10725
|
1 /*
|
|
2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
|
3 ** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
|
|
4 **
|
|
5 ** This program is free software; you can redistribute it and/or modify
|
|
6 ** it under the terms of the GNU General Public License as published by
|
|
7 ** the Free Software Foundation; either version 2 of the License, or
|
|
8 ** (at your option) any later version.
|
|
9 **
|
|
10 ** This program is distributed in the hope that it will be useful,
|
|
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13 ** GNU General Public License for more details.
|
|
14 **
|
|
15 ** You should have received a copy of the GNU General Public License
|
|
16 ** along with this program; if not, write to the Free Software
|
|
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
18 **
|
|
19 ** Any non-GPL usage of this software or parts of this software is strictly
|
|
20 ** forbidden.
|
|
21 **
|
|
22 ** Commercial non-GPL licensing of this software is possible.
|
|
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
|
|
24 **
|
10989
|
25 ** $Id: sbr_dct.c,v 1.4 2003/09/24 11:52:12 menno Exp $
|
10725
|
26 **/
|
|
27
|
|
28 #include "common.h"
|
|
29
|
|
30 #ifdef SBR_DEC
|
|
31
|
|
32 #ifdef _MSC_VER
|
|
33 #pragma warning(disable:4305)
|
|
34 #pragma warning(disable:4244)
|
|
35 #endif
|
|
36
|
|
37 #define MUL_C_R(B,A) MUL_R_C(A,B)
|
|
38
|
|
39 #include "sbr_dct.h"
|
|
40
|
|
41 #ifdef SBR_LOW_POWER
|
|
42
|
|
43 void DCT3_32_unscaled(real_t *y, real_t *x)
|
|
44 {
|
|
45 real_t f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10;
|
|
46 real_t f11, f12, f13, f14, f15, f16, f17, f18, f19, f20;
|
|
47 real_t f21, f22, f23, f24, f25, f26, f27, f28, f29, f30;
|
|
48 real_t f31, f32, f33, f34, f35, f36, f37, f38, f39, f40;
|
|
49 real_t f41, f42, f43, f44, f45, f46, f47, f48, f49, f50;
|
|
50 real_t f51, f52, f53, f54, f55, f56, f57, f58, f59, f60;
|
|
51 real_t f61, f62, f63, f64, f65, f66, f67, f68, f69, f70;
|
|
52 real_t f71, f72, f73, f74, f75, f76, f77, f78, f79, f80;
|
|
53 real_t f81, f82, f83, f84, f85, f86, f87, f88, f89, f90;
|
|
54 real_t f91, f92, f93, f94, f95, f96, f97, f98, f99, f100;
|
|
55 real_t f101, f102, f103, f104, f105, f106, f107, f108, f109, f110;
|
|
56 real_t f111, f112, f113, f114, f115, f116, f117, f118, f119, f120;
|
|
57 real_t f121, f122, f123, f124, f125, f126, f127, f128, f129, f130;
|
|
58 real_t f131, f132, f133, f134, f135, f136, f137, f138, f139, f140;
|
|
59 real_t f141, f142, f143, f144, f145, f146, f147, f148, f149, f150;
|
|
60 real_t f151, f152, f153, f154, f155, f156, f157, f158, f159, f160;
|
|
61 real_t f161, f162, f163, f164, f165, f166, f167, f168, f169, f170;
|
|
62 real_t f171, f172, f173, f174, f175, f176, f177, f178, f179, f180;
|
|
63 real_t f181, f182, f183, f184, f185, f186, f187, f188, f189, f190;
|
|
64 real_t f191, f192, f193, f194, f195, f196, f197, f198, f199, f200;
|
|
65 real_t f201, f202, f203, f204, f205, f206, f207, f208, f209, f210;
|
|
66 real_t f211, f212, f213, f214, f215, f216, f217, f218, f219, f220;
|
|
67 real_t f221, f222, f223, f224, f225, f226, f227, f228, f229, f230;
|
|
68 real_t f231, f232, f233, f234, f235, f236, f237, f238, f239, f240;
|
|
69 real_t f241, f242, f243, f244, f245, f246, f247, f248, f249, f250;
|
|
70 real_t f251, f252, f253, f254, f255, f256, f257, f258, f259, f260;
|
|
71 real_t f261, f262, f263, f264, f265, f266, f267, f268, f269, f270;
|
|
72 real_t f271, f272;
|
|
73
|
|
74 f0 = MUL_C_R(COEF_CONST(0.7071067811865476), x[16]);
|
|
75 f1 = x[0] - f0;
|
|
76 f2 = x[0] + f0;
|
|
77 f3 = x[8] + x[24];
|
|
78 f4 = MUL_C_R(COEF_CONST(1.3065629648763766), x[8]);
|
|
79 f5 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f3);
|
|
80 f6 = MUL_C_R(COEF_CONST((-0.5411961001461967)), x[24]);
|
|
81 f7 = f4 + f5;
|
|
82 f8 = f6 - f5;
|
|
83 f9 = f2 - f8;
|
|
84 f10 = f2 + f8;
|
|
85 f11 = f1 - f7;
|
|
86 f12 = f1 + f7;
|
|
87 f13 = x[4] + x[28];
|
|
88 f14 = MUL_C_R(COEF_CONST(1.1758756024193588), x[4]);
|
|
89 f15 = MUL_C_R(COEF_CONST((-0.9807852804032304)), f13);
|
|
90 f16 = MUL_C_R(COEF_CONST((-0.7856949583871021)), x[28]);
|
|
91 f17 = f14 + f15;
|
|
92 f18 = f16 - f15;
|
|
93 f19 = x[12] + x[20];
|
|
94 f20 = MUL_C_R(COEF_CONST(1.3870398453221473), x[12]);
|
|
95 f21 = MUL_C_R(COEF_CONST((-0.8314696123025455)), f19);
|
|
96 f22 = MUL_C_R(COEF_CONST((-0.2758993792829436)), x[20]);
|
|
97 f23 = f20 + f21;
|
|
98 f24 = f22 - f21;
|
|
99 f25 = f18 - f24;
|
|
100 f26 = f18 + f24;
|
|
101 f27 = MUL_C_R(COEF_CONST(0.7071067811865476), f25);
|
|
102 f28 = f17 - f23;
|
|
103 f29 = f17 + f23;
|
|
104 f30 = MUL_C_R(COEF_CONST(0.7071067811865476), f29);
|
|
105 f31 = f27 - f30;
|
|
106 f32 = f27 + f30;
|
|
107 f33 = f10 - f26;
|
|
108 f34 = f10 + f26;
|
|
109 f35 = f12 - f32;
|
|
110 f36 = f12 + f32;
|
|
111 f37 = f11 - f31;
|
|
112 f38 = f11 + f31;
|
|
113 f39 = f9 - f28;
|
|
114 f40 = f9 + f28;
|
|
115 f41 = x[2] + x[30];
|
|
116 f42 = MUL_C_R(COEF_CONST(1.0932018670017569), x[2]);
|
|
117 f43 = MUL_C_R(COEF_CONST((-0.9951847266721969)), f41);
|
|
118 f44 = MUL_C_R(COEF_CONST((-0.8971675863426368)), x[30]);
|
|
119 f45 = f42 + f43;
|
|
120 f46 = f44 - f43;
|
|
121 f47 = x[6] + x[26];
|
|
122 f48 = MUL_C_R(COEF_CONST(1.2472250129866711), x[6]);
|
|
123 f49 = MUL_C_R(COEF_CONST((-0.9569403357322089)), f47);
|
|
124 f50 = MUL_C_R(COEF_CONST((-0.6666556584777469)), x[26]);
|
|
125 f51 = f48 + f49;
|
|
126 f52 = f50 - f49;
|
|
127 f53 = x[10] + x[22];
|
|
128 f54 = MUL_C_R(COEF_CONST(1.3533180011743526), x[10]);
|
|
129 f55 = MUL_C_R(COEF_CONST((-0.8819212643483551)), f53);
|
|
130 f56 = MUL_C_R(COEF_CONST((-0.4105245275223575)), x[22]);
|
|
131 f57 = f54 + f55;
|
|
132 f58 = f56 - f55;
|
|
133 f59 = x[14] + x[18];
|
|
134 f60 = MUL_C_R(COEF_CONST(1.4074037375263826), x[14]);
|
|
135 f61 = MUL_C_R(COEF_CONST((-0.7730104533627369)), f59);
|
|
136 f62 = MUL_C_R(COEF_CONST((-0.1386171691990913)), x[18]);
|
|
137 f63 = f60 + f61;
|
|
138 f64 = f62 - f61;
|
|
139 f65 = f46 - f64;
|
|
140 f66 = f46 + f64;
|
|
141 f67 = f52 - f58;
|
|
142 f68 = f52 + f58;
|
|
143 f69 = f66 - f68;
|
|
144 f70 = f66 + f68;
|
|
145 f71 = MUL_C_R(COEF_CONST(0.7071067811865476), f69);
|
|
146 f72 = f65 + f67;
|
|
147 f73 = MUL_C_R(COEF_CONST(1.3065629648763766), f65);
|
|
148 f74 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f72);
|
|
149 f75 = MUL_C_R(COEF_CONST((-0.5411961001461967)), f67);
|
|
150 f76 = f73 + f74;
|
|
151 f77 = f75 - f74;
|
|
152 f78 = f45 - f63;
|
|
153 f79 = f45 + f63;
|
|
154 f80 = f51 - f57;
|
|
155 f81 = f51 + f57;
|
|
156 f82 = f79 + f81;
|
|
157 f83 = MUL_C_R(COEF_CONST(1.3065629648763770), f79);
|
|
158 f84 = MUL_C_R(COEF_CONST((-0.3826834323650904)), f82);
|
|
159 f85 = MUL_C_R(COEF_CONST(0.5411961001461961), f81);
|
|
160 f86 = f83 + f84;
|
|
161 f87 = f85 - f84;
|
|
162 f88 = f78 - f80;
|
|
163 f89 = f78 + f80;
|
|
164 f90 = MUL_C_R(COEF_CONST(0.7071067811865476), f89);
|
|
165 f91 = f77 - f87;
|
|
166 f92 = f77 + f87;
|
|
167 f93 = f71 - f90;
|
|
168 f94 = f71 + f90;
|
|
169 f95 = f76 - f86;
|
|
170 f96 = f76 + f86;
|
|
171 f97 = f34 - f70;
|
|
172 f98 = f34 + f70;
|
|
173 f99 = f36 - f92;
|
|
174 f100 = f36 + f92;
|
|
175 f101 = f38 - f91;
|
|
176 f102 = f38 + f91;
|
|
177 f103 = f40 - f94;
|
|
178 f104 = f40 + f94;
|
|
179 f105 = f39 - f93;
|
|
180 f106 = f39 + f93;
|
|
181 f107 = f37 - f96;
|
|
182 f108 = f37 + f96;
|
|
183 f109 = f35 - f95;
|
|
184 f110 = f35 + f95;
|
|
185 f111 = f33 - f88;
|
|
186 f112 = f33 + f88;
|
|
187 f113 = x[1] + x[31];
|
|
188 f114 = MUL_C_R(COEF_CONST(1.0478631305325901), x[1]);
|
|
189 f115 = MUL_C_R(COEF_CONST((-0.9987954562051724)), f113);
|
|
190 f116 = MUL_C_R(COEF_CONST((-0.9497277818777548)), x[31]);
|
|
191 f117 = f114 + f115;
|
|
192 f118 = f116 - f115;
|
|
193 f119 = x[5] + x[27];
|
|
194 f120 = MUL_C_R(COEF_CONST(1.2130114330978077), x[5]);
|
|
195 f121 = MUL_C_R(COEF_CONST((-0.9700312531945440)), f119);
|
|
196 f122 = MUL_C_R(COEF_CONST((-0.7270510732912803)), x[27]);
|
|
197 f123 = f120 + f121;
|
|
198 f124 = f122 - f121;
|
|
199 f125 = x[9] + x[23];
|
|
200 f126 = MUL_C_R(COEF_CONST(1.3315443865537255), x[9]);
|
|
201 f127 = MUL_C_R(COEF_CONST((-0.9039892931234433)), f125);
|
|
202 f128 = MUL_C_R(COEF_CONST((-0.4764341996931612)), x[23]);
|
|
203 f129 = f126 + f127;
|
|
204 f130 = f128 - f127;
|
|
205 f131 = x[13] + x[19];
|
|
206 f132 = MUL_C_R(COEF_CONST(1.3989068359730781), x[13]);
|
|
207 f133 = MUL_C_R(COEF_CONST((-0.8032075314806453)), f131);
|
|
208 f134 = MUL_C_R(COEF_CONST((-0.2075082269882124)), x[19]);
|
|
209 f135 = f132 + f133;
|
|
210 f136 = f134 - f133;
|
|
211 f137 = x[17] + x[15];
|
|
212 f138 = MUL_C_R(COEF_CONST(1.4125100802019777), x[17]);
|
|
213 f139 = MUL_C_R(COEF_CONST((-0.6715589548470187)), f137);
|
|
214 f140 = MUL_C_R(COEF_CONST(0.0693921705079402), x[15]);
|
|
215 f141 = f138 + f139;
|
|
216 f142 = f140 - f139;
|
|
217 f143 = x[21] + x[11];
|
|
218 f144 = MUL_C_R(COEF_CONST(1.3718313541934939), x[21]);
|
|
219 f145 = MUL_C_R(COEF_CONST((-0.5141027441932219)), f143);
|
|
220 f146 = MUL_C_R(COEF_CONST(0.3436258658070501), x[11]);
|
|
221 f147 = f144 + f145;
|
|
222 f148 = f146 - f145;
|
|
223 f149 = x[25] + x[7];
|
|
224 f150 = MUL_C_R(COEF_CONST(1.2784339185752409), x[25]);
|
|
225 f151 = MUL_C_R(COEF_CONST((-0.3368898533922200)), f149);
|
|
226 f152 = MUL_C_R(COEF_CONST(0.6046542117908008), x[7]);
|
|
227 f153 = f150 + f151;
|
|
228 f154 = f152 - f151;
|
|
229 f155 = x[29] + x[3];
|
|
230 f156 = MUL_C_R(COEF_CONST(1.1359069844201433), x[29]);
|
|
231 f157 = MUL_C_R(COEF_CONST((-0.1467304744553624)), f155);
|
|
232 f158 = MUL_C_R(COEF_CONST(0.8424460355094185), x[3]);
|
|
233 f159 = f156 + f157;
|
|
234 f160 = f158 - f157;
|
|
235 f161 = f118 - f142;
|
|
236 f162 = f118 + f142;
|
|
237 f163 = f117 - f141;
|
|
238 f164 = f117 + f141;
|
|
239 f165 = f124 - f148;
|
|
240 f166 = f124 + f148;
|
|
241 f167 = f123 - f147;
|
|
242 f168 = f123 + f147;
|
|
243 f169 = f130 - f154;
|
|
244 f170 = f130 + f154;
|
|
245 f171 = f129 - f153;
|
|
246 f172 = f129 + f153;
|
|
247 f173 = f136 - f160;
|
|
248 f174 = f136 + f160;
|
|
249 f175 = f135 - f159;
|
|
250 f176 = f135 + f159;
|
|
251 f177 = f161 + f163;
|
|
252 f178 = MUL_C_R(COEF_CONST(1.1758756024193588), f161);
|
|
253 f179 = MUL_C_R(COEF_CONST((-0.9807852804032304)), f177);
|
|
254 f180 = MUL_C_R(COEF_CONST((-0.7856949583871021)), f163);
|
|
255 f181 = f178 + f179;
|
|
256 f182 = f180 - f179;
|
|
257 f183 = f165 + f167;
|
|
258 f184 = MUL_C_R(COEF_CONST(1.3870398453221475), f165);
|
|
259 f185 = MUL_C_R(COEF_CONST((-0.5555702330196022)), f183);
|
|
260 f186 = MUL_C_R(COEF_CONST(0.2758993792829431), f167);
|
|
261 f187 = f184 + f185;
|
|
262 f188 = f186 - f185;
|
|
263 f189 = f169 + f171;
|
|
264 f190 = MUL_C_R(COEF_CONST(0.7856949583871022), f169);
|
|
265 f191 = MUL_C_R(COEF_CONST(0.1950903220161283), f189);
|
|
266 f192 = MUL_C_R(COEF_CONST(1.1758756024193586), f171);
|
|
267 f193 = f190 + f191;
|
|
268 f194 = f192 - f191;
|
|
269 f195 = f173 + f175;
|
|
270 f196 = MUL_C_R(COEF_CONST((-0.2758993792829430)), f173);
