) - 50; | |
173 v[0]= (random()%101) - 50; | |
174 for(j=1; j<8; j++){ | |
175 if(j<=pos) v[j]= v[0]; | |
176 else v[j]= v2; | |
177 sum += v[j]; | |
178 } | |
179 /* for(j=0; j<LEN; j++){ | |
180 v[j] -= v[pos]; | |
181 }*/ | |
182 // sum += random()%10; | |
183 /* for(j=0; j<LEN; j++){ | |
184 v[j] -= sum/LEN; | |
185 }*/ | |
186 // lbt1(v+100,v+100,LEN); | |
187 ff_pca_add(&pca, v); | |
188 } | |
189 | |
190 | |
191 ff_pca(&pca, eigenvector, eigenvalue); | |
192 for(i=0; i<LEN; i++){ | |
193 pca.count= 1; | |
194 pca.mean[i]= 0; | |
195 | |
196 // (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x| | |
197 | |
198 | |
199 // pca.covariance[i + i*LEN]= pow(0.5, fabs | |
200 for(j=i; j<LEN; j++){ | |
201 printf("%f ", pca.covariance[i + j*LEN]); | |
202 } | |
203 printf("\n"); | |
204 } | |
205 | |
206 #if 1 | |
207 for(i=0; i<LEN; i++){ | |
208 double v[LEN]; | |
209 double error=0; | |
210 memset(v, 0, sizeof(v)); | |
211 for(j=0; j<LEN; j++){ | |
212 for(k=0; k<LEN; k++){ | |
213 v[j] += pca.covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN]; | |
214 } | |
215 v[j] /= eigenvalue[i]; | |
216 error += fabs(v[j] - eigenvector[i + j*LEN]); | |
217 } | |
218 printf("%f ", error); | |
219 } | |
220 printf("\n"); | |
221 #endif | |
222 for(i=0; i<LEN; i++){ | |
223 for(j=0; j<LEN; j++){ | |
224 printf("%9.6f ", eigenvector[i + j*LEN]); | |
225 } | |
226 printf(" %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]); | |
227 } | |
228 | |
229 return 0; | |
230 } | |
231 #endif |