Mercurial > mplayer.hg
annotate libfaad2/sbr_dct.c @ 12789:fba0bd4fe79e
ao_macosx by Dan Christiansen
author | nplourde |
---|---|
date | Sat, 10 Jul 2004 00:24:14 +0000 |
parents | d81145997036 |
children | 6d50ef45a058 |
rev | line source |
---|---|
10725 | 1 /* |
2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding | |
12527 | 3 ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com |
4 ** | |
10725 | 5 ** This program is free software; you can redistribute it and/or modify |
6 ** it under the terms of the GNU General Public License as published by | |
7 ** the Free Software Foundation; either version 2 of the License, or | |
8 ** (at your option) any later version. | |
12527 | 9 ** |
10725 | 10 ** This program is distributed in the hope that it will be useful, |
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 ** GNU General Public License for more details. | |
12527 | 14 ** |
10725 | 15 ** You should have received a copy of the GNU General Public License |
12527 | 16 ** along with this program; if not, write to the Free Software |
10725 | 17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
18 ** | |
19 ** Any non-GPL usage of this software or parts of this software is strictly | |
20 ** forbidden. | |
21 ** | |
22 ** Commercial non-GPL licensing of this software is possible. | |
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. | |
24 ** | |
12625
d81145997036
More information about modifications to comply more closely with GPL 2a.
diego
parents:
12527
diff
changeset
|
25 ** Initially modified for use with MPlayer by Arpad Gereöffy on 2003/08/30 |
d81145997036
More information about modifications to comply more closely with GPL 2a.
diego
parents:
12527
diff
changeset
|
26 ** $Id: sbr_dct.c,v 1.3 2004/06/02 22:59:03 diego Exp $ |
d81145997036
More information about modifications to comply more closely with GPL 2a.
diego
parents:
12527
diff
changeset
|
27 ** detailed CVS changelog at http://www.mplayerhq.hu/cgi-bin/cvsweb.cgi/main/ |
10725 | 28 **/ |
29 | |
30 #include "common.h" | |
31 | |
32 #ifdef SBR_DEC | |
33 | |
34 #ifdef _MSC_VER | |
35 #pragma warning(disable:4305) | |
36 #pragma warning(disable:4244) | |
37 #endif | |
38 | |
39 | |
40 #include "sbr_dct.h" | |
41 | |
42 #ifdef SBR_LOW_POWER | |
43 | |
44 void DCT3_32_unscaled(real_t *y, real_t *x) | |
45 { | |
46 real_t f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10; | |
47 real_t f11, f12, f13, f14, f15, f16, f17, f18, f19, f20; | |
48 real_t f21, f22, f23, f24, f25, f26, f27, f28, f29, f30; | |
49 real_t f31, f32, f33, f34, f35, f36, f37, f38, f39, f40; | |
50 real_t f41, f42, f43, f44, f45, f46, f47, f48, f49, f50; | |
51 real_t f51, f52, f53, f54, f55, f56, f57, f58, f59, f60; | |
52 real_t f61, f62, f63, f64, f65, f66, f67, f68, f69, f70; | |
53 real_t f71, f72, f73, f74, f75, f76, f77, f78, f79, f80; | |
54 real_t f81, f82, f83, f84, f85, f86, f87, f88, f89, f90; | |
55 real_t f91, f92, f93, f94, f95, f96, f97, f98, f99, f100; | |
56 real_t f101, f102, f103, f104, f105, f106, f107, f108, f109, f110; | |
57 real_t f111, f112, f113, f114, f115, f116, f117, f118, f119, f120; | |
58 real_t f121, f122, f123, f124, f125, f126, f127, f128, f129, f130; | |
59 real_t f131, f132, f133, f134, f135, f136, f137, f138, f139, f140; | |
60 real_t f141, f142, f143, f144, f145, f146, f147, f148, f149, f150; | |
61 real_t f151, f152, f153, f154, f155, f156, f157, f158, f159, f160; | |
62 real_t f161, f162, f163, f164, f165, f166, f167, f168, f169, f170; | |
63 real_t f171, f172, f173, f174, f175, f176, f177, f178, f179, f180; | |
64 real_t f181, f182, f183, f184, f185, f186, f187, f188, f189, f190; | |
65 real_t f191, f192, f193, f194, f195, f196, f197, f198, f199, f200; | |
66 real_t f201, f202, f203, f204, f205, f206, f207, f208, f209, f210; | |
67 real_t f211, f212, f213, f214, f215, f216, f217, f218, f219, f220; | |
68 real_t f221, f222, f223, f224, f225, f226, f227, f228, f229, f230; | |
69 real_t f231, f232, f233, f234, f235, f236, f237, f238, f239, f240; | |
70 real_t f241, f242, f243, f244, f245, f246, f247, f248, f249, f250; | |
71 real_t f251, f252, f253, f254, f255, f256, f257, f258, f259, f260; | |
72 real_t f261, f262, f263, f264, f265, f266, f267, f268, f269, f270; | |
73 real_t f271, f272; | |
74 | |
12527 | 75 f0 = MUL_C(COEF_CONST(0.7071067811865476), x[16]); |
10725 | 76 f1 = x[0] - f0; |
77 f2 = x[0] + f0; | |
78 f3 = x[8] + x[24]; | |
12527 | 79 f4 = MUL_C(COEF_CONST(1.3065629648763766), x[8]); |
80 f5 = MUL_C(COEF_CONST((-0.9238795325112866)), f3); | |
81 f6 = MUL_C(COEF_CONST((-0.5411961001461967)), x[24]); | |
10725 | 82 f7 = f4 + f5; |
83 f8 = f6 - f5; | |
84 f9 = f2 - f8; | |
85 f10 = f2 + f8; | |
86 f11 = f1 - f7; | |
87 f12 = f1 + f7; | |
88 f13 = x[4] + x[28]; | |
12527 | 89 f14 = MUL_C(COEF_CONST(1.1758756024193588), x[4]); |
90 f15 = MUL_C(COEF_CONST((-0.9807852804032304)), f13); | |
91 f16 = MUL_C(COEF_CONST((-0.7856949583871021)), x[28]); | |
10725 | 92 f17 = f14 + f15; |
93 f18 = f16 - f15; | |
94 f19 = x[12] + x[20]; | |
12527 | 95 f20 = MUL_C(COEF_CONST(1.3870398453221473), x[12]); |
96 f21 = MUL_C(COEF_CONST((-0.8314696123025455)), f19); | |
97 f22 = MUL_C(COEF_CONST((-0.2758993792829436)), x[20]); | |
10725 | 98 f23 = f20 + f21; |
99 f24 = f22 - f21; | |
100 f25 = f18 - f24; | |
101 f26 = f18 + f24; | |
12527 | 102 f27 = MUL_C(COEF_CONST(0.7071067811865476), f25); |
10725 | 103 f28 = f17 - f23; |
104 f29 = f17 + f23; | |
12527 | 105 f30 = MUL_C(COEF_CONST(0.7071067811865476), f29); |
10725 | 106 f31 = f27 - f30; |
107 f32 = f27 + f30; | |
108 f33 = f10 - f26; | |
109 f34 = f10 + f26; | |
110 f35 = f12 - f32; | |
111 f36 = f12 + f32; | |
112 f37 = f11 - f31; | |
113 f38 = f11 + f31; | |
114 f39 = f9 - f28; | |
115 f40 = f9 + f28; | |
116 f41 = x[2] + x[30]; | |
12527 | 117 f42 = MUL_C(COEF_CONST(1.0932018670017569), x[2]); |
118 f43 = MUL_C(COEF_CONST((-0.9951847266721969)), f41); | |
119 f44 = MUL_C(COEF_CONST((-0.8971675863426368)), x[30]); | |
10725 | 120 f45 = f42 + f43; |
121 f46 = f44 - f43; | |
122 f47 = x[6] + x[26]; | |
12527 | 123 f48 = MUL_C(COEF_CONST(1.2472250129866711), x[6]); |
124 f49 = MUL_C(COEF_CONST((-0.9569403357322089)), f47); | |
125 f50 = MUL_C(COEF_CONST((-0.6666556584777469)), x[26]); | |
10725 | 126 f51 = f48 + f49; |
127 f52 = f50 - f49; | |
128 f53 = x[10] + x[22]; | |
12527 | 129 f54 = MUL_C(COEF_CONST(1.3533180011743526), x[10]); |
130 f55 = MUL_C(COEF_CONST((-0.8819212643483551)), f53); | |
131 f56 = MUL_C(COEF_CONST((-0.4105245275223575)), x[22]); | |
10725 | 132 f57 = f54 + f55; |
133 f58 = f56 - f55; | |
134 f59 = x[14] + x[18]; | |
12527 | 135 f60 = MUL_C(COEF_CONST(1.4074037375263826), x[14]); |
136 f61 = MUL_C(COEF_CONST((-0.7730104533627369)), f59); | |
137 f62 = MUL_C(COEF_CONST((-0.1386171691990913)), x[18]); | |
10725 | 138 f63 = f60 + f61; |
139 f64 = f62 - f61; | |
140 f65 = f46 - f64; | |
141 f66 = f46 + f64; | |
142 f67 = f52 - f58; | |
143 f68 = f52 + f58; | |
144 f69 = f66 - f68; | |
145 f70 = f66 + f68; | |
12527 | 146 f71 = MUL_C(COEF_CONST(0.7071067811865476), f69); |
10725 | 147 f72 = f65 + f67; |
12527 | 148 f73 = MUL_C(COEF_CONST(1.3065629648763766), f65); |
149 f74 = MUL_C(COEF_CONST((-0.9238795325112866)), f72); | |
150 f75 = MUL_C(COEF_CONST((-0.5411961001461967)), f67); | |
10725 | 151 f76 = f73 + f74; |
152 f77 = f75 - f74; | |
153 f78 = f45 - f63; | |
154 f79 = f45 + f63; | |
155 f80 = f51 - f57; | |
156 f81 = f51 + f57; | |
157 f82 = f79 + f81; | |
12527 | 158 f83 = MUL_C(COEF_CONST(1.3065629648763770), f79); |
159 f84 = MUL_C(COEF_CONST((-0.3826834323650904)), f82); | |
160 f85 = MUL_C(COEF_CONST(0.5411961001461961), f81); | |
10725 | 161 f86 = f83 + f84; |
162 f87 = f85 - f84; | |
163 f88 = f78 - f80; | |
164 f89 = f78 + f80; | |
12527 | 165 f90 = MUL_C(COEF_CONST(0.7071067811865476), f89); |
10725 | 166 f91 = f77 - f87; |
167 f92 = f77 + f87; | |
168 f93 = f71 - f90; | |
169 f94 = f71 + f90; | |
170 f95 = f76 - f86; | |
171 f96 = f76 + f86; | |
172 f97 = f34 - f70; | |
173 f98 = f34 + f70; | |
174 f99 = f36 - f92; | |
175 f100 = f36 + f92; | |
176 f101 = f38 - f91; | |
177 f102 = f38 + f91; | |
178 f103 = f40 - f94; | |
179 f104 = f40 + f94; | |
180 f105 = f39 - f93; | |
181 f106 = f39 + f93; | |
182 f107 = f37 - f96; | |
183 f108 = f37 + f96; | |
184 f109 = f35 - f95; | |
185 f110 = f35 + f95; | |
186 f111 = f33 - f88; | |
187 f112 = f33 + f88; | |
188 f113 = x[1] + x[31]; | |
12527 | 189 f114 = MUL_C(COEF_CONST(1.0478631305325901), x[1]); |
190 f115 = MUL_C(COEF_CONST((-0.9987954562051724)), f113); | |
191 f116 = MUL_C(COEF_CONST((-0.9497277818777548)), x[31]); | |
10725 | 192 f117 = f114 + f115; |
193 f118 = f116 - f115; | |
194 f119 = x[5] + x[27]; | |
12527 | 195 f120 = MUL_C(COEF_CONST(1.2130114330978077), x[5]); |
196 f121 = MUL_C(COEF_CONST((-0.9700312531945440)), f119); | |
197 f122 = MUL_C(COEF_CONST((-0.7270510732912803)), x[27]); | |
10725 | 198 f123 = f120 + f121; |
199 f124 = f122 - f121; | |
200 f125 = x[9] + x[23]; | |
12527 | 201 f126 = MUL_C(COEF_CONST(1.3315443865537255), x[9]); |
202 f127 = MUL_C(COEF_CONST((-0.9039892931234433)), f125); | |
203 f128 = MUL_C(COEF_CONST((-0.4764341996931612)), x[23]); | |
10725 | 204 f129 = f126 + f127; |
205 f130 = f128 - f127; | |
206 f131 = x[13] + x[19]; | |
12527 | 207 f132 = MUL_C(COEF_CONST(1.3989068359730781), x[13]); |
208 f133 = MUL_C(COEF_CONST((-0.8032075314806453)), f131); | |
209 f134 = MUL_C(COEF_CONST((-0.2075082269882124)), x[19]); | |
10725 | 210 f135 = f132 + f133; |
211 f136 = f134 - f133; | |
212 f137 = x[17] + x[15]; | |
12527 | 213 f138 = MUL_C(COEF_CONST(1.4125100802019777), x[17]); |
214 f139 = MUL_C(COEF_CONST((-0.6715589548470187)), f137); | |
215 f140 = MUL_C(COEF_CONST(0.0693921705079402), x[15]); | |
10725 | 216 f141 = f138 + f139; |
217 f142 = f140 - f139; | |
218 f143 = x[21] + x[11]; | |
12527 | 219 f144 = MUL_C(COEF_CONST(1.3718313541934939), x[21]); |
220 f145 = MUL_C(COEF_CONST((-0.5141027441932219)), f143); | |
221 f146 = MUL_C(COEF_CONST(0.3436258658070501), x[11]); | |
10725 | 222 f147 = f144 + f145; |
223 f148 = f146 - f145; | |
224 f149 = x[25] + x[7]; | |
12527 | 225 f150 = MUL_C(COEF_CONST(1.2784339185752409), x[25]); |
226 f151 = MUL_C(COEF_CONST((-0.3368898533922200)), f149); | |
227 f152 = MUL_C(COEF_CONST(0.6046542117908008), x[7]); | |
10725 | 228 f153 = f150 + f151; |
229 f154 = f152 - f151; | |
230 f155 = x[29] + x[3]; | |
12527 | 231 f156 = MUL_C(COEF_CONST(1.1359069844201433), x[29]); |
232 f157 = MUL_C(COEF_CONST((-0.1467304744553624)), f155); | |
233 f158 = MUL_C(COEF_CONST(0.8424460355094185), x[3]); | |
10725 | 234 f159 = f156 + f157; |
235 f160 = f158 - f157; | |
236 f161 = f118 - f142; | |
237 f162 = f118 + f142; | |
238 f163 = f117 - f141; | |
239 f164 = f117 + f141; | |
240 f165 = f124 - f148; | |
241 f166 = f124 + f148; | |
242 f167 = f123 - f147; | |
243 f168 = f123 + f147; | |
244 f169 = f130 - f154; | |
245 f170 = f130 + f154; | |
246 f171 = f129 - f153; | |
247 f172 = f129 + f153; | |
248 f173 = f136 - f160; | |
249 f174 = f136 + f160; | |
250 f175 = f135 - f159; | |
251 f176 = f135 + f159; | |
252 f177 = f161 + f163; | |
12527 | 253 f178 = MUL_C(COEF_CONST(1.1758756024193588), f161); |
254 f179 = MUL_C(COEF_CONST((-0.9807852804032304)), f177); | |
255 f180 = MUL_C(COEF_CONST((-0.7856949583871021)), f163); | |
10725 | 256 f181 = f178 + f179; |
257 f182 = f180 - f179; | |
258 f183 = f165 + f167; | |
12527 | 259 f184 = MUL_C(COEF_CONST(1.3870398453221475), f165); |
260 f185 = MUL_C(COEF_CONST((-0.5555702330196022)), f183); | |
261 f186 = MUL_C(COEF_CONST(0.2758993792829431), f167); | |
10725 | 262 f187 = f184 + f185; |
263 f188 = f186 - f185; | |
264 f189 = f169 + f171; | |
12527 | 265 f190 = MUL_C(COEF_CONST(0.7856949583871022), f169); |
266 f191 = MUL_C(COEF_CONST(0.1950903220161283), f189); | |
267 f192 = MUL_C(COEF_CONST(1.1758756024193586), f171); | |
10725 | 268 f193 = f190 + f191; |
269 f194 = f192 - f191; | |
270 f195 = f173 + f175; | |
12527 | 271 f196 = MUL_C(COEF_CONST((-0.2758993792829430)), f173); |
272 f197 = MUL_C(COEF_CONST(0.8314696123025452), f195); | |
273 f198 = MUL_C(COEF_CONST(1.3870398453221475), f175); | |
10725 | 274 f199 = f196 + f197; |
275 f200 = f198 - f197; | |
276 f201 = f162 - f170; | |
277 f202 = f162 + f170; | |
278 f203 = f164 - f172; | |
279 f204 = f164 + f172; | |
280 f205 = f166 - f174; | |
281 f206 = f166 + f174; | |
282 f207 = f168 - f176; | |
283 f208 = f168 + f176; | |
284 f209 = f182 - f194; | |
285 f210 = f182 + f194; | |
286 f211 = f181 - f193; | |
287 f212 = f181 + f193; | |
288 f213 = f188 - f200; | |
289 f214 = f188 + f200; | |
290 f215 = f187 - f199; | |
291 f216 = f187 + f199; | |
292 f217 = f201 + f203; | |
12527 | 293 f218 = MUL_C(COEF_CONST(1.3065629648763766), f201); |
294 f219 = MUL_C(COEF_CONST((-0.9238795325112866)), f217); | |
295 f220 = MUL_C(COEF_CONST((-0.5411961001461967)), f203); | |
10725 | 296 f221 = f218 + f219; |
297 f222 = f220 - f219; | |
298 f223 = f205 + f207; | |
12527 | 299 f224 = MUL_C(COEF_CONST(0.5411961001461969), f205); |
300 f225 = MUL_C(COEF_CONST(0.3826834323650898), f223); | |
301 f226 = MUL_C(COEF_CONST(1.3065629648763766), f207); | |
10725 | 302 f227 = f224 + f225; |
303 f228 = f226 - f225; | |
304 f229 = f209 + f211; | |
12527 | 305 f230 = MUL_C(COEF_CONST(1.3065629648763766), f209); |
306 f231 = MUL_C(COEF_CONST((-0.9238795325112866)), f229); | |
307 f232 = MUL_C(COEF_CONST((-0.5411961001461967)), f211); | |
10725 | 308 f233 = f230 + f231; |
309 f234 = f232 - f231; | |
310 f235 = f213 + f215; | |
12527 | 311 f236 = MUL_C(COEF_CONST(0.5411961001461969), f213); |
312 f237 = MUL_C(COEF_CONST(0.3826834323650898), f235); | |
313 f238 = MUL_C(COEF_CONST(1.3065629648763766), f215); | |
10725 | 314 f239 = f236 + f237; |
315 f240 = f238 - f237; | |
316 f241 = f202 - f206; | |
317 f242 = f202 + f206; | |