|
|
271 f197 = MUL_C_R(COEF_CONST(0.8314696123025452), f195);
|
|
272 f198 = MUL_C_R(COEF_CONST(1.3870398453221475), f175);
|
|
273 f199 = f196 + f197;
|
|
274 f200 = f198 - f197;
|
|
275 f201 = f162 - f170;
|
|
276 f202 = f162 + f170;
|
|
277 f203 = f164 - f172;
|
|
278 f204 = f164 + f172;
|
|
279 f205 = f166 - f174;
|
|
280 f206 = f166 + f174;
|
|
281 f207 = f168 - f176;
|
|
282 f208 = f168 + f176;
|
|
283 f209 = f182 - f194;
|
|
284 f210 = f182 + f194;
|
|
285 f211 = f181 - f193;
|
|
286 f212 = f181 + f193;
|
|
287 f213 = f188 - f200;
|
|
288 f214 = f188 + f200;
|
|
289 f215 = f187 - f199;
|
|
290 f216 = f187 + f199;
|
|
291 f217 = f201 + f203;
|
|
292 f218 = MUL_C_R(COEF_CONST(1.3065629648763766), f201);
|
|
293 f219 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f217);
|
|
294 f220 = MUL_C_R(COEF_CONST((-0.5411961001461967)), f203);
|
|
295 f221 = f218 + f219;
|
|
296 f222 = f220 - f219;
|
|
297 f223 = f205 + f207;
|
|
298 f224 = MUL_C_R(COEF_CONST(0.5411961001461969), f205);
|
|
299 f225 = MUL_C_R(COEF_CONST(0.3826834323650898), f223);
|
|
300 f226 = MUL_C_R(COEF_CONST(1.3065629648763766), f207);
|
|
301 f227 = f224 + f225;
|
|
302 f228 = f226 - f225;
|
|
303 f229 = f209 + f211;
|
|
304 f230 = MUL_C_R(COEF_CONST(1.3065629648763766), f209);
|
|
305 f231 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f229);
|
|
306 f232 = MUL_C_R(COEF_CONST((-0.5411961001461967)), f211);
|
|
307 f233 = f230 + f231;
|
|
308 f234 = f232 - f231;
|
|
309 f235 = f213 + f215;
|
|
310 f236 = MUL_C_R(COEF_CONST(0.5411961001461969), f213);
|
|
311 f237 = MUL_C_R(COEF_CONST(0.3826834323650898), f235);
|
|
312 f238 = MUL_C_R(COEF_CONST(1.3065629648763766), f215);
|
|
313 f239 = f236 + f237;
|
|
314 f240 = f238 - f237;
|
|
315 f241 = f202 - f206;
|
|
316 f242 = f202 + f206;
|
|
317 f243 = f204 - f208;
|
|
318 f244 = f204 + f208;
|
|
319 f245 = f222 - f228;
|
|
320 f246 = f222 + f228;
|
|
321 f247 = f221 - f227;
|
|
322 f248 = f221 + f227;
|
|
323 f249 = f210 - f214;
|
|
324 f250 = f210 + f214;
|
|
325 f251 = f212 - f216;
|
|
326 f252 = f212 + f216;
|
|
327 f253 = f234 - f240;
|
|
328 f254 = f234 + f240;
|
|
329 f255 = f233 - f239;
|
|
330 f256 = f233 + f239;
|
|
331 f257 = f241 - f243;
|
|
332 f258 = f241 + f243;
|
|
333 f259 = MUL_C_R(COEF_CONST(0.7071067811865474), f257);
|
|
334 f260 = MUL_C_R(COEF_CONST(0.7071067811865474), f258);
|
|
335 f261 = f245 - f247;
|
|
336 f262 = f245 + f247;
|
|
337 f263 = MUL_C_R(COEF_CONST(0.7071067811865474), f261);
|
|
338 f264 = MUL_C_R(COEF_CONST(0.7071067811865474), f262);
|
|
339 f265 = f249 - f251;
|
|
340 f266 = f249 + f251;
|
|
341 f267 = MUL_C_R(COEF_CONST(0.7071067811865474), f265);
|
|
342 f268 = MUL_C_R(COEF_CONST(0.7071067811865474), f266);
|
|
343 f269 = f253 - f255;
|
|
344 f270 = f253 + f255;
|
|
345 f271 = MUL_C_R(COEF_CONST(0.7071067811865474), f269);
|
|
346 f272 = MUL_C_R(COEF_CONST(0.7071067811865474), f270);
|
|
347 y[31] = f98 - f242;
|
|
348 y[0] = f98 + f242;
|
|
349 y[30] = f100 - f250;
|
|
350 y[1] = f100 + f250;
|
|
351 y[29] = f102 - f254;
|
|
352 y[2] = f102 + f254;
|
|
353 y[28] = f104 - f246;
|
|
354 y[3] = f104 + f246;
|
|
355 y[27] = f106 - f264;
|
|
356 y[4] = f106 + f264;
|
|
357 y[26] = f108 - f272;
|
|
358 y[5] = f108 + f272;
|
|
359 y[25] = f110 - f268;
|
|
360 y[6] = f110 + f268;
|
|
361 y[24] = f112 - f260;
|
|
362 y[7] = f112 + f260;
|
|
363 y[23] = f111 - f259;
|
|
364 y[8] = f111 + f259;
|
|
365 y[22] = f109 - f267;
|
|
366 y[9] = f109 + f267;
|
|
367 y[21] = f107 - f271;
|
|
368 y[10] = f107 + f271;
|
|
369 y[20] = f105 - f263;
|
|
370 y[11] = f105 + f263;
|
|
371 y[19] = f103 - f248;
|
|
372 y[12] = f103 + f248;
|
|
373 y[18] = f101 - f256;
|
|
374 y[13] = f101 + f256;
|
|
375 y[17] = f99 - f252;
|
|
376 y[14] = f99 + f252;
|
|
377 y[16] = f97 - f244;
|
|
378 y[15] = f97 + f244;
|
|
379 }
|
|
380
|
|
381 void DCT2_64_unscaled(real_t *y, real_t *x)
|
|
382 {
|
|
383 int16_t i0;
|
|
384 real_t f2, f3, f4, f5, f6, f7, f8, f9, f10;
|
|
385 real_t f11, f12, f13, f14, f15, f16, f17, f18, f19, f20;
|
|
386 real_t f21, f22, f23, f24, f25, f26, f27, f28, f29, f30;
|
|
387 real_t f31, f32, f33, f34, f35, f36, f37, f38, f39, f40;
|
|
388 real_t f41, f42, f43, f44, f45, f46, f47, f48, f49, f50;
|
|
389 real_t f51, f52, f53, f54, f55, f56, f57, f58, f59, f60;
|
|
390 real_t f61, f62, f65, f66, f67, f68, f71, f72, f73, f74;
|
|
391 real_t f75, f76, f77, f78, f79, f80, f81, f82, f85, f86;
|
|
392 real_t f87, f88, f91, f92, f93, f94, f95, f96, f97, f98;
|
|
393 real_t f99, f100, f101, f102, f103, f104, f105, f106, f107, f108;
|
|
394 real_t f109, f110, f111, f112, f113, f114, f115, f116, f117, f118;
|
|
395 real_t f119, f120, f121, f122, f123, f124, f125, f126, f127, f128;
|
|
396 real_t f129, f130, f133, f134, f135, f136, f139, f140, f141, f142;
|
|
397 real_t f145, f146, f147, f148, f151, f152, f153, f154, f155, f156;
|
|
398 real_t f157, f158, f159, f160, f161, f162, f163, f164, f165, f166;
|
|
399 real_t f167, f168, f169, f170, f171, f172, f173, f174, f175, f176;
|
|
400 real_t f177, f178, f179, f180, f181, f182, f183, f184, f185, f186;
|
|
401 real_t f187, f188, f189, f190, f191, f192, f193, f194, f195, f196;
|
|
402 real_t f197, f198, f199, f200, f201, f202, f203, f204, f205, f206;
|
|
403 real_t f207, f208, f209, f210, f211, f213, f214, f215, f216, f217;
|
|
404 real_t f218, f219, f220, f221, f222, f223, f224, f225, f226, f227;
|
|
405 real_t f228, f229, f230, f231, f232, f233, f234, f235, f236, f237;
|
|
406 real_t f238, f239, f240, f241, f242, f243, f244, f245, f246, f247;
|
|
407 real_t f248, f249, f250, f251, f252, f253, f254, f255, f256, f257;
|
|
408 real_t f258, f259, f260, f261, f262, f263, f264, f265, f266, f267;
|
|
409 real_t f268, f269, f270, f271, f272, f273, f274, f275, f276, f277;
|
|
410 real_t f279, f280, f295, f296, f297, f298, f299, f300, f301, f302;
|
|
411 real_t f303, f304, f305, f306, f307, f308, f309, f310, f311, f312;
|
|
412 real_t f313, f314, f315, f316, f317, f318, f319, f320, f321, f322;
|
|
413 real_t f323, f324, f325, f326, f327, f328, f329, f330, f331, f332;
|
|
414 real_t f333, f334, f335, f336, f337, f338, f339, f340, f341, f342;
|
|
415 real_t f343, f344, f345, f346, f347, f348, f349, f350, f351, f352;
|
|
416 real_t f353, f354, f355, f356, f357, f358, f359, f360, f361, f362;
|
|
417 real_t f363, f364, f365, f366, f367, f368, f369, f370, f371, f372;
|
|
418 real_t f373, f374, f375, f376, f377, f378, f379, f380, f381, f382;
|
|
419 real_t f383, f384, f385, f386, f387, f388, f389, f390, f391, f392;
|
|
420 real_t f393, f394, f395, f396, f397, f398, f399, f400, f401, f402;
|
|
421 real_t f403, f404, f405, f406, f407, f408, f409, f410, f411, f412;
|
|
422 real_t f413, f414, f415, f416, f417, f418, f419, f420, f421, f422;
|
|
423 real_t f423, f424, f425, f426, f427, f428, f429, f430, f431, f432;
|
|
424 real_t f433, f434, f435, f436, f437, f438, f439, f440, f441, f442;
|
|
425 real_t f443, f444, f445, f446, f447, f448, f449, f450, f451, f452;
|
|
426 real_t f453, f454, f455, f456, f457, f458, f459, f460, f461, f462;
|
|
427 real_t f463, f464, f465, f466, f467, f468, f469, f470, f471, f472;
|
|
428 real_t f473, f474, f475, f476, f477, f478, f479, f480, f481, f482;
|
|
429 real_t f483, f484, f485, f486, f487, f488, f489, f490, f491, f492;
|
|
430 real_t f493, f494, f495, f496, f497, f498, f499, f500, f501, f502;
|
|
431 real_t f503, f504, f505, f506, f507, f508, f509, f510, f511, f512;
|
|
432 real_t f513, f514, f515, f516, f517, f518, f519, f520, f521, f522;
|
|
433 real_t f523, f524, f525, f526, f527, f528, f529, f530, f531, f532;
|
|
434 real_t f533, f534, f535, f536, f537, f538, f539, f540, f541, f542;
|
|
435 real_t f543, f544, f545, f546, f547, f548, f549, f550, f551, f552;
|
|
436 real_t f553, f554, f557, f558, f559, f560, f563, f564, f565, f566;
|
|
437 real_t f569, f570, f571, f572, f575, f576, f577, f578, f581, f582;
|
|
438 real_t f583, f584, f587, f588, f589, f590, f593, f594, f595, f596;
|
|
439 real_t f599, f600, f601, f602, f605, f606, f607, f608, f611, f612;
|
|
440 real_t f613, f614, f617, f618, f619, f620, f623, f624, f625, f626;
|
|
441 real_t f629, f630, f631, f632, f635, f636, f637, f638, f641, f642;
|
|
442 real_t f643, f644;
|
|
443 static real_t t2[64];
|
|
444
|
|
445 for (i0=0; i0<32; i0++)
|
|
446 {
|
|
447 t2[2*i0+1] = x[i0] - x[-i0+63];
|
|
448 t2[2*i0] = x[i0] + x[-i0+63];
|
|
449 }
|
|
450 f2 = t2[0] - t2[62];
|
|
451 f3 = t2[0] + t2[62];
|
|
452 f4 = t2[2] - t2[60];
|
|
453 f5 = t2[2] + t2[60];
|
|
454 f6 = t2[4] - t2[58];
|
|
455 f7 = t2[4] + t2[58];
|
|
456 f8 = t2[6] - t2[56];
|
|
457 f9 = t2[6] + t2[56];
|
|
458 f10 = t2[8] - t2[54];
|
|
459 f11 = t2[8] + t2[54];
|
|
460 f12 = t2[10] - t2[52];
|
|
461 f13 = t2[10] + t2[52];
|
|
462 f14 = t2[12] - t2[50];
|
|
463 f15 = t2[12] + t2[50];
|
|
464 f16 = t2[14] - t2[48];
|
|
465 f17 = t2[14] + t2[48];
|
|
466 f18 = t2[16] - t2[46];
|
|
467 f19 = t2[16] + t2[46];
|
|
468 f20 = t2[18] - t2[44];
|
|
469 f21 = t2[18] + t2[44];
|
|
470 f22 = t2[20] - t2[42];
|
|
471 f23 = t2[20] + t2[42];
|
|
472 f24 = t2[22] - t2[40];
|
|
473 f25 = t2[22] + t2[40];
|
|
474 f26 = t2[24] - t2[38];
|
|
475 f27 = t2[24] + t2[38];
|
|
476 f28 = t2[26] - t2[36];
|
|
477 f29 = t2[26] + t2[36];
|
|
478 f30 = t2[28] - t2[34];
|
|
479 f31 = t2[28] + t2[34];
|
|
480 f32 = t2[30] - t2[32];
|
|
481 f33 = t2[30] + t2[32];
|
|
482 f34 = f3 - f33;
|
|
483 f35 = f3 + f33;
|
|
484 f36 = f5 - f31;
|
|
485 f37 = f5 + f31;
|
|
486 f38 = f7 - f29;
|
|
487 f39 = f7 + f29;
|
|
488 f40 = f9 - f27;
|
|
489 f41 = f9 + f27;
|
|
490 f42 = f11 - f25;
|
|
491 f43 = f11 + f25;
|
|
492 f44 = f13 - f23;
|
|
493 f45 = f13 + f23;
|
|
494 f46 = f15 - f21;
|
|
495 f47 = f15 + f21;
|
|
496 f48 = f17 - f19;
|
|
497 f49 = f17 + f19;
|
|
498 f50 = f35 - f49;
|
|
499 f51 = f35 + f49;
|
|
500 f52 = f37 - f47;
|
|
501 f53 = f37 + f47;
|
|
502 f54 = f39 - f45;
|
|
503 f55 = f39 + f45;
|
|
504 f56 = f41 - f43;
|
|
505 f57 = f41 + f43;
|
|
506 f58 = f51 - f57;
|
|
507 f59 = f51 + f57;
|
|
508 f60 = f53 - f55;
|
|
509 f61 = f53 + f55;
|
|
510 f62 = f59 - f61;
|
|
511 y[0] = f59 + f61;
|
|
512 y[32] = MUL_C_R(COEF_CONST(0.7071067811865476), f62);
|
|
513 f65 = f58 + f60;
|
|
514 f66 = MUL_C_R(COEF_CONST(1.3065629648763766), f58);
|
|
515 f67 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f65);
|
|
516 f68 = MUL_C_R(COEF_CONST((-0.5411961001461967)), f60);
|
|
517 y[48] = f66 + f67;
|
|
518 y[16] = f68 - f67;
|
|
519 f71 = f52 - f54;
|
|
520 f72 = f52 + f54;
|
|
521 f73 = MUL_C_R(COEF_CONST(0.7071067811865476), f72);
|
|
522 f74 = MUL_C_R(COEF_CONST(0.7071067811865476), f71);
|
|
523 f75 = f50 - f73;
|
|
524 f76 = f50 + f73;
|
|
525 f77 = f56 - f74;
|
|
526 f78 = f56 + f74;
|
|
527 f79 = f78 + f76;
|
|
528 f80 = MUL_C_R(COEF_CONST((-0.7856949583871021)), f78);
|
|
529 f81 = MUL_C_R(COEF_CONST(0.9807852804032304), f79);
|
|
530 f82 = MUL_C_R(COEF_CONST(1.1758756024193588), f76);
|
|
531 y[8] = f80 + f81;
|
|
532 y[56] = f82 - f81;
|
|
533 f85 = f77 + f75;
|
|
534 f86 = MUL_C_R(COEF_CONST(0.2758993792829431), f77);
