view pca.c @ 836:af688c6fa72f libavutil

Move read_line() and write_line() definition from pixdesc.h to pixdesc.c, which are now not anymore marked as static inline. Fix the inclusion of the private header intreadwrite.h in the public header pixdesc.h.
author stefano
date Tue, 16 Feb 2010 20:17:50 +0000
parents 5d344280a1f8
children 0795a743bda1
line wrap: on
line source

/*
 * principal component analysis (PCA)
 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file libavutil/pca.c
 * principal component analysis (PCA)
 */

#include "common.h"
#include "pca.h"

typedef struct PCA{
    int count;
    int n;
    double *covariance;
    double *mean;
}PCA;

PCA *ff_pca_init(int n){
    PCA *pca;
    if(n<=0)
        return NULL;

    pca= av_mallocz(sizeof(PCA));
    pca->n= n;
    pca->count=0;
    pca->covariance= av_mallocz(sizeof(double)*n*n);
    pca->mean= av_mallocz(sizeof(double)*n);

    return pca;
}

void ff_pca_free(PCA *pca){
    av_freep(&pca->covariance);
    av_freep(&pca->mean);
    av_free(pca);
}

void ff_pca_add(PCA *pca, double *v){
    int i, j;
    const int n= pca->n;

    for(i=0; i<n; i++){
        pca->mean[i] += v[i];
        for(j=i; j<n; j++)
            pca->covariance[j + i*n] += v[i]*v[j];
    }
    pca->count++;
}

int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
    int i, j, pass;
    int k=0;
    const int n= pca->n;
    double z[n];

    memset(eigenvector, 0, sizeof(double)*n*n);

    for(j=0; j<n; j++){
        pca->mean[j] /= pca->count;
        eigenvector[j + j*n] = 1.0;
        for(i=0; i<=j; i++){
            pca->covariance[j + i*n] /= pca->count;
            pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
            pca->covariance[i + j*n] = pca->covariance[j + i*n];
        }
        eigenvalue[j]= pca->covariance[j + j*n];
        z[j]= 0;
    }

    for(pass=0; pass < 50; pass++){
        double sum=0;

        for(i=0; i<n; i++)
            for(j=i+1; j<n; j++)
                sum += fabs(pca->covariance[j + i*n]);

        if(sum == 0){
            for(i=0; i<n; i++){
                double maxvalue= -1;
                for(j=i; j<n; j++){
                    if(eigenvalue[j] > maxvalue){
                        maxvalue= eigenvalue[j];
                        k= j;
                    }
                }
                eigenvalue[k]= eigenvalue[i];
                eigenvalue[i]= maxvalue;
                for(j=0; j<n; j++){
                    double tmp= eigenvector[k + j*n];
                    eigenvector[k + j*n]= eigenvector[i + j*n];
                    eigenvector[i + j*n]= tmp;
                }
            }
            return pass;
        }

        for(i=0; i<n; i++){
            for(j=i+1; j<n; j++){
                double covar= pca->covariance[j + i*n];
                double t,c,s,tau,theta, h;

                if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
                    continue;
                if(fabs(covar) == 0.0) //FIXME should not be needed
                    continue;
                if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
                    pca->covariance[j + i*n]=0.0;
                    continue;
                }

                h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
                theta=0.5*h/covar;
                t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
                if(theta < 0.0) t = -t;

                c=1.0/sqrt(1+t*t);
                s=t*c;
                tau=s/(1.0+c);
                z[i] -= t*covar;
                z[j] += t*covar;

#define ROTATE(a,i,j,k,l) {\
    double g=a[j + i*n];\
    double h=a[l + k*n];\
    a[j + i*n]=g-s*(h+g*tau);\
    a[l + k*n]=h+s*(g-h*tau); }
                for(k=0; k<n; k++) {
                    if(k!=i && k!=j){
                        ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
                    }
                    ROTATE(eigenvector,k,i,k,j)
                }
                pca->covariance[j + i*n]=0.0;
            }
        }
        for (i=0; i<n; i++) {
            eigenvalue[i] += z[i];
            z[i]=0.0;
        }
    }

    return -1;
}

#ifdef TEST

#undef printf
#include <stdio.h>
#include <stdlib.h>
#include "lfg.h"

int main(void){
    PCA *pca;
    int i, j, k;
#define LEN 8
    double eigenvector[LEN*LEN];
    double eigenvalue[LEN];
    AVLFG prng;

    av_lfg_init(&prng, 1);

    pca= ff_pca_init(LEN);

    for(i=0; i<9000000; i++){
        double v[2*LEN+100];
        double sum=0;
        int pos = av_lfg_get(&prng) % LEN;
        int v2  = av_lfg_get(&prng) % 101 - 50;
        v[0]    = av_lfg_get(&prng) % 101 - 50;
        for(j=1; j<8; j++){
            if(j<=pos) v[j]= v[0];
            else       v[j]= v2;
            sum += v[j];
        }
/*        for(j=0; j<LEN; j++){
            v[j] -= v[pos];
        }*/
//        sum += av_lfg_get(&prng) % 10;
/*        for(j=0; j<LEN; j++){
            v[j] -= sum/LEN;
        }*/
//        lbt1(v+100,v+100,LEN);
        ff_pca_add(pca, v);
    }


    ff_pca(pca, eigenvector, eigenvalue);
    for(i=0; i<LEN; i++){
        pca->count= 1;
        pca->mean[i]= 0;

//        (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x|


//        pca.covariance[i + i*LEN]= pow(0.5, fabs
        for(j=i; j<LEN; j++){
            printf("%f ", pca->covariance[i + j*LEN]);
        }
        printf("\n");
    }

#if 1
    for(i=0; i<LEN; i++){
        double v[LEN];
        double error=0;
        memset(v, 0, sizeof(v));
        for(j=0; j<LEN; j++){
            for(k=0; k<LEN; k++){
                v[j] += pca->covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN];
            }
            v[j] /= eigenvalue[i];
            error += fabs(v[j] - eigenvector[i + j*LEN]);
        }
        printf("%f ", error);
    }
    printf("\n");
#endif
    for(i=0; i<LEN; i++){
        for(j=0; j<LEN; j++){
            printf("%9.6f ", eigenvector[i + j*LEN]);
        }
        printf("  %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]);
    }

    return 0;
}
#endif