318 f243 = f204 - f208; | |
319 f244 = f204 + f208; | |
320 f245 = f222 - f228; | |
321 f246 = f222 + f228; | |
322 f247 = f221 - f227; | |
323 f248 = f221 + f227; | |
324 f249 = f210 - f214; | |
325 f250 = f210 + f214; | |
326 f251 = f212 - f216; | |
327 f252 = f212 + f216; | |
328 f253 = f234 - f240; | |
329 f254 = f234 + f240; | |
330 f255 = f233 - f239; | |
331 f256 = f233 + f239; | |
332 f257 = f241 - f243; | |
333 f258 = f241 + f243; | |
12527 | 334 f259 = MUL_C(COEF_CONST(0.7071067811865474), f257); |
335 f260 = MUL_C(COEF_CONST(0.7071067811865474), f258); | |
10725 | 336 f261 = f245 - f247; |
337 f262 = f245 + f247; | |
12527 | 338 f263 = MUL_C(COEF_CONST(0.7071067811865474), f261); |
339 f264 = MUL_C(COEF_CONST(0.7071067811865474), f262); | |
10725 | 340 f265 = f249 - f251; |
341 f266 = f249 + f251; | |
12527 | 342 f267 = MUL_C(COEF_CONST(0.7071067811865474), f265); |
343 f268 = MUL_C(COEF_CONST(0.7071067811865474), f266); | |
10725 | 344 f269 = f253 - f255; |
345 f270 = f253 + f255; | |
12527 | 346 f271 = MUL_C(COEF_CONST(0.7071067811865474), f269); |
347 f272 = MUL_C(COEF_CONST(0.7071067811865474), f270); | |
10725 | 348 y[31] = f98 - f242; |
349 y[0] = f98 + f242; | |
350 y[30] = f100 - f250; | |
351 y[1] = f100 + f250; | |
352 y[29] = f102 - f254; | |
353 y[2] = f102 + f254; | |
354 y[28] = f104 - f246; | |
355 y[3] = f104 + f246; | |
356 y[27] = f106 - f264; | |
357 y[4] = f106 + f264; | |
358 y[26] = f108 - f272; | |
359 y[5] = f108 + f272; | |
360 y[25] = f110 - f268; | |
361 y[6] = f110 + f268; | |
362 y[24] = f112 - f260; | |
363 y[7] = f112 + f260; | |
364 y[23] = f111 - f259; | |
365 y[8] = f111 + f259; | |
366 y[22] = f109 - f267; | |
367 y[9] = f109 + f267; | |
368 y[21] = f107 - f271; | |
369 y[10] = f107 + f271; | |
370 y[20] = f105 - f263; | |
371 y[11] = f105 + f263; | |
372 y[19] = f103 - f248; | |
373 y[12] = f103 + f248; | |
374 y[18] = f101 - f256; | |
375 y[13] = f101 + f256; | |
376 y[17] = f99 - f252; | |
377 y[14] = f99 + f252; | |
378 y[16] = f97 - f244; | |
379 y[15] = f97 + f244; | |
380 } | |
381 | |
382 void DCT2_64_unscaled(real_t *y, real_t *x) | |
383 { | |
384 int16_t i0; | |
385 real_t f2, f3, f4, f5, f6, f7, f8, f9, f10; | |
386 real_t f11, f12, f13, f14, f15, f16, f17, f18, f19, f20; | |
387 real_t f21, f22, f23, f24, f25, f26, f27, f28, f29, f30; | |
388 real_t f31, f32, f33, f34, f35, f36, f37, f38, f39, f40; | |
389 real_t f41, f42, f43, f44, f45, f46, f47, f48, f49, f50; | |
390 real_t f51, f52, f53, f54, f55, f56, f57, f58, f59, f60; | |
391 real_t f61, f62, f65, f66, f67, f68, f71, f72, f73, f74; | |
12527 | 392 real_t f75, f76, f77, f78, f79, f80, f81, f82, f83, f85; |
10725 | 393 real_t f87, f88, f91, f92, f93, f94, f95, f96, f97, f98; |
394 real_t f99, f100, f101, f102, f103, f104, f105, f106, f107, f108; | |
395 real_t f109, f110, f111, f112, f113, f114, f115, f116, f117, f118; | |
12527 | 396 real_t f119, f120, f121, f122, f123, f124, f125, f126, f129, f130; |
397 real_t f131, f132, f135, f136, f137, f138, f141, f142, f143, f144; | |
398 real_t f147, f148, f149, f150, f151, f152, f153, f154, f155, f156; | |
10725 | 399 real_t f157, f158, f159, f160, f161, f162, f163, f164, f165, f166; |
400 real_t f167, f168, f169, f170, f171, f172, f173, f174, f175, f176; | |
401 real_t f177, f178, f179, f180, f181, f182, f183, f184, f185, f186; | |
402 real_t f187, f188, f189, f190, f191, f192, f193, f194, f195, f196; | |
403 real_t f197, f198, f199, f200, f201, f202, f203, f204, f205, f206; | |
12527 | 404 real_t f207, f208, f209, f210, f211, f212, f213, f214, f215, f216; |
405 real_t f217, f218, f219, f220, f221, f222, f223, f224, f225, f226; | |
406 real_t f227, f228, f229, f230, f231, f232, f233, f234, f235, f236; | |
407 real_t f237, f238, f239, f240, f241, f242, f243, f244, f245, f246; | |
408 real_t f247, f248, f249, f250, f251, f252, f253, f254, f255, f256; | |
409 real_t f257, f258, f259, f260, f261, f262, f265, f266, f267, f268; | |
410 real_t f271, f272, f273, f274, f277, f278, f279, f280, f283, f284; | |
411 real_t f285, f286, f289, f290, f291, f292, f295, f296, f297, f298; | |
412 real_t f301, f302, f303, f304, f307, f308, f309, f310, f311, f312; | |
10725 | 413 real_t f313, f314, f315, f316, f317, f318, f319, f320, f321, f322; |
414 real_t f323, f324, f325, f326, f327, f328, f329, f330, f331, f332; | |
415 real_t f333, f334, f335, f336, f337, f338, f339, f340, f341, f342; | |
416 real_t f343, f344, f345, f346, f347, f348, f349, f350, f351, f352; | |
417 real_t f353, f354, f355, f356, f357, f358, f359, f360, f361, f362; | |
418 real_t f363, f364, f365, f366, f367, f368, f369, f370, f371, f372; | |
419 real_t f373, f374, f375, f376, f377, f378, f379, f380, f381, f382; | |
420 real_t f383, f384, f385, f386, f387, f388, f389, f390, f391, f392; | |
421 real_t f393, f394, f395, f396, f397, f398, f399, f400, f401, f402; | |
422 real_t f403, f404, f405, f406, f407, f408, f409, f410, f411, f412; | |
423 real_t f413, f414, f415, f416, f417, f418, f419, f420, f421, f422; | |
12527 | 424 real_t f423, f424, f425, f426, f427, f428, f429, f430, f431, f433; |
425 real_t f434, f435, f436, f437, f438, f439, f440, f441, f442, f443; | |
426 real_t f444, f445, f446, f447, f448, f449, f450, f451, f452, f453; | |
427 real_t f454, f455, f456, f457, f458, f459, f460, f461, f462, f463; | |
428 real_t f464, f465, f466, f467, f468, f469, f470, f471, f472, f473; | |
429 real_t f474, f475, f476, f477, f478, f479, f480, f481, f482, f483; | |
430 real_t f484, f485, f486, f487, f488, f489, f490, f491, f492, f493; | |
431 real_t f494, f495, f496, f497, f498, f499, f500, f501, f502, f503; | |
432 real_t f504, f505, f506, f507, f508, f509, f510, f511, f512, f513; | |
433 real_t f514, f515, f516, f517, f518, f519, f520, f521, f522, f523; | |
434 real_t f524, f525, f526, f527, f528, f529, f530, f531, f532, f533; | |
435 real_t f534, f535, f536, f537, f538, f539, f540, f541, f542, f543; | |
436 real_t f544, f546, f547, f548, f549, f550, f551, f552, f553, f554; | |
437 real_t f555, f556, f557, f558, f559, f560, f561, f562, f563, f564; | |
438 real_t f565, f566, f567, f568, f569, f570, f571, f572, f573, f574; | |
439 real_t f575, f576, f577, f578, f579, f580, f581, f582, f583, f584; | |
440 real_t f585, f586, f587, f588, f589, f590, f591, f592, f593, f594; | |
441 real_t f595, f596, f597, f598, f599, f600, f601, f602, f603, f604; | |
442 real_t f605, f606, f607, f608, f609, f610, f611, f612, f613, f614; | |
443 real_t f615, f616, f617, f618, f619, f620, f621, f622, f623, f624; | |
444 real_t f625, f626, f627, f628; | |
445 ALIGN static real_t t2[64]; | |
10725 | 446 |
447 for (i0=0; i0<32; i0++) | |
448 { | |
449 t2[2*i0+1] = x[i0] - x[-i0+63]; | |
450 t2[2*i0] = x[i0] + x[-i0+63]; | |
451 } | |
452 f2 = t2[0] - t2[62]; | |
453 f3 = t2[0] + t2[62]; | |
454 f4 = t2[2] - t2[60]; | |
455 f5 = t2[2] + t2[60]; | |
456 f6 = t2[4] - t2[58]; | |
457 f7 = t2[4] + t2[58]; | |
458 f8 = t2[6] - t2[56]; | |
459 f9 = t2[6] + t2[56]; | |
460 f10 = t2[8] - t2[54]; | |
461 f11 = t2[8] + t2[54]; | |
462 f12 = t2[10] - t2[52]; | |
463 f13 = t2[10] + t2[52]; | |
464 f14 = t2[12] - t2[50]; | |
465 f15 = t2[12] + t2[50]; | |
466 f16 = t2[14] - t2[48]; | |
467 f17 = t2[14] + t2[48]; | |
468 f18 = t2[16] - t2[46]; | |
469 f19 = t2[16] + t2[46]; | |
470 f20 = t2[18] - t2[44]; | |
471 f21 = t2[18] + t2[44]; | |
472 f22 = t2[20] - t2[42]; | |
473 f23 = t2[20] + t2[42]; | |
474 f24 = t2[22] - t2[40]; | |
475 f25 = t2[22] + t2[40]; | |
476 f26 = t2[24] - t2[38]; | |
477 f27 = t2[24] + t2[38]; | |
478 f28 = t2[26] - t2[36]; | |
479 f29 = t2[26] + t2[36]; | |
480 f30 = t2[28] - t2[34]; | |
481 f31 = t2[28] + t2[34]; | |
482 f32 = t2[30] - t2[32]; | |
483 f33 = t2[30] + t2[32]; | |
484 f34 = f3 - f33; | |
485 f35 = f3 + f33; | |
486 f36 = f5 - f31; | |
487 f37 = f5 + f31; | |
488 f38 = f7 - f29; | |
489 f39 = f7 + f29; | |
490 f40 = f9 - f27; | |
491 f41 = f9 + f27; | |
492 f42 = f11 - f25; | |
493 f43 = f11 + f25; | |
494 f44 = f13 - f23; | |
495 f45 = f13 + f23; | |
496 f46 = f15 - f21; | |
497 f47 = f15 + f21; | |
498 f48 = f17 - f19; | |
499 f49 = f17 + f19; | |
500 f50 = f35 - f49; | |
501 f51 = f35 + f49; | |
502 f52 = f37 - f47; | |
503 f53 = f37 + f47; | |
504 f54 = f39 - f45; | |
505 f55 = f39 + f45; | |
506 f56 = f41 - f43; | |
507 f57 = f41 + f43; | |
508 f58 = f51 - f57; | |
509 f59 = f51 + f57; | |
510 f60 = f53 - f55; | |
511 f61 = f53 + f55; | |
512 f62 = f59 - f61; | |
513 y[0] = f59 + f61; | |
12527 | 514 y[32] = MUL_C(COEF_CONST(0.7071067811865476), f62); |
10725 | 515 f65 = f58 + f60; |
12527 | 516 f66 = MUL_C(COEF_CONST(1.3065629648763766), f58); |
517 f67 = MUL_C(COEF_CONST((-0.9238795325112866)), f65); | |
518 f68 = MUL_C(COEF_CONST((-0.5411961001461967)), f60); | |
10725 | 519 y[48] = f66 + f67; |
520 y[16] = f68 - f67; | |
12527 | 521 f71 = f50 + f56; |
522 f72 = MUL_C(COEF_CONST(1.1758756024193588), f50); | |
523 f73 = MUL_C(COEF_CONST((-0.9807852804032304)), f71); | |
524 f74 = MUL_C(COEF_CONST((-0.7856949583871021)), f56); | |
525 f75 = f72 + f73; | |
526 f76 = f74 - f73; | |
527 f77 = f52 + f54; | |
528 f78 = MUL_C(COEF_CONST(1.3870398453221473), f52); | |
529 f79 = MUL_C(COEF_CONST((-0.8314696123025455)), f77); | |
530 f80 = MUL_C(COEF_CONST((-0.2758993792829436)), f54); | |
531 f81 = f78 + f79; | |
532 f82 = f80 - f79; | |
533 f83 = f76 - f82; | |
534 y[8] = f76 + f82; | |
535 f85 = MUL_C(COEF_CONST(0.7071067811865476), f83); | |
536 y[56] = f75 - f81; | |
537 f87 = f75 + f81; | |
538 f88 = MUL_C(COEF_CONST(0.7071067811865476), f87); | |
539 y[40] = f85 - f88; | |
540 y[24] = f85 + f88; | |
541 f91 = f36 - f38; | |
542 f92 = f36 + f38; | |
543 f93 = f40 - f42; | |
544 f94 = f40 + f42; | |
545 f95 = f44 - f46; | |
546 f96 = f44 + f46; | |
547 f97 = MUL_C(COEF_CONST(0.7071067811865476), f94); | |
548 f98 = f34 - f97; | |
549 f99 = f34 + f97; | |
550 f100 = f92 + f96; | |
551 f101 = MUL_C(COEF_CONST(1.3065629648763766), f92); | |
552 f102 = MUL_C(COEF_CONST((-0.9238795325112866)), f100); | |
553 f103 = MUL_C(COEF_CONST((-0.5411961001461967)), f96); | |
554 f104 = f101 + f102; | |
555 f105 = f103 - f102; | |
556 f106 = f99 - f105; | |
557 f107 = f99 + f105; | |
558 f108 = f98 - f104; | |
559 f109 = f98 + f104; | |
560 f110 = f91 + f95; | |
561 f111 = MUL_C(COEF_CONST(1.3065629648763770), f91); | |
562 f112 = MUL_C(COEF_CONST((-0.3826834323650904)), f110); | |
563 f113 = MUL_C(COEF_CONST(0.5411961001461961), f95); | |
564 f114 = f111 + f112; | |
565 f115 = f113 - f112; | |
566 f116 = MUL_C(COEF_CONST(0.7071067811865476), f93); | |
567 f117 = f116 - f48; | |
568 f118 = f116 + f48; | |
569 f119 = f115 - f118; | |
570 f120 = f115 + f118; | |
571 f121 = f114 - f117; | |
572 f122 = f114 + f117; | |
573 f123 = f120 + f107; | |
574 f124 = MUL_C(COEF_CONST((-0.8971675863426361)), f120); | |
575 f125 = MUL_C(COEF_CONST(0.9951847266721968), f123); | |
576 f126 = MUL_C(COEF_CONST(1.0932018670017576), f107); | |
577 y[4] = f124 + f125; | |
578 y[60] = f126 - f125; | |
579 f129 = f122 + f109; | |
580 f130 = MUL_C(COEF_CONST((-0.6666556584777466)), f122); | |
581 f131 = MUL_C(COEF_CONST(0.9569403357322089), f129); | |
582 f132 = MUL_C(COEF_CONST(1.2472250129866713), f109); | |
583 y[12] = f130 + f131; | |
584 y[52] = f132 - f131; | |
585 f135 = f121 + f108; | |
586 f136 = MUL_C(COEF_CONST((-0.4105245275223571)), f121); | |
587 f137 = MUL_C(COEF_CONST(0.8819212643483549), f135); | |
588 f138 = MUL_C(COEF_CONST(1.3533180011743529), f108); | |
589 y[20] = f136 + f137; | |
590 y[44] = f138 - f137; | |
591 f141 = f119 + f106; | |
592 f142 = MUL_C(COEF_CONST((-0.1386171691990915)), f119); | |
593 f143 = MUL_C(COEF_CONST(0.7730104533627370), f141); | |
594 f144 = MUL_C(COEF_CONST(1.4074037375263826), f106); | |
595 y[28] = f142 + f143; | |
596 y[36] = f144 - f143; | |
597 f147 = f16 - f18; | |
598 f148 = f16 + f18; | |
599 f149 = MUL_C(COEF_CONST(0.7071067811865476), f148); | |
600 f150 = MUL_C(COEF_CONST(0.7071067811865476), f147); | |
601 f151 = f10 - f24; | |
602 f152 = f10 + f24; | |
603 f153 = MUL_C(COEF_CONST(0.7071067811865476), f152); | |
604 f154 = MUL_C(COEF_CONST(0.7071067811865476), f151); | |
605 f155 = f14 - f20; | |
606 f156 = f14 + f20; | |
607 f157 = MUL_C(COEF_CONST(0.7071067811865476), f156); | |
608 f158 = MUL_C(COEF_CONST(0.7071067811865476), f155); | |
609 f159 = f12 - f22; | |
610 f160 = f12 + f22; | |
611 f161 = MUL_C(COEF_CONST(0.7071067811865476), f160); | |
612 f162 = MUL_C(COEF_CONST(0.7071067811865476), f159); | |
613 f163 = f2 - f149; | |
614 f164 = f2 + f149; | |
615 f165 = f32 - f150; | |
616 f166 = f32 + f150; | |
617 f167 = f8 - f153; | |
618 f168 = f8 + f153; | |
619 f169 = f26 - f154; | |
620 f170 = f26 + f154; | |
621 f171 = f4 - f157; | |
622 f172 = f4 + f157; | |
623 f173 = f30 - f158; | |
624 f174 = f30 + f158; | |
625 f175 = f6 - f161; | |
626 f176 = f6 + f161; | |
627 f177 = f28 - f162; | |
628 f178 = f28 + f162; | |
629 f179 = f170 + f168; | |
630 f180 = MUL_C(COEF_CONST((-0.5411961001461969)), f170); | |
631 f181 = MUL_C(COEF_CONST(0.9238795325112867), f179); | |
632 f182 = MUL_C(COEF_CONST(1.3065629648763766), f168); | |
633 f183 = f180 + f181; | |
634 f184 = f182 - f181; | |
635 f185 = f169 + f167; | |
636 f186 = MUL_C(COEF_CONST(1.3065629648763770), f169); | |
637 f187 = MUL_C(COEF_CONST((-0.3826834323650904)), f185); | |
638 f188 = MUL_C(COEF_CONST(0.5411961001461961), f167); | |
639 f189 = f186 + f187; | |
640 f190 = f188 - f187; | |
641 f191 = f178 + f176; | |
642 f192 = MUL_C(COEF_CONST((-0.5411961001461969)), f178); | |
643 f193 = MUL_C(COEF_CONST(0.9238795325112867), f191); | |
644 f194 = MUL_C(COEF_CONST(1.3065629648763766), f176); | |
645 f195 = f192 + f193; | |
646 f196 = f194 - f193; | |
647 f197 = f177 + f175; | |
648 f198 = MUL_C(COEF_CONST(1.3065629648763770), f177); | |
649 f199 = MUL_C(COEF_CONST((-0.3826834323650904)), f197); | |