|
|
535 f87 = MUL_C_R(COEF_CONST(0.5555702330196022), f85);
|
|
536 f88 = MUL_C_R(COEF_CONST(1.3870398453221475), f75);
|
|
537 y[40] = f86 + f87;
|
|
538 y[24] = f88 - f87;
|
|
539 f91 = f40 - f42;
|
|
540 f92 = f40 + f42;
|
|
541 f93 = MUL_C_R(COEF_CONST(0.7071067811865476), f92);
|
|
542 f94 = MUL_C_R(COEF_CONST(0.7071067811865476), f91);
|
|
543 f95 = f38 - f44;
|
|
544 f96 = f38 + f44;
|
|
545 f97 = MUL_C_R(COEF_CONST(0.7071067811865476), f96);
|
|
546 f98 = MUL_C_R(COEF_CONST(0.7071067811865476), f95);
|
|
547 f99 = f34 - f93;
|
|
548 f100 = f34 + f93;
|
|
549 f101 = f48 - f94;
|
|
550 f102 = f48 + f94;
|
|
551 f103 = f36 - f97;
|
|
552 f104 = f36 + f97;
|
|
553 f105 = f46 - f98;
|
|
554 f106 = f46 + f98;
|
|
555 f107 = f106 + f104;
|
|
556 f108 = MUL_C_R(COEF_CONST((-0.5411961001461969)), f106);
|
|
557 f109 = MUL_C_R(COEF_CONST(0.9238795325112867), f107);
|
|
558 f110 = MUL_C_R(COEF_CONST(1.3065629648763766), f104);
|
|
559 f111 = f108 + f109;
|
|
560 f112 = f110 - f109;
|
|
561 f113 = f105 + f103;
|
|
562 f114 = MUL_C_R(COEF_CONST(1.3065629648763770), f105);
|
|
563 f115 = MUL_C_R(COEF_CONST((-0.3826834323650904)), f113);
|
|
564 f116 = MUL_C_R(COEF_CONST(0.5411961001461961), f103);
|
|
565 f117 = f114 + f115;
|
|
566 f118 = f116 - f115;
|
|
567 f119 = f100 - f111;
|
|
568 f120 = f100 + f111;
|
|
569 f121 = f102 - f112;
|
|
570 f122 = f102 + f112;
|
|
571 f123 = f99 - f117;
|
|
572 f124 = f99 + f117;
|
|
573 f125 = f101 - f118;
|
|
574 f126 = f101 + f118;
|
|
575 f127 = f122 + f120;
|
|
576 f128 = MUL_C_R(COEF_CONST((-0.8971675863426361)), f122);
|
|
577 f129 = MUL_C_R(COEF_CONST(0.9951847266721968), f127);
|
|
578 f130 = MUL_C_R(COEF_CONST(1.0932018670017576), f120);
|
|
579 y[4] = f128 + f129;
|
|
580 y[60] = f130 - f129;
|
|
581 f133 = f126 + f124;
|
|
582 f134 = MUL_C_R(COEF_CONST((-0.4105245275223571)), f126);
|
|
583 f135 = MUL_C_R(COEF_CONST(0.8819212643483549), f133);
|
|
584 f136 = MUL_C_R(COEF_CONST(1.3533180011743529), f124);
|
|
585 y[20] = f134 + f135;
|
|
586 y[44] = f136 - f135;
|
|
587 f139 = f121 + f119;
|
|
588 f140 = MUL_C_R(COEF_CONST(0.1386171691990915), f121);
|
|
589 f141 = MUL_C_R(COEF_CONST(0.6343932841636455), f139);
|
|
590 f142 = MUL_C_R(COEF_CONST(1.4074037375263826), f119);
|
|
591 y[36] = f140 + f141;
|
|
592 y[28] = f142 - f141;
|
|
593 f145 = f125 + f123;
|
|
594 f146 = MUL_C_R(COEF_CONST(0.6666556584777466), f125);
|
|
595 f147 = MUL_C_R(COEF_CONST(0.2902846772544623), f145);
|
|
596 f148 = MUL_C_R(COEF_CONST(1.2472250129866711), f123);
|
|
597 y[52] = f146 + f147;
|
|
598 y[12] = f148 - f147;
|
|
599 f151 = f2 + f32;
|
|
600 f152 = MUL_C_R(COEF_CONST(1.0478631305325901), f2);
|
|
601 f153 = MUL_C_R(COEF_CONST((-0.9987954562051724)), f151);
|
|
602 f154 = MUL_C_R(COEF_CONST((-0.9497277818777548)), f32);
|
|
603 f155 = f152 + f153;
|
|
604 f156 = f154 - f153;
|
|
605 f157 = f4 + f30;
|
|
606 f158 = MUL_C_R(COEF_CONST(1.1359069844201428), f4);
|
|
607 f159 = MUL_C_R(COEF_CONST((-0.9891765099647809)), f157);
|
|
608 f160 = MUL_C_R(COEF_CONST((-0.8424460355094190)), f30);
|
|
609 f161 = f158 + f159;
|
|
610 f162 = f160 - f159;
|
|
611 f163 = f6 + f28;
|
|
612 f164 = MUL_C_R(COEF_CONST(1.2130114330978077), f6);
|
|
613 f165 = MUL_C_R(COEF_CONST((-0.9700312531945440)), f163);
|
|
614 f166 = MUL_C_R(COEF_CONST((-0.7270510732912803)), f28);
|
|
615 f167 = f164 + f165;
|
|
616 f168 = f166 - f165;
|
|
617 f169 = f8 + f26;
|
|
618 f170 = MUL_C_R(COEF_CONST(1.2784339185752405), f8);
|
|
619 f171 = MUL_C_R(COEF_CONST((-0.9415440651830209)), f169);
|
|
620 f172 = MUL_C_R(COEF_CONST((-0.6046542117908014)), f26);
|
|
621 f173 = f170 + f171;
|
|
622 f174 = f172 - f171;
|
|
623 f175 = f10 + f24;
|
|
624 f176 = MUL_C_R(COEF_CONST(1.3315443865537255), f10);
|
|
625 f177 = MUL_C_R(COEF_CONST((-0.9039892931234433)), f175);
|
|
626 f178 = MUL_C_R(COEF_CONST((-0.4764341996931612)), f24);
|
|
627 f179 = f176 + f177;
|
|
628 f180 = f178 - f177;
|
|
629 f181 = f12 + f22;
|
|
630 f182 = MUL_C_R(COEF_CONST(1.3718313541934939), f12);
|
|
631 f183 = MUL_C_R(COEF_CONST((-0.8577286100002722)), f181);
|
|
632 f184 = MUL_C_R(COEF_CONST((-0.3436258658070507)), f22);
|
|
633 f185 = f182 + f183;
|
|
634 f186 = f184 - f183;
|
|
635 f187 = f14 + f20;
|
|
636 f188 = MUL_C_R(COEF_CONST(1.3989068359730781), f14);
|
|
637 f189 = MUL_C_R(COEF_CONST((-0.8032075314806453)), f187);
|
|
638 f190 = MUL_C_R(COEF_CONST((-0.2075082269882124)), f20);
|
|
639 f191 = f188 + f189;
|
|
640 f192 = f190 - f189;
|
|
641 f193 = f16 + f18;
|
|
642 f194 = MUL_C_R(COEF_CONST(1.4125100802019774), f16);
|
|
643 f195 = MUL_C_R(COEF_CONST((-0.7409511253549591)), f193);
|
|
644 f196 = MUL_C_R(COEF_CONST((-0.0693921705079408)), f18);
|
|
645 f197 = f194 + f195;
|
|
646 f198 = f196 - f195;
|
|
647 f199 = f156 - f198;
|
|
648 f200 = f156 + f198;
|
|
649 f201 = f162 - f192;
|
|
650 f202 = f162 + f192;
|
|
651 f203 = f168 - f186;
|
|
652 f204 = f168 + f186;
|
|
653 f205 = f174 - f180;
|
|
654 f206 = f174 + f180;
|
|
655 f207 = f200 - f206;
|
|
656 f208 = f200 + f206;
|
|
657 f209 = f202 - f204;
|
|
658 f210 = f202 + f204;
|
|
659 f211 = f208 - f210;
|
|
660 y[2] = f208 + f210;
|
|
661 f213 = MUL_C_R(COEF_CONST(0.7071067811865476), f211);
|
|
662 f214 = f207 + f209;
|
|
663 f215 = MUL_C_R(COEF_CONST(1.3065629648763766), f207);
|
|
664 f216 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f214);
|
|
665 f217 = MUL_C_R(COEF_CONST((-0.5411961001461967)), f209);
|
|
666 f218 = f215 + f216;
|
|
667 f219 = f217 - f216;
|
|
668 f220 = f201 - f203;
|
|
669 f221 = f201 + f203;
|
|
670 f222 = MUL_C_R(COEF_CONST(0.7071067811865476), f221);
|
|
671 f223 = MUL_C_R(COEF_CONST(0.7071067811865476), f220);
|
|
672 f224 = f199 - f222;
|
|
673 f225 = f199 + f222;
|
|
674 f226 = f205 - f223;
|
|
675 f227 = f205 + f223;
|
|
676 f228 = f227 + f225;
|
|
677 f229 = MUL_C_R(COEF_CONST((-0.7856949583871021)), f227);
|
|
678 f230 = MUL_C_R(COEF_CONST(0.9807852804032304), f228);
|
|
679 f231 = MUL_C_R(COEF_CONST(1.1758756024193588), f225);
|
|
680 f232 = f229 + f230;
|
|
681 f233 = f231 - f230;
|
|
682 f234 = f226 + f224;
|
|
683 f235 = MUL_C_R(COEF_CONST(0.2758993792829431), f226);
|
|
684 f236 = MUL_C_R(COEF_CONST(0.5555702330196022), f234);
|
|
685 f237 = MUL_C_R(COEF_CONST(1.3870398453221475), f224);
|
|
686 f238 = f235 + f236;
|
|
687 f239 = f237 - f236;
|
|
688 f240 = f155 - f197;
|
|
689 f241 = f155 + f197;
|
|
690 f242 = f161 - f191;
|
|
691 f243 = f161 + f191;
|
|
692 f244 = f167 - f185;
|
|
693 f245 = f167 + f185;
|
|
694 f246 = f173 - f179;
|
|
695 f247 = f173 + f179;
|
|
696 f248 = f245 - f243;
|
|
697 f249 = f245 + f243;
|
|
698 f250 = MUL_C_R(COEF_CONST(0.7071067811865476), f249);
|
|
699 f251 = f247 - f250;
|
|
700 f252 = f247 + f250;
|
|
701 f253 = MUL_C_R(COEF_CONST(0.7071067811865476), f248);
|
|
702 f254 = f253 - f241;
|
|
703 f255 = f253 + f241;
|
|
704 f256 = f255 + f252;
|
|
705 f257 = MUL_C_R(COEF_CONST((-0.7856949583871021)), f255);
|
|
706 f258 = MUL_C_R(COEF_CONST(0.9807852804032304), f256);
|
|
707 f259 = MUL_C_R(COEF_CONST(1.1758756024193588), f252);
|
|
708 f260 = f257 + f258;
|
|
709 f261 = f259 - f258;
|
|
710 f262 = f254 + f251;
|
|
711 f263 = MUL_C_R(COEF_CONST((-0.2758993792829430)), f254);
|
|
712 f264 = MUL_C_R(COEF_CONST(0.8314696123025452), f262);
|
|
713 f265 = MUL_C_R(COEF_CONST(1.3870398453221475), f251);
|
|
714 f266 = f263 + f264;
|
|
715 f267 = f265 - f264;
|
|
716 f268 = f240 - f246;
|
|
717 f269 = f240 + f246;
|
|
718 f270 = f242 - f244;
|
|
719 f271 = f242 + f244;
|
|
720 f272 = f269 + f271;
|
|
721 f273 = MUL_C_R(COEF_CONST(1.3065629648763770), f269);
|
|
722 f274 = MUL_C_R(COEF_CONST((-0.3826834323650904)), f272);
|
|
723 f275 = MUL_C_R(COEF_CONST(0.5411961001461961), f271);
|
|
724 f276 = f273 + f274;
|
|
725 f277 = f275 - f274;
|
|
726 y[62] = f268 - f270;
|
|
727 f279 = f268 + f270;
|
|
728 f280 = MUL_C_R(COEF_CONST(0.7071067811865476), f279);
|
|
729 y[10] = f232 - f260;
|
|
730 y[6] = f232 + f260;
|
|
731 y[18] = f219 - f277;
|
|
732 y[14] = f219 + f277;
|
|
733 y[26] = f239 + f266;
|
|
734 y[22] = f239 - f266;
|
|
735 y[34] = f213 - f280;
|
|
736 y[30] = f213 + f280;
|
|
737 y[42] = f238 - f267;
|
|
738 y[38] = f238 + f267;
|
|
739 y[50] = f218 - f276;
|
|
740 y[46] = f218 + f276;
|
|
741 y[58] = f233 + f261;
|
|
742 y[54] = f233 - f261;
|
|
743 f295 = t2[3] - t2[5];
|
|
744 f296 = t2[3] + t2[5];
|
|
745 f297 = t2[7] - t2[9];
|
|
746 f298 = t2[7] + t2[9];
|
|
747 f299 = t2[11] - t2[13];
|
|
748 f300 = t2[11] + t2[13];
|
|
749 f301 = t2[15] - t2[17];
|
|
750 f302 = t2[15] + t2[17];
|
|
751 f303 = t2[19] - t2[21];
|
|
752 f304 = t2[19] + t2[21];
|
|
753 f305 = t2[23] - t2[25];
|
|
754 f306 = t2[23] + t2[25];
|
|
755 f307 = t2[27] - t2[29];
|
|
756 f308 = t2[27] + t2[29];
|
|
757 f309 = t2[31] - t2[33];
|
|
758 f310 = t2[31] + t2[33];
|
|
759 f311 = t2[35] - t2[37];
|
|
760 f312 = t2[35] + t2[37];
|
|
761 f313 = t2[39] - t2[41];
|
|
762 f314 = t2[39] + t2[41];
|
|
763 f315 = t2[43] - t2[45];
|
|
764 f316 = t2[43] + t2[45];
|
|
765 f317 = t2[47] - t2[49];
|
|
766 f318 = t2[47] + t2[49];
|
|
767 f319 = t2[51] - t2[53];
|
|
768 f320 = t2[51] + t2[53];
|
|
769 f321 = t2[55] - t2[57];
|
|
770 f322 = t2[55] + t2[57];
|
|
771 f323 = t2[59] - t2[61];
|
|
772 f324 = t2[59] + t2[61];
|
|
773 f325 = MUL_C_R(COEF_CONST(0.7071067811865476), f310);
|
|
774 f326 = t2[1] - f325;
|
|
775 f327 = t2[1] + f325;
|
|
776 f328 = f302 + f318;
|
|
777 f329 = MUL_C_R(COEF_CONST(1.3065629648763766), f302);
|
|
778 f330 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f328);
|
|
779 f331 = MUL_C_R(COEF_CONST((-0.5411961001461967)), f318);
|
|
780 f332 = f329 + f330;
|
|
781 f333 = f331 - f330;
|
|
782 f334 = f327 - f333;
|
|
783 f335 = f327 + f333;
|
|
784 f336 = f326 - f332;
|
|
785 f337 = f326 + f332;
|
|
786 f338 = f306 - f314;
|
|
787 f339 = f306 + f314;
|
|
788 f340 = MUL_C_R(COEF_CONST(0.7071067811865476), f339);
|
|
789 f341 = f298 - f340;
|
|
790 f342 = f298 + f340;
|
|
791 f343 = MUL_C_R(COEF_CONST(0.7071067811865476), f338);
|
|
792 f344 = f343 - f322;
|
|
793 f345 = f343 + f322;
|
|
794 f346 = f345 + f342;
|
|
795 f347 = MUL_C_R(COEF_CONST((-0.7856949583871021)), f345);
|
|
796 f348 = MUL_C_R(COEF_CONST(0.9807852804032304), f346);
|
|
797 f349 = MUL_C_R(COEF_CONST(1.1758756024193588), f342);
|
|
798 f350 = f347 + f348;
|
|
799 f351 = f349 - f348;
|
|
800 f352 = f344 + f341;
|
|
801 f353 = MUL_C_R(COEF_CONST((-0.2758993792829430)), f344);
|
|
802 f354 = MUL_C_R(COEF_CONST(0.8314696123025452), f352);
|
|
803 f355 = MUL_C_R(COEF_CONST(1.3870398453221475), f341);
|
|
804 f356 = f353 + f354;
|
|
805 f357 = f355 - f354;
|
|
806 f358 = f335 - f350;
|
|
807 f359 = f335 + f350;
|
|
808 f360 = f337 - f356;
|
|
809 f361 = f337 + f356;
|
|
810 f362 = f336 - f357;
|
|
811 f363 = f336 + f357;
|
|
812 f364 = f334 - f351;
|
|
813 f365 = f334 + f351;
|
|
814 f366 = MUL_C_R(COEF_CONST(5.1011486186891641), f296);
|
|
815 f367 = MUL_C_R(COEF_CONST(1.7224470982383342), f300);
|
|
816 f368 = MUL_C_R(COEF_CONST(1.0606776859903475), f304);
|
|
