Mercurial > libavutil.hg
view rational.c @ 82:8fb151c4d4c7 libavutil
Move av_malloc(), av_realloc(), and av_free() from libavcodec to libavutil
author | lucabe |
---|---|
date | Wed, 19 Jul 2006 07:28:58 +0000 |
parents | af59e84e283d |
children | a27e0c4a120b |
line wrap: on
line source
/* * Rational numbers * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /** * @file rational.c * Rational numbers * @author Michael Niedermayer <michaelni@gmx.at> */ //#include <math.h> #include <limits.h> #include "common.h" #include "mathematics.h" #include "rational.h" int av_reduce(int *dst_nom, int *dst_den, int64_t nom, int64_t den, int64_t max){ AVRational a0={0,1}, a1={1,0}; int sign= (nom<0) ^ (den<0); int64_t gcd= ff_gcd(ABS(nom), ABS(den)); nom = ABS(nom)/gcd; den = ABS(den)/gcd; if(nom<=max && den<=max){ a1= (AVRational){nom, den}; den=0; } while(den){ int64_t x = nom / den; int64_t next_den= nom - den*x; int64_t a2n= x*a1.num + a0.num; int64_t a2d= x*a1.den + a0.den; if(a2n > max || a2d > max) break; a0= a1; a1= (AVRational){a2n, a2d}; nom= den; den= next_den; } assert(ff_gcd(a1.num, a1.den) == 1); *dst_nom = sign ? -a1.num : a1.num; *dst_den = a1.den; return den==0; } /** * returns b*c. */ AVRational av_mul_q(AVRational b, AVRational c){ av_reduce(&b.num, &b.den, b.num * (int64_t)c.num, b.den * (int64_t)c.den, INT_MAX); return b; } /** * returns b/c. */ AVRational av_div_q(AVRational b, AVRational c){ av_reduce(&b.num, &b.den, b.num * (int64_t)c.den, b.den * (int64_t)c.num, INT_MAX); return b; } /** * returns b+c. */ AVRational av_add_q(AVRational b, AVRational c){ av_reduce(&b.num, &b.den, b.num * (int64_t)c.den + c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX); return b; } /** * returns b-c. */ AVRational av_sub_q(AVRational b, AVRational c){ av_reduce(&b.num, &b.den, b.num * (int64_t)c.den - c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX); return b; } /** * Converts a double precission floating point number to a AVRational. * @param max the maximum allowed numerator and denominator */ AVRational av_d2q(double d, int max){ AVRational a; int exponent= FFMAX( (int)(log(ABS(d) + 1e-20)/log(2)), 0); int64_t den= 1LL << (61 - exponent); av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max); return a; }