650 f200 = MUL_C(COEF_CONST(0.5411961001461961), f175); | |
651 f201 = f198 + f199; | |
652 f202 = f200 - f199; | |
653 f203 = f164 - f183; | |
654 f204 = f164 + f183; | |
655 f205 = f166 - f184; | |
656 f206 = f166 + f184; | |
657 f207 = f163 - f189; | |
658 f208 = f163 + f189; | |
659 f209 = f165 - f190; | |
660 f210 = f165 + f190; | |
661 f211 = f172 - f195; | |
662 f212 = f172 + f195; | |
663 f213 = f174 - f196; | |
664 f214 = f174 + f196; | |
665 f215 = f171 - f201; | |
666 f216 = f171 + f201; | |
667 f217 = f173 - f202; | |
668 f218 = f173 + f202; | |
669 f219 = f214 + f212; | |
670 f220 = MUL_C(COEF_CONST((-0.7856949583871021)), f214); | |
671 f221 = MUL_C(COEF_CONST(0.9807852804032304), f219); | |
672 f222 = MUL_C(COEF_CONST(1.1758756024193588), f212); | |
673 f223 = f220 + f221; | |
674 f224 = f222 - f221; | |
675 f225 = f218 + f216; | |
676 f226 = MUL_C(COEF_CONST(0.2758993792829431), f218); | |
677 f227 = MUL_C(COEF_CONST(0.5555702330196022), f225); | |
678 f228 = MUL_C(COEF_CONST(1.3870398453221475), f216); | |
679 f229 = f226 + f227; | |
680 f230 = f228 - f227; | |
681 f231 = f213 + f211; | |
682 f232 = MUL_C(COEF_CONST(1.1758756024193591), f213); | |
683 f233 = MUL_C(COEF_CONST((-0.1950903220161287)), f231); | |
684 f234 = MUL_C(COEF_CONST(0.7856949583871016), f211); | |
685 f235 = f232 + f233; | |
686 f236 = f234 - f233; | |
687 f237 = f217 + f215; | |
688 f238 = MUL_C(COEF_CONST(1.3870398453221473), f217); | |
689 f239 = MUL_C(COEF_CONST((-0.8314696123025455)), f237); | |
690 f240 = MUL_C(COEF_CONST((-0.2758993792829436)), f215); | |
691 f241 = f238 + f239; | |
692 f242 = f240 - f239; | |
693 f243 = f204 - f223; | |
694 f244 = f204 + f223; | |
695 f245 = f206 - f224; | |
696 f246 = f206 + f224; | |
697 f247 = f208 - f229; | |
698 f248 = f208 + f229; | |
699 f249 = f210 - f230; | |
700 f250 = f210 + f230; | |
701 f251 = f203 - f235; | |
702 f252 = f203 + f235; | |
703 f253 = f205 - f236; | |
704 f254 = f205 + f236; | |
705 f255 = f207 - f241; | |
706 f256 = f207 + f241; | |
707 f257 = f209 - f242; | |
708 f258 = f209 + f242; | |
709 f259 = f246 + f244; | |
710 f260 = MUL_C(COEF_CONST((-0.9497277818777543)), f246); | |
711 f261 = MUL_C(COEF_CONST(0.9987954562051724), f259); | |
712 f262 = MUL_C(COEF_CONST(1.0478631305325905), f244); | |
713 y[2] = f260 + f261; | |
714 y[62] = f262 - f261; | |
715 f265 = f250 + f248; | |
716 f266 = MUL_C(COEF_CONST((-0.7270510732912801)), f250); | |
717 f267 = MUL_C(COEF_CONST(0.9700312531945440), f265); | |
718 f268 = MUL_C(COEF_CONST(1.2130114330978079), f248); | |
719 y[10] = f266 + f267; | |
720 y[54] = f268 - f267; | |
721 f271 = f254 + f252; | |
722 f272 = MUL_C(COEF_CONST((-0.4764341996931611)), f254); | |
723 f273 = MUL_C(COEF_CONST(0.9039892931234433), f271); | |
724 f274 = MUL_C(COEF_CONST(1.3315443865537255), f252); | |
725 y[18] = f272 + f273; | |
726 y[46] = f274 - f273; | |
727 f277 = f258 + f256; | |
728 f278 = MUL_C(COEF_CONST((-0.2075082269882114)), f258); | |
729 f279 = MUL_C(COEF_CONST(0.8032075314806448), f277); | |
730 f280 = MUL_C(COEF_CONST(1.3989068359730783), f256); | |
731 y[26] = f278 + f279; | |
732 y[38] = f280 - f279; | |
733 f283 = f245 + f243; | |
734 f284 = MUL_C(COEF_CONST(0.0693921705079408), f245); | |
735 f285 = MUL_C(COEF_CONST(0.6715589548470183), f283); | |
736 f286 = MUL_C(COEF_CONST(1.4125100802019774), f243); | |
737 y[34] = f284 + f285; | |
738 y[30] = f286 - f285; | |
739 f289 = f249 + f247; | |
740 f290 = MUL_C(COEF_CONST(0.3436258658070505), f249); | |
741 f291 = MUL_C(COEF_CONST(0.5141027441932217), f289); | |
742 f292 = MUL_C(COEF_CONST(1.3718313541934939), f247); | |
743 y[42] = f290 + f291; | |
744 y[22] = f292 - f291; | |
745 f295 = f253 + f251; | |
746 f296 = MUL_C(COEF_CONST(0.6046542117908007), f253); | |
747 f297 = MUL_C(COEF_CONST(0.3368898533922201), f295); | |
748 f298 = MUL_C(COEF_CONST(1.2784339185752409), f251); | |
749 y[50] = f296 + f297; | |
750 y[14] = f298 - f297; | |
751 f301 = f257 + f255; | |
752 f302 = MUL_C(COEF_CONST(0.8424460355094192), f257); | |
753 f303 = MUL_C(COEF_CONST(0.1467304744553618), f301); | |
754 f304 = MUL_C(COEF_CONST(1.1359069844201428), f255); | |
755 y[58] = f302 + f303; | |
756 y[6] = f304 - f303; | |
757 f307 = t2[1] + t2[63]; | |
758 f308 = MUL_C(COEF_CONST(1.0242400472191162), t2[1]); | |
759 f309 = MUL_C(COEF_CONST((-0.9996988186962043)), f307); | |
760 f310 = MUL_C(COEF_CONST((-0.9751575901732922)), t2[63]); | |
761 f311 = f308 + f309; | |
762 f312 = f310 - f309; | |
763 f313 = t2[3] + t2[61]; | |
764 f314 = MUL_C(COEF_CONST(1.0708550202783571),t2[3]); | |
765 f315 = MUL_C(COEF_CONST((-0.9972904566786902)), f313); | |
766 f316 = MUL_C(COEF_CONST((-0.9237258930790232)), t2[61]); | |
767 f317 = f314 + f315; | |
768 f318 = f316 - f315; | |
769 f319 = t2[5] + t2[59]; | |
770 f320 = MUL_C(COEF_CONST(1.1148902097979256), t2[5]); | |
771 f321 = MUL_C(COEF_CONST((-0.9924795345987101)), f319); | |
772 f322 = MUL_C(COEF_CONST((-0.8700688593994945)), t2[59]); | |
773 f323 = f320 + f321; | |
774 f324 = f322 - f321; | |
775 f325 = t2[7] + t2[57]; | |
776 f326 = MUL_C(COEF_CONST(1.1562395311492426), t2[7]); | |
777 f327 = MUL_C(COEF_CONST((-0.9852776423889412)), f325); | |
778 f328 = MUL_C(COEF_CONST((-0.8143157536286398)), t2[57]); | |
779 f329 = f326 + f327; | |
780 f330 = f328 - f327; | |
781 f331 = t2[9] + t2[55]; | |
782 f332 = MUL_C(COEF_CONST(1.1948033701953984), t2[9]); | |
783 f333 = MUL_C(COEF_CONST((-0.9757021300385286)), f331); | |
784 f334 = MUL_C(COEF_CONST((-0.7566008898816589)), t2[55]); | |
785 f335 = f332 + f333; | |
786 f336 = f334 - f333; | |
787 f337 = t2[11] + t2[53]; | |
788 f338 = MUL_C(COEF_CONST(1.2304888232703382), t2[11]); | |
789 f339 = MUL_C(COEF_CONST((-0.9637760657954400)), f337); | |
790 f340 = MUL_C(COEF_CONST((-0.6970633083205418)), t2[53]); | |
791 f341 = f338 + f339; | |
792 f342 = f340 - f339; | |
793 f343 = t2[13] + t2[51]; | |
794 f344 = MUL_C(COEF_CONST(1.2632099209919279), t2[13]); | |
795 f345 = MUL_C(COEF_CONST((-0.9495281805930368)), f343); | |
796 f346 = MUL_C(COEF_CONST((-0.6358464401941457)), t2[51]); | |
797 f347 = f344 + f345; | |
798 f348 = f346 - f345; | |
799 f349 = t2[15] + t2[49]; | |
800 f350 = MUL_C(COEF_CONST(1.2928878353697266), t2[15]); | |
801 f351 = MUL_C(COEF_CONST((-0.9329927988347391)), f349); | |
802 f352 = MUL_C(COEF_CONST((-0.5730977622997515)), t2[49]); | |
803 f353 = f350 + f351; | |
804 f354 = f352 - f351; | |
805 f355 = t2[17] + t2[47]; | |
806 f356 = MUL_C(COEF_CONST(1.3194510697085207), t2[17]); | |
807 f357 = MUL_C(COEF_CONST((-0.9142097557035306)), f355); | |
808 f358 = MUL_C(COEF_CONST((-0.5089684416985405)), t2[47]); | |
809 f359 = f356 + f357; | |
810 f360 = f358 - f357; | |
811 f361 = t2[19] + t2[45]; | |
812 f362 = MUL_C(COEF_CONST(1.3428356308501219), t2[19]); | |
813 f363 = MUL_C(COEF_CONST((-0.8932243011955153)), f361); | |
814 f364 = MUL_C(COEF_CONST((-0.4436129715409087)), t2[45]); | |
815 f365 = f362 + f363; | |
816 f366 = f364 - f363; | |
817 f367 = t2[21] + t2[43]; | |
818 f368 = MUL_C(COEF_CONST(1.3629851833384954), t2[21]); | |
819 f369 = MUL_C(COEF_CONST((-0.8700869911087115)), f367); | |
820 f370 = MUL_C(COEF_CONST((-0.3771887988789276)), t2[43]); | |
821 f371 = f368 + f369; | |
822 f372 = f370 - f369; | |
823 f373 = t2[23] + t2[41]; | |
824 f374 = MUL_C(COEF_CONST(1.3798511851368040), t2[23]); | |
825 f375 = MUL_C(COEF_CONST((-0.8448535652497072)), f373); | |
826 f376 = MUL_C(COEF_CONST((-0.3098559453626103)), t2[41]); | |
827 f377 = f374 + f375; | |
828 f378 = f376 - f375; | |
829 f379 = t2[25] + t2[39]; | |
830 f380 = MUL_C(COEF_CONST(1.3933930045694289), t2[25]); | |
831 f381 = MUL_C(COEF_CONST((-0.8175848131515840)), f379); | |
832 f382 = MUL_C(COEF_CONST((-0.2417766217337392)), t2[39]); | |
833 f383 = f380 + f381; | |
834 f384 = f382 - f381; | |
835 f385 = t2[27] + t2[37]; | |
836 f386 = MUL_C(COEF_CONST(1.4035780182072330), t2[27]); | |
837 f387 = MUL_C(COEF_CONST((-0.7883464276266061)), f385); | |
838 f388 = MUL_C(COEF_CONST((-0.1731148370459791)), t2[37]); | |
839 f389 = f386 + f387; | |
840 f390 = f388 - f387; | |
841 f391 = t2[29] + t2[35]; | |
842 f392 = MUL_C(COEF_CONST(1.4103816894602614), t2[29]); | |
843 f393 = MUL_C(COEF_CONST((-0.7572088465064846)), f391); | |
844 f394 = MUL_C(COEF_CONST((-0.1040360035527078)), t2[35]); | |
845 f395 = f392 + f393; | |
846 f396 = f394 - f393; | |
847 f397 = t2[31] + t2[33]; | |
848 f398 = MUL_C(COEF_CONST(1.4137876276885337), t2[31]); | |
849 f399 = MUL_C(COEF_CONST((-0.7242470829514670)), f397); | |
850 f400 = MUL_C(COEF_CONST((-0.0347065382144002)), t2[33]); | |
851 f401 = f398 + f399; | |
852 f402 = f400 - f399; | |
853 f403 = f312 - f402; | |
854 f404 = f312 + f402; | |
855 f405 = f318 - f396; | |
856 f406 = f318 + f396; | |
857 f407 = f324 - f390; | |
858 f408 = f324 + f390; | |
859 f409 = f330 - f384; | |
860 f410 = f330 + f384; | |
861 f411 = f336 - f378; | |
862 f412 = f336 + f378; | |
863 f413 = f342 - f372; | |
864 f414 = f342 + f372; | |
865 f415 = f348 - f366; | |
866 f416 = f348 + f366; | |
867 f417 = f354 - f360; | |
868 f418 = f354 + f360; | |
869 f419 = f404 - f418; | |
870 f420 = f404 + f418; | |
871 f421 = f406 - f416; | |
872 f422 = f406 + f416; | |
873 f423 = f408 - f414; | |
874 f424 = f408 + f414; | |
875 f425 = f410 - f412; | |
876 f426 = f410 + f412; | |
877 f427 = f420 - f426; | |
878 f428 = f420 + f426; | |
879 f429 = f422 - f424; | |
880 f430 = f422 + f424; | |
881 f431 = f428 - f430; | |
882 y[1] = f428 + f430; | |
883 f433 = MUL_C(COEF_CONST(0.7071067811865476), f431); | |
884 f434 = f427 + f429; | |
885 f435 = MUL_C(COEF_CONST(1.3065629648763766), f427); | |
886 f436 = MUL_C(COEF_CONST((-0.9238795325112866)), f434); | |
887 f437 = MUL_C(COEF_CONST((-0.5411961001461967)), f429); | |
888 f438 = f435 + f436; | |
889 f439 = f437 - f436; | |
890 f440 = f419 + f425; | |
891 f441 = MUL_C(COEF_CONST(1.1758756024193588), f419); | |
892 f442 = MUL_C(COEF_CONST((-0.9807852804032304)), f440); | |
893 f443 = MUL_C(COEF_CONST((-0.7856949583871021)), f425); | |
894 f444 = f441 + f442; | |
895 f445 = f443 - f442; | |
896 f446 = f421 + f423; | |
897 f447 = MUL_C(COEF_CONST(1.3870398453221473), f421); | |
898 f448 = MUL_C(COEF_CONST((-0.8314696123025455)), f446); | |
899 f449 = MUL_C(COEF_CONST((-0.2758993792829436)), f423); | |
900 f450 = f447 + f448; | |
901 f451 = f449 - f448; | |
902 f452 = f445 - f451; | |
903 f453 = f445 + f451; | |
904 f454 = MUL_C(COEF_CONST(0.7071067811865476), f452); | |
905 f455 = f444 - f450; | |
906 f456 = f444 + f450; | |
907 f457 = MUL_C(COEF_CONST(0.7071067811865476), f456); | |
908 f458 = f454 - f457; | |
909 f459 = f454 + f457; | |
910 f460 = f405 - f407; | |
911 f461 = f405 + f407; | |
912 f462 = f409 - f411; | |
913 f463 = f409 + f411; | |
914 f464 = f413 - f415; | |
915 f465 = f413 + f415; | |
916 f466 = MUL_C(COEF_CONST(0.7071067811865476), f463); | |
917 f467 = f403 - f466; | |
918 f468 = f403 + f466; | |
919 f469 = f461 + f465; | |
920 f470 = MUL_C(COEF_CONST(1.3065629648763766), f461); | |
921 f471 = MUL_C(COEF_CONST((-0.9238795325112866)), f469); | |
922 f472 = MUL_C(COEF_CONST((-0.5411961001461967)), f465); | |
923 f473 = f470 + f471; | |
924 f474 = f472 - f471; | |
925 f475 = f468 - f474; | |
926 f476 = f468 + f474; | |
927 f477 = f467 - f473; | |
928 f478 = f467 + f473; | |
929 f479 = f460 + f464; | |
930 f480 = MUL_C(COEF_CONST(1.3065629648763770), f460); | |
931 f481 = MUL_C(COEF_CONST((-0.3826834323650904)), f479); | |
932 f482 = MUL_C(COEF_CONST(0.5411961001461961), f464); | |
933 f483 = f480 + f481; | |
934 f484 = f482 - f481; | |
935 f485 = MUL_C(COEF_CONST(0.7071067811865476), f462); | |
936 f486 = f485 - f417; | |
937 f487 = f485 + f417; | |
938 f488 = f484 - f487; | |
939 f489 = f484 + f487; | |
940 f490 = f483 - f486; | |
941 f491 = f483 + f486; | |
942 f492 = f489 + f476; | |
943 f493 = MUL_C(COEF_CONST((-0.8971675863426361)), f489); | |
944 f494 = MUL_C(COEF_CONST(0.9951847266721968), f492); | |
945 f495 = MUL_C(COEF_CONST(1.0932018670017576), f476); | |
946 f496 = f493 + f494; | |
947 f497 = f495 - f494; | |
948 f498 = f491 + f478; | |
949 f499 = MUL_C(COEF_CONST((-0.6666556584777466)), f491); | |
950 f500 = MUL_C(COEF_CONST(0.9569403357322089), f498); | |
951 f501 = MUL_C(COEF_CONST(1.2472250129866713), f478); | |
952 f502 = f499 + f500; | |
953 f503 = f501 - f500; | |
954 f504 = f490 + f477; | |
955 f505 = MUL_C(COEF_CONST((-0.4105245275223571)), f490); | |
956 f506 = MUL_C(COEF_CONST(0.8819212643483549), f504); | |
957 f507 = MUL_C(COEF_CONST(1.3533180011743529), f477); | |
958 f508 = f505 + f506; | |
959 f509 = f507 - f506; | |
960 f510 = f488 + f475; | |
961 f511 = MUL_C(COEF_CONST((-0.1386171691990915)), f488); | |
962 f512 = MUL_C(COEF_CONST(0.7730104533627370), f510); | |
963 f513 = MUL_C(COEF_CONST(1.4074037375263826), f475); | |
964 f514 = f511 + f512; | |
965 f515 = f513 - f512; | |
966 f516 = f311 + f401; | |
967 f517 = f311 - f401; | |
968 f518 = f317 + f395; | |
969 f519 = f395 - f317; | |
970 f520 = f323 + f389; | |
971 f521 = f323 - f389; | |
972 f522 = f329 + f383; | |
973 f523 = f383 - f329; | |
974 f524 = f335 + f377; | |
975 f525 = f335 - f377; | |
976 f526 = f341 + f371; | |
977 f527 = f371 - f341; | |
978 f528 = f347 + f365; | |
979 f529 = f347 - f365; | |
980 f530 = f353 + f359; | |
981 f531 = f359 - f353; | |
982 f532 = f517 - f531; | |
983 f533 = f517 + f531; | |
984 f534 = f519 - f529; | |
985 f535 = f519 + f529; | |
986 f536 = f521 - f527; | |
987 f537 = f521 + f527; | |
988 f538 = f523 - f525; | |
989 f539 = f523 + f525; | |
990 f540 = f533 - f539; | |
991 f541 = f533 + f539; | |
992 f542 = f535 - f537; | |
993 f543 = f535 + f537; | |
994 f544 = f541 - f543; | |
995 y[63] = f541 + f543; | |
996 f546 = MUL_C(COEF_CONST(0.7071067811865476), f544); | |
997 f547 = f540 + f542; | |