817 f369 = MUL_C_R(COEF_CONST(0.7881546234512502), f308);
|
|
818 f370 = MUL_C_R(COEF_CONST(0.5024192861881557), f324);
|
|
819 f371 = MUL_C_R(COEF_CONST(0.5224986149396889), f320);
|
|
820 f372 = MUL_C_R(COEF_CONST(0.5669440348163577), f316);
|
|
821 f373 = MUL_C_R(COEF_CONST(0.6468217833599901), f312);
|
|
822 f374 = f366 - f370;
|
|
823 f375 = f366 + f370;
|
|
824 f376 = f367 - f371;
|
|
825 f377 = f367 + f371;
|
|
826 f378 = f368 - f372;
|
|
827 f379 = f368 + f372;
|
|
828 f380 = f369 - f373;
|
|
829 f381 = f369 + f373;
|
|
830 f382 = MUL_C_R(COEF_CONST(0.5097955791041592), f375);
|
|
831 f383 = MUL_C_R(COEF_CONST(0.6013448869350453), f377);
|
|
832 f384 = MUL_C_R(COEF_CONST(0.8999762231364156), f379);
|
|
833 f385 = MUL_C_R(COEF_CONST(2.5629154477415055), f381);
|
|
834 f386 = f382 + f385;
|
|
835 f387 = f382 - f385;
|
|
836 f388 = f383 + f384;
|
|
837 f389 = f384 - f383;
|
|
838 f390 = f387 - f389;
|
|
839 f391 = f387 + f389;
|
|
840 f392 = MUL_C_R(COEF_CONST(0.7071067811865476), f390);
|
|
841 f393 = f386 - f388;
|
|
842 f394 = MUL_C_R(COEF_CONST(1.3065629648763766), f386);
|
|
843 f395 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f393);
|
|
844 f396 = MUL_C_R(COEF_CONST((-0.5411961001461967)), f388);
|
|
845 f397 = f394 + f395;
|
|
846 f398 = f395 + f396;
|
|
847 f399 = f391 - f398;
|
|
848 f400 = f392 - f398;
|
|
849 f401 = f392 + f397;
|
|
850 f402 = f380 - f374;
|
|
851 f403 = f374 + f380;
|
|
852 f404 = f378 - f376;
|
|
853 f405 = f376 + f378;
|
|
854 f406 = f403 + f405;
|
|
855 f407 = MUL_C_R(COEF_CONST(1.3065629648763770), f403);
|
|
856 f408 = MUL_C_R(COEF_CONST((-0.3826834323650904)), f406);
|
|
857 f409 = MUL_C_R(COEF_CONST(0.5411961001461961), f405);
|
|
858 f410 = f407 + f408;
|
|
859 f411 = f408 - f409;
|
|
860 f412 = f402 - f404;
|
|
861 f413 = f402 + f404;
|
|
862 f414 = MUL_C_R(COEF_CONST(0.7071067811865476), f413);
|
|
863 f415 = f411 + f397;
|
|
864 f416 = f401 + f411;
|
|
865 f417 = f414 + f401;
|
|
866 f418 = f400 + f414;
|
|
867 f419 = f400 - f410;
|
|
868 f420 = f399 - f410;
|
|
869 f421 = f412 + f399;
|
|
870 f422 = f359 - f397;
|
|
871 f423 = f359 + f397;
|
|
872 f424 = f361 + f415;
|
|
873 f425 = f361 - f415;
|
|
874 f426 = f363 - f416;
|
|
875 f427 = f363 + f416;
|
|
876 f428 = f365 + f417;
|
|
877 f429 = f365 - f417;
|
|
878 f430 = f364 - f418;
|
|
879 f431 = f364 + f418;
|
|
880 f432 = f362 + f419;
|
|
881 f433 = f362 - f419;
|
|
882 f434 = f360 - f420;
|
|
883 f435 = f360 + f420;
|
|
884 f436 = f358 + f421;
|
|
885 f437 = f358 - f421;
|
|
886 f438 = MUL_C_R(COEF_CONST(5.1011486186891641), f295);
|
|
887 f439 = MUL_C_R(COEF_CONST(1.7224470982383342), f299);
|
|
888 f440 = MUL_C_R(COEF_CONST(1.0606776859903475), f303);
|
|
889 f441 = MUL_C_R(COEF_CONST(0.7881546234512502), f307);
|
|
890 f442 = MUL_C_R(COEF_CONST(0.5024192861881557), f323);
|
|
891 f443 = MUL_C_R(COEF_CONST(0.5224986149396889), f319);
|
|
892 f444 = MUL_C_R(COEF_CONST(0.5669440348163577), f315);
|
|
893 f445 = MUL_C_R(COEF_CONST(0.6468217833599901), f311);
|
|
894 f446 = f438 + f442;
|
|
895 f447 = f438 - f442;
|
|
896 f448 = f439 + f443;
|
|
897 f449 = f443 - f439;
|
|
898 f450 = f440 + f444;
|
|
899 f451 = f440 - f444;
|
|
900 f452 = f441 + f445;
|
|
901 f453 = f445 - f441;
|
|
902 f454 = MUL_C_R(COEF_CONST(0.5097955791041592), f447);
|
|
903 f455 = MUL_C_R(COEF_CONST(0.6013448869350453), f449);
|
|
904 f456 = MUL_C_R(COEF_CONST(0.8999762231364156), f451);
|
|
905 f457 = MUL_C_R(COEF_CONST(2.5629154477415055), f453);
|
|
906 f458 = f454 + f457;
|
|
907 f459 = f454 - f457;
|
|
908 f460 = f455 + f456;
|
|
909 f461 = f456 - f455;
|
|
910 f462 = f459 - f461;
|
|
911 f463 = f459 + f461;
|
|
912 f464 = MUL_C_R(COEF_CONST(0.7071067811865476), f462);
|
|
913 f465 = f458 - f460;
|
|
914 f466 = MUL_C_R(COEF_CONST(1.3065629648763766), f458);
|
|
915 f467 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f465);
|
|
916 f468 = MUL_C_R(COEF_CONST((-0.5411961001461967)), f460);
|
|
917 f469 = f466 + f467;
|
|
918 f470 = f467 + f468;
|
|
919 f471 = f463 - f470;
|
|
920 f472 = f464 - f470;
|
|
921 f473 = f464 + f469;
|
|
922 f474 = f446 + f452;
|
|
923 f475 = f452 - f446;
|
|
924 f476 = f448 + f450;
|
|
925 f477 = f448 - f450;
|
|
926 f478 = f475 + f477;
|
|
927 f479 = MUL_C_R(COEF_CONST(1.3065629648763770), f475);
|
|
928 f480 = MUL_C_R(COEF_CONST((-0.3826834323650904)), f478);
|
|
929 f481 = MUL_C_R(COEF_CONST(0.5411961001461961), f477);
|
|
930 f482 = f479 + f480;
|
|
931 f483 = f481 - f480;
|
|
932 f484 = f474 + f476;
|
|
933 f485 = f476 - f474;
|
|
934 f486 = MUL_C_R(COEF_CONST(0.7071067811865476), f485);
|
|
935 f487 = f483 + f469;
|
|
936 f488 = f473 + f483;
|
|
937 f489 = f486 + f473;
|
|
938 f490 = f472 + f486;
|
|
939 f491 = f482 + f472;
|
|
940 f492 = f471 + f482;
|
|
941 f493 = f471 - f484;
|
|
942 f494 = MUL_C_R(COEF_CONST(0.7071067811865476), f309);
|
|
943 f495 = t2[63] - f494;
|
|
944 f496 = t2[63] + f494;
|
|
945 f497 = f317 + f301;
|
|
946 f498 = MUL_C_R(COEF_CONST(1.3065629648763766), f317);
|
|
947 f499 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f497);
|
|
948 f500 = MUL_C_R(COEF_CONST((-0.5411961001461967)), f301);
|
|
949 f501 = f498 + f499;
|
|
950 f502 = f500 - f499;
|
|
951 f503 = f496 - f502;
|
|
952 f504 = f496 + f502;
|
|
953 f505 = f495 - f501;
|
|
954 f506 = f495 + f501;
|
|
955 f507 = MUL_C_R(COEF_CONST(0.5097955791041592), f321);
|
|
956 f508 = MUL_C_R(COEF_CONST(0.6013448869350453), f313);
|
|
957 f509 = MUL_C_R(COEF_CONST(0.8999762231364156), f305);
|
|
958 f510 = MUL_C_R(COEF_CONST(2.5629154477415055), f297);
|
|
959 f511 = f507 - f510;
|
|
960 f512 = f507 + f510;
|
|
961 f513 = f508 - f509;
|
|
962 f514 = f508 + f509;
|
|
963 f515 = f512 - f514;
|
|
964 f516 = f512 + f514;
|
|
965 f517 = MUL_C_R(COEF_CONST(0.7071067811865476), f515);
|
|
966 f518 = f511 + f513;
|
|
967 f519 = MUL_C_R(COEF_CONST(1.3065629648763766), f511);
|
|
968 f520 = MUL_C_R(COEF_CONST((-0.9238795325112866)), f518);
|
|
969 f521 = MUL_C_R(COEF_CONST((-0.5411961001461967)), f513);
|
|
970 f522 = f519 + f520;
|
|
971 f523 = f521 - f520;
|
|
972 f524 = f516 + f523;
|
|
973 f525 = f523 + f517;
|
|
974 f526 = f517 + f522;
|
|
975 f527 = f504 - f524;
|
|
976 f528 = f504 + f524;
|
|
977 f529 = f506 - f525;
|
|
978 f530 = f506 + f525;
|
|
979 f531 = f505 - f526;
|
|
980 f532 = f505 + f526;
|
|
981 f533 = f503 - f522;
|
|
982 f534 = f503 + f522;
|
|
983 f535 = f493 + f528;
|
|
984 f536 = f528 - f493;
|
|
985 f537 = f492 + f530;
|
|
986 f538 = f492 - f530;
|
|
987 f539 = f491 + f532;
|
|
988 f540 = f532 - f491;
|
|
989 f541 = f490 + f534;
|
|
990 f542 = f490 - f534;
|
|
991 f543 = f489 + f533;
|
|
992 f544 = f533 - f489;
|
|
993 f545 = f488 + f531;
|
|
994 f546 = f488 - f531;
|
|
995 f547 = f487 + f529;
|
|
996 f548 = f529 - f487;
|
|
997 f549 = f469 + f527;
|
|
998 f550 = f469 - f527;
|
|
999 f551 = f536 + f423;
|
|
1000 f552 = MUL_C_R(COEF_CONST((-0.9751575901732920)), f536);
|
|
1001 f553 = MUL_C_R(COEF_CONST(0.9996988186962043), f551);
|
|
1002 f554 = MUL_C_R(COEF_CONST(1.0242400472191164), f423);
|
|
1003 y[1] = f552 + f553;
|
|
1004 y[63] = f554 - f553;
|
|
1005 f557 = f538 + f425;
|
|
1006 f558 = MUL_C_R(COEF_CONST((-0.9237258930790228)), f538);
|
|
1007 f559 = MUL_C_R(COEF_CONST(0.9972904566786902), f557);
|
|
1008 f560 = MUL_C_R(COEF_CONST(1.0708550202783576), f425);
|
|
1009 y[3] = f558 + f559;
|
|
1010 y[61] = f560 - f559;
|
|
1011 f563 = f540 + f427;
|
|
1012 f564 = MUL_C_R(COEF_CONST((-0.8700688593994936)), f540);
|
|
1013 f565 = MUL_C_R(COEF_CONST(0.9924795345987100), f563);
|
|
1014 f566 = MUL_C_R(COEF_CONST(1.1148902097979263), f427);
|
|
1015 y[5] = f564 + f565;
|
|
1016 y[59] = f566 - f565;
|
|
1017 f569 = f542 + f429;
|
|
1018 f570 = MUL_C_R(COEF_CONST((-0.8143157536286398)), f542);
|
|
1019 f571 = MUL_C_R(COEF_CONST(0.9852776423889412), f569);
|
|
1020 f572 = MUL_C_R(COEF_CONST(1.1562395311492426), f429);
|
|
1021 y[7] = f570 + f571;
|
|
1022 y[57] = f572 - f571;
|
|
1023 f575 = f544 + f431;
|
|
1024 f576 = MUL_C_R(COEF_CONST((-0.7566008898816587)), f544);
|
|
1025 f577 = MUL_C_R(COEF_CONST(0.9757021300385286), f575);
|
|
1026 f578 = MUL_C_R(COEF_CONST(1.1948033701953984), f431);
|
|
1027 y[9] = f576 + f577;
|
|
1028 y[55] = f578 - f577;
|
|
1029 f581 = f546 + f433;
|
|
1030 f582 = MUL_C_R(COEF_CONST((-0.6970633083205414)), f546);
|
|
1031 f583 = MUL_C_R(COEF_CONST(0.9637760657954398), f581);
|
|
1032 f584 = MUL_C_R(COEF_CONST(1.2304888232703384), f433);
|
|
1033 y[11] = f582 + f583;
|
|
1034 y[53] = f584 - f583;
|
|
1035 f587 = f548 + f435;
|
|
1036 f588 = MUL_C_R(COEF_CONST((-0.6358464401941451)), f548);
|
|
1037 f589 = MUL_C_R(COEF_CONST(0.9495281805930367), f587);
|
|
1038 f590 = MUL_C_R(COEF_CONST(1.2632099209919283), f435);
|
|
1039 y[13] = f588 + f589;
|
|
1040 y[51] = f590 - f589;
|
|
1041 f593 = f550 + f437;
|
|
1042 f594 = MUL_C_R(COEF_CONST((-0.5730977622997506)), f550);
|
|
1043 f595 = MUL_C_R(COEF_CONST(0.9329927988347389), f593);
|
|
1044 f596 = MUL_C_R(COEF_CONST(1.2928878353697271), f437);
|
|
1045 y[15] = f594 + f595;
|
|
1046 y[49] = f596 - f595;
|
|
1047 f599 = f549 + f436;
|
|
1048 f600 = MUL_C_R(COEF_CONST((-0.5089684416985408)), f549);
|
|
1049 f601 = MUL_C_R(COEF_CONST(0.9142097557035307), f599);
|
|
1050 f602 = MUL_C_R(COEF_CONST(1.3194510697085207), f436);
|
|
1051 y[17] = f600 + f601;
|
|
1052 y[47] = f602 - f601;
|
|
1053 f605 = f434 - f547;
|
|
1054 f606 = MUL_C_R(COEF_CONST((-0.4436129715409087)), f547);
|
|
1055 f607 = MUL_C_R(COEF_CONST(0.8932243011955153), f605);
|
|
1056 f608 = MUL_C_R(COEF_CONST(1.3428356308501219), f434);
|
|
1057 y[19] = f607 - f606;
|
|
1058 y[45] = f608 - f607;
|
|
1059 f611 = f545 + f432;
|
|
1060 f612 = MUL_C_R(COEF_CONST((-0.3771887988789273)), f545);
|
|
1061 f613 = MUL_C_R(COEF_CONST(0.8700869911087114), f611);
|
|
1062 f614 = MUL_C_R(COEF_CONST(1.3629851833384954), f432);
|
|
1063 y[21] = f612 + f613;
|
|
1064 y[43] = f614 - f613;
|
|
1065 f617 = f430 - f543;
|
|
1066 f618 = MUL_C_R(COEF_CONST((-0.3098559453626097)), f543);
|
|
1067 f619 = MUL_C_R(COEF_CONST(0.8448535652497070), f617);
|
|
1068 f620 = MUL_C_R(COEF_CONST(1.3798511851368043), f430);
|
|
1069 y[23] = f619 - f618;
|
|
1070 y[41] = f620 - f619;
|
|
1071 f623 = f541 + f428;
|
|
1072 f624 = MUL_C_R(COEF_CONST((-0.2417766217337384)), f541);
|
|
1073 f625 = MUL_C_R(COEF_CONST(0.8175848131515837), f623);
|
|
1074 f626 = MUL_C_R(COEF_CONST(1.3933930045694289), f428);
|
|
1075 y[25] = f624 + f625;
|
|
1076 y[39] = f626 - f625;
|
|
1077 f629 = f426 - f539;
|
|
1078 f630 = MUL_C_R(COEF_CONST((-0.1731148370459794)), f539);
|
|
1079 f631 = MUL_C_R(COEF_CONST(0.7883464276266062), f629);
|
|
1080 f632 = MUL_C_R(COEF_CONST(1.4035780182072330), f426);
|
|
1081 y[27] = f631 - f630;
|
|
1082 y[37] = f632 - f631;
|
|
1083 f635 = f537 + f424;
|
|
1084 f636 = MUL_C_R(COEF_CONST((-0.1040360035527077)), f537);
|
|
1085 f637 = MUL_C_R(COEF_CONST(0.7572088465064845), f635);
|
|
1086 f638 = MUL_C_R(COEF_CONST(1.4103816894602612), f424);
|
|
1087 y[29] = f636 + f637;
|
|
1088 y[35] = f638 - f637;
|
|
1089 f641 = f422 - f535;
|
|
