Mercurial > mplayer.hg
annotate libaf/window.c @ 14488:7cb1494b2f9f
more on H.264's quantization parameter
author | lorenm |
---|---|
date | Thu, 13 Jan 2005 20:13:00 +0000 |
parents | 012426ca576b |
children | 07abe94a9cc4 |
rev | line source |
---|---|
7568 | 1 /*============================================================================= |
2 // | |
13602
14090f7300a8
The full name of the GPL is GNU General Public License.
diego
parents:
7568
diff
changeset
|
3 // This software has been released under the terms of the GNU General Public |
7568 | 4 // license. See http://www.gnu.org/copyleft/gpl.html for details. |
5 // | |
6 // Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au | |
7 // | |
8 //============================================================================= | |
9 */ | |
10 | |
11 /* Calculates a number of window functions. The following window | |
12 functions are currently implemented: Boxcar, Triang, Hanning, | |
13 Hamming, Blackman, Flattop and Kaiser. In the function call n is | |
14 the number of filter taps and w the buffer in which the filter | |
15 coefficients will be stored. | |
16 */ | |
17 | |
18 #include <math.h> | |
19 #include "dsp.h" | |
20 | |
21 /* | |
22 // Boxcar | |
23 // | |
24 // n window length | |
25 // w buffer for the window parameters | |
26 */ | |
14274 | 27 void af_window_boxcar(int n, _ftype_t* w) |
7568 | 28 { |
29 int i; | |
30 // Calculate window coefficients | |
31 for (i=0 ; i<n ; i++) | |
32 w[i] = 1.0; | |
33 } | |
34 | |
35 | |
36 /* | |
37 // Triang a.k.a Bartlett | |
38 // | |
39 // | (N-1)| | |
40 // 2 * |k - -----| | |
41 // | 2 | | |
42 // w = 1.0 - --------------- | |
43 // N+1 | |
44 // n window length | |
45 // w buffer for the window parameters | |
46 */ | |
14274 | 47 void af_window_triang(int n, _ftype_t* w) |
7568 | 48 { |
49 _ftype_t k1 = (_ftype_t)(n & 1); | |
50 _ftype_t k2 = 1/((_ftype_t)n + k1); | |
51 int end = (n + 1) >> 1; | |
52 int i; | |
53 | |
54 // Calculate window coefficients | |
55 for (i=0 ; i<end ; i++) | |
56 w[i] = w[n-i-1] = (2.0*((_ftype_t)(i+1))-(1.0-k1))*k2; | |
57 } | |
58 | |
59 | |
60 /* | |
61 // Hanning | |
62 // 2*pi*k | |
63 // w = 0.5 - 0.5*cos(------), where 0 < k <= N | |
64 // N+1 | |
65 // n window length | |
66 // w buffer for the window parameters | |
67 */ | |
14274 | 68 void af_window_hanning(int n, _ftype_t* w) |
7568 | 69 { |
70 int i; | |
71 _ftype_t k = 2*M_PI/((_ftype_t)(n+1)); // 2*pi/(N+1) | |
72 | |
73 // Calculate window coefficients | |
74 for (i=0; i<n; i++) | |
75 *w++ = 0.5*(1.0 - cos(k*(_ftype_t)(i+1))); | |
76 } | |
77 | |
78 /* | |
79 // Hamming | |
80 // 2*pi*k | |
81 // w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N | |
82 // N-1 | |
83 // | |
84 // n window length | |
85 // w buffer for the window parameters | |
86 */ | |
14274 | 87 void af_window_hamming(int n,_ftype_t* w) |
7568 | 88 { |
89 int i; | |
90 _ftype_t k = 2*M_PI/((_ftype_t)(n-1)); // 2*pi/(N-1) | |
91 | |
92 // Calculate window coefficients | |
93 for (i=0; i<n; i++) | |
94 *w++ = 0.54 - 0.46*cos(k*(_ftype_t)i); | |
95 } | |
96 | |
97 /* | |
98 // Blackman | |
99 // 2*pi*k 4*pi*k | |
100 // w(k) = 0.42 - 0.5*cos(------) + 0.08*cos(------), where 0 <= k < N | |
101 // N-1 N-1 | |
102 // | |