998 f548 = MUL_C(COEF_CONST(1.3065629648763766), f540); | |
999 f549 = MUL_C(COEF_CONST((-0.9238795325112866)), f547); | |
1000 f550 = MUL_C(COEF_CONST((-0.5411961001461967)), f542); | |
1001 f551 = f548 + f549; | |
1002 f552 = f550 - f549; | |
1003 f553 = f532 + f538; | |
1004 f554 = MUL_C(COEF_CONST(1.1758756024193588), f532); | |
1005 f555 = MUL_C(COEF_CONST((-0.9807852804032304)), f553); | |
1006 f556 = MUL_C(COEF_CONST((-0.7856949583871021)), f538); | |
1007 f557 = f554 + f555; | |
1008 f558 = f556 - f555; | |
1009 f559 = f534 + f536; | |
1010 f560 = MUL_C(COEF_CONST(1.3870398453221473), f534); | |
1011 f561 = MUL_C(COEF_CONST((-0.8314696123025455)), f559); | |
1012 f562 = MUL_C(COEF_CONST((-0.2758993792829436)), f536); | |
1013 f563 = f560 + f561; | |
1014 f564 = f562 - f561; | |
1015 f565 = f558 - f564; | |
1016 f566 = f558 + f564; | |
1017 f567 = MUL_C(COEF_CONST(0.7071067811865476), f565); | |
1018 f568 = f557 - f563; | |
1019 f569 = f557 + f563; | |
1020 f570 = MUL_C(COEF_CONST(0.7071067811865476), f569); | |
1021 f571 = f567 - f570; | |
1022 f572 = f567 + f570; | |
1023 f573 = MUL_C(COEF_CONST(0.5024192861881557), f516); | |
1024 f574 = MUL_C(COEF_CONST(0.5224986149396889), f518); | |
1025 f575 = MUL_C(COEF_CONST(0.5669440348163577), f520); | |
1026 f576 = MUL_C(COEF_CONST(0.6468217833599901), f522); | |
1027 f577 = MUL_C(COEF_CONST(0.7881546234512502), f524); | |
1028 f578 = MUL_C(COEF_CONST(1.0606776859903471), f526); | |
1029 f579 = MUL_C(COEF_CONST(1.7224470982383342), f528); | |
1030 f580 = MUL_C(COEF_CONST(5.1011486186891553), f530); | |
1031 f581 = f573 + f580; | |
1032 f582 = f573 - f580; | |
1033 f583 = f574 + f579; | |
1034 f584 = f579 - f574; | |
1035 f585 = f575 + f578; | |
1036 f586 = f575 - f578; | |
1037 f587 = f576 + f577; | |
1038 f588 = f577 - f576; | |
1039 f589 = f582 - f588; | |
1040 f590 = f582 + f588; | |
1041 f591 = f584 - f586; | |
1042 f592 = f584 + f586; | |
1043 f593 = f590 - f592; | |
1044 f594 = f590 + f592; | |
1045 f595 = MUL_C(COEF_CONST(0.7071067811865476), f593); | |
1046 f596 = f589 + f591; | |
1047 f597 = MUL_C(COEF_CONST(1.3065629648763766), f589); | |
1048 f598 = MUL_C(COEF_CONST((-0.9238795325112866)), f596); | |
1049 f599 = MUL_C(COEF_CONST((-0.5411961001461967)), f591); | |
1050 f600 = f597 + f598; | |
1051 f601 = f599 - f598; | |
1052 f602 = f583 + f585; | |
1053 f603 = f585 - f583; | |
1054 f604 = MUL_C(COEF_CONST(0.7071067811865476), f603); | |
1055 f605 = MUL_C(COEF_CONST(0.7071067811865476), f602); | |
1056 f606 = f581 - f604; | |
1057 f607 = f581 + f604; | |
1058 f608 = f605 - f587; | |
1059 f609 = f587 + f605; | |
1060 f610 = f607 - f609; | |
1061 f611 = MUL_C(COEF_CONST((-0.7856949583871021)), f609); | |
1062 f612 = MUL_C(COEF_CONST(0.9807852804032304), f610); | |
1063 f613 = MUL_C(COEF_CONST(1.1758756024193588), f607); | |
1064 f614 = f612 - f611; | |
1065 f615 = f613 - f612; | |
1066 f616 = f608 + f606; | |
1067 f617 = MUL_C(COEF_CONST(0.2758993792829431), f608); | |
1068 f618 = MUL_C(COEF_CONST(0.5555702330196022), f616); | |
1069 f619 = MUL_C(COEF_CONST(1.3870398453221475), f606); | |
1070 f620 = f617 + f618; | |
1071 f621 = f619 - f618; | |
1072 f622 = f594 + f614; | |
1073 f623 = f614 + f601; | |
1074 f624 = f601 + f621; | |
1075 f625 = f621 + f595; | |
1076 f626 = f595 + f620; | |
1077 f627 = f620 + f600; | |
1078 f628 = f600 + f615; | |
1079 y[5] = f496 - f615; | |
1080 y[3] = f496 + f615; | |
1081 y[9] = f453 - f568; | |
1082 y[7] = f453 + f568; | |
1083 y[13] = f502 - f628; | |
1084 y[11] = f502 + f628; | |
1085 y[17] = f439 - f551; | |
1086 y[15] = f439 + f551; | |
1087 y[21] = f508 - f627; | |
1088 y[19] = f508 + f627; | |
1089 y[25] = f459 - f571; | |
1090 y[23] = f459 + f571; | |
1091 y[29] = f514 - f626; | |
1092 y[27] = f514 + f626; | |
1093 y[33] = f433 - f546; | |
1094 y[31] = f433 + f546; | |
1095 y[37] = f515 - f625; | |
1096 y[35] = f515 + f625; | |
1097 y[41] = f458 - f572; | |
1098 y[39] = f458 + f572; | |
1099 y[45] = f509 - f624; | |
1100 y[43] = f509 + f624; | |
1101 y[49] = f438 - f552; | |
1102 y[47] = f438 + f552; | |
1103 y[53] = f503 - f623; | |
1104 y[51] = f503 + f623; | |
1105 y[57] = f455 - f566; | |
1106 y[55] = f455 + f566; | |
1107 y[61] = f497 - f622; | |
1108 y[59] = f497 + f622; | |
1109 } | |
1110 | |
1111 void DST2_64_unscaled(real_t *y, real_t *x) | |
1112 { | |
1113 int16_t i0; | |
1114 real_t f2, f3, f4, f5, f6, f7; | |
1115 real_t f8, f9, f10, f11, f12, f13; | |
1116 real_t f14, f15, f16, f17, f18, f19; | |
1117 real_t f20, f21, f22, f23, f24, f25; | |
1118 real_t f26, f27, f28, f29, f30, f31; | |
1119 real_t f32, f33, f34, f35, f36, f37; | |
1120 real_t f38, f39, f40, f41, f42, f43; | |
1121 real_t f44, f45, f46, f47, f48, f49; | |
1122 real_t f50, f51, f52, f53, f54, f55; | |
1123 real_t f56, f57, f58, f59, f60, f61; | |
1124 real_t f62, f63, f64, f65, f66, f67; | |
1125 real_t f68, f69, f70, f71, f72, f73; | |
1126 real_t f74, f75, f76, f77, f78, f79; | |
1127 real_t f80, f81, f82, f83, f84, f85; | |
1128 real_t f86, f87, f88, f89, f90, f91; | |
1129 real_t f92, f93, f94, f95, f96, f97; | |
1130 real_t f98, f99, f100, f101, f102, f103; | |
1131 real_t f104, f105, f106, f107, f108, f109; | |
1132 real_t f110, f111, f112, f113, f114, f115; | |
1133 real_t f116, f117, f118, f119, f120, f121; | |
1134 real_t f122, f123, f124, f125, f126, f127; | |
1135 real_t f128, f129, f130, f131, f132, f133; | |
1136 real_t f134, f135, f136, f137, f138, f139; | |
1137 real_t f140, f141, f142, f143, f144, f145; | |
1138 real_t f146, f147, f148, f149, f150, f151; | |
1139 real_t f152, f153, f154, f155, f156, f157; | |
1140 real_t f158, f159, f160, f161, f162, f163; | |
1141 real_t f164, f165, f166, f167, f168, f169; | |
1142 real_t f170, f171, f172, f173, f174, f175; | |
1143 real_t f176, f177, f178, f179, f180, f181; | |
1144 real_t f182, f183, f184, f185, f186, f187; | |
1145 real_t f188, f189, f190, f191, f192, f193; | |
1146 real_t f194, f195, f196, f197, f198, f199; | |
1147 real_t f200, f201, f202, f203, f204, f205; | |
1148 real_t f206, f207, f208, f209, f210, f211; | |
1149 real_t f212, f213, f214, f215, f216, f217; | |
1150 real_t f218, f219, f220, f221, f222, f223; | |
1151 real_t f224, f225, f226, f227, f228, f229; | |
1152 real_t f230, f231, f232, f233, f234, f235; | |
1153 real_t f236, f237, f238, f239, f240, f241; | |
1154 real_t f242, f243, f244, f245, f246, f247; | |
1155 real_t f248, f249, f250, f251, f252, f253; | |
1156 real_t f254, f255, f256, f257, f258, f259; | |
1157 real_t f260, f261, f264, f265, f266, f267; | |
1158 real_t f270, f271, f272, f273, f276, f277; | |
1159 real_t f278, f279, f282, f283, f284, f285; | |
1160 real_t f288, f289, f290, f291, f294, f295; | |
1161 real_t f296, f297, f300, f301, f302, f303; | |
1162 real_t f306, f307, f308, f309, f312, f313; | |
1163 real_t f314, f315, f318, f319, f320, f321; | |
1164 real_t f324, f325, f326, f327, f330, f331; | |
1165 real_t f332, f333, f336, f337, f338, f339; | |
1166 real_t f342, f343, f344, f345, f348, f349; | |
1167 real_t f350, f351, f354, f355, f356, f357; | |
1168 real_t f358, f359, f360, f361, f362, f363; | |
1169 real_t f364, f365, f366, f367, f368, f369; | |
1170 real_t f370, f371, f372, f373, f374, f375; | |
1171 real_t f376, f377, f378, f379, f380, f381; | |
1172 real_t f382, f383, f384, f385, f386, f387; | |
1173 real_t f388, f389, f390, f391, f392, f393; | |
1174 real_t f394, f395, f396, f397, f398, f399; | |
1175 real_t f400, f401, f402, f403, f404, f405; | |
1176 real_t f406, f407, f408, f409, f410, f411; | |
1177 real_t f412, f413, f414, f415, f416, f417; | |
1178 real_t f418, f419, f420, f421, f422, f423; | |
1179 real_t f424, f425, f426, f427, f428, f429; | |
1180 real_t f430, f431, f432, f433, f434, f435; | |
1181 real_t f436, f437, f438, f439, f440, f441; | |
1182 real_t f442, f443, f444, f445, f446, f447; | |
1183 real_t f448, f449, f450, f451, f452, f453; | |
1184 real_t f454, f455, f456, f457, f458, f459; | |
1185 real_t f460, f461, f462, f463, f464, f465; | |
1186 real_t f466, f467, f468, f469, f470, f471; | |
1187 real_t f472, f473, f474, f475, f476, f477; | |
1188 real_t f478, f479, f480, f481, f482, f483; | |
1189 real_t f484, f485, f486, f487, f488, f489; | |
1190 real_t f490, f491, f492, f493, f494, f495; | |
1191 real_t f496, f497, f498, f499, f500, f501; | |
1192 real_t f504, f505, f506, f507, f510, f511; | |
1193 real_t f512, f513, f516, f517, f518, f519; | |
1194 real_t f522, f523, f524, f525, f528, f529; | |
1195 real_t f530, f531, f534, f535, f536, f537; | |
1196 real_t f540, f541, f542, f543, f546, f547; | |
1197 real_t f548, f549, f550, f551, f552, f553; | |
1198 real_t f554, f555, f556, f557, f558, f559; | |
1199 real_t f560, f561, f562, f563, f564, f565; | |
1200 real_t f566, f567, f568, f569, f570, f571; | |
1201 real_t f572, f573, f574, f577, f578, f579; | |
1202 real_t f580, f583, f584, f585, f586, f587; | |
1203 real_t f588, f589, f590, f591, f592, f593; | |
1204 real_t f594, f595, f596, f597, f598, f603; | |
1205 real_t f604, f605, f606, f607, f608, f609; | |
1206 real_t f610, f611, f612, f613, f614, f615; | |
1207 real_t f616, f617, f618, f619, f620, f621; | |
1208 real_t f622, f623, f624, f625, f626, f627; | |
1209 real_t f628, f629, f630, f631, f632, f633; | |
1210 real_t f634, f635, f636, f637, f638, f639; | |
1211 real_t f640, f641, f642, f643, f644, f645; | |
1212 real_t f646, f647, f648, f649, f650; | |
1213 ALIGN static real_t t2[64]; | |
1214 | |
1215 for (i0=0; i0<32; i0++) | |
1216 { | |
1217 t2[2*i0+1] = x[i0] - x[-i0+63]; | |
1218 t2[2*i0] = x[i0] + x[-i0+63]; | |
1219 } | |
1220 f2 = t2[2] + t2[4]; | |
1221 f3 = t2[4] - t2[2]; | |
1222 f4 = t2[6] + t2[8]; | |
1223 f5 = t2[8] - t2[6]; | |
1224 f6 = t2[10] + t2[12]; | |
1225 f7 = t2[12] - t2[10]; | |
1226 f8 = t2[14] + t2[16]; | |
1227 f9 = t2[16] - t2[14]; | |
1228 f10 = t2[18] + t2[20]; | |
1229 f11 = t2[20] - t2[18]; | |
1230 f12 = t2[22] + t2[24]; | |
1231 f13 = t2[24] - t2[22]; | |
1232 f14 = t2[26] + t2[28]; | |
1233 f15 = t2[28] - t2[26]; | |
1234 f16 = t2[30] + t2[32]; | |
1235 f17 = t2[32] - t2[30]; | |
1236 f18 = t2[34] + t2[36]; | |
1237 f19 = t2[36] - t2[34]; | |
1238 f20 = t2[38] + t2[40]; | |
1239 f21 = t2[40] - t2[38]; | |
1240 f22 = t2[42] + t2[44]; | |
1241 f23 = t2[44] - t2[42]; | |
1242 f24 = t2[46] + t2[48]; | |
1243 f25 = t2[48] - t2[46]; | |
1244 f26 = t2[50] + t2[52]; | |
1245 f27 = t2[52] - t2[50]; | |
1246 f28 = t2[54] + t2[56]; | |
1247 f29 = t2[56] - t2[54]; | |
1248 f30 = t2[58] + t2[60]; | |
1249 f31 = t2[60] - t2[58]; | |
1250 f32 = MUL_C(COEF_CONST(0.7071067811865476), f17); | |
1251 f33 = t2[0] - f32; | |
1252 f34 = t2[0] + f32; | |
1253 f35 = f9 + f25; | |
1254 f36 = MUL_C(COEF_CONST(1.3065629648763766), f9); | |
1255 f37 = MUL_C(COEF_CONST((-0.9238795325112866)), f35); | |
1256 f38 = MUL_C(COEF_CONST((-0.5411961001461967)), f25); | |
1257 f39 = f36 + f37; | |
1258 f40 = f38 - f37; | |
1259 f41 = f34 - f40; | |
1260 f42 = f34 + f40; | |
1261 f43 = f33 - f39; | |
1262 f44 = f33 + f39; | |
1263 f45 = MUL_C(COEF_CONST(2.5629154477415064), f5); | |
1264 f46 = MUL_C(COEF_CONST(0.8999762231364158), f13); | |
1265 f47 = MUL_C(COEF_CONST(0.5097955791041592), f29); | |
1266 f48 = MUL_C(COEF_CONST(0.6013448869350453), f21); | |
1267 f49 = f45 - f47; | |
1268 f50 = f45 + f47; | |
1269 f51 = f46 - f48; | |
1270 f52 = f46 + f48; | |
1271 f53 = f50 + f52; | |
1272 f54 = MUL_C(COEF_CONST(1.3065629648763770), f50); | |
1273 f55 = MUL_C(COEF_CONST((-0.3826834323650904)), f53); | |
1274 f56 = MUL_C(COEF_CONST(0.5411961001461961), f52); | |
1275 f57 = f54 + f55; | |
1276 f58 = f56 - f55; | |
1277 f59 = f51 - f49; | |
1278 f60 = f49 + f51; | |
1279 f61 = MUL_C(COEF_CONST(0.7071067811865476), f60); | |
1280 f62 = f58 - f61; | |
1281 f63 = f57 - f61; | |
1282 f64 = f59 + f57; | |
1283 f65 = f42 - f58; | |
1284 f66 = f42 + f58; | |
1285 f67 = f44 + f62; | |
1286 f68 = f44 - f62; | |
1287 f69 = f43 - f63; | |
1288 f70 = f43 + f63; | |
1289 f71 = f41 + f64; | |
1290 f72 = f41 - f64; | |
1291 f73 = f7 - f11; | |
1292 f74 = f7 + f11; | |
1293 f75 = f15 - f19; | |
1294 f76 = f15 + f19; | |
1295 f77 = f23 - f27; | |
1296 f78 = f23 + f27; | |
1297 f79 = MUL_C(COEF_CONST(0.7071067811865476), f76); | |
1298 f80 = f3 - f79; | |
1299 f81 = f3 + f79; | |
1300 f82 = f74 + f78; | |
1301 f83 = MUL_C(COEF_CONST(1.3065629648763766), f74); | |
1302 f84 = MUL_C(COEF_CONST((-0.9238795325112866)), f82); | |
1303 f85 = MUL_C(COEF_CONST((-0.5411961001461967)), f78); | |
1304 f86 = f83 + f84; | |
1305 f87 = f85 - f84; | |
1306 f88 = f81 - f87; | |
1307 f89 = f81 + f87; | |
1308 f90 = f80 - f86; | |
1309 f91 = f80 + f86; | |
1310 f92 = MUL_C(COEF_CONST(0.7071067811865476), f75); | |
1311 f93 = f31 - f92; | |
1312 f94 = f31 + f92; | |
1313 f95 = f77 + f73; | |
1314 f96 = MUL_C(COEF_CONST(1.3065629648763766), f77); | |
1315 f97 = MUL_C(COEF_CONST((-0.9238795325112866)), f95); | |
1316 f98 = MUL_C(COEF_CONST((-0.5411961001461967)), f73); | |
1317 f99 = f96 + f97; | |
1318 f100 = f98 - f97; | |
1319 f101 = f94 - f100; | |
1320 f102 = f94 + f100; | |
1321 f103 = f93 - f99; | |
1322 f104 = f93 + f99; | |
1323 f105 = f102 + f89; | |
1324 f106 = MUL_C(COEF_CONST((-0.8971675863426361)), f102); | |
1325 f107 = MUL_C(COEF_CONST(0.9951847266721968), f105); | |
1326 f108 = MUL_C(COEF_CONST(1.0932018670017576), f89); | |
1327 f109 = f106 + f107; | |
1328 f110 = f108 - f107; | |
1329 f111 = f91 - f104; | |
1330 f112 = MUL_C(COEF_CONST((-0.6666556584777466)), f104); | |
1331 f113 = MUL_C(COEF_CONST(0.9569403357322089), f111); | |
1332 f114 = MUL_C(COEF_CONST(1.2472250129866713), f91); | |
1333 f115 = f113 - f112; | |
1334 f116 = f114 - f113; | |
1335 f117 = f103 + f90; | |
1336 f118 = MUL_C(COEF_CONST((-0.4105245275223571)), f103); | |
1337 f119 = MUL_C(COEF_CONST(0.8819212643483549), f117); | |
1338 f120 = MUL_C(COEF_CONST(1.3533180011743529), f90); | |