1090 f642 = MUL_C_R(COEF_CONST((-0.0347065382144000)), f535);
|
|
1091 f643 = MUL_C_R(COEF_CONST(0.7242470829514669), f641);
|
|
1092 f644 = MUL_C_R(COEF_CONST(1.4137876276885337), f422);
|
|
1093 y[31] = f643 - f642;
|
|
1094 y[33] = f644 - f643;
|
|
1095 }
|
|
1096
|
|
1097 #else
|
|
1098
|
|
1099 void DCT4_64(real_t *y, real_t *x)
|
|
1100 {
|
|
1101 int16_t i0;
|
|
1102 real_t f2;
|
|
1103 real_t f3;
|
|
1104 real_t f4;
|
|
1105 real_t f5;
|
|
1106 real_t f6;
|
|
1107 real_t f7;
|
|
1108 real_t f8;
|
|
1109 real_t f9;
|
|
1110 real_t f10;
|
|
1111 real_t f11;
|
|
1112 real_t f12;
|
|
1113 real_t f13;
|
|
1114 real_t f14;
|
|
1115 real_t f15;
|
|
1116 real_t f16;
|
|
1117 real_t f17;
|
|
1118 real_t f18;
|
|
1119 real_t f19;
|
|
1120 real_t f20;
|
|
1121 real_t f21;
|
|
1122 real_t f22;
|
|
1123 real_t f23;
|
|
1124 real_t f24;
|
|
1125 real_t f25;
|
|
1126 real_t f26;
|
|
1127 real_t f27;
|
|
1128 real_t f28;
|
|
1129 real_t f29;
|
|
1130 real_t f30;
|
|
1131 real_t f31;
|
|
1132 real_t f32;
|
|
1133 real_t f33;
|
|
1134 real_t f34;
|
|
1135 real_t f35;
|
|
1136 real_t f36;
|
|
1137 real_t f37;
|
|
1138 real_t f38;
|
|
1139 real_t f39;
|
|
1140 real_t f40;
|
|
1141 real_t f41;
|
|
1142 real_t f42;
|
|
1143 real_t f43;
|
|
1144 real_t f44;
|
|
1145 real_t f45;
|
|
1146 real_t f46;
|
|
1147 real_t f47;
|
|
1148 real_t f48;
|
|
1149 real_t f49;
|
|
1150 real_t f50;
|
|
1151 real_t f51;
|
|
1152 real_t f52;
|
|
1153 real_t f53;
|
|
1154 real_t f54;
|
|
1155 real_t f55;
|
|
1156 real_t f56;
|
|
1157 real_t f57;
|
|
1158 real_t f58;
|
|
1159 real_t f59;
|
|
1160 real_t f60;
|
|
1161 real_t f61;
|
|
1162 real_t f62;
|
|
1163 real_t f63;
|
|
1164 real_t f64;
|
|
1165 real_t f65;
|
|
1166 real_t f66;
|
|
1167 real_t f67;
|
|
1168 real_t f68;
|
|
1169 real_t f69;
|
|
1170 real_t f70;
|
|
1171 real_t f71;
|
|
1172 real_t f72;
|
|
1173 real_t f73;
|
|
1174 real_t f74;
|
|
1175 real_t f75;
|
|
1176 real_t f76;
|
|
1177 real_t f77;
|
|
1178 real_t f78;
|
|
1179 real_t f79;
|
|
1180 real_t f80;
|
|
1181 real_t f81;
|
|
1182 real_t f82;
|
|
1183 real_t f83;
|
|
1184 real_t f84;
|
|
1185 real_t f85;
|
|
1186 real_t f86;
|
|
1187 real_t f87;
|
|
1188 real_t f88;
|
|
1189 real_t f89;
|
|
1190 real_t f90;
|
|
1191 real_t f91;
|
|
1192 real_t f92;
|
|
1193 real_t f93;
|
|
1194 real_t f94;
|
|
1195 real_t f95;
|
|
1196 real_t f96;
|
|
1197 real_t f97;
|
|
1198 real_t f98;
|
|
1199 real_t f99;
|
|
1200 real_t f100;
|
|
1201 real_t f101;
|
|
1202 real_t f102;
|
|
1203 real_t f103;
|
|
1204 real_t f104;
|
|
1205 real_t f105;
|
|
1206 real_t f106;
|
|
1207 real_t f107;
|
|
1208 real_t f108;
|
|
1209 real_t f109;
|
|
1210 real_t f110;
|
|
1211 real_t f111;
|
|
1212 real_t f112;
|
|
1213 real_t f113;
|
|
1214 real_t f114;
|
|
1215 real_t f115;
|
|
1216 real_t f116;
|
|
1217 real_t f117;
|
|
1218 real_t f118;
|
|
1219 real_t f119;
|
|
1220 real_t f120;
|
|
1221 real_t f121;
|
|
1222 real_t f122;
|
|
1223 real_t f123;
|
|
1224 real_t f124;
|
|
1225 real_t f125;
|
|
1226 real_t f126;
|
|
1227 real_t f127;
|
|
1228 real_t f128;
|
|
1229 real_t f129;
|
|
1230 real_t f130;
|
|
1231 real_t f131;
|
|
1232 real_t f132;
|
|
1233 real_t f133;
|
|
1234 real_t f134;
|
|
1235 real_t f135;
|
|
1236 real_t f136;
|
|
1237 real_t f137;
|
|
1238 real_t f138;
|
|
1239 real_t f139;
|
|
1240 real_t f140;
|
|
1241 real_t f141;
|
|
1242 real_t f142;
|
|
1243 real_t f143;
|
|
1244 real_t f144;
|
|
1245 real_t f145;
|
|
1246 real_t f146;
|
|
1247 real_t f147;
|
|
1248 real_t f148;
|
|
1249 real_t f149;
|
|
1250 real_t f150;
|
|
1251 real_t f151;
|
|
1252 real_t f152;
|
|
1253 real_t f153;
|
|
1254 real_t f154;
|
|
1255 real_t f155;
|
|
1256 real_t f156;
|
|
1257 real_t f157;
|
|
1258 real_t f158;
|
|
1259 real_t f159;
|
|
1260 real_t f160;
|
|
1261 real_t f161;
|
|
1262 real_t f162;
|
|
1263 real_t f163;
|
|
1264 real_t f164;
|
|
1265 real_t f165;
|
|
1266 real_t f166;
|
|
1267 real_t f167;
|
|
1268 real_t f168;
|
|
1269 real_t f169;
|
|
1270 real_t f170;
|
|
1271 real_t f171;
|
|
1272 real_t f172;
|
|
1273 real_t f173;
|
|
1274 real_t f174;
|
|
1275 real_t f175;
|
|
1276 real_t f176;
|
|
1277 real_t f177;
|
|
1278 real_t f178;
|
|
1279 real_t f179;
|
|
1280 real_t f180;
|
|
1281 real_t f181;
|
|
1282 real_t f182;
|
|
1283 real_t f183;
|
|
1284 real_t f184;
|
|
1285 real_t f185;
|
|
1286 real_t f186;
|
|
1287 real_t f187;
|
|
1288 real_t f188;
|
|
1289 real_t f189;
|
|
1290 real_t f190;
|
|
1291 real_t f191;
|
|
1292 real_t f192;
|
|
1293 real_t f193;
|
|
1294 real_t f194;
|
|
1295 real_t f195;
|
|
1296 real_t f196;
|
|
1297 real_t f197;
|
|
1298 real_t f198;
|
|
1299 real_t f199;
|
|
1300 real_t f200;
|
|
1301 real_t f201;
|
|
1302 real_t f202;
|
|
1303 real_t f203;
|
|
1304 real_t f204;
|
|
1305 real_t f205;
|
|
1306 real_t f206;
|
|
1307 real_t f207;
|
|
1308 real_t f208;
|
|
1309 real_t f209;
|
|
1310 real_t f210;
|
|
1311 real_t f211;
|
|
1312 real_t f212;
|
|
1313 real_t f213;
|
|
1314 real_t f214;
|
|
1315 real_t f215;
|
|
1316 real_t f216;
|
|
1317 real_t f217;
|
|
1318 real_t f218;
|
|
1319 real_t f219;
|
|
1320 real_t f220;
|
|
1321 real_t f221;
|
|
1322 real_t f222;
|
|
1323 real_t f223;
|
|
1324 real_t f224;
|
|
1325 real_t f225;
|
|
1326 real_t f226;
|
|
1327 real_t f227;
|
|
1328 real_t f228;
|
|
1329 real_t f229;
|
|
1330 real_t f230;
|
|
1331 real_t f231;
|
|
1332 real_t f232;
|
|
1333 real_t f233;
|
|
1334 real_t f234;
|
|
1335 real_t f235;
|
|
1336 real_t f236;
|
|
1337 real_t f237;
|
|
1338 real_t f238;
|
|
1339 real_t f239;
|
|
1340 real_t f240;
|
|
1341 real_t f241;
|
|
1342 real_t f242;
|
|
1343 real_t f243;
|
|
1344 real_t f244;
|
|
1345 real_t f245;
|
|
1346 real_t f246;
|
|
1347 real_t f247;
|
|
1348 real_t f248;
|
|
1349 real_t f249;
|
|
1350 real_t f250;
|
|
1351 real_t f251;
|
|
1352 real_t f252;
|
|
1353 real_t f253;
|
|
1354 real_t f254;
|
|
1355 real_t f255;
|
|
1356 real_t f256;
|
|
1357 real_t f257;
|
|
1358 real_t f258;
|
|
1359 real_t f259;
|
|
1360 real_t f260;
|
|
1361 real_t f261;
|
|
1362 real_t f262;
|
|
1363 real_t f263;
|
|
1364 real_t f264;
|
|
1365 real_t f265;
|
|
1366 real_t f266;
|
|
1367 real_t f267;
|
|
1368 real_t f268;
|
|
1369 real_t f269;
|
|
1370 real_t f270;
|
|
1371 real_t f271;
|
|
1372 real_t f272;
|
|
1373 real_t f273;
|
|
1374 real_t f274;
|
|
1375 real_t f275;
|
|
1376 real_t f276;
|
|
1377 real_t f277;
|
|
1378 real_t f278;
|
|
1379 real_t f279;
|
|
1380 real_t f280;
|
|
1381 real_t f281;
|
|
1382 real_t f282;
|
|
1383 real_t f283;
|
|
1384 real_t f284;
|
|
1385 real_t f285;
|
|
1386 real_t f286;
|
|
1387 real_t f287;
|
|
1388 real_t f288;
|
|
1389 real_t f289;
|
|
1390 real_t f290;
|
|
1391 real_t f291;
|
|
1392 real_t f292;
|
|
1393 real_t f293;
|
|
1394 real_t f294;
|
|
1395 real_t f295;
|
|
1396 real_t f296;
|
|
1397 real_t f297;
|
|
1398 real_t f298;
|
|
1399 real_t f299;
|
|
1400 real_t f300;
|
|
1401 real_t f301;
|
|
1402 real_t f302;
|
|
1403 real_t f303;
|
|
1404 real_t f304;
|
|
1405 real_t f305;
|
|
1406 real_t f306;
|
|
1407 real_t f307;
|
|
1408 real_t f308;
|
|
1409 real_t f309;
|
|
1410 real_t f310;
|
|
1411 real_t f311;
|
|
1412 real_t f312;
|
|
1413 real_t f313;
|
|
1414 real_t f314;
|
|
1415 real_t f315;
|
|
1416 real_t f316;
|
|
1417 real_t f317;
|
|
1418 real_t f318;
|
|
1419 real_t f319;
|
|
1420 real_t f320;
|
|
1421 real_t f321;
|
|
1422 real_t f322;
|
|
1423 real_t f323;
|
|
1424 real_t f324;
|
|
1425 real_t f325;
|
|
1426 real_t f326;
|
|
1427 real_t f327;
|
|
1428 real_t f328;
|
|
1429 real_t f329;
|
|
1430 real_t f330;
|
|
1431 real_t f331;
|
|
1432 real_t f332;
|
|
1433 real_t f333;
|
|
1434 real_t f334;
|
|
1435 real_t f335;
|
|
1436 real_t f336;
|
|
1437 real_t f337;
|
|
1438 real_t f338;
|
|
1439 real_t f339;
|
|
1440 real_t f340;
|
|
1441 real_t f341;
|
|
1442 real_t f342;
|
|
1443 real_t f343;
|
|
1444 real_t f344;
|
|
1445 real_t f345;
|
|
1446 real_t f346;
|
|
1447 real_t f347;
|
|
1448 real_t f348;
|
|
1449 real_t f349;
|
|
1450 real_t f350;
|
|
1451 real_t f351;
|
|
1452 real_t f352;
|
|
1453 real_t f353;
|
|
1454 real_t f354;
|
|
1455 real_t f355;
|
|
1456 real_t f356;
|
|
1457 real_t f357;
|
|
1458 real_t f358;
|
|
1459 real_t f359;
|
|
1460 real_t f360;
|
|
1461 real_t f361;
|
|
1462 real_t f362;
|
|
1463 real_t f363;
|
|
1464 real_t f364;
|
|
1465 real_t f365;
|
|
1466 real_t f366;
|
|
1467 real_t f367;
|
|
1468 real_t f368;
|
|
1469 real_t f369;
|
|
1470 real_t f370;
|
|
1471 real_t f371;
|
|
1472 real_t f372;
|
|
1473 real_t f373;
|
|
1474 real_t f374;
|
|
1475 real_t f375;
|
|
1476 real_t f376;
|
|
1477 real_t f377;
|
|
1478 real_t f378;
|
|
1479 real_t f379;
|
|
1480 real_t f380;
|
|
1481 real_t f381;
|
|
1482 real_t f382;
|
|
1483 real_t f383;
|
|
1484 real_t f384;
|
|
1485 real_t f385;
|
|
1486 real_t f386;
|
|
1487 real_t f387;
|
|
1488 real_t f388;
|
|
1489 real_t f389;
|
|
1490 real_t f390;
|
|
1491 real_t f391;
|
|
1492 real_t f392;
|
|
1493 real_t f393;
|
|
1494 real_t f394;
|
|
1495 real_t f395;
|
|
1496 real_t f396;
|
|
1497 real_t f397;
|
|
1498 real_t f398;
|
|
1499 real_t f399;
|
|
1500 real_t f400;
|
|
1501 real_t f401;
|
|
1502 real_t f402;
|
|
1503 real_t f403;
|
|
1504 real_t f404;
|
|
1505 real_t f405;
|
|
1506 real_t f406;
|
|
1507 real_t f407;
|
|
1508 real_t f408;
|
|
1509 real_t f409;
|
|
1510 real_t f410;
|
|
1511 real_t f411;
|
|
1512 real_t f412;
|
|
1513 real_t f413;
|
|
1514 real_t f414;
|
|
1515 real_t f415;
|
|
1516 real_t f416;
|
|
1517 real_t f417;
|
|
1518 real_t f418;
|
|
1519 real_t f419;
|
|
1520 real_t f420;
|
|
1521 real_t f421;
|
|
1522 real_t f422;
|
|
1523 real_t f423;
|
|
1524 real_t f424;
|
|
1525 real_t f425;
|
|
1526 real_t f426;
|
|
1527 real_t f427;
|
|
1528 real_t f428;
|
|
1529 real_t f429;
|
|
1530 real_t f430;
|
|
1531 real_t f431;
|
|
1532 real_t f432;
|
|
1533 real_t f433;
|
|
1534 real_t f434;
|
|
1535 real_t f435;
|
|
1536 real_t f436;
|
|
1537 real_t f437;
|
|
1538 real_t f438;
|
|
1539 real_t f439;
|
|
1540 real_t f440;
|
|
1541 real_t f441;
|
|
1542 real_t f442;
|
|
1543 real_t f443;
|
|
1544 real_t f444;
|
|
1545 real_t f445;
|
|
1546 real_t f446;
|
|
1547 real_t f447;
|
|
1548 real_t f448;
|
|
1549 real_t f449;
|
|
1550 real_t f450;
|
|
1551 real_t f451;
|
|
1552 real_t f452;
|
|
1553 real_t f453;
|
|
1554 real_t f454;
|
|
1555 real_t f455;
|
|
1556 real_t f456;
|
|
1557 real_t f457;
|
|
1558 real_t f458;
|
|
1559 real_t f459;
|
|
1560 real_t f460;
|
|
1561 real_t f461;
|
|
1562 real_t f462;
|
|
1563 real_t f463;
|
|
1564 real_t f464;
|
|
1565 real_t f465;
|
|
1566 real_t f466;
|
|
1567 real_t f467;
|
|
1568 real_t f468;
|
|
1569 real_t f469;
|
|
1570 real_t f470;
|
|
1571 real_t f471;
|
|
1572 real_t f472;
|
|
1573 real_t f473;
|
|
1574 real_t f474;
|
|
1575 real_t f475;
|
|
1576 real_t f476;
|
|
1577 real_t f477;
|
|
1578 real_t f478;
|
|
1579 real_t f479;
|
|
1580 real_t f480;
|
|
1581 real_t f481;
|
|
1582 real_t f482;
|
|
1583 real_t f483;
|
|
1584 real_t f484;
|
|
1585 real_t f485;
|
|
1586 real_t f486;
|
|
1587 real_t f487;
|
|
1588 real_t f488;
|
|
1589 real_t f489;
|
|
1590 real_t f490;
|
|
1591 real_t f491;
|
|