103 // n window length | |
104 // w buffer for the window parameters | |
105 */ | |
14274 | 106 void af_window_blackman(int n,_ftype_t* w) |
7568 | 107 { |
108 int i; | |
109 _ftype_t k1 = 2*M_PI/((_ftype_t)(n-1)); // 2*pi/(N-1) | |
110 _ftype_t k2 = 2*k1; // 4*pi/(N-1) | |
111 | |
112 // Calculate window coefficients | |
113 for (i=0; i<n; i++) | |
114 *w++ = 0.42 - 0.50*cos(k1*(_ftype_t)i) + 0.08*cos(k2*(_ftype_t)i); | |
115 } | |
116 | |
117 /* | |
118 // Flattop | |
119 // 2*pi*k 4*pi*k | |
120 // w(k) = 0.2810638602 - 0.5208971735*cos(------) + 0.1980389663*cos(------), where 0 <= k < N | |
121 // N-1 N-1 | |
122 // | |
123 // n window length | |
124 // w buffer for the window parameters | |
125 */ | |
14274 | 126 void af_window_flattop(int n,_ftype_t* w) |
7568 | 127 { |
128 int i; | |
129 _ftype_t k1 = 2*M_PI/((_ftype_t)(n-1)); // 2*pi/(N-1) | |
130 _ftype_t k2 = 2*k1; // 4*pi/(N-1) | |
131 | |
132 // Calculate window coefficients | |
133 for (i=0; i<n; i++) | |
134 *w++ = 0.2810638602 - 0.5208971735*cos(k1*(_ftype_t)i) + 0.1980389663*cos(k2*(_ftype_t)i); | |
135 } | |
136 | |
137 /* Computes the 0th order modified Bessel function of the first kind. | |
138 // (Needed to compute Kaiser window) | |
139 // | |
140 // y = sum( (x/(2*n))^2 ) | |
141 // n | |
142 */ | |
143 #define BIZ_EPSILON 1E-21 // Max error acceptable | |
144 | |
14274 | 145 static _ftype_t besselizero(_ftype_t x) |
7568 | 146 { |
147 _ftype_t temp; | |
148 _ftype_t sum = 1.0; | |
149 _ftype_t u = 1.0; | |
150 _ftype_t halfx = x/2.0; | |
151 int n = 1; | |
152 | |
153 do { | |
154 temp = halfx/(_ftype_t)n; | |
155 u *=temp * temp; | |
156 sum += u; | |
157 n++; | |
158 } while (u >= BIZ_EPSILON * sum); | |
159 return(sum); | |
160 } | |
161 | |
162 /* | |
163 // Kaiser | |
164 // | |
165 // n window length | |
166 // w buffer for the window parameters | |
167 // b beta parameter of Kaiser window, Beta >= 1 | |
168 // | |
169 // Beta trades the rejection of the low pass filter against the | |
170 // transition width from passband to stop band. Larger Beta means a | |
171 // slower transition and greater stop band rejection. See Rabiner and | |
172 // Gold (Theory and Application of DSP) under Kaiser windows for more | |
173 // about Beta. The following table from Rabiner and Gold gives some | |
174 // feel for the effect of Beta: | |
175 // | |
176 // All ripples in dB, width of transition band = D*N where N = window | |
177 // length | |
178 // | |
179 // BETA D PB RIP SB RIP | |
180 // 2.120 1.50 +-0.27 -30 | |
181 // 3.384 2.23 0.0864 -40 | |
182 // 4.538 2.93 0.0274 -50 | |
183 // 5.658 3.62 0.00868 -60 | |
184 // 6.764 4.32 0.00275 -70 | |
185 // 7.865 5.0 0.000868 -80 | |
186 // 8.960 5.7 0.000275 -90 | |
187 // 10.056 6.4 0.000087 -100 | |
188 */ | |
14274 | 189 void af_window_kaiser(int n, _ftype_t* w, _ftype_t b) |
7568 | 190 { |
191 _ftype_t tmp; | |
192 _ftype_t k1 = 1.0/besselizero(b); | |
193 int k2 = 1 - (n & 1); | |
194 int end = (n + 1) >> 1; | |
195 int i; | |
196 | |
197 // Calculate window coefficients | |
198 for (i=0 ; i<end ; i++){ | |
199 tmp = (_ftype_t)(2*i + k2) / ((_ftype_t)n - 1.0); | |
200 w[end-(1&(!k2))+i] = w[end-1-i] = k1 * besselizero(b*sqrt(1.0 - tmp*tmp)); | |
201 } | |
202 } | |
203 |