1339 f121 = f118 + f119; | |
1340 f122 = f120 - f119; | |
1341 f123 = f88 - f101; | |
1342 f124 = MUL_C(COEF_CONST((-0.1386171691990915)), f101); | |
1343 f125 = MUL_C(COEF_CONST(0.7730104533627370), f123); | |
1344 f126 = MUL_C(COEF_CONST(1.4074037375263826), f88); | |
1345 f127 = f125 - f124; | |
1346 f128 = f126 - f125; | |
1347 f129 = f66 - f109; | |
1348 f130 = f66 + f109; | |
1349 f131 = f68 - f115; | |
1350 f132 = f68 + f115; | |
1351 f133 = f70 - f121; | |
1352 f134 = f70 + f121; | |
1353 f135 = f72 - f127; | |
1354 f136 = f72 + f127; | |
1355 f137 = f71 - f128; | |
1356 f138 = f71 + f128; | |
1357 f139 = f69 - f122; | |
1358 f140 = f69 + f122; | |
1359 f141 = f67 - f116; | |
1360 f142 = f67 + f116; | |
1361 f143 = f65 - f110; | |
1362 f144 = f65 + f110; | |
1363 f145 = f26 + f30; | |
1364 f146 = f22 + f26; | |
1365 f147 = f18 + f22; | |
1366 f148 = f14 + f18; | |
1367 f149 = f10 + f14; | |
1368 f150 = f6 + f10; | |
1369 f151 = f2 + f6; | |
1370 f152 = MUL_C(COEF_CONST(0.7071067811865476), f148); | |
1371 f153 = f152 - f30; | |
1372 f154 = f30 + f152; | |
1373 f155 = f146 + f150; | |
1374 f156 = MUL_C(COEF_CONST(1.3065629648763766), f146); | |
1375 f157 = MUL_C(COEF_CONST((-0.9238795325112866)), f155); | |
1376 f158 = MUL_C(COEF_CONST((-0.5411961001461967)), f150); | |
1377 f159 = f156 + f157; | |
1378 f160 = f157 - f158; | |
1379 f161 = f154 + f160; | |
1380 f162 = f160 - f154; | |
1381 f163 = f153 + f159; | |
1382 f164 = f153 - f159; | |
1383 f165 = f147 + f145; | |
1384 f166 = f149 + f147; | |
1385 f167 = f151 + f149; | |
1386 f168 = MUL_C(COEF_CONST(0.7071067811865476), f166); | |
1387 f169 = f168 - f145; | |
1388 f170 = f145 + f168; | |
1389 f171 = f165 + f167; | |
1390 f172 = MUL_C(COEF_CONST(1.3065629648763766), f165); | |
1391 f173 = MUL_C(COEF_CONST((-0.9238795325112866)), f171); | |
1392 f174 = MUL_C(COEF_CONST((-0.5411961001461967)), f167); | |
1393 f175 = f172 + f173; | |
1394 f176 = f173 - f174; | |
1395 f177 = f170 + f176; | |
1396 f178 = f176 - f170; | |
1397 f179 = f169 + f175; | |
1398 f180 = f169 - f175; | |
1399 f181 = MUL_C(COEF_CONST(0.5097955791041592), f178); | |
1400 f182 = MUL_C(COEF_CONST(0.6013448869350453), f180); | |
1401 f183 = MUL_C(COEF_CONST(0.8999762231364156), f179); | |
1402 f184 = MUL_C(COEF_CONST(2.5629154477415055), f177); | |
1403 f185 = f162 - f181; | |
1404 f186 = f162 + f181; | |
1405 f187 = f164 - f182; | |
1406 f188 = f164 + f182; | |
1407 f189 = f163 - f183; | |
1408 f190 = f163 + f183; | |
1409 f191 = f184 - f161; | |
1410 f192 = f161 + f184; | |
1411 f193 = MUL_C(COEF_CONST(0.5024192861881557), f186); | |
1412 f194 = MUL_C(COEF_CONST(0.5224986149396889), f188); | |
1413 f195 = MUL_C(COEF_CONST(0.5669440348163577), f190); | |
1414 f196 = MUL_C(COEF_CONST(0.6468217833599901), f192); | |
1415 f197 = MUL_C(COEF_CONST(0.7881546234512502), f191); | |
1416 f198 = MUL_C(COEF_CONST(1.0606776859903471), f189); | |
1417 f199 = MUL_C(COEF_CONST(1.7224470982383342), f187); | |
1418 f200 = MUL_C(COEF_CONST(5.1011486186891553), f185); | |
1419 f201 = MUL_C(COEF_CONST(0.7071067811865476), f16); | |
1420 f202 = f201 - t2[62]; | |
1421 f203 = t2[62] + f201; | |
1422 f204 = f24 + f8; | |
1423 f205 = MUL_C(COEF_CONST(1.3065629648763766), f24); | |
1424 f206 = MUL_C(COEF_CONST((-0.9238795325112866)), f204); | |
1425 f207 = MUL_C(COEF_CONST((-0.5411961001461967)), f8); | |
1426 f208 = f205 + f206; | |
1427 f209 = f206 - f207; | |
1428 f210 = f203 + f209; | |
1429 f211 = f209 - f203; | |
1430 f212 = f202 + f208; | |
1431 f213 = f202 - f208; | |
1432 f214 = f20 + f28; | |
1433 f215 = f12 + f20; | |
1434 f216 = f4 + f12; | |
1435 f217 = MUL_C(COEF_CONST(0.7071067811865476), f215); | |
1436 f218 = f217 - f28; | |
1437 f219 = f28 + f217; | |
1438 f220 = f214 + f216; | |
1439 f221 = MUL_C(COEF_CONST(1.3065629648763766), f214); | |
1440 f222 = MUL_C(COEF_CONST((-0.9238795325112866)), f220); | |
1441 f223 = MUL_C(COEF_CONST((-0.5411961001461967)), f216); | |
1442 f224 = f221 + f222; | |
1443 f225 = f222 - f223; | |
1444 f226 = f219 + f225; | |
1445 f227 = f225 - f219; | |
1446 f228 = f218 + f224; | |
1447 f229 = f218 - f224; | |
1448 f230 = MUL_C(COEF_CONST(0.5097955791041592), f227); | |
1449 f231 = MUL_C(COEF_CONST(0.6013448869350453), f229); | |
1450 f232 = MUL_C(COEF_CONST(0.8999762231364156), f228); | |
1451 f233 = MUL_C(COEF_CONST(2.5629154477415055), f226); | |
1452 f234 = f211 - f230; | |
1453 f235 = f211 + f230; | |
1454 f236 = f213 - f231; | |
1455 f237 = f213 + f231; | |
1456 f238 = f212 - f232; | |
1457 f239 = f212 + f232; | |
1458 f240 = f233 - f210; | |
1459 f241 = f210 + f233; | |
1460 f242 = f193 - f235; | |
1461 f243 = f193 + f235; | |
1462 f244 = f237 - f194; | |
1463 f245 = f194 + f237; | |
1464 f246 = f195 - f239; | |
1465 f247 = f195 + f239; | |
1466 f248 = f196 - f241; | |
1467 f249 = f196 + f241; | |
1468 f250 = f197 - f240; | |
1469 f251 = f197 + f240; | |
1470 f252 = f238 - f198; | |
1471 f253 = f198 + f238; | |
1472 f254 = f199 - f236; | |
1473 f255 = f199 + f236; | |
1474 f256 = f234 - f200; | |
1475 f257 = f200 + f234; | |
1476 f258 = f243 + f130; | |
1477 f259 = MUL_C(COEF_CONST((-0.9751575901732920)), f243); | |
1478 f260 = MUL_C(COEF_CONST(0.9996988186962043), f258); | |
1479 f261 = MUL_C(COEF_CONST(1.0242400472191164), f130); | |
1480 y[62] = f259 + f260; | |
1481 y[0] = f261 - f260; | |
1482 f264 = f132 - f245; | |
1483 f265 = MUL_C(COEF_CONST((-0.9237258930790228)), f245); | |
1484 f266 = MUL_C(COEF_CONST(0.9972904566786902), f264); | |
1485 f267 = MUL_C(COEF_CONST(1.0708550202783576), f132); | |
1486 y[60] = f266 - f265; | |
1487 y[2] = f267 - f266; | |
1488 f270 = f247 + f134; | |
1489 f271 = MUL_C(COEF_CONST((-0.8700688593994936)), f247); | |
1490 f272 = MUL_C(COEF_CONST(0.9924795345987100), f270); | |
1491 f273 = MUL_C(COEF_CONST(1.1148902097979263), f134); | |
1492 y[58] = f271 + f272; | |
1493 y[4] = f273 - f272; | |
1494 f276 = f249 + f136; | |
1495 f277 = MUL_C(COEF_CONST((-0.8143157536286398)), f249); | |
1496 f278 = MUL_C(COEF_CONST(0.9852776423889412), f276); | |
1497 f279 = MUL_C(COEF_CONST(1.1562395311492426), f136); | |
1498 y[56] = f277 + f278; | |
1499 y[6] = f279 - f278; | |
1500 f282 = f251 + f138; | |
1501 f283 = MUL_C(COEF_CONST((-0.7566008898816587)), f251); | |
1502 f284 = MUL_C(COEF_CONST(0.9757021300385286), f282); | |
1503 f285 = MUL_C(COEF_CONST(1.1948033701953984), f138); | |
1504 y[54] = f283 + f284; | |
1505 y[8] = f285 - f284; | |
1506 f288 = f140 - f253; | |
1507 f289 = MUL_C(COEF_CONST((-0.6970633083205414)), f253); | |
1508 f290 = MUL_C(COEF_CONST(0.9637760657954398), f288); | |
1509 f291 = MUL_C(COEF_CONST(1.2304888232703384), f140); | |
1510 y[52] = f290 - f289; | |
1511 y[10] = f291 - f290; | |
1512 f294 = f255 + f142; | |
1513 f295 = MUL_C(COEF_CONST((-0.6358464401941451)), f255); | |
1514 f296 = MUL_C(COEF_CONST(0.9495281805930367), f294); | |
1515 f297 = MUL_C(COEF_CONST(1.2632099209919283), f142); | |
1516 y[50] = f295 + f296; | |
1517 y[12] = f297 - f296; | |
1518 f300 = f144 - f257; | |
1519 f301 = MUL_C(COEF_CONST((-0.5730977622997506)), f257); | |
1520 f302 = MUL_C(COEF_CONST(0.9329927988347389), f300); | |
1521 f303 = MUL_C(COEF_CONST(1.2928878353697271), f144); | |
1522 y[48] = f302 - f301; | |
1523 y[14] = f303 - f302; | |
1524 f306 = f256 + f143; | |
1525 f307 = MUL_C(COEF_CONST((-0.5089684416985408)), f256); | |
1526 f308 = MUL_C(COEF_CONST(0.9142097557035307), f306); | |
1527 f309 = MUL_C(COEF_CONST(1.3194510697085207), f143); | |
1528 y[46] = f307 + f308; | |
1529 y[16] = f309 - f308; | |
1530 f312 = f254 + f141; | |
1531 f313 = MUL_C(COEF_CONST((-0.4436129715409087)), f254); | |
1532 f314 = MUL_C(COEF_CONST(0.8932243011955153), f312); | |
1533 f315 = MUL_C(COEF_CONST(1.3428356308501219), f141); | |
1534 y[44] = f313 + f314; | |
1535 y[18] = f315 - f314; | |
1536 f318 = f252 + f139; | |
1537 f319 = MUL_C(COEF_CONST((-0.3771887988789273)), f252); | |
1538 f320 = MUL_C(COEF_CONST(0.8700869911087114), f318); | |
1539 f321 = MUL_C(COEF_CONST(1.3629851833384954), f139); | |
1540 y[42] = f319 + f320; | |
1541 y[20] = f321 - f320; | |
1542 f324 = f250 + f137; | |
1543 f325 = MUL_C(COEF_CONST((-0.3098559453626097)), f250); | |
1544 f326 = MUL_C(COEF_CONST(0.8448535652497070), f324); | |
1545 f327 = MUL_C(COEF_CONST(1.3798511851368043), f137); | |
1546 y[40] = f325 + f326; | |
1547 y[22] = f327 - f326; | |
1548 f330 = f248 + f135; | |
1549 f331 = MUL_C(COEF_CONST((-0.2417766217337384)), f248); | |
1550 f332 = MUL_C(COEF_CONST(0.8175848131515837), f330); | |
1551 f333 = MUL_C(COEF_CONST(1.3933930045694289), f135); | |
1552 y[38] = f331 + f332; | |
1553 y[24] = f333 - f332; | |
1554 f336 = f246 + f133; | |
1555 f337 = MUL_C(COEF_CONST((-0.1731148370459794)), f246); | |
1556 f338 = MUL_C(COEF_CONST(0.7883464276266062), f336); | |
1557 f339 = MUL_C(COEF_CONST(1.4035780182072330), f133); | |
1558 y[36] = f337 + f338; | |
1559 y[26] = f339 - f338; | |
1560 f342 = f244 + f131; | |
1561 f343 = MUL_C(COEF_CONST((-0.1040360035527077)), f244); | |
1562 f344 = MUL_C(COEF_CONST(0.7572088465064845), f342); | |
1563 f345 = MUL_C(COEF_CONST(1.4103816894602612), f131); | |
1564 y[34] = f343 + f344; | |
1565 y[28] = f345 - f344; | |
1566 f348 = f242 + f129; | |
1567 f349 = MUL_C(COEF_CONST((-0.0347065382144000)), f242); | |
1568 f350 = MUL_C(COEF_CONST(0.7242470829514669), f348); | |
1569 f351 = MUL_C(COEF_CONST(1.4137876276885337), f129); | |
1570 y[32] = f349 + f350; | |
1571 y[30] = f351 - f350; | |
1572 f354 = t2[1] - t2[63]; | |
1573 f355 = t2[1] + t2[63]; | |
1574 f356 = t2[3] - t2[61]; | |
1575 f357 = t2[3] + t2[61]; | |
1576 f358 = t2[5] - t2[59]; | |
1577 f359 = t2[5] + t2[59]; | |
1578 f360 = t2[7] - t2[57]; | |
1579 f361 = t2[7] + t2[57]; | |
1580 f362 = t2[9] - t2[55]; | |
1581 f363 = t2[9] + t2[55]; | |
1582 f364 = t2[11] - t2[53]; | |
1583 f365 = t2[11] + t2[53]; | |
1584 f366 = t2[13] - t2[51]; | |
1585 f367 = t2[13] + t2[51]; | |
1586 f368 = t2[15] - t2[49]; | |
1587 f369 = t2[15] + t2[49]; | |
1588 f370 = t2[17] - t2[47]; | |
1589 f371 = t2[17] + t2[47]; | |
1590 f372 = t2[19] - t2[45]; | |
1591 f373 = t2[19] + t2[45]; | |
1592 f374 = t2[21] - t2[43]; | |
1593 f375 = t2[21] + t2[43]; | |
1594 f376 = t2[23] - t2[41]; | |
1595 f377 = t2[23] + t2[41]; | |
1596 f378 = t2[25] - t2[39]; | |
1597 f379 = t2[25] + t2[39]; | |
1598 f380 = t2[27] - t2[37]; | |
1599 f381 = t2[27] + t2[37]; | |
1600 f382 = t2[29] - t2[35]; | |
1601 f383 = t2[29] + t2[35]; | |
1602 f384 = t2[31] - t2[33]; | |
1603 f385 = t2[31] + t2[33]; | |
1604 f386 = f369 + f371; | |
1605 f387 = f371 - f369; | |
1606 f388 = MUL_C(COEF_CONST(0.7071067811865476), f387); | |
1607 f389 = MUL_C(COEF_CONST(0.7071067811865476), f386); | |
1608 f390 = f363 + f377; | |
1609 f391 = f363 - f377; | |
1610 f392 = MUL_C(COEF_CONST(0.7071067811865476), f391); | |
1611 f393 = MUL_C(COEF_CONST(0.7071067811865476), f390); | |
1612 f394 = f367 + f373; | |
1613 f395 = f367 - f373; | |
1614 f396 = MUL_C(COEF_CONST(0.7071067811865476), f395); | |
1615 f397 = MUL_C(COEF_CONST(0.7071067811865476), f394); | |
1616 f398 = f365 + f375; | |
1617 f399 = f375 - f365; | |
1618 f400 = MUL_C(COEF_CONST(0.7071067811865476), f399); | |
1619 f401 = MUL_C(COEF_CONST(0.7071067811865476), f398); | |
1620 f402 = f355 - f388; | |
1621 f403 = f355 + f388; | |
1622 f404 = f389 - f385; | |
1623 f405 = f385 + f389; | |
1624 f406 = f361 + f392; | |
1625 f407 = f392 - f361; | |
1626 f408 = f379 - f393; | |
1627 f409 = f379 + f393; | |
1628 f410 = f357 + f396; | |
1629 f411 = f396 - f357; | |
1630 f412 = f383 - f397; | |
1631 f413 = f383 + f397; | |
1632 f414 = f359 - f400; | |
1633 f415 = f359 + f400; | |
1634 f416 = f401 - f381; | |
1635 f417 = f381 + f401; | |
1636 f418 = f409 + f407; | |
1637 f419 = MUL_C(COEF_CONST((-0.5411961001461969)), f409); | |
1638 f420 = MUL_C(COEF_CONST(0.9238795325112867), f418); | |
1639 f421 = MUL_C(COEF_CONST(1.3065629648763766), f407); | |
1640 f422 = f419 + f420; | |
1641 f423 = f421 - f420; | |
1642 f424 = f408 - f406; | |
1643 f425 = MUL_C(COEF_CONST(1.3065629648763770), f408); | |
1644 f426 = MUL_C(COEF_CONST((-0.3826834323650904)), f424); | |
1645 f427 = MUL_C(COEF_CONST(0.5411961001461961), f406); | |
1646 f428 = f425 + f426; | |
1647 f429 = f426 + f427; | |
1648 f430 = f415 - f417; | |
1649 f431 = MUL_C(COEF_CONST((-0.5411961001461969)), f417); | |
1650 f432 = MUL_C(COEF_CONST(0.9238795325112867), f430); | |
1651 f433 = MUL_C(COEF_CONST(1.3065629648763766), f415); | |
1652 f434 = f432 - f431; | |
1653 f435 = f433 - f432; | |
1654 f436 = f416 + f414; | |
1655 f437 = MUL_C(COEF_CONST(1.3065629648763770), f416); | |
1656 f438 = MUL_C(COEF_CONST((-0.3826834323650904)), f436); | |
1657 f439 = MUL_C(COEF_CONST(0.5411961001461961), f414); | |
1658 f440 = f437 + f438; | |
1659 f441 = f439 - f438; | |
1660 f442 = f403 - f422; | |
1661 f443 = f403 + f422; | |
1662 f444 = f405 + f423; | |
1663 f445 = f423 - f405; | |
1664 f446 = f402 - f428; | |
1665 f447 = f402 + f428; | |
1666 f448 = f404 + f429; | |
1667 f449 = f404 - f429; | |
1668 f450 = f411 - f434; | |
1669 f451 = f411 + f434; | |
1670 f452 = f413 - f435; | |
1671 f453 = f413 + f435; | |
1672 f454 = f410 + f440; | |
1673 f455 = f440 - f410; | |
1674 f456 = f412 - f441; | |
1675 f457 = f412 + f441; | |
1676 f458 = f453 + f451; | |
1677 f459 = MUL_C(COEF_CONST((-0.7856949583871021)), f453); | |
1678 f460 = MUL_C(COEF_CONST(0.9807852804032304), f458); | |
1679 f461 = MUL_C(COEF_CONST(1.1758756024193588), f451); | |
1680 f462 = f459 + f460; | |
1681 f463 = f461 - f460; | |
1682 f464 = f457 + f455; | |
1683 f465 = MUL_C(COEF_CONST(0.2758993792829431), f457); | |
1684 f466 = MUL_C(COEF_CONST(0.5555702330196022), f464); | |
1685 f467 = MUL_C(COEF_CONST(1.3870398453221475), f455); | |
1686 f468 = f465 + f466; | |
1687 f469 = f467 - f466; | |
1688 f470 = f452 + f450; | |