1592 real_t f492;
|
|
1593 real_t f493;
|
|
1594 real_t f494;
|
|
1595 real_t f495;
|
|
1596 real_t f496;
|
|
1597 real_t f497;
|
|
1598 real_t f498;
|
|
1599 real_t f499;
|
|
1600 real_t f500;
|
|
1601 real_t f501;
|
|
1602 real_t f502;
|
|
1603 real_t f503;
|
|
1604 real_t f504;
|
|
1605 real_t f505;
|
|
1606 real_t f506;
|
|
1607 real_t f507;
|
|
1608 real_t f508;
|
|
1609 real_t f509;
|
|
1610 real_t f510;
|
|
1611 real_t f511;
|
|
1612 real_t f512;
|
|
1613 real_t f513;
|
|
1614 real_t f514;
|
|
1615 real_t f515;
|
|
1616 real_t f516;
|
|
1617 real_t f517;
|
|
1618 real_t f518;
|
|
1619 real_t f519;
|
|
1620 real_t f520;
|
|
1621 real_t f521;
|
|
1622 real_t f522;
|
|
1623 real_t f523;
|
|
1624 real_t f524;
|
|
1625 real_t f525;
|
|
1626 real_t f526;
|
|
1627 real_t f527;
|
|
1628 real_t f528;
|
|
1629 real_t f529;
|
|
1630 real_t f530;
|
|
1631 real_t f531;
|
|
1632 real_t f532;
|
|
1633 real_t f533;
|
|
1634 real_t f534;
|
|
1635 real_t f535;
|
|
1636 real_t f536;
|
|
1637 real_t f537;
|
|
1638 real_t f538;
|
|
1639 real_t f539;
|
|
1640 real_t f540;
|
|
1641 real_t f541;
|
|
1642 real_t f542;
|
|
1643 real_t f543;
|
|
1644 real_t f544;
|
|
1645 real_t f545;
|
|
1646 real_t f546;
|
|
1647 real_t f547;
|
|
1648 real_t f548;
|
|
1649 real_t f549;
|
|
1650 real_t f550;
|
|
1651 real_t f551;
|
|
1652 real_t f552;
|
|
1653 real_t f553;
|
|
1654 real_t f554;
|
|
1655 real_t f555;
|
|
1656 real_t f556;
|
|
1657 real_t f557;
|
|
1658 real_t f558;
|
|
1659 real_t f559;
|
|
1660 real_t f560;
|
|
1661 real_t f561;
|
|
1662 real_t f562;
|
|
1663 real_t f563;
|
|
1664 real_t f564;
|
|
1665 real_t f565;
|
|
1666 real_t f566;
|
|
1667 real_t f567;
|
|
1668 real_t f568;
|
|
1669 real_t f569;
|
|
1670 real_t f570;
|
|
1671 real_t f571;
|
|
1672 real_t f572;
|
|
1673 real_t f573;
|
|
1674 real_t f574;
|
|
1675 real_t f575;
|
|
1676 real_t f576;
|
|
1677 real_t f577;
|
|
1678 real_t f578;
|
|
1679 real_t f579;
|
|
1680 real_t f580;
|
|
1681 real_t f581;
|
|
1682 real_t f582;
|
|
1683 real_t f583;
|
|
1684 real_t f584;
|
|
1685 real_t f585;
|
|
1686 real_t f586;
|
|
1687 real_t f587;
|
|
1688 real_t f588;
|
|
1689 real_t f589;
|
|
1690 real_t f590;
|
|
1691 real_t f591;
|
|
1692 real_t f592;
|
|
1693 real_t f593;
|
|
1694 real_t f594;
|
|
1695 real_t f595;
|
|
1696 real_t f596;
|
|
1697 real_t f597;
|
|
1698 real_t f598;
|
|
1699 real_t f599;
|
|
1700 real_t f600;
|
|
1701 real_t f601;
|
|
1702 real_t f602;
|
|
1703 real_t f603;
|
|
1704 real_t f604;
|
|
1705 real_t f605;
|
|
1706 real_t f606;
|
|
1707 real_t f607;
|
|
1708 real_t f608;
|
|
1709 real_t f609;
|
|
1710 real_t f610;
|
|
1711 real_t f611;
|
|
1712 real_t f612;
|
|
1713 real_t f613;
|
|
1714 real_t f614;
|
|
1715 real_t f615;
|
|
1716 real_t f618;
|
|
1717 real_t f619;
|
|
1718 real_t f620;
|
|
1719 real_t f621;
|
|
1720 real_t f624;
|
|
1721 real_t f625;
|
|
1722 real_t f626;
|
|
1723 real_t f627;
|
|
1724 real_t f630;
|
|
1725 real_t f631;
|
|
1726 real_t f632;
|
|
1727 real_t f633;
|
|
1728 real_t f636;
|
|
1729 real_t f637;
|
|
1730 real_t f638;
|
|
1731 real_t f639;
|
|
1732 real_t f642;
|
|
1733 real_t f643;
|
|
1734 real_t f644;
|
|
1735 real_t f645;
|
|
1736 real_t f648;
|
|
1737 real_t f649;
|
|
1738 real_t f650;
|
|
1739 real_t f651;
|
|
1740 real_t f654;
|
|
1741 real_t f655;
|
|
1742 real_t f656;
|
|
1743 real_t f657;
|
|
1744 real_t f660;
|
|
1745 real_t f661;
|
|
1746 real_t f662;
|
|
1747 real_t f663;
|
|
1748 real_t f666;
|
|
1749 real_t f667;
|
|
1750 real_t f668;
|
|
1751 real_t f669;
|
|
1752 real_t f672;
|
|
1753 real_t f673;
|
|
1754 real_t f674;
|
|
1755 real_t f675;
|
|
1756 real_t f678;
|
|
1757 real_t f679;
|
|
1758 real_t f680;
|
|
1759 real_t f681;
|
|
1760 real_t f684;
|
|
1761 real_t f685;
|
|
1762 real_t f686;
|
|
1763 real_t f687;
|
|
1764 real_t f690;
|
|
1765 real_t f691;
|
|
1766 real_t f692;
|
|
1767 real_t f693;
|
|
1768 real_t f696;
|
|
1769 real_t f697;
|
|
1770 real_t f698;
|
|
1771 real_t f699;
|
|
1772 real_t f702;
|
|
1773 real_t f703;
|
|
1774 real_t f704;
|
|
1775 real_t f705;
|
|
1776 real_t f708;
|
|
1777 real_t f709;
|
|
1778 real_t f710;
|
|
1779 real_t f711;
|
|
1780 real_t f714;
|
|
1781 real_t f715;
|
|
1782 real_t f716;
|
|
1783 real_t f717;
|
|
1784 real_t f720;
|
|
1785 real_t f721;
|
|
1786 real_t f722;
|
|
1787 real_t f723;
|
|
1788 real_t f726;
|
|
1789 real_t f727;
|
|
1790 real_t f728;
|
|
1791 real_t f729;
|
|
1792 real_t f732;
|
|
1793 real_t f733;
|
|
1794 real_t f734;
|
|
1795 real_t f735;
|
|
1796 real_t f738;
|
|
1797 real_t f739;
|
|
1798 real_t f740;
|
|
1799 real_t f741;
|
|
1800 real_t f744;
|
|
1801 real_t f745;
|
|
1802 real_t f746;
|
|
1803 real_t f747;
|
|
1804 real_t f750;
|
|
1805 real_t f751;
|
|
1806 real_t f752;
|
|
1807 real_t f753;
|
|
1808 real_t f756;
|
|
1809 real_t f757;
|
|
1810 real_t f758;
|
|
1811 real_t f759;
|
|
1812 real_t f762;
|
|
1813 real_t f763;
|
|
1814 real_t f764;
|
|
1815 real_t f765;
|
|
1816 real_t f768;
|
|
1817 real_t f769;
|
|
1818 real_t f770;
|
|
1819 real_t f771;
|
|
1820 real_t f774;
|
|
1821 real_t f775;
|
|
1822 real_t f776;
|
|
1823 real_t f777;
|
|
1824 real_t f780;
|
|
1825 real_t f781;
|
|
1826 real_t f782;
|
|
1827 real_t f783;
|
|
1828 real_t f786;
|
|
1829 real_t f787;
|
|
1830 real_t f788;
|
|
1831 real_t f789;
|
|
1832 real_t f792;
|
|
1833 real_t f793;
|
|
1834 real_t f794;
|
|
1835 real_t f795;
|
|
1836 real_t f798;
|
|
1837 real_t f799;
|
|
1838 real_t f800;
|
|
1839 real_t f801;
|
|
1840 static real_t t2[64];
|
|
1841
|
|
1842 t2[0] = x[0];
|
|
1843 for (i0=0; i0<31; i0++)
|
|
1844 {
|
|
1845 t2[2*i0+1] = x[2*i0+1] - x[2*i0+2];
|
|
1846 t2[2*i0+2] = x[2*i0+1] + x[2*i0+2];
|
|
1847 }
|
|
1848 t2[63] = x[63];
|
|
1849 f2 = 0.7071067811865476 * t2[32];
|
|
1850 f3 = x[0] - f2;
|
|
1851 f4 = x[0] + f2;
|
|
1852 f5 = t2[16] + t2[48];
|
|
1853 f6 = 1.3065629648763766 * t2[16];
|
|
1854 f7 = (-0.9238795325112866) * f5;
|
|
1855 f8 = (-0.5411961001461967) * t2[48];
|
|
1856 f9 = f6 + f7;
|
|
1857 f10 = f8 - f7;
|
|
1858 f11 = f4 - f10;
|
|
1859 f12 = f4 + f10;
|
|
1860 f13 = f3 - f9;
|
|
1861 f14 = f3 + f9;
|
|
1862 f15 = t2[8] + t2[56];
|
|
1863 f16 = 1.1758756024193588 * t2[8];
|
|
1864 f17 = (-0.9807852804032304) * f15;
|
|
1865 f18 = (-0.7856949583871021) * t2[56];
|
|
1866 f19 = f16 + f17;
|
|
1867 f20 = f18 - f17;
|
|
1868 f21 = t2[24] + t2[40];
|
|
1869 f22 = 1.3870398453221473 * t2[24];
|
|
1870 f23 = (-0.8314696123025455) * f21;
|
|
1871 f24 = (-0.2758993792829436) * t2[40];
|
|
1872 f25 = f22 + f23;
|
|
1873 f26 = f24 - f23;
|
|
1874 f27 = f20 - f26;
|
|
1875 f28 = f20 + f26;
|
|
1876 f29 = 0.7071067811865476 * f27;
|
|
1877 f30 = f19 - f25;
|
|
1878 f31 = f19 + f25;
|
|
1879 f32 = 0.7071067811865476 * f31;
|
|
1880 f33 = f29 - f32;
|
|
1881 f34 = f29 + f32;
|
|
1882 f35 = f12 - f28;
|
|
1883 f36 = f12 + f28;
|
|
1884 f37 = f14 - f34;
|
|
1885 f38 = f14 + f34;
|
|
1886 f39 = f13 - f33;
|
|
1887 f40 = f13 + f33;
|
|
1888 f41 = f11 - f30;
|
|
1889 f42 = f11 + f30;
|
|
1890 f43 = t2[4] + t2[60];
|
|
1891 f44 = 1.0932018670017569 * t2[4];
|
|
1892 f45 = (-0.9951847266721969) * f43;
|
|
1893 f46 = (-0.8971675863426368) * t2[60];
|
|
1894 f47 = f44 + f45;
|
|
1895 f48 = f46 - f45;
|
|
1896 f49 = t2[12] + t2[52];
|
|
1897 f50 = 1.2472250129866711 * t2[12];
|
|
1898 f51 = (-0.9569403357322089) * f49;
|
|
1899 f52 = (-0.6666556584777469) * t2[52];
|
|
1900 f53 = f50 + f51;
|
|
1901 f54 = f52 - f51;
|
|
1902 f55 = t2[20] + t2[44];
|
|
1903 f56 = 1.3533180011743526 * t2[20];
|
|
1904 f57 = (-0.8819212643483551) * f55;
|
|
1905 f58 = (-0.4105245275223575) * t2[44];
|
|
1906 f59 = f56 + f57;
|
|
1907 f60 = f58 - f57;
|
|
1908 f61 = t2[28] + t2[36];
|
|
1909 f62 = 1.4074037375263826 * t2[28];
|
|
1910 f63 = (-0.7730104533627369) * f61;
|
|
1911 f64 = (-0.1386171691990913) * t2[36];
|
|
1912 f65 = f62 + f63;
|
|
1913 f66 = f64 - f63;
|
|
1914 f67 = f48 - f66;
|
|
1915 f68 = f48 + f66;
|
|
1916 f69 = f54 - f60;
|
|
1917 f70 = f54 + f60;
|
|
1918 f71 = f68 - f70;
|
|
1919 f72 = f68 + f70;
|
|
1920 f73 = 0.7071067811865476 * f71;
|
|
1921 f74 = f67 + f69;
|
|
1922 f75 = 1.3065629648763766 * f67;
|
|
1923 f76 = (-0.9238795325112866) * f74;
|
|
1924 f77 = (-0.5411961001461967) * f69;
|
|
1925 f78 = f75 + f76;
|
|
1926 f79 = f77 - f76;
|
|
1927 f80 = f47 - f65;
|
|
1928 f81 = f47 + f65;
|
|
1929 f82 = f53 - f59;
|
|
1930 f83 = f53 + f59;
|
|
1931 f84 = f81 + f83;
|
|
1932 f85 = 1.3065629648763770 * f81;
|
|
1933 f86 = (-0.3826834323650904) * f84;
|
|
1934 f87 = 0.5411961001461961 * f83;
|
|
1935 f88 = f85 + f86;
|
|
1936 f89 = f87 - f86;
|
|
1937 f90 = f80 - f82;
|
|
1938 f91 = f80 + f82;
|
|
1939 f92 = 0.7071067811865476 * f91;
|
|
1940 f93 = f79 - f89;
|
|
1941 f94 = f79 + f89;
|
|
1942 f95 = f73 - f92;
|
|
1943 f96 = f73 + f92;
|
|
1944 f97 = f78 - f88;
|
|
1945 f98 = f78 + f88;
|
|
1946 f99 = f36 - f72;
|
|
1947 f100 = f36 + f72;
|
|
1948 f101 = f38 - f94;
|
|
1949 f102 = f38 + f94;
|
|
1950 f103 = f40 - f93;
|
|
1951 f104 = f40 + f93;
|
|
1952 f105 = f42 - f96;
|
|
1953 f106 = f42 + f96;
|
|
1954 f107 = f41 - f95;
|
|
1955 f108 = f41 + f95;
|
|
1956 f109 = f39 - f98;
|
|
1957 f110 = f39 + f98;
|
|
1958 f111 = f37 - f97;
|
|
1959 f112 = f37 + f97;
|
|
1960 f113 = f35 - f90;
|
|
1961 f114 = f35 + f90;
|
|
1962 f115 = t2[2] + t2[62];
|
|
1963 f116 = 1.0478631305325901 * t2[2];
|
|
1964 f117 = (-0.9987954562051724) * f115;
|
|
1965 f118 = (-0.9497277818777548) * t2[62];
|
|
1966 f119 = f116 + f117;
|
|
1967 f120 = f118 - f117;
|
|
1968 f121 = t2[10] + t2[54];
|
|
1969 f122 = 1.2130114330978077 * t2[10];
|
|
1970 f123 = (-0.9700312531945440) * f121;
|
|
1971 f124 = (-0.7270510732912803) * t2[54];
|
|
1972 f125 = f122 + f123;
|
|
1973 f126 = f124 - f123;
|
|
1974 f127 = t2[18] + t2[46];
|
|
1975 f128 = 1.3315443865537255 * t2[18];
|
|
1976 f129 = (-0.9039892931234433) * f127;
|
|
1977 f130 = (-0.4764341996931612) * t2[46];
|
|
1978 f131 = f128 + f129;
|
|
1979 f132 = f130 - f129;
|
|
1980 f133 = t2[26] + t2[38];
|
|
1981 f134 = 1.3989068359730781 * t2[26];
|
|
1982 f135 = (-0.8032075314806453) * f133;
|
|
1983 f136 = (-0.2075082269882124) * t2[38];
|
|
1984 f137 = f134 + f135;
|
|
1985 f138 = f136 - f135;
|
|
1986 f139 = t2[34] + t2[30];
|
|
1987 f140 = 1.4125100802019777 * t2[34];
|
|
1988 f141 = (-0.6715589548470187) * f139;
|
|
1989 f142 = 0.0693921705079402 * t2[30];
|
|
1990 f143 = f140 + f141;
|
|
1991 f144 = f142 - f141;
|
|
1992 f145 = t2[42] + t2[22];
|
|
1993 f146 = 1.3718313541934939 * t2[42];
|
|
1994 f147 = (-0.5141027441932219) * f145;
|
|
1995 f148 = 0.3436258658070501 * t2[22];
|
|
1996 f149 = f146 + f147;
|
|
1997 f150 = f148 - f147;
|
|
1998 f151 = t2[50] + t2[14];
|
|
1999 f152 = 1.2784339185752409 * t2[50];
|
|
2000 f153 = (-0.3368898533922200) * f151;
|
|
2001 f154 = 0.6046542117908008 * t2[14];
|
|
2002 f155 = f152 + f153;
|
|
2003 f156 = f154 - f153;
|
|
2004 f157 = t2[58] + t2[6];
|
|
2005 f158 = 1.1359069844201433 * t2[58];
|
|
2006 f159 = (-0.1467304744553624) * f157;
|
|
2007 f160 = 0.8424460355094185 * t2[6];
|
|
2008 f161 = f158 + f159;
|
|
2009 f162 = f160 - f159;