1689 f471 = MUL_C(COEF_CONST(1.1758756024193591), f452); | |
1690 f472 = MUL_C(COEF_CONST((-0.1950903220161287)), f470); | |
1691 f473 = MUL_C(COEF_CONST(0.7856949583871016), f450); | |
1692 f474 = f471 + f472; | |
1693 f475 = f473 - f472; | |
1694 f476 = f456 - f454; | |
1695 f477 = MUL_C(COEF_CONST(1.3870398453221473), f456); | |
1696 f478 = MUL_C(COEF_CONST((-0.8314696123025455)), f476); | |
1697 f479 = MUL_C(COEF_CONST((-0.2758993792829436)), f454); | |
1698 f480 = f477 + f478; | |
1699 f481 = f478 + f479; | |
1700 f482 = f443 - f462; | |
1701 f483 = f443 + f462; | |
1702 f484 = f445 - f463; | |
1703 f485 = f445 + f463; | |
1704 f486 = f447 - f468; | |
1705 f487 = f447 + f468; | |
1706 f488 = f449 - f469; | |
1707 f489 = f449 + f469; | |
1708 f490 = f442 - f474; | |
1709 f491 = f442 + f474; | |
1710 f492 = f444 + f475; | |
1711 f493 = f475 - f444; | |
1712 f494 = f446 - f480; | |
1713 f495 = f446 + f480; | |
1714 f496 = f448 + f481; | |
1715 f497 = f448 - f481; | |
1716 f498 = f485 + f483; | |
1717 f499 = MUL_C(COEF_CONST((-0.9497277818777543)), f485); | |
1718 f500 = MUL_C(COEF_CONST(0.9987954562051724), f498); | |
1719 f501 = MUL_C(COEF_CONST(1.0478631305325905), f483); | |
1720 y[61] = f499 + f500; | |
1721 y[1] = f501 - f500; | |
1722 f504 = f489 + f487; | |
1723 f505 = MUL_C(COEF_CONST((-0.7270510732912801)), f489); | |
1724 f506 = MUL_C(COEF_CONST(0.9700312531945440), f504); | |
1725 f507 = MUL_C(COEF_CONST(1.2130114330978079), f487); | |
1726 y[53] = f505 + f506; | |
1727 y[9] = f507 - f506; | |
1728 f510 = f493 + f491; | |
1729 f511 = MUL_C(COEF_CONST((-0.4764341996931611)), f493); | |
1730 f512 = MUL_C(COEF_CONST(0.9039892931234433), f510); | |
1731 f513 = MUL_C(COEF_CONST(1.3315443865537255), f491); | |
1732 y[45] = f511 + f512; | |
1733 y[17] = f513 - f512; | |
1734 f516 = f497 + f495; | |
1735 f517 = MUL_C(COEF_CONST((-0.2075082269882114)), f497); | |
1736 f518 = MUL_C(COEF_CONST(0.8032075314806448), f516); | |
1737 f519 = MUL_C(COEF_CONST(1.3989068359730783), f495); | |
1738 y[37] = f517 + f518; | |
1739 y[25] = f519 - f518; | |
1740 f522 = f484 + f482; | |
1741 f523 = MUL_C(COEF_CONST(0.0693921705079408), f484); | |
1742 f524 = MUL_C(COEF_CONST(0.6715589548470183), f522); | |
1743 f525 = MUL_C(COEF_CONST(1.4125100802019774), f482); | |
1744 y[29] = f523 + f524; | |
1745 y[33] = f525 - f524; | |
1746 f528 = f488 + f486; | |
1747 f529 = MUL_C(COEF_CONST(0.3436258658070505), f488); | |
1748 f530 = MUL_C(COEF_CONST(0.5141027441932217), f528); | |
1749 f531 = MUL_C(COEF_CONST(1.3718313541934939), f486); | |
1750 y[21] = f529 + f530; | |
1751 y[41] = f531 - f530; | |
1752 f534 = f490 - f492; | |
1753 f535 = MUL_C(COEF_CONST(0.6046542117908007), f492); | |
1754 f536 = MUL_C(COEF_CONST(0.3368898533922201), f534); | |
1755 f537 = MUL_C(COEF_CONST(1.2784339185752409), f490); | |
1756 y[13] = f536 - f535; | |
1757 y[49] = f537 - f536; | |
1758 f540 = f496 + f494; | |
1759 f541 = MUL_C(COEF_CONST(0.8424460355094192), f496); | |
1760 f542 = MUL_C(COEF_CONST(0.1467304744553618), f540); | |
1761 f543 = MUL_C(COEF_CONST(1.1359069844201428), f494); | |
1762 y[5] = f541 + f542; | |
1763 y[57] = f543 - f542; | |
1764 f546 = f354 + f384; | |
1765 f547 = f354 - f384; | |
1766 f548 = f356 + f382; | |
1767 f549 = f382 - f356; | |
1768 f550 = f358 + f380; | |
1769 f551 = f358 - f380; | |
1770 f552 = f360 + f378; | |
1771 f553 = f378 - f360; | |
1772 f554 = f362 + f376; | |
1773 f555 = f362 - f376; | |
1774 f556 = f364 + f374; | |
1775 f557 = f374 - f364; | |
1776 f558 = f366 + f372; | |
1777 f559 = f366 - f372; | |
1778 f560 = f368 + f370; | |
1779 f561 = f370 - f368; | |
1780 f562 = f547 - f561; | |
1781 f563 = f547 + f561; | |
1782 f564 = f549 - f559; | |
1783 f565 = f549 + f559; | |
1784 f566 = f551 - f557; | |
1785 f567 = f551 + f557; | |
1786 f568 = f553 - f555; | |
1787 f569 = f553 + f555; | |
1788 f570 = f563 - f569; | |
1789 f571 = f563 + f569; | |
1790 f572 = f565 - f567; | |
1791 f573 = f565 + f567; | |
1792 f574 = f571 - f573; | |
1793 y[63] = f571 + f573; | |
1794 y[31] = MUL_C(COEF_CONST(0.7071067811865476), f574); | |
1795 f577 = f570 + f572; | |
1796 f578 = MUL_C(COEF_CONST(1.3065629648763766), f570); | |
1797 f579 = MUL_C(COEF_CONST((-0.9238795325112866)), f577); | |
1798 f580 = MUL_C(COEF_CONST((-0.5411961001461967)), f572); | |
1799 y[15] = f578 + f579; | |
1800 y[47] = f580 - f579; | |
1801 f583 = f564 + f562; | |
1802 f584 = f566 + f564; | |
1803 f585 = f568 + f566; | |
1804 f586 = MUL_C(COEF_CONST(0.7071067811865476), f584); | |
1805 f587 = f562 - f586; | |
1806 f588 = f562 + f586; | |
1807 f589 = f583 + f585; | |
1808 f590 = MUL_C(COEF_CONST(1.3065629648763766), f583); | |
1809 f591 = MUL_C(COEF_CONST((-0.9238795325112866)), f589); | |
1810 f592 = MUL_C(COEF_CONST((-0.5411961001461967)), f585); | |
1811 f593 = f590 + f591; | |
1812 f594 = f592 - f591; | |
1813 f595 = f588 - f594; | |
1814 f596 = f588 + f594; | |
1815 f597 = f587 - f593; | |
1816 f598 = f587 + f593; | |
1817 y[55] = MUL_C(COEF_CONST(0.5097955791041592), f596); | |
1818 y[39] = MUL_C(COEF_CONST(0.6013448869350453), f598); | |
1819 y[23] = MUL_C(COEF_CONST(0.8999762231364156), f597); | |
1820 y[7] = MUL_C(COEF_CONST(2.5629154477415055), f595); | |
1821 f603 = MUL_C(COEF_CONST(0.5024192861881557), f546); | |
1822 f604 = MUL_C(COEF_CONST(0.5224986149396889), f548); | |
1823 f605 = MUL_C(COEF_CONST(0.5669440348163577), f550); | |
1824 f606 = MUL_C(COEF_CONST(0.6468217833599901), f552); | |
1825 f607 = MUL_C(COEF_CONST(0.7881546234512502), f554); | |
1826 f608 = MUL_C(COEF_CONST(1.0606776859903471), f556); | |
1827 f609 = MUL_C(COEF_CONST(1.7224470982383342), f558); | |
1828 f610 = MUL_C(COEF_CONST(5.1011486186891553), f560); | |
1829 f611 = f603 + f610; | |
1830 f612 = f603 - f610; | |
1831 f613 = f604 + f609; | |
1832 f614 = f609 - f604; | |
1833 f615 = f605 + f608; | |
1834 f616 = f605 - f608; | |
1835 f617 = f606 + f607; | |
1836 f618 = f607 - f606; | |
1837 f619 = f612 - f618; | |
1838 f620 = f612 + f618; | |
1839 f621 = f614 - f616; | |
1840 f622 = f614 + f616; | |
1841 f623 = f620 - f622; | |
1842 f624 = f620 + f622; | |
1843 f625 = MUL_C(COEF_CONST(0.7071067811865476), f623); | |
1844 f626 = f619 + f621; | |
1845 f627 = MUL_C(COEF_CONST(1.3065629648763766), f619); | |
1846 f628 = MUL_C(COEF_CONST((-0.9238795325112866)), f626); | |
1847 f629 = MUL_C(COEF_CONST((-0.5411961001461967)), f621); | |
1848 f630 = f627 + f628; | |
1849 f631 = f629 - f628; | |
1850 f632 = f611 - f613; | |
1851 f633 = f615 - f613; | |
1852 f634 = f615 - f617; | |
1853 f635 = MUL_C(COEF_CONST(0.7071067811865476), f633); | |
1854 f636 = f611 - f635; | |
1855 f637 = f611 + f635; | |
1856 f638 = f632 + f634; | |
1857 f639 = MUL_C(COEF_CONST(1.3065629648763766), f632); | |
1858 f640 = MUL_C(COEF_CONST((-0.9238795325112866)), f638); | |
1859 f641 = MUL_C(COEF_CONST((-0.5411961001461967)), f634); | |
1860 f642 = f639 + f640; | |
1861 f643 = f641 - f640; | |
1862 f644 = f637 - f643; | |
1863 f645 = f637 + f643; | |
1864 f646 = f636 - f642; | |
1865 f647 = f636 + f642; | |
1866 f648 = MUL_C(COEF_CONST(0.5097955791041592), f645); | |
1867 f649 = MUL_C(COEF_CONST(0.6013448869350453), f647); | |
1868 f650 = MUL_C(COEF_CONST(0.8999762231364156), f646); | |
1869 y[3] = MUL_C(COEF_CONST(2.5629154477415055), f644); | |
1870 y[59] = f624 + f648; | |
1871 y[51] = f648 + f631; | |
1872 y[43] = f631 + f649; | |
1873 y[35] = f649 + f625; | |
1874 y[27] = f625 + f650; | |
1875 y[19] = f650 + f630; | |
1876 y[11] = f630 + y[3]; | |
10725 | 1877 } |
1878 | |
1879 #else | |
1880 | |
1881 void DCT4_64(real_t *y, real_t *x) | |
1882 { | |
1883 int16_t i0; | |
12527 | 1884 ALIGN static real_t t2[64]; |
10725 | 1885 |
1886 t2[0] = x[0]; | |
1887 for (i0=0; i0<31; i0++) | |
1888 { | |
1889 t2[2*i0+1] = x[2*i0+1] - x[2*i0+2]; | |
1890 t2[2*i0+2] = x[2*i0+1] + x[2*i0+2]; | |
1891 } | |
1892 t2[63] = x[63]; | |
12527 | 1893 |
1894 DCT4_64_kernel(y, t2); | |
1895 } | |
1896 | |
1897 void DCT4_64_kernel(real_t *y, real_t *t2) | |
1898 { | |
1899 real_t f2, f3, f4, f5, f6, f7, f8; | |
1900 real_t f9, f10, f11, f12, f13, f14, f15; | |
1901 real_t f16, f17, f18, f19, f20, f21, f22; | |
1902 real_t f23, f24, f25, f26, f27, f28, f29; | |
1903 real_t f30, f31, f32, f33, f34, f35, f36; | |
1904 real_t f37, f38, f39, f40, f41, f42, f43; | |
1905 real_t f44, f45, f46, f47, f48, f49, f50; | |
1906 real_t f51, f52, f53, f54, f55, f56, f57; | |
1907 real_t f58, f59, f60, f61, f62, f63, f64; | |
1908 real_t f65, f66, f67, f68, f69, f70, f71; | |
1909 real_t f72, f73, f74, f75, f76, f77, f78; | |
1910 real_t f79, f80, f81, f82, f83, f84, f85; | |
1911 real_t f86, f87, f88, f89, f90, f91, f92; | |
1912 real_t f93, f94, f95, f96, f97, f98, f99; | |
1913 real_t f100, f101, f102, f103, f104, f105, f106; | |
1914 real_t f107, f108, f109, f110, f111, f112, f113; | |
1915 real_t f114, f115, f116, f117, f118, f119, f120; | |
1916 real_t f121, f122, f123, f124, f125, f126, f127; | |
1917 real_t f128, f129, f130, f131, f132, f133, f134; | |
1918 real_t f135, f136, f137, f138, f139, f140, f141; | |
1919 real_t f142, f143, f144, f145, f146, f147, f148; | |
1920 real_t f149, f150, f151, f152, f153, f154, f155; | |
1921 real_t f156, f157, f158, f159, f160, f161, f162; | |
1922 real_t f163, f164, f165, f166, f167, f168, f169; | |
1923 real_t f170, f171, f172, f173, f174, f175, f176; | |
1924 real_t f177, f178, f179, f180, f181, f182, f183; | |
1925 real_t f184, f185, f186, f187, f188, f189, f190; | |
1926 real_t f191, f192, f193, f194, f195, f196, f197; | |
1927 real_t f198, f199, f200, f201, f202, f203, f204; | |
1928 real_t f205, f206, f207, f208, f209, f210, f211; | |
1929 real_t f212, f213, f214, f215, f216, f217, f218; | |
1930 real_t f219, f220, f221, f222, f223, f224, f225; | |
1931 real_t f226, f227, f228, f229, f230, f231, f232; | |
1932 real_t f233, f234, f235, f236, f237, f238, f239; | |
1933 real_t f240, f241, f242, f243, f244, f245, f246; | |
1934 real_t f247, f248, f249, f250, f251, f252, f253; | |
1935 real_t f254, f255, f256, f257, f258, f259, f260; | |
1936 real_t f261, f262, f263, f264, f265, f266, f267; | |
1937 real_t f268, f269, f270, f271, f272, f273, f274; | |
1938 real_t f275, f276, f277, f278, f279, f280, f281; | |
1939 real_t f282, f283, f284, f285, f286, f287, f288; | |
1940 real_t f289, f290, f291, f292, f293, f294, f295; | |
1941 real_t f296, f297, f298, f299, f300, f301, f302; | |
1942 real_t f303, f304, f305, f306, f307, f308, f309; | |
1943 real_t f310, f311, f312, f313, f314, f315, f316; | |
1944 real_t f317, f318, f319, f320, f321, f322, f323; | |
1945 real_t f324, f325, f326, f327, f328, f329, f330; | |
1946 real_t f331, f332, f333, f334, f335, f336, f337; | |
1947 real_t f338, f339, f340, f341, f342, f343, f344; | |
1948 real_t f345, f346, f347, f348, f349, f350, f351; | |
1949 real_t f352, f353, f354, f355, f356, f357, f358; | |
1950 real_t f359, f360, f361, f362, f363, f364, f365; | |
1951 real_t f366, f367, f368, f369, f370, f371, f372; | |
1952 real_t f373, f374, f375, f376, f377, f378, f379; | |
1953 real_t f380, f381, f382, f383, f384, f385, f386; | |
1954 real_t f387, f388, f389, f390, f391, f392, f393; | |
1955 real_t f394, f395, f396, f397, f398, f399, f400; | |
1956 real_t f401, f402, f403, f404, f405, f406, f407; | |
1957 real_t f408, f409, f410, f411, f412, f413, f414; | |
1958 real_t f415, f416, f417, f418, f419, f420, f421; | |
1959 real_t f422, f423, f424, f425, f426, f427, f428; | |
1960 real_t f429, f430, f431, f432, f433, f434, f435; | |
1961 real_t f436, f437, f438, f439, f440, f441, f442; | |
1962 real_t f443, f444, f445, f446, f447, f448, f449; | |
1963 real_t f450, f451, f452, f453, f454, f455, f456; | |
1964 real_t f457, f458, f459, f460, f461, f462, f463; | |
1965 real_t f464, f465, f466, f467, f468, f469, f470; | |
1966 real_t f471, f472, f473, f474, f475, f476, f477; | |
1967 real_t f478, f479, f480, f481, f482, f483, f484; | |
1968 real_t f485, f486, f487, f488, f489, f490, f491; | |
1969 real_t f492, f493, f494, f495, f496, f497, f498; | |
1970 real_t f499, f500, f501, f502, f503, f504, f505; | |
1971 real_t f506, f507, f508, f509, f510, f511, f512; | |
1972 real_t f513, f514, f515, f516, f517, f518, f519; | |
1973 real_t f520, f521, f522, f523, f524, f525, f526; | |
1974 real_t f527, f528, f529, f530, f531, f532, f533; | |
1975 real_t f534, f535, f536, f537, f538, f539, f540; | |
1976 real_t f541, f542, f543, f544, f545, f546, f547; | |
1977 real_t f548, f549, f550, f551, f552, f553, f554; | |
1978 real_t f555, f556, f557, f558, f559, f560, f561; | |
1979 real_t f562, f563, f564, f565, f566, f567, f568; | |
1980 real_t f569, f570, f571, f572, f573, f574, f575; | |
1981 real_t f576, f577, f578, f579, f580, f581, f582; | |
1982 real_t f583, f584, f585, f586, f587, f588, f589; | |
1983 real_t f590, f591, f592, f593, f594, f595, f596; | |
1984 real_t f597, f598, f599, f600, f601, f602, f603; | |
1985 real_t f604, f605, f606, f607, f608, f609, f610; | |
1986 real_t f611, f612, f613, f614, f615, f618, f619; | |
1987 real_t f620, f621, f624, f625, f626, f627, f630; | |
1988 real_t f631, f632, f633, f636, f637, f638, f639; | |
1989 real_t f642, f643, f644, f645, f648, f649, f650; | |
1990 real_t f651, f654, f655, f656, f657, f660, f661; | |
1991 real_t f662, f663, f666, f667, f668, f669, f672; | |
1992 real_t f673, f674, f675, f678, f679, f680, f681; | |
1993 real_t f684, f685, f686, f687, f690, f691, f692; | |
1994 real_t f693, f696, f697, f698, f699, f702, f703; | |
1995 real_t f704, f705, f708, f709, f710, f711, f714; | |
1996 real_t f715, f716, f717, f720, f721, f722, f723; | |
1997 real_t f726, f727, f728, f729, f732, f733, f734; | |
1998 real_t f735, f738, f739, f740, f741, f744, f745; | |
1999 real_t f746, f747, f750, f751, f752, f753, f756; | |
2000 real_t f757, f758, f759, f762, f763, f764, f765; | |
2001 real_t f768, f769, f770, f771, f774, f775, f776; | |
2002 real_t f777, f780, f781, f782, f783, f786, f787; | |
2003 real_t f788, f789, f792, f793, f794, f795, f798; | |
2004 real_t f799, f800, f801; | |
2005 | |
10725 | 2006 f2 = 0.7071067811865476 * t2[32]; |
12527 | 2007 f3 = t2[0] - f2; |
2008 f4 = t2[0] + f2; | |
10725 | 2009 f5 = t2[16] + t2[48]; |
2010 f6 = 1.3065629648763766 * t2[16]; | |
2011 f7 = (-0.9238795325112866) * f5; | |
2012 f8 = (-0.5411961001461967) * t2[48]; | |
2013 f9 = f6 + f7; | |
2014 f10 = f8 - f7; | |
2015 f11 = f4 - f10; | |
2016 f12 = f4 + f10; | |
2017 f13 = f3 - f9; | |
2018 f14 = f3 + f9; | |
2019 f15 = t2[8] + t2[56]; | |
2020 f16 = 1.1758756024193588 * t2[8]; | |
2021 f17 = (-0.9807852804032304) * f15; | |
2022 f18 = (-0.7856949583871021) * t2[56]; | |
2023 f19 = f16 + f17; | |
2024 f20 = f18 - f17; | |
2025 f21 = t2[24] + t2[40]; | |
2026 f22 = 1.3870398453221473 * t2[24]; | |
2027 f23 = (-0.8314696123025455) * f21; | |
2028 f24 = (-0.2758993792829436) * t2[40]; | |
2029 f25 = f22 + f23; | |
2030 f26 = f24 - f23; | |
2031 f27 = f20 - f26; | |
2032 f28 = f20 + f26; | |
2033 f29 = 0.7071067811865476 * f27; | |
2034 f30 = f19 - f25; | |
2035 f31 = f19 + f25; | |
2036 f32 = 0.7071067811865476 * f31; | |
2037 f33 = f29 - f32; | |
2038 f34 = f29 + f32; | |
2039 f35 = f12 - f28; | |
2040 f36 = f12 + f28; | |
2041 f37 = f14 - f34; | |
2042 f38 = f14 + f34; | |
2043 f39 = f13 - f33; | |
2044 f40 = f13 + f33; | |
2045 f41 = f11 - f30; | |
2046 f42 = f11 + f30; | |
2047 f43 = t2[4] + t2[60]; | |
2048 f44 = 1.0932018670017569 * t2[4]; | |
2049 f45 = (-0.9951847266721969) * f43; | |
2050 f46 = (-0.8971675863426368) * t2[60]; | |
2051 f47 = f44 + f45; | |
2052 f48 = f46 - f45; | |
2053 f49 = t2[12] + t2[52]; | |
2054 f50 = 1.2472250129866711 * t2[12]; | |
2055 f51 = (-0.9569403357322089) * f49; | |
2056 f52 = (-0.6666556584777469) * t2[52]; | |
2057 f53 = f50 + f51; | |
2058 f54 = f52 - f51; | |
2059 f55 = t2[20] + t2[44]; | |
2060 f56 = 1.3533180011743526 * t2[20]; | |
2061 f57 = (-0.8819212643483551) * f55; | |
2062 f58 = (-0.4105245275223575) * t2[44]; | |
2063 f59 = f56 + f57; | |
2064 f60 = f58 - f57; | |
2065 f61 = t2[28] + t2[36]; | |
2066 f62 = 1.4074037375263826 * t2[28]; | |
2067 f63 = (-0.7730104533627369) * f61; | |
2068 f64 = (-0.1386171691990913) * t2[36]; | |
2069 f65 = f62 + f63; | |
2070 f66 = f64 - f63; | |
2071 f67 = f48 - f66; | |
2072 f68 = f48 + f66; | |
2073 f69 = f54 - f60; | |
2074 f70 = f54 + f60; | |
2075 f71 = f68 - f70; | |
2076 f72 = f68 + f70; | |
2077 f73 = 0.7071067811865476 * f71; | |
2078 f74 = f67 + f69; | |
2079 f75 = 1.3065629648763766 * f67; | |
2080 f76 = (-0.9238795325112866) * f74; | |
2081 f77 = (-0.5411961001461967) * f69; | |
2082 f78 = f75 + f76; | |
2083 f79 = f77 - f76; | |
2084 f80 = f47 - f65; | |
2085 f81 = f47 + f65; | |
2086 f82 = f53 - f59; | |
2087 f83 = f53 + f59; | |
2088 f84 = f81 + f83; | |
2089 f85 = 1.3065629648763770 * f81; | |
2090 f86 = (-0.3826834323650904) * f84; | |
2091 f87 = 0.5411961001461961 * f83; | |
2092 f88 = f85 + f86; | |
2093 f89 = f87 - f86; | |
2094 f90 = f80 - f82; | |
2095 f91 = f80 + f82; | |
2096 f92 = 0.7071067811865476 * f91; | |
2097 f93 = f79 - f89; | |
2098 f94 = f79 + f89; | |
2099 f95 = f73 - f92; | |
2100 f96 = f73 + f92; | |
2101 f97 = f78 - f88; | |
2102 f98 = f78 + f88; | |
2103 f99 = f36 - f72; | |
2104 f100 = f36 + f72; | |
2105 f101 = f38 - f94; | |
2106 f102 = f38 + f94; | |
2107 f103 = f40 - f93; | |
2108 f104 = f40 + f93; | |
2109 f105 = f42 - f96; | |
2110 f106 = f42 + f96; | |
2111 f107 = f41 - f95; | |
2112 f108 = f41 + f95; | |
2113 f109 = f39 - f98; | |
2114 f110 = f39 + f98; | |
2115 f111 = f37 - f97; | |
2116 f112 = f37 + f97; | |
2117 f113 = f35 - f90; | |
2118 f114 = f35 + f90; | |
2119 f115 = t2[2] + t2[62]; | |
2120 f116 = 1.0478631305325901 * t2[2]; | |
2121 f117 = (-0.9987954562051724) * f115; | |
2122 f118 = (-0.9497277818777548) * t2[62]; | |
2123 f119 = f116 + f117; | |
2124 f120 = f118 - f117; | |
2125 f121 = t2[10] + t2[54]; | |
2126 f122 = 1.2130114330978077 * t2[10]; | |
2127 f123 = (-0.9700312531945440) * f121; | |
2128 f124 = (-0.7270510732912803) * t2[54]; | |
2129 f125 = f122 + f123; | |
2130 f126 = f124 - f123; | |
2131 f127 = t2[18] + t2[46]; | |
2132 f128 = 1.3315443865537255 * t2[18]; | |
2133 f129 = (-0.9039892931234433) * f127; | |
2134 f130 = (-0.4764341996931612) * t2[46]; | |
2135 f131 = f128 + f129; | |
2136 f132 = f130 - f129; | |
2137 f133 = t2[26] + t2[38]; | |
2138 f134 = 1.3989068359730781 * t2[26]; | |
2139 f135 = (-0.8032075314806453) * f133; | |
2140 f136 = (-0.2075082269882124) * t2[38]; | |
2141 f137 = f134 + f135; | |
2142 f138 = f136 - f135; | |
2143 f139 = t2[34] + t2[30]; | |
2144 f140 = 1.4125100802019777 * t2[34]; | |
2145 f141 = (-0.6715589548470187) * f139; | |
2146 f142 = 0.0693921705079402 * t2[30]; | |
2147 f143 = f140 + f141; | |
2148 f144 = f142 - f141; | |
2149 f145 = t2[42] + t2[22]; | |
2150 f146 = 1.3718313541934939 * t2[42]; | |
2151 f147 = (-0.5141027441932219) * f145; | |
2152 f148 = 0.3436258658070501 * t2[22]; | |
2153 f149 = f146 + f147; | |
2154 f150 = f148 - f147; | |
2155 f151 = t2[50] + t2[14]; | |
2156 f152 = 1.2784339185752409 * t2[50]; | |
2157 f153 = (-0.3368898533922200) * f151; | |
2158 f154 = 0.6046542117908008 * t2[14]; | |
2159 f155 = f152 + f153; | |
2160 f156 = f154 - f153; | |
2161 f157 = t2[58] + t2[6]; | |
2162 f158 = 1.1359069844201433 * t2[58]; | |
2163 f159 = (-0.1467304744553624) * f157; | |
2164 f160 = 0.8424460355094185 * t2[6]; | |
2165 f161 = f158 + f159; | |
2166 f162 = f160 - f159; | |
2167 f163 = f120 - f144; | |
2168 f164 = f120 + f144; | |
2169 f165 = f119 - f143; | |
2170 f166 = f119 + f143; | |
2171 f167 = f126 - f150; | |
2172 f168 = f126 + f150; | |
2173 f169 = f125 - f149; | |
2174 f170 = f125 + f149; | |
2175 f171 = f132 - f156; | |
2176 f172 = f132 + f156; | |
2177 f173 = f131 - f155; | |
2178 f174 = f131 + f155; | |
2179 f175 = f138 - f162; | |
2180 f176 = f138 + f162; | |
2181 f177 = f137 - f161; | |
2182 f178 = f137 + f161; | |
2183 f179 = f163 + f165; | |
2184 f180 = 1.1758756024193588 * f163; | |
2185 f181 = (-0.9807852804032304) * f179; | |
2186 f182 = (-0.7856949583871021) * f165; | |
2187 f183 = f180 + f181; | |
2188 f184 = f182 - f181; | |
2189 f185 = f167 + f169; | |
2190 f186 = 1.3870398453221475 * f167; | |
2191 f187 = (-0.5555702330196022) * f185; | |
2192 f188 = 0.2758993792829431 * f169; | |
2193 f189 = f186 + f187; | |
2194 f190 = f188 - f187; | |
2195 f191 = f171 + f173; | |
2196 f192 = 0.7856949583871022 * f171; | |
2197 f193 = 0.1950903220161283 * f191; | |
2198 f194 = 1.1758756024193586 * f173; | |
2199 f195 = f192 + f193; | |
2200 f196 = f194 - f193; | |
2201 f197 = f175 + f177; | |
2202 f198 = (-0.2758993792829430) * f175; | |
2203 f199 = 0.8314696123025452 * f197; | |
2204 f200 = 1.3870398453221475 * f177; | |
2205 f201 = f198 + f199; | |
2206 f202 = f200 - f199; | |
2207 f203 = f164 - f172; | |
2208 f204 = f164 + f172; | |
2209 f205 = f166 - f174; | |
2210 f206 = f166 + f174; | |
2211 f207 = f168 - f176; | |
2212 f208 = f168 + f176; | |
2213 f209 = f170 - f178; | |
2214 f210 = f170 + f178; | |
2215 f211 = f184 - f196; | |
2216 f212 = f184 + f196; | |
2217 f213 = f183 - f195; | |
2218 f214 = f183 + f195; | |
2219 f215 = f190 - f202; | |
2220 f216 = f190 + f202; | |
2221 f217 = f189 - f201; | |
2222 f218 = f189 + f201; | |
2223 f219 = f203 + f205; | |
2224 f220 = 1.3065629648763766 * f203; | |
2225 f221 = (-0.9238795325112866) * f219; | |
2226 f222 = (-0.5411961001461967) * f205; | |
2227 f223 = f220 + f221; | |
2228 f224 = f222 - f221; | |
2229 f225 = f207 + f209; | |
2230 f226 = 0.5411961001461969 * f207; | |
2231 f227 = 0.3826834323650898 * f225; | |
2232 f228 = 1.3065629648763766 * f209; | |
2233 f229 = f226 + f227; | |
2234 f230 = f228 - f227; | |
2235 f231 = f211 + f213; | |
2236 f232 = 1.3065629648763766 * f211; | |
2237 f233 = (-0.9238795325112866) * f231; | |
2238 f234 = (-0.5411961001461967) * f213; | |
2239 f235 = f232 + f233; | |
2240 f236 = f234 - f233; | |
2241 f237 = f215 + f217; | |
2242 f238 = 0.5411961001461969 * f215; | |
2243 f239 = 0.3826834323650898 * f237; | |
2244 f240 = 1.3065629648763766 * f217; | |
2245 f241 = f238 + f239; | |
2246 f242 = f240 - f239; | |
2247 f243 = f204 - f208; | |
2248 f244 = f204 + f208; | |
2249 f245 = f206 - f210; | |
2250 f246 = f206 + f210; | |
2251 f247 = f224 - f230; | |
2252 f248 = f224 + f230; | |
2253 f249 = f223 - f229; | |
2254 f250 = f223 + f229; | |
2255 f251 = f212 - f216; | |
2256 f252 = f212 + f216; | |
2257 f253 = f214 - f218; | |
2258 f254 = f214 + f218; | |
2259 f255 = f236 - f242; | |
2260 f256 = f236 + f242; | |
2261 f257 = f235 - f241; | |
2262 f258 = f235 + f241; | |
2263 f259 = f243 - f245; | |
2264 f260 = f243 + f245; | |
2265 f261 = 0.7071067811865474 * f259; | |
2266 f262 = 0.7071067811865474 * f260; | |
2267 f263 = f247 - f249; | |
2268 f264 = f247 + f249; | |
2269 f265 = 0.7071067811865474 * f263; | |
2270 f266 = 0.7071067811865474 * f264; | |
2271 f267 = f251 - f253; | |
2272 f268 = f251 + f253; | |
2273 f269 = 0.7071067811865474 * f267; | |
2274 f270 = 0.7071067811865474 * f268; | |
2275 f271 = f255 - f257; | |
2276 f272 = f255 + f257; | |
2277 f273 = 0.7071067811865474 * f271; | |
2278 f274 = 0.7071067811865474 * f272; | |
2279 f275 = f100 - f244; | |
2280 f276 = f100 + f244; | |
2281 f277 = f102 - f252; | |
2282 f278 = f102 + f252; | |
2283 f279 = f104 - f256; | |
2284 f280 = f104 + f256; | |
2285 f281 = f106 - f248; | |
2286 f282 = f106 + f248; | |
2287 f283 = f108 - f266; | |
2288 f284 = f108 + f266; | |
2289 f285 = f110 - f274; | |
2290 f286 = f110 + f274; | |
2291 f287 = f112 - f270; | |
2292 f288 = f112 + f270; | |
2293 f289 = f114 - f262; | |
2294 f290 = f114 + f262; | |
2295 f291 = f113 - f261; | |
2296 f292 = f113 + f261; | |
2297 f293 = f111 - f269; | |
2298 f294 = f111 + f269; | |
2299 f295 = f109 - f273; | |
2300 f296 = f109 + f273; | |
2301 f297 = f107 - f265; | |
2302 f298 = f107 + f265; | |
2303 f299 = f105 - f250; | |
2304 f300 = f105 + f250; | |
2305 f301 = f103 - f258; | |
2306 f302 = f103 + f258; | |
2307 f303 = f101 - f254; | |
2308 f304 = f101 + f254; | |
2309 f305 = f99 - f246; | |
2310 f306 = f99 + f246; | |
2311 f307 = t2[1] - t2[61]; | |
2312 f308 = 1.0478631305325901 * t2[1]; | |
2313 f309 = (-0.9987954562051724) * f307; | |
2314 f310 = (-0.9497277818777548) * t2[61]; | |
2315 f311 = f308 + f309; | |
2316 f312 = f309 + f310; | |
2317 f313 = t2[9] - t2[53]; | |
2318 f314 = 1.2130114330978077 * t2[9]; | |
2319 f315 = (-0.9700312531945440) * f313; | |
2320 f316 = (-0.7270510732912803) * t2[53]; | |
2321 f317 = f314 + f315; | |
2322 f318 = f315 + f316; | |
2323 f319 = t2[17] - t2[45]; | |
2324 f320 = 1.3315443865537255 * t2[17]; | |
2325 f321 = (-0.9039892931234433) * f319; | |
2326 f322 = (-0.4764341996931612) * t2[45]; | |
2327 f323 = f320 + f321; | |
2328 f324 = f321 + f322; | |
2329 f325 = t2[25] - t2[37]; | |
2330 f326 = 1.3989068359730781 * t2[25]; | |
2331 f327 = (-0.8032075314806453) * f325; | |
2332 f328 = (-0.2075082269882124) * t2[37]; | |
2333 f329 = f326 + f327; | |
2334 f330 = f327 + f328; | |
2335 f331 = t2[33] - t2[29]; | |
2336 f332 = 1.4125100802019777 * t2[33]; | |
2337 f333 = (-0.6715589548470187) * f331; | |
2338 f334 = 0.0693921705079402 * t2[29]; | |
2339 f335 = f332 + f333; | |
2340 f336 = f333 + f334; | |
2341 f337 = t2[41] - t2[21]; | |
2342 f338 = 1.3718313541934939 * t2[41]; | |
2343 f339 = (-0.5141027441932219) * f337; | |
2344 f340 = 0.3436258658070501 * t2[21]; | |
2345 f341 = f338 + f339; | |
2346 f342 = f339 + f340; | |
2347 f343 = t2[49] - t2[13]; | |
2348 f344 = 1.2784339185752409 * t2[49]; | |
2349 f345 = (-0.3368898533922200) * f343; | |
2350 f346 = 0.6046542117908008 * t2[13]; | |
2351 f347 = f344 + f345; | |
2352 f348 = f345 + f346; | |
2353 f349 = t2[57] - t2[5]; | |
2354 f350 = 1.1359069844201433 * t2[57]; | |
2355 f351 = (-0.1467304744553624) * f349; | |
2356 f352 = 0.8424460355094185 * t2[5]; | |
2357 f353 = f350 + f351; | |
2358 f354 = f351 + f352; | |
2359 f355 = f336 - f312; | |
2360 f356 = f312 + f336; | |
2361 f357 = f311 - f335; | |
2362 f358 = f311 + f335; | |
2363 f359 = f342 - f318; | |
2364 f360 = f318 + f342; | |
2365 f361 = f317 - f341; | |
2366 f362 = f317 + f341; | |
2367 f363 = f348 - f324; | |
2368 f364 = f324 + f348; | |
2369 f365 = f323 - f347; | |
2370 f366 = f323 + f347; | |
2371 f367 = f354 - f330; | |
2372 f368 = f330 + f354; | |
2373 f369 = f329 - f353; | |
2374 f370 = f329 + f353; | |
2375 f371 = f355 + f357; | |
2376 f372 = 1.1758756024193588 * f355; | |
2377 f373 = (-0.9807852804032304) * f371; | |
2378 f374 = (-0.7856949583871021) * f357; | |
2379 f375 = f372 + f373; | |
2380 f376 = f374 - f373; | |
2381 f377 = f359 + f361; | |
2382 f378 = 1.3870398453221475 * f359; | |
2383 f379 = (-0.5555702330196022) * f377; | |
2384 f380 = 0.2758993792829431 * f361; | |
2385 f381 = f378 + f379; | |
2386 f382 = f380 - f379; | |
2387 f383 = f363 + f365; | |
2388 f384 = 0.7856949583871022 * f363; | |
2389 f385 = 0.1950903220161283 * f383; | |
2390 f386 = 1.1758756024193586 * f365; | |
2391 f387 = f384 + f385; | |
2392 f388 = f386 - f385; | |
2393 f389 = f367 + f369; | |
2394 f390 = (-0.2758993792829430) * f367; | |
2395 f391 = 0.8314696123025452 * f389; | |
2396 f392 = 1.3870398453221475 * f369; | |
2397 f393 = f390 + f391; | |
2398 f394 = f392 - f391; | |
2399 f395 = f364 - f356; | |
2400 f396 = f356 + f364; | |
2401 f397 = f358 - f366; | |
2402 f398 = f358 + f366; | |
2403 f399 = f368 - f360; | |
2404 f400 = f360 + f368; | |
2405 f401 = f362 - f370; | |
2406 f402 = f362 + f370; | |
2407 f403 = f376 - f388; | |
2408 f404 = f376 + f388; | |
2409 f405 = f375 - f387; | |
2410 f406 = f375 + f387; | |
2411 f407 = f382 - f394; | |
2412 f408 = f382 + f394; | |
2413 f409 = f381 - f393; | |