|
|
2010 f163 = f120 - f144;
|
|
2011 f164 = f120 + f144;
|
|
2012 f165 = f119 - f143;
|
|
2013 f166 = f119 + f143;
|
|
2014 f167 = f126 - f150;
|
|
2015 f168 = f126 + f150;
|
|
2016 f169 = f125 - f149;
|
|
2017 f170 = f125 + f149;
|
|
2018 f171 = f132 - f156;
|
|
2019 f172 = f132 + f156;
|
|
2020 f173 = f131 - f155;
|
|
2021 f174 = f131 + f155;
|
|
2022 f175 = f138 - f162;
|
|
2023 f176 = f138 + f162;
|
|
2024 f177 = f137 - f161;
|
|
2025 f178 = f137 + f161;
|
|
2026 f179 = f163 + f165;
|
|
2027 f180 = 1.1758756024193588 * f163;
|
|
2028 f181 = (-0.9807852804032304) * f179;
|
|
2029 f182 = (-0.7856949583871021) * f165;
|
|
2030 f183 = f180 + f181;
|
|
2031 f184 = f182 - f181;
|
|
2032 f185 = f167 + f169;
|
|
2033 f186 = 1.3870398453221475 * f167;
|
|
2034 f187 = (-0.5555702330196022) * f185;
|
|
2035 f188 = 0.2758993792829431 * f169;
|
|
2036 f189 = f186 + f187;
|
|
2037 f190 = f188 - f187;
|
|
2038 f191 = f171 + f173;
|
|
2039 f192 = 0.7856949583871022 * f171;
|
|
2040 f193 = 0.1950903220161283 * f191;
|
|
2041 f194 = 1.1758756024193586 * f173;
|
|
2042 f195 = f192 + f193;
|
|
2043 f196 = f194 - f193;
|
|
2044 f197 = f175 + f177;
|
|
2045 f198 = (-0.2758993792829430) * f175;
|
|
2046 f199 = 0.8314696123025452 * f197;
|
|
2047 f200 = 1.3870398453221475 * f177;
|
|
2048 f201 = f198 + f199;
|
|
2049 f202 = f200 - f199;
|
|
2050 f203 = f164 - f172;
|
|
2051 f204 = f164 + f172;
|
|
2052 f205 = f166 - f174;
|
|
2053 f206 = f166 + f174;
|
|
2054 f207 = f168 - f176;
|
|
2055 f208 = f168 + f176;
|
|
2056 f209 = f170 - f178;
|
|
2057 f210 = f170 + f178;
|
|
2058 f211 = f184 - f196;
|
|
2059 f212 = f184 + f196;
|
|
2060 f213 = f183 - f195;
|
|
2061 f214 = f183 + f195;
|
|
2062 f215 = f190 - f202;
|
|
2063 f216 = f190 + f202;
|
|
2064 f217 = f189 - f201;
|
|
2065 f218 = f189 + f201;
|
|
2066 f219 = f203 + f205;
|
|
2067 f220 = 1.3065629648763766 * f203;
|
|
2068 f221 = (-0.9238795325112866) * f219;
|
|
2069 f222 = (-0.5411961001461967) * f205;
|
|
2070 f223 = f220 + f221;
|
|
2071 f224 = f222 - f221;
|
|
2072 f225 = f207 + f209;
|
|
2073 f226 = 0.5411961001461969 * f207;
|
|
2074 f227 = 0.3826834323650898 * f225;
|
|
2075 f228 = 1.3065629648763766 * f209;
|
|
2076 f229 = f226 + f227;
|
|
2077 f230 = f228 - f227;
|
|
2078 f231 = f211 + f213;
|
|
2079 f232 = 1.3065629648763766 * f211;
|
|
2080 f233 = (-0.9238795325112866) * f231;
|
|
2081 f234 = (-0.5411961001461967) * f213;
|
|
2082 f235 = f232 + f233;
|
|
2083 f236 = f234 - f233;
|
|
2084 f237 = f215 + f217;
|
|
2085 f238 = 0.5411961001461969 * f215;
|
|
2086 f239 = 0.3826834323650898 * f237;
|
|
2087 f240 = 1.3065629648763766 * f217;
|
|
2088 f241 = f238 + f239;
|
|
2089 f242 = f240 - f239;
|
|
2090 f243 = f204 - f208;
|
|
2091 f244 = f204 + f208;
|
|
2092 f245 = f206 - f210;
|
|
2093 f246 = f206 + f210;
|
|
2094 f247 = f224 - f230;
|
|
2095 f248 = f224 + f230;
|
|
2096 f249 = f223 - f229;
|
|
2097 f250 = f223 + f229;
|
|
2098 f251 = f212 - f216;
|
|
2099 f252 = f212 + f216;
|
|
2100 f253 = f214 - f218;
|
|
2101 f254 = f214 + f218;
|
|
2102 f255 = f236 - f242;
|
|
2103 f256 = f236 + f242;
|
|
2104 f257 = f235 - f241;
|
|
2105 f258 = f235 + f241;
|
|
2106 f259 = f243 - f245;
|
|
2107 f260 = f243 + f245;
|
|
2108 f261 = 0.7071067811865474 * f259;
|
|
2109 f262 = 0.7071067811865474 * f260;
|
|
2110 f263 = f247 - f249;
|
|
2111 f264 = f247 + f249;
|
|
2112 f265 = 0.7071067811865474 * f263;
|
|
2113 f266 = 0.7071067811865474 * f264;
|
|
2114 f267 = f251 - f253;
|
|
2115 f268 = f251 + f253;
|
|
2116 f269 = 0.7071067811865474 * f267;
|
|
2117 f270 = 0.7071067811865474 * f268;
|
|
2118 f271 = f255 - f257;
|
|
2119 f272 = f255 + f257;
|
|
2120 f273 = 0.7071067811865474 * f271;
|
|
2121 f274 = 0.7071067811865474 * f272;
|
|
2122 f275 = f100 - f244;
|
|
2123 f276 = f100 + f244;
|
|
2124 f277 = f102 - f252;
|
|
2125 f278 = f102 + f252;
|
|
2126 f279 = f104 - f256;
|
|
2127 f280 = f104 + f256;
|
|
2128 f281 = f106 - f248;
|
|
2129 f282 = f106 + f248;
|
|
2130 f283 = f108 - f266;
|
|
2131 f284 = f108 + f266;
|
|
2132 f285 = f110 - f274;
|
|
2133 f286 = f110 + f274;
|
|
2134 f287 = f112 - f270;
|
|
2135 f288 = f112 + f270;
|
|
2136 f289 = f114 - f262;
|
|
2137 f290 = f114 + f262;
|
|
2138 f291 = f113 - f261;
|
|
2139 f292 = f113 + f261;
|
|
2140 f293 = f111 - f269;
|
|
2141 f294 = f111 + f269;
|
|
2142 f295 = f109 - f273;
|
|
2143 f296 = f109 + f273;
|
|
2144 f297 = f107 - f265;
|
|
2145 f298 = f107 + f265;
|
|
2146 f299 = f105 - f250;
|
|
2147 f300 = f105 + f250;
|
|
2148 f301 = f103 - f258;
|
|
2149 f302 = f103 + f258;
|
|
2150 f303 = f101 - f254;
|
|
2151 f304 = f101 + f254;
|
|
2152 f305 = f99 - f246;
|
|
2153 f306 = f99 + f246;
|
|
2154 f307 = t2[1] - t2[61];
|
|
2155 f308 = 1.0478631305325901 * t2[1];
|
|
2156 f309 = (-0.9987954562051724) * f307;
|
|
2157 f310 = (-0.9497277818777548) * t2[61];
|
|
2158 f311 = f308 + f309;
|
|
2159 f312 = f309 + f310;
|
|
2160 f313 = t2[9] - t2[53];
|
|
2161 f314 = 1.2130114330978077 * t2[9];
|
|
2162 f315 = (-0.9700312531945440) * f313;
|
|
2163 f316 = (-0.7270510732912803) * t2[53];
|
|
2164 f317 = f314 + f315;
|
|
2165 f318 = f315 + f316;
|
|
2166 f319 = t2[17] - t2[45];
|
|
2167 f320 = 1.3315443865537255 * t2[17];
|
|
2168 f321 = (-0.9039892931234433) * f319;
|
|
2169 f322 = (-0.4764341996931612) * t2[45];
|
|
2170 f323 = f320 + f321;
|
|
2171 f324 = f321 + f322;
|
|
2172 f325 = t2[25] - t2[37];
|
|
2173 f326 = 1.3989068359730781 * t2[25];
|
|
2174 f327 = (-0.8032075314806453) * f325;
|
|
2175 f328 = (-0.2075082269882124) * t2[37];
|
|
2176 f329 = f326 + f327;
|
|
2177 f330 = f327 + f328;
|
|
2178 f331 = t2[33] - t2[29];
|
|
2179 f332 = 1.4125100802019777 * t2[33];
|
|
2180 f333 = (-0.6715589548470187) * f331;
|
|
2181 f334 = 0.0693921705079402 * t2[29];
|
|
2182 f335 = f332 + f333;
|
|
2183 f336 = f333 + f334;
|
|
2184 f337 = t2[41] - t2[21];
|
|
2185 f338 = 1.3718313541934939 * t2[41];
|
|
2186 f339 = (-0.5141027441932219) * f337;
|
|
2187 f340 = 0.3436258658070501 * t2[21];
|
|
2188 f341 = f338 + f339;
|
|
2189 f342 = f339 + f340;
|
|
2190 f343 = t2[49] - t2[13];
|
|
2191 f344 = 1.2784339185752409 * t2[49];
|
|
2192 f345 = (-0.3368898533922200) * f343;
|
|
2193 f346 = 0.6046542117908008 * t2[13];
|
|
2194 f347 = f344 + f345;
|
|
2195 f348 = f345 + f346;
|
|
2196 f349 = t2[57] - t2[5];
|
|
2197 f350 = 1.1359069844201433 * t2[57];
|
|
2198 f351 = (-0.1467304744553624) * f349;
|
|
2199 f352 = 0.8424460355094185 * t2[5];
|
|
2200 f353 = f350 + f351;
|
|
2201 f354 = f351 + f352;
|
|
2202 f355 = f336 - f312;
|
|
2203 f356 = f312 + f336;
|
|
2204 f357 = f311 - f335;
|
|
2205 f358 = f311 + f335;
|
|
2206 f359 = f342 - f318;
|
|
2207 f360 = f318 + f342;
|
|
2208 f361 = f317 - f341;
|
|
2209 f362 = f317 + f341;
|
|
2210 f363 = f348 - f324;
|
|
2211 f364 = f324 + f348;
|
|
2212 f365 = f323 - f347;
|
|
2213 f366 = f323 + f347;
|
|
2214 f367 = f354 - f330;
|
|
2215 f368 = f330 + f354;
|
|
2216 f369 = f329 - f353;
|
|
2217 f370 = f329 + f353;
|
|
2218 f371 = f355 + f357;
|
|
2219 f372 = 1.1758756024193588 * f355;
|
|
2220 f373 = (-0.9807852804032304) * f371;
|
|
2221 f374 = (-0.7856949583871021) * f357;
|
|
2222 f375 = f372 + f373;
|
|
2223 f376 = f374 - f373;
|
|
2224 f377 = f359 + f361;
|
|
2225 f378 = 1.3870398453221475 * f359;
|
|
2226 f379 = (-0.5555702330196022) * f377;
|
|
2227 f380 = 0.2758993792829431 * f361;
|
|
2228 f381 = f378 + f379;
|
|
2229 f382 = f380 - f379;
|
|
2230 f383 = f363 + f365;
|
|
2231 f384 = 0.7856949583871022 * f363;
|
|
2232 f385 = 0.1950903220161283 * f383;
|
|
2233 f386 = 1.1758756024193586 * f365;
|
|
2234 f387 = f384 + f385;
|
|
2235 f388 = f386 - f385;
|
|
2236 f389 = f367 + f369;
|
|
2237 f390 = (-0.2758993792829430) * f367;
|
|
2238 f391 = 0.8314696123025452 * f389;
|
|
2239 f392 = 1.3870398453221475 * f369;
|
|
2240 f393 = f390 + f391;
|
|
2241 f394 = f392 - f391;
|
|
2242 f395 = f364 - f356;
|
|
2243 f396 = f356 + f364;
|
|
2244 f397 = f358 - f366;
|
|
2245 f398 = f358 + f366;
|
|
2246 f399 = f368 - f360;
|
|
2247 f400 = f360 + f368;
|
|
2248 f401 = f362 - f370;
|
|
2249 f402 = f362 + f370;
|
|
2250 f403 = f376 - f388;
|
|
2251 f404 = f376 + f388;
|
|
2252 f405 = f375 - f387;
|
|
2253 f406 = f375 + f387;
|
|
2254 f407 = f382 - f394;
|
|
2255 f408 = f382 + f394;
|
|
2256 f409 = f381 - f393;
|
|
2257 f410 = f381 + f393;
|
|
2258 f411 = f395 + f397;
|
|
2259 f412 = 1.3065629648763766 * f395;
|
|
2260 f413 = (-0.9238795325112866) * f411;
|
|
2261 f414 = (-0.5411961001461967) * f397;
|
|
2262 f415 = f412 + f413;
|
|
2263 f416 = f414 - f413;
|
|
2264 f417 = f399 + f401;
|
|
2265 f418 = 0.5411961001461969 * f399;
|
|
2266 f419 = 0.3826834323650898 * f417;
|
|
2267 f420 = 1.3065629648763766 * f401;
|
|
2268 f421 = f418 + f419;
|
|
2269 f422 = f420 - f419;
|
|
2270 f423 = f403 + f405;
|
|
2271 f424 = 1.3065629648763766 * f403;
|
|
2272 f425 = (-0.9238795325112866) * f423;
|
|
2273 f426 = (-0.5411961001461967) * f405;
|
|
2274 f427 = f424 + f425;
|
|
2275 f428 = f426 - f425;
|
|
2276 f429 = f407 + f409;
|
|
2277 f430 = 0.5411961001461969 * f407;
|
|
2278 f431 = 0.3826834323650898 * f429;
|
|
2279 f432 = 1.3065629648763766 * f409;
|
|
2280 f433 = f430 + f431;
|
|
2281 f434 = f432 - f431;
|
|
2282 f435 = f400 - f396;
|
|
2283 f436 = f396 + f400;
|
|
2284 f437 = f398 - f402;
|
|
2285 f438 = f398 + f402;
|
|
2286 f439 = f416 - f422;
|
|
2287 f440 = f416 + f422;
|
|
2288 f441 = f415 - f421;
|
|
2289 f442 = f415 + f421;
|
|
2290 f443 = f404 - f408;
|
|
2291 f444 = f404 + f408;
|
|
2292 f445 = f406 - f410;
|
|
2293 f446 = f406 + f410;
|
|
2294 f447 = f428 - f434;
|
|
2295 f448 = f428 + f434;
|
|
2296 f449 = f427 - f433;
|
|
2297 f450 = f427 + f433;
|
|
2298 f451 = f435 - f437;
|
|
2299 f452 = f435 + f437;
|
|
2300 f453 = 0.7071067811865474 * f451;
|
|
2301 f454 = 0.7071067811865474 * f452;
|
|
2302 f455 = f439 - f441;
|
|
2303 f456 = f439 + f441;
|
|
2304 f457 = 0.7071067811865474 * f455;
|
|
2305 f458 = 0.7071067811865474 * f456;
|
|
2306 f459 = f443 - f445;
|
|
2307 f460 = f443 + f445;
|
|
2308 f461 = 0.7071067811865474 * f459;
|
|
2309 f462 = 0.7071067811865474 * f460;
|
|
2310 f463 = f447 - f449;
|
|
2311 f464 = f447 + f449;
|
|
2312 f465 = 0.7071067811865474 * f463;
|
|
2313 f466 = 0.7071067811865474 * f464;
|
|
2314 f467 = 0.7071067811865476 * t2[31];
|
|
2315 f468 = x[63] - f467;
|
|
2316 f469 = x[63] + f467;
|
|
2317 f470 = t2[47] + t2[15];
|
|
2318 f471 = 1.3065629648763766 * t2[47];
|
|
2319 f472 = (-0.9238795325112866) * f470;
|
|
2320 f473 = (-0.5411961001461967) * t2[15];
|
|
2321 f474 = f471 + f472;
|
|
2322 f475 = f473 - f472;
|
|
2323 f476 = f469 - f475;
|
|
2324 f477 = f469 + f475;
|
|
2325 f478 = f468 - f474;
|
|
2326 f479 = f468 + f474;
|
|
2327 f480 = t2[55] + t2[7];
|
|
2328 f481 = 1.1758756024193588 * t2[55];
|
|
2329 f482 = (-0.9807852804032304) * f480;
|
|
2330 f483 = (-0.7856949583871021) * t2[7];
|
|
2331 f484 = f481 + f482;
|
|
2332 f485 = f483 - f482;
|
|
2333 f486 = t2[39] + t2[23];
|
|
2334 f487 = 1.3870398453221473 * t2[39];
|
|
2335 f488 = (-0.8314696123025455) * f486;
|
|
2336 f489 = (-0.2758993792829436) * t2[23];
|
|
2337 f490 = f487 + f488;
|
|
2338 f491 = f489 - f488;
|
|
2339 f492 = f485 - f491;
|
|
2340 f493 = f485 + f491;
|
|
2341 f494 = 0.7071067811865476 * f492;
|
|
2342 f495 = f484 - f490;
|
|
2343 f496 = f484 + f490;
|
|
2344 f497 = 0.7071067811865476 * f496;
|
|
2345 f498 = f494 - f497;
|
|
2346 f499 = f494 + f497;
|
|
2347 f500 = f477 - f493;
|
|
2348 f501 = f477 + f493;
|
|
2349 f502 = f479 - f499;
|
|
2350 f503 = f479 + f499;
|
|
2351 f504 = f478 - f498;
|
|
2352 f505 = f478 + f498;
|
|
2353 f506 = f476 - f495;
|
|
2354 f507 = f476 + f495;
|
|
2355 f508 = t2[59] + t2[3];
|
|
2356 f509 = 1.0932018670017569 * t2[59];
|
|
2357 f510 = (-0.9951847266721969) * f508;
|
|
2358 f511 = (-0.8971675863426368) * t2[3];
|
|
2359 f512 = f509 + f510;
|
|
2360 f513 = f511 - f510;
|
|
2361 f514 = t2[51] + t2[11];
|
|
2362 f515 = 1.2472250129866711 * t2[51];
|
|
2363 f516 = (-0.9569403357322089) * f514;
|
|
2364 f517 = (-0.6666556584777469) * t2[11];
|
|
2365 f518 = f515 + f516;
|
|
2366 f519 = f517 - f516;
|
|
2367 f520 = t2[43] + t2[19];
|
|
2368 f521 = 1.3533180011743526 * t2[43];
|
|
2369 f522 = (-0.8819212643483551) * f520;
|
|
2370 f523 = (-0.4105245275223575) * t2[19];
|
|
2371 f524 = f521 + f522;
|
|
2372 f525 = f523 - f522;
|
|
2373 f526 = t2[35] + t2[27];
|
|
2374 f527 = 1.4074037375263826 * t2[35];
|
|
2375 f528 = (-0.7730104533627369) * f526;
|
|
2376 f529 = (-0.1386171691990913) * t2[27];
|
|
2377 f530 = f527 + f528;
|
|
2378 f531 = f529 - f528;
|
|
2379 f532 = f513 - f531;
|
|
2380 f533 = f513 + f531;
|
|
2381 f534 = f519 - f525;
|
|
2382 f535 = f519 + f525;
|
|
2383 f536 = f533 - f535;
|
|
2384 f537 = f533 + f535;
|
|
2385 f538 = 0.7071067811865476 * f536;
|
|
2386 f539 = f532 + f534;
|
|
2387 f540 = 1.3065629648763766 * f532;
|
|
2388 f541 = (-0.9238795325112866) * f539;
|
|
2389 f542 = (-0.5411961001461967) * f534;
|
|
2390 f543 = f540 + f541;
|
|
2391 f544 = f542 - f541;
|
|
2392 f545 = f512 - f530;
|
|
2393 f546 = f512 + f530;
|
|
2394 f547 = f518 - f524;
|
|
2395 f548 = f518 + f524;
|
|
2396 f549 = f546 + f548;
|
|
2397 f550 = 1.3065629648763770 * f546;
|
|
2398 f551 = (-0.3826834323650904) * f549;
|
|
2399 f552 = 0.5411961001461961 * f548;
|
|
2400 f553 = f550 + f551;
|
|
2401 f554 = f552 - f551;
|
|
2402 f555 = f545 - f547;
|
|
2403 f556 = f545 + f547;
|
|
2404 f557 = 0.7071067811865476 * f556;
|
|
2405 f558 = f544 - f554;
|
|
2406 f559 = f544 + f554;
|
|
2407 f560 = f538 - f557;
|
|
2408 f561 = f538 + f557;
|
|
2409 f562 = f543 - f553;
|
|
2410 f563 = f543 + f553;
|
|
2411 f564 = f501 - f537;
|
|
2412 f565 = f501 + f537;
|
|
2413 f566 = f503 - f559;
|
|
2414 f567 = f503 + f559;
|
|
2415 f568 = f505 - f558;
|
|
2416 f569 = f505 + f558;
|
|
2417 f570 = f507 - f561;
|
|
2418 f571 = f507 + f561;
|
|
2419 f572 = f506 - f560;
|
|
2420 f573 = f506 + f560;
|
|
2421 f574 = f504 - f563;
|
|
2422 f575 = f504 + f563;
|
|
2423 f576 = f502 - f562;
|
|
2424 f577 = f502 + f562;
|
|
2425 f578 = f500 - f555;
|
|
2426 f579 = f500 + f555;
|
|
2427 f580 = f438 - f565;
|
|
2428 f581 = f438 + f565;
|
|
2429 f582 = f446 + f567;
|
|
2430 f583 = f446 - f567;
|
|
2431 f584 = f450 - f569;
|
|
2432 f585 = f450 + f569;
|
|
2433 f586 = f442 + f571;
|
|
2434 f587 = f442 - f571;
|
|
2435 f588 = f457 - f573;
|
|
2436 f589 = f457 + f573;
|
|
2437 f590 = f465 + f575;
|
|
2438 f591 = f465 - f575;
|
|
2439 f592 = f461 - f577;
|
|
2440 f593 = f461 + f577;
|
|
2441 f594 = f453 + f579;
|
|
2442 f595 = f453 - f579;
|
|
2443 f596 = f454 - f578;
|
|
2444 f597 = f454 + f578;
|
|
2445 f598 = f462 + f576;
|
|
2446 f599 = f462 - f576;
|
|
2447 f600 = f466 - f574;
|
|
2448 f601 = f466 + f574;
|
|
2449 f602 = f458 + f572;
|
|
2450 f603 = f458 - f572;
|
|
2451 f604 = f440 - f570;
|
|
2452 f605 = f440 + f570;
|
|
2453 f606 = f448 + f568;
|
|
2454 f607 = f448 - f568;
|
|
2455 f608 = f444 - f566;
|
|
2456 f609 = f444 + f566;
|
|
2457 f610 = f564 - f436;
|
|
2458 f611 = f436 + f564;
|
|
2459 f612 = f581 + f276;
|
|
2460 f613 = (-0.9876531635534246) * f581;
|
|
2461 f614 = 0.9999247018391445 * f612;
|
|
2462 f615 = 1.0121962401248645 * f276;
|
|
2463 y[0] = f613 + f614;
|
|
2464 y[63] = f615 - f614;
|
|
2465 f618 = f583 + f278;
|
|
2466 f619 = (-0.9625151616469906) * f583;
|
|
2467 f620 = 0.9993223845883495 * f618;
|
|
2468 f621 = 1.0361296075297086 * f278;
|
|
2469 y[1] = f619 + f620;
|
|
2470 y[62] = f621 - f620;
|
|
2471 f624 = f585 + f280;
|
|
2472 f625 = (-0.9367973765979405) * f585;
|
|
2473 f626 = 0.9981181129001492 * f624;
|
|
2474 f627 = 1.0594388492023579 * f280;
|
|
2475 y[2] = f625 + f626;
|
|
2476 y[61] = f627 - f626;
|
|
2477 f630 = f587 + f282;
|
|
2478 f631 = (-0.9105152998383381) * f587;
|
|
2479 f632 = 0.9963126121827780 * f630;
|
|
2480 f633 = 1.0821099245272179 * f282;
|
|
2481 y[3] = f631 + f632;
|
|
2482 y[60] = f633 - f632;
|
|
2483 f636 = f589 + f284;
|
|
2484 f637 = (-0.8836847627084729) * f589;
|
|
2485 f638 = 0.9939069700023561 * f636;
|
|
2486 f639 = 1.1041291772962392 * f284;
|
|
2487 y[4] = f637 + f638;
|
|
2488 y[59] = f639 - f638;
|
|
2489 f642 = f591 + f286;
|
|
2490 f643 = (-0.8563219269206538) * f591;
|
|
2491 f644 = 0.9909026354277800 * f642;
|
|
2492 f645 = 1.1254833439349063 * f286;
|
|
2493 y[5] = f643 + f644;
|
|
2494 y[58] = f645 - f644;
|
|
2495 f648 = f593 + f288;
|
|
2496 f649 = (-0.8284432748239970) * f593;
|
|
2497 f650 = 0.9873014181578584 * f648;
|
|
2498 f651 = 1.1461595614917197 * f288;
|
|
2499 y[6] = f649 + f650;
|
|
2500 y[57] = f651 - f650;
|
|
2501 f654 = f595 + f290;
|
|
2502 f655 = (-0.8000655994760753) * f595;
|
|
2503 f656 = 0.9831054874312163 * f654;
|
|
2504 f657 = 1.1661453753863573 * f290;
|
|
2505 y[7] = f655 + f656;
|
|
2506 y[56] = f657 - f656;
|
|
2507 f660 = f597 + f292;
|
|
2508 f661 = (-0.7712059945274091) * f597;
|
|
2509 f662 = 0.9783173707196277 * f660;
|
|
2510 f663 = 1.1854287469118463 * f292;
|
|
2511 y[8] = f661 + f662;
|
|
2512 y[55] = f663 - f662;
|
|
2513 f666 = f599 + f294;
|
|
2514 f667 = (-0.7418818439248888) * f599;
|
|
2515 f668 = 0.9729399522055601 * f666;
|
|
2516 f669 = 1.2039980604862313 * f294;
|
|
2517 y[9] = f667 + f668;
|
|
2518 y[54] = f669 - f668;
|
|
2519 f672 = f601 + f296;
|
|
2520 f673 = (-0.7121108114403374) * f601;
|
|
2521 f674 = 0.9669764710448521 * f672;
|
|
2522 f675 = 1.2218421306493668 * f296;
|
|
2523 y[10] = f673 + f674;
|
|
2524 y[53] = f675 - f674;
|
|
2525 f678 = f603 + f298;
|
|
2526 f679 = (-0.6819108300305128) * f603;
|
|
2527 f680 = 0.9604305194155658 * f678;
|
|
2528 f681 = 1.2389502088006188 * f298;
|
|
2529 y[11] = f679 + f680;
|
|
2530 y[52] = f681 - f680;
|
|
2531 f684 = f605 + f300;
|
|
2532 f685 = (-0.6513000910349656) * f605;
|
|
2533 f686 = 0.9533060403541938 * f684;
|
|
2534 f687 = 1.2553119896734219 * f300;
|
|
2535 y[12] = f685 + f686;
|
|
2536 y[51] = f687 - f686;
|
|
2537 f690 = f607 + f302;
|
|
2538 f691 = (-0.6202970332182582) * f607;
|
|
2539 f692 = 0.9456073253805213 * f690;
|
|
2540 f693 = 1.2709176175427843 * f302;
|
|
2541 y[13] = f691 + f692;
|
|
2542 y[50] = f693 - f692;
|
|
2543 f696 = f609 + f304;
|
|
2544 f697 = (-0.5889203316631404) * f609;
|
|
2545 f698 = 0.9373390119125750 * f696;
|
|
2546 f699 = 1.2857576921620095 * f304;
|
|
2547 y[14] = f697 + f698;
|
|
2548 y[49] = f699 - f698;
|
|
2549 f702 = f306 - f611;
|
|
2550 f703 = (-0.5571888865213779) * f611;
|
|
2551 f704 = 0.9285060804732155 * f702;
|
|
2552 f705 = 1.2998232744250531 * f306;
|
|
2553 y[15] = f704 - f703;
|
|
2554 y[48] = f705 - f704;
|
|
2555 f708 = f610 + f305;
|
|
2556 f709 = (-0.5251218116290097) * f610;
|
|
2557 f710 = 0.9191138516900578 * f708;
|
|
2558 f711 = 1.3131058917511058 * f305;
|
|
2559 y[16] = f709 + f710;
|
|
2560 y[47] = f711 - f710;
|
|
2561 f714 = f608 + f303;
|
|
2562 f715 = (-0.4927384229928850) * f608;
|
|
2563 f716 = 0.9091679830905223 * f714;
|
|
2564 f717 = 1.3255975431881595 * f303;
|
|
2565 y[17] = f715 + f716;
|
|
2566 y[46] = f717 - f716;
|
|
2567 f720 = f606 + f301;
|
|
2568 f721 = (-0.4600582271554261) * f606;
|
|
2569 f722 = 0.8986744656939538 * f720;
|
|
2570 f723 = 1.3372907042324815 * f301;
|
|
2571 y[18] = f721 + f722;
|
|
2572 y[45] = f723 - f722;
|
|
2573 f726 = f604 + f299;
|
|
2574 f727 = (-0.4271009094446139) * f604;
|
|
2575 f728 = 0.8876396204028539 * f726;
|
|
2576 f729 = 1.3481783313610940 * f299;
|
|
2577 y[19] = f727 + f728;
|
|
2578 y[44] = f729 - f728;
|
|
2579 f732 = f602 + f297;
|
|
2580 f733 = (-0.3938863221162838) * f602;
|
|
2581 f734 = 0.8760700941954066 * f732;
|
|
2582 f735 = 1.3582538662745294 * f297;
|
|
2583 y[20] = f733 + f734;
|
|
2584 y[43] = f735 - f734;
|
|
2585 f738 = f600 + f295;
|
|
2586 f739 = (-0.3604344723958691) * f600;
|
|
2587 f740 = 0.8639728561215867 * f738;
|
|
2588 f741 = 1.3675112398473042 * f295;
|
|
2589 y[21] = f739 + f740;
|
|
2590 y[42] = f741 - f740;
|
|
2591 f744 = f598 + f293;
|
|
2592 f745 = (-0.3267655104267964) * f598;
|
|
2593 f746 = 0.8513551931052652 * f744;
|
|
2594 f747 = 1.3759448757837340 * f293;
|
|
2595 y[22] = f745 + f746;
|
|
2596 y[41] = f747 - f746;
|
|
2597 f750 = f596 + f291;
|
|
2598 f751 = (-0.2928997171327915) * f596;
|
|
2599 f752 = 0.8382247055548380 * f750;
|
|
2600 f753 = 1.3835496939768843 * f291;
|
|
2601 y[23] = f751 + f752;
|
|
2602 y[40] = f753 - f752;
|
|
2603 f756 = f594 + f289;
|
|
2604 f757 = (-0.2588574920014121) * f594;
|
|
2605 f758 = 0.8245893027850253 * f756;
|
|
2606 f759 = 1.3903211135686386 * f289;
|
|
2607 y[24] = f757 + f758;
|
|
2608 y[39] = f759 - f758;
|
|
2609 f762 = f592 + f287;
|
|
2610 f763 = (-0.2246593407961559) * f592;
|
|
2611 f764 = 0.8104571982525948 * f762;
|
|
2612 f765 = 1.3962550557090336 * f287;
|
|
2613 y[25] = f763 + f764;
|
|
2614 y[38] = f765 - f764;
|
|
2615 f768 = f590 + f285;
|
|
2616 f769 = (-0.1903258632045579) * f590;
|
|
2617 f770 = 0.7958369046088835 * f768;
|
|
2618 f771 = 1.4013479460132090 * f285;
|
|
2619 y[26] = f769 + f770;
|
|
2620 y[37] = f771 - f770;
|
|
2621 f774 = f588 + f283;
|
|
2622 f775 = (-0.1558777404297079) * f588;
|
|
2623 f776 = 0.7807372285720944 * f774;
|
|
2624 f777 = 1.4055967167144807 * f283;
|
|
2625 y[27] = f775 + f776;
|
|
2626 y[36] = f777 - f776;
|
|
2627 f780 = f586 + f281;
|
|
2628 f781 = (-0.1213357227326675) * f586;
|
|
2629 f782 = 0.7651672656224590 * f780;
|
|
2630 f783 = 1.4089988085122505 * f281;
|
|
2631 y[28] = f781 + f782;
|
|
2632 y[35] = f783 - f782;
|
|
2633 f786 = f584 + f279;
|
|
2634 f787 = (-0.0867206169332875) * f584;
|
|
2635 f788 = 0.7491363945234593 * f786;
|
|
2636 f789 = 1.4115521721136310 * f279;
|
|
2637 y[29] = f787 + f788;
|
|
2638 y[34] = f789 - f788;
|
|
2639 f792 = f582 + f277;
|
|
2640 f793 = (-0.0520532738769597) * f582;
|
|
2641 f794 = 0.7326542716724128 * f792;
|
|
2642 f795 = 1.4132552694678659 * f277;
|
|
2643 y[30] = f793 + f794;
|
|
2644 y[33] = f795 - f794;
|
|
2645 f798 = f580 + f275;
|
|
2646 f799 = (-0.0173545758748457) * f580;
|
|
2647 f800 = 0.7157308252838186 * f798;
|
|
2648 f801 = 1.4141070746927915 * f275;
|
|
2649 y[31] = f799 + f800;
|
|
2650 y[32] = f801 - f800;
|
|
2651 }
|
|
2652
|
|
2653 #endif
|
|
2654
|
|
2655 #endif
|
|
2656
|