2414 f410 = f381 + f393; | |
2415 f411 = f395 + f397; | |
2416 f412 = 1.3065629648763766 * f395; | |
2417 f413 = (-0.9238795325112866) * f411; | |
2418 f414 = (-0.5411961001461967) * f397; | |
2419 f415 = f412 + f413; | |
2420 f416 = f414 - f413; | |
2421 f417 = f399 + f401; | |
2422 f418 = 0.5411961001461969 * f399; | |
2423 f419 = 0.3826834323650898 * f417; | |
2424 f420 = 1.3065629648763766 * f401; | |
2425 f421 = f418 + f419; | |
2426 f422 = f420 - f419; | |
2427 f423 = f403 + f405; | |
2428 f424 = 1.3065629648763766 * f403; | |
2429 f425 = (-0.9238795325112866) * f423; | |
2430 f426 = (-0.5411961001461967) * f405; | |
2431 f427 = f424 + f425; | |
2432 f428 = f426 - f425; | |
2433 f429 = f407 + f409; | |
2434 f430 = 0.5411961001461969 * f407; | |
2435 f431 = 0.3826834323650898 * f429; | |
2436 f432 = 1.3065629648763766 * f409; | |
2437 f433 = f430 + f431; | |
2438 f434 = f432 - f431; | |
2439 f435 = f400 - f396; | |
2440 f436 = f396 + f400; | |
2441 f437 = f398 - f402; | |
2442 f438 = f398 + f402; | |
2443 f439 = f416 - f422; | |
2444 f440 = f416 + f422; | |
2445 f441 = f415 - f421; | |
2446 f442 = f415 + f421; | |
2447 f443 = f404 - f408; | |
2448 f444 = f404 + f408; | |
2449 f445 = f406 - f410; | |
2450 f446 = f406 + f410; | |
2451 f447 = f428 - f434; | |
2452 f448 = f428 + f434; | |
2453 f449 = f427 - f433; | |
2454 f450 = f427 + f433; | |
2455 f451 = f435 - f437; | |
2456 f452 = f435 + f437; | |
2457 f453 = 0.7071067811865474 * f451; | |
2458 f454 = 0.7071067811865474 * f452; | |
2459 f455 = f439 - f441; | |
2460 f456 = f439 + f441; | |
2461 f457 = 0.7071067811865474 * f455; | |
2462 f458 = 0.7071067811865474 * f456; | |
2463 f459 = f443 - f445; | |
2464 f460 = f443 + f445; | |
2465 f461 = 0.7071067811865474 * f459; | |
2466 f462 = 0.7071067811865474 * f460; | |
2467 f463 = f447 - f449; | |
2468 f464 = f447 + f449; | |
2469 f465 = 0.7071067811865474 * f463; | |
2470 f466 = 0.7071067811865474 * f464; | |
2471 f467 = 0.7071067811865476 * t2[31]; | |
12527 | 2472 f468 = t2[63] - f467; |
2473 f469 = t2[63] + f467; | |
10725 | 2474 f470 = t2[47] + t2[15]; |
2475 f471 = 1.3065629648763766 * t2[47]; | |
2476 f472 = (-0.9238795325112866) * f470; | |
2477 f473 = (-0.5411961001461967) * t2[15]; | |
2478 f474 = f471 + f472; | |
2479 f475 = f473 - f472; | |
2480 f476 = f469 - f475; | |
2481 f477 = f469 + f475; | |
2482 f478 = f468 - f474; | |
2483 f479 = f468 + f474; | |
2484 f480 = t2[55] + t2[7]; | |
2485 f481 = 1.1758756024193588 * t2[55]; | |
2486 f482 = (-0.9807852804032304) * f480; | |
2487 f483 = (-0.7856949583871021) * t2[7]; | |
2488 f484 = f481 + f482; | |
2489 f485 = f483 - f482; | |
2490 f486 = t2[39] + t2[23]; | |
2491 f487 = 1.3870398453221473 * t2[39]; | |
2492 f488 = (-0.8314696123025455) * f486; | |
2493 f489 = (-0.2758993792829436) * t2[23]; | |
2494 f490 = f487 + f488; | |
2495 f491 = f489 - f488; | |
2496 f492 = f485 - f491; | |
2497 f493 = f485 + f491; | |
2498 f494 = 0.7071067811865476 * f492; | |
2499 f495 = f484 - f490; | |
2500 f496 = f484 + f490; | |
2501 f497 = 0.7071067811865476 * f496; | |
2502 f498 = f494 - f497; | |
2503 f499 = f494 + f497; | |
2504 f500 = f477 - f493; | |
2505 f501 = f477 + f493; | |
2506 f502 = f479 - f499; | |
2507 f503 = f479 + f499; | |
2508 f504 = f478 - f498; | |
2509 f505 = f478 + f498; | |
2510 f506 = f476 - f495; | |
2511 f507 = f476 + f495; | |
2512 f508 = t2[59] + t2[3]; | |
2513 f509 = 1.0932018670017569 * t2[59]; | |
2514 f510 = (-0.9951847266721969) * f508; | |
2515 f511 = (-0.8971675863426368) * t2[3]; | |
2516 f512 = f509 + f510; | |
2517 f513 = f511 - f510; | |
2518 f514 = t2[51] + t2[11]; | |
2519 f515 = 1.2472250129866711 * t2[51]; | |
2520 f516 = (-0.9569403357322089) * f514; | |
2521 f517 = (-0.6666556584777469) * t2[11]; | |
2522 f518 = f515 + f516; | |
2523 f519 = f517 - f516; | |
2524 f520 = t2[43] + t2[19]; | |
2525 f521 = 1.3533180011743526 * t2[43]; | |
2526 f522 = (-0.8819212643483551) * f520; | |
2527 f523 = (-0.4105245275223575) * t2[19]; | |
2528 f524 = f521 + f522; | |
2529 f525 = f523 - f522; | |
2530 f526 = t2[35] + t2[27]; | |
2531 f527 = 1.4074037375263826 * t2[35]; | |
2532 f528 = (-0.7730104533627369) * f526; | |
2533 f529 = (-0.1386171691990913) * t2[27]; | |
2534 f530 = f527 + f528; | |
2535 f531 = f529 - f528; | |
2536 f532 = f513 - f531; | |
2537 f533 = f513 + f531; | |
2538 f534 = f519 - f525; | |
2539 f535 = f519 + f525; | |
2540 f536 = f533 - f535; | |
2541 f537 = f533 + f535; | |
2542 f538 = 0.7071067811865476 * f536; | |
2543 f539 = f532 + f534; | |
2544 f540 = 1.3065629648763766 * f532; | |
2545 f541 = (-0.9238795325112866) * f539; | |
2546 f542 = (-0.5411961001461967) * f534; | |
2547 f543 = f540 + f541; | |
2548 f544 = f542 - f541; | |
2549 f545 = f512 - f530; | |
2550 f546 = f512 + f530; | |
2551 f547 = f518 - f524; | |
2552 f548 = f518 + f524; | |
2553 f549 = f546 + f548; | |
2554 f550 = 1.3065629648763770 * f546; | |
2555 f551 = (-0.3826834323650904) * f549; | |
2556 f552 = 0.5411961001461961 * f548; | |
2557 f553 = f550 + f551; | |
2558 f554 = f552 - f551; | |
2559 f555 = f545 - f547; | |
2560 f556 = f545 + f547; | |
2561 f557 = 0.7071067811865476 * f556; | |
2562 f558 = f544 - f554; | |
2563 f559 = f544 + f554; | |
2564 f560 = f538 - f557; | |
2565 f561 = f538 + f557; | |
2566 f562 = f543 - f553; | |
2567 f563 = f543 + f553; | |
2568 f564 = f501 - f537; | |
2569 f565 = f501 + f537; | |
2570 f566 = f503 - f559; | |
2571 f567 = f503 + f559; | |
2572 f568 = f505 - f558; | |
2573 f569 = f505 + f558; | |
2574 f570 = f507 - f561; | |
2575 f571 = f507 + f561; | |
2576 f572 = f506 - f560; | |
2577 f573 = f506 + f560; | |
2578 f574 = f504 - f563; | |
2579 f575 = f504 + f563; | |
2580 f576 = f502 - f562; | |
2581 f577 = f502 + f562; | |
2582 f578 = f500 - f555; | |
2583 f579 = f500 + f555; | |
2584 f580 = f438 - f565; | |
2585 f581 = f438 + f565; | |
2586 f582 = f446 + f567; | |
2587 f583 = f446 - f567; | |
2588 f584 = f450 - f569; | |
2589 f585 = f450 + f569; | |
2590 f586 = f442 + f571; | |
2591 f587 = f442 - f571; | |
2592 f588 = f457 - f573; | |
2593 f589 = f457 + f573; | |
2594 f590 = f465 + f575; | |
2595 f591 = f465 - f575; | |
2596 f592 = f461 - f577; | |
2597 f593 = f461 + f577; | |
2598 f594 = f453 + f579; | |
2599 f595 = f453 - f579; | |
2600 f596 = f454 - f578; | |
2601 f597 = f454 + f578; | |
2602 f598 = f462 + f576; | |
2603 f599 = f462 - f576; | |
2604 f600 = f466 - f574; | |
2605 f601 = f466 + f574; | |
2606 f602 = f458 + f572; | |
2607 f603 = f458 - f572; | |
2608 f604 = f440 - f570; | |
2609 f605 = f440 + f570; | |
2610 f606 = f448 + f568; | |
2611 f607 = f448 - f568; | |
2612 f608 = f444 - f566; | |
2613 f609 = f444 + f566; | |
2614 f610 = f564 - f436; | |
2615 f611 = f436 + f564; | |
2616 f612 = f581 + f276; | |
2617 f613 = (-0.9876531635534246) * f581; | |
2618 f614 = 0.9999247018391445 * f612; | |
2619 f615 = 1.0121962401248645 * f276; | |
2620 y[0] = f613 + f614; | |
2621 y[63] = f615 - f614; | |
2622 f618 = f583 + f278; | |
2623 f619 = (-0.9625151616469906) * f583; | |
2624 f620 = 0.9993223845883495 * f618; | |
2625 f621 = 1.0361296075297086 * f278; | |
2626 y[1] = f619 + f620; | |
2627 y[62] = f621 - f620; | |
2628 f624 = f585 + f280; | |
2629 f625 = (-0.9367973765979405) * f585; | |
2630 f626 = 0.9981181129001492 * f624; | |
2631 f627 = 1.0594388492023579 * f280; | |
2632 y[2] = f625 + f626; | |
2633 y[61] = f627 - f626; | |
2634 f630 = f587 + f282; | |
2635 f631 = (-0.9105152998383381) * f587; | |
2636 f632 = 0.9963126121827780 * f630; | |
2637 f633 = 1.0821099245272179 * f282; | |
2638 y[3] = f631 + f632; | |
2639 y[60] = f633 - f632; | |
2640 f636 = f589 + f284; | |
2641 f637 = (-0.8836847627084729) * f589; | |
2642 f638 = 0.9939069700023561 * f636; | |
2643 f639 = 1.1041291772962392 * f284; | |
2644 y[4] = f637 + f638; | |
2645 y[59] = f639 - f638; | |
2646 f642 = f591 + f286; | |
2647 f643 = (-0.8563219269206538) * f591; | |
2648 f644 = 0.9909026354277800 * f642; | |
2649 f645 = 1.1254833439349063 * f286; | |
2650 y[5] = f643 + f644; | |
2651 y[58] = f645 - f644; | |
2652 f648 = f593 + f288; | |
2653 f649 = (-0.8284432748239970) * f593; | |
2654 f650 = 0.9873014181578584 * f648; | |
2655 f651 = 1.1461595614917197 * f288; | |
2656 y[6] = f649 + f650; | |
2657 y[57] = f651 - f650; | |
2658 f654 = f595 + f290; | |
2659 f655 = (-0.8000655994760753) * f595; | |
2660 f656 = 0.9831054874312163 * f654; | |
2661 f657 = 1.1661453753863573 * f290; | |
2662 y[7] = f655 + f656; | |
2663 y[56] = f657 - f656; | |
2664 f660 = f597 + f292; | |
2665 f661 = (-0.7712059945274091) * f597; | |
2666 f662 = 0.9783173707196277 * f660; | |
2667 f663 = 1.1854287469118463 * f292; | |
2668 y[8] = f661 + f662; | |
2669 y[55] = f663 - f662; | |
2670 f666 = f599 + f294; | |
2671 f667 = (-0.7418818439248888) * f599; | |
2672 f668 = 0.9729399522055601 * f666; | |
2673 f669 = 1.2039980604862313 * f294; | |
2674 y[9] = f667 + f668; | |
2675 y[54] = f669 - f668; | |
2676 f672 = f601 + f296; | |
2677 f673 = (-0.7121108114403374) * f601; | |
2678 f674 = 0.9669764710448521 * f672; | |
2679 f675 = 1.2218421306493668 * f296; | |
2680 y[10] = f673 + f674; | |
2681 y[53] = f675 - f674; | |
2682 f678 = f603 + f298; | |
2683 f679 = (-0.6819108300305128) * f603; | |
2684 f680 = 0.9604305194155658 * f678; | |
2685 f681 = 1.2389502088006188 * f298; | |
2686 y[11] = f679 + f680; | |
2687 y[52] = f681 - f680; | |
2688 f684 = f605 + f300; | |
2689 f685 = (-0.6513000910349656) * f605; | |
2690 f686 = 0.9533060403541938 * f684; | |
2691 f687 = 1.2553119896734219 * f300; | |
2692 y[12] = f685 + f686; | |
2693 y[51] = f687 - f686; | |
2694 f690 = f607 + f302; | |
2695 f691 = (-0.6202970332182582) * f607; | |
2696 f692 = 0.9456073253805213 * f690; | |
2697 f693 = 1.2709176175427843 * f302; | |
2698 y[13] = f691 + f692; | |
2699 y[50] = f693 - f692; | |
2700 f696 = f609 + f304; | |
2701 f697 = (-0.5889203316631404) * f609; | |
2702 f698 = 0.9373390119125750 * f696; | |
2703 f699 = 1.2857576921620095 * f304; | |
2704 y[14] = f697 + f698; | |
2705 y[49] = f699 - f698; | |
2706 f702 = f306 - f611; | |
2707 f703 = (-0.5571888865213779) * f611; | |
2708 f704 = 0.9285060804732155 * f702; | |
2709 f705 = 1.2998232744250531 * f306; | |
2710 y[15] = f704 - f703; | |
2711 y[48] = f705 - f704; | |
2712 f708 = f610 + f305; | |
2713 f709 = (-0.5251218116290097) * f610; | |
2714 f710 = 0.9191138516900578 * f708; | |
2715 f711 = 1.3131058917511058 * f305; | |
2716 y[16] = f709 + f710; | |
2717 y[47] = f711 - f710; | |
2718 f714 = f608 + f303; | |
2719 f715 = (-0.4927384229928850) * f608; | |
2720 f716 = 0.9091679830905223 * f714; | |
2721 f717 = 1.3255975431881595 * f303; | |
2722 y[17] = f715 + f716; | |
2723 y[46] = f717 - f716; | |
2724 f720 = f606 + f301; | |
2725 f721 = (-0.4600582271554261) * f606; | |
2726 f722 = 0.8986744656939538 * f720; | |
2727 f723 = 1.3372907042324815 * f301; | |
2728 y[18] = f721 + f722; | |
2729 y[45] = f723 - f722; | |
2730 f726 = f604 + f299; | |
2731 f727 = (-0.4271009094446139) * f604; | |
2732 f728 = 0.8876396204028539 * f726; | |
2733 f729 = 1.3481783313610940 * f299; | |
2734 y[19] = f727 + f728; | |
2735 y[44] = f729 - f728; | |
2736 f732 = f602 + f297; | |
2737 f733 = (-0.3938863221162838) * f602; | |
2738 f734 = 0.8760700941954066 * f732; | |
2739 f735 = 1.3582538662745294 * f297; | |
2740 y[20] = f733 + f734; | |
2741 y[43] = f735 - f734; | |
2742 f738 = f600 + f295; | |
2743 f739 = (-0.3604344723958691) * f600; | |
2744 f740 = 0.8639728561215867 * f738; | |
2745 f741 = 1.3675112398473042 * f295; | |
2746 y[21] = f739 + f740; | |
2747 y[42] = f741 - f740; | |
2748 f744 = f598 + f293; | |
2749 f745 = (-0.3267655104267964) * f598; | |
2750 f746 = 0.8513551931052652 * f744; | |
2751 f747 = 1.3759448757837340 * f293; | |
2752 y[22] = f745 + f746; | |
2753 y[41] = f747 - f746; | |
2754 f750 = f596 + f291; | |
2755 f751 = (-0.2928997171327915) * f596; | |
2756 f752 = 0.8382247055548380 * f750; | |
2757 f753 = 1.3835496939768843 * f291; | |
2758 y[23] = f751 + f752; | |
2759 y[40] = f753 - f752; | |
2760 f756 = f594 + f289; | |
2761 f757 = (-0.2588574920014121) * f594; | |
2762 f758 = 0.8245893027850253 * f756; | |
2763 f759 = 1.3903211135686386 * f289; | |
2764 y[24] = f757 + f758; | |
2765 y[39] = f759 - f758; | |
2766 f762 = f592 + f287; | |
2767 f763 = (-0.2246593407961559) * f592; | |
2768 f764 = 0.8104571982525948 * f762; | |
2769 f765 = 1.3962550557090336 * f287; | |
2770 y[25] = f763 + f764; | |
2771 y[38] = f765 - f764; | |
2772 f768 = f590 + f285; | |
2773 f769 = (-0.1903258632045579) * f590; | |
2774 f770 = 0.7958369046088835 * f768; | |
2775 f771 = 1.4013479460132090 * f285; | |
2776 y[26] = f769 + f770; | |
2777 y[37] = f771 - f770; | |
2778 f774 = f588 + f283; | |
2779 f775 = (-0.1558777404297079) * f588; | |
2780 f776 = 0.7807372285720944 * f774; | |
2781 f777 = 1.4055967167144807 * f283; | |
2782 y[27] = f775 + f776; | |
2783 y[36] = f777 - f776; | |
2784 f780 = f586 + f281; | |
2785 f781 = (-0.1213357227326675) * f586; | |
2786 f782 = 0.7651672656224590 * f780; | |
2787 f783 = 1.4089988085122505 * f281; | |
2788 y[28] = f781 + f782; | |
2789 y[35] = f783 - f782; | |
2790 f786 = f584 + f279; | |
2791 f787 = (-0.0867206169332875) * f584; | |
2792 f788 = 0.7491363945234593 * f786; | |
2793 f789 = 1.4115521721136310 * f279; | |
2794 y[29] = f787 + f788; | |
2795 y[34] = f789 - f788; | |
2796 f792 = f582 + f277; | |
2797 f793 = (-0.0520532738769597) * f582; | |
2798 f794 = 0.7326542716724128 * f792; | |
2799 f795 = 1.4132552694678659 * f277; | |
2800 y[30] = f793 + f794; | |
2801 y[33] = f795 - f794; | |
2802 f798 = f580 + f275; | |
2803 f799 = (-0.0173545758748457) * f580; | |
2804 f800 = 0.7157308252838186 * f798; | |
2805 f801 = 1.4141070746927915 * f275; | |
2806 y[31] = f799 + f800; | |
2807 y[32] = f801 - f800; | |
2808 } | |
2809 | |
2810 #endif | |
2811 | |
2812 #endif | |
2813 |