comparison mp3lib/dct36.c @ 1:3b5f5d1c5041

Initial revision
author arpi_esp
date Sat, 24 Feb 2001 20:28:24 +0000
parents
children 03b7e2955a20
comparison
equal deleted inserted replaced
0:c1bb2c071d63 1:3b5f5d1c5041
1 /*
2 // This is an optimized DCT from Jeff Tsay's maplay 1.2+ package.
3 // Saved one multiplication by doing the 'twiddle factor' stuff
4 // together with the window mul. (MH)
5 //
6 // This uses Byeong Gi Lee's Fast Cosine Transform algorithm, but the
7 // 9 point IDCT needs to be reduced further. Unfortunately, I don't
8 // know how to do that, because 9 is not an even number. - Jeff.
9 //
10 //////////////////////////////////////////////////////////////////
11 //
12 // 9 Point Inverse Discrete Cosine Transform
13 //
14 // This piece of code is Copyright 1997 Mikko Tommila and is freely usable
15 // by anybody. The algorithm itself is of course in the public domain.
16 //
17 // Again derived heuristically from the 9-point WFTA.
18 //
19 // The algorithm is optimized (?) for speed, not for small rounding errors or
20 // good readability.
21 //
22 // 36 additions, 11 multiplications
23 //
24 // Again this is very likely sub-optimal.
25 //
26 // The code is optimized to use a minimum number of temporary variables,
27 // so it should compile quite well even on 8-register Intel x86 processors.
28 // This makes the code quite obfuscated and very difficult to understand.
29 //
30 // References:
31 // [1] S. Winograd: "On Computing the Discrete Fourier Transform",
32 // Mathematics of Computation, Volume 32, Number 141, January 1978,
33 // Pages 175-199
34 */
35
36 /*------------------------------------------------------------------*/
37 /* */
38 /* Function: Calculation of the inverse MDCT */
39 /* */
40 /*------------------------------------------------------------------*/
41
42 static void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf)
43 {
44 #ifdef NEW_DCT9
45 real tmp[18];
46 #endif
47
48 {
49 register real *in = inbuf;
50
51 in[17]+=in[16]; in[16]+=in[15]; in[15]+=in[14];
52 in[14]+=in[13]; in[13]+=in[12]; in[12]+=in[11];
53 in[11]+=in[10]; in[10]+=in[9]; in[9] +=in[8];
54 in[8] +=in[7]; in[7] +=in[6]; in[6] +=in[5];
55 in[5] +=in[4]; in[4] +=in[3]; in[3] +=in[2];
56 in[2] +=in[1]; in[1] +=in[0];
57
58 in[17]+=in[15]; in[15]+=in[13]; in[13]+=in[11]; in[11]+=in[9];
59 in[9] +=in[7]; in[7] +=in[5]; in[5] +=in[3]; in[3] +=in[1];
60
61
62 #ifdef NEW_DCT9
63 {
64 real t0, t1, t2, t3, t4, t5, t6, t7;
65
66 t1 = COS6_2 * in[12];
67 t2 = COS6_2 * (in[8] + in[16] - in[4]);
68
69 t3 = in[0] + t1;
70 t4 = in[0] - t1 - t1;
71 t5 = t4 - t2;
72
73 t0 = cos9[0] * (in[4] + in[8]);
74 t1 = cos9[1] * (in[8] - in[16]);
75
76 tmp[4] = t4 + t2 + t2;
77 t2 = cos9[2] * (in[4] + in[16]);
78
79 t6 = t3 - t0 - t2;
80 t0 += t3 + t1;
81 t3 += t2 - t1;
82
83 t2 = cos18[0] * (in[2] + in[10]);
84 t4 = cos18[1] * (in[10] - in[14]);
85 t7 = COS6_1 * in[6];
86
87 t1 = t2 + t4 + t7;
88 tmp[0] = t0 + t1;
89 tmp[8] = t0 - t1;
90 t1 = cos18[2] * (in[2] + in[14]);
91 t2 += t1 - t7;
92
93 tmp[3] = t3 + t2;
94 t0 = COS6_1 * (in[10] + in[14] - in[2]);
95 tmp[5] = t3 - t2;
96
97 t4 -= t1 + t7;
98
99 tmp[1] = t5 - t0;
100 tmp[7] = t5 + t0;
101 tmp[2] = t6 + t4;
102 tmp[6] = t6 - t4;
103 }
104
105 {
106 real t0, t1, t2, t3, t4, t5, t6, t7;
107
108 t1 = COS6_2 * in[13];
109 t2 = COS6_2 * (in[9] + in[17] - in[5]);
110
111 t3 = in[1] + t1;
112 t4 = in[1] - t1 - t1;
113 t5 = t4 - t2;
114
115 t0 = cos9[0] * (in[5] + in[9]);
116 t1 = cos9[1] * (in[9] - in[17]);
117
118 tmp[13] = (t4 + t2 + t2) * tfcos36[17-13];
119 t2 = cos9[2] * (in[5] + in[17]);
120
121 t6 = t3 - t0 - t2;
122 t0 += t3 + t1;
123 t3 += t2 - t1;
124
125 t2 = cos18[0] * (in[3] + in[11]);
126 t4 = cos18[1] * (in[11] - in[15]);
127 t7 = COS6_1 * in[7];
128
129 t1 = t2 + t4 + t7;
130 tmp[17] = (t0 + t1) * tfcos36[17-17];
131 tmp[9] = (t0 - t1) * tfcos36[17-9];
132 t1 = cos18[2] * (in[3] + in[15]);
133 t2 += t1 - t7;
134
135 tmp[14] = (t3 + t2) * tfcos36[17-14];
136 t0 = COS6_1 * (in[11] + in[15] - in[3]);
137 tmp[12] = (t3 - t2) * tfcos36[17-12];
138
139 t4 -= t1 + t7;
140
141 tmp[16] = (t5 - t0) * tfcos36[17-16];
142 tmp[10] = (t5 + t0) * tfcos36[17-10];
143 tmp[15] = (t6 + t4) * tfcos36[17-15];
144 tmp[11] = (t6 - t4) * tfcos36[17-11];
145 }
146
147 #define MACRO(v) { \
148 real tmpval; \
149 real sum0 = tmp[(v)]; \
150 real sum1 = tmp[17-(v)]; \
151 out2[9+(v)] = (tmpval = sum0 + sum1) * w[27+(v)]; \
152 out2[8-(v)] = tmpval * w[26-(v)]; \
153 sum0 -= sum1; \
154 ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \
155 ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)]; }
156
157 {
158 register real *out2 = o2;
159 register real *w = wintab;
160 register real *out1 = o1;
161 register real *ts = tsbuf;
162
163 MACRO(0);
164 MACRO(1);
165 MACRO(2);
166 MACRO(3);
167 MACRO(4);
168 MACRO(5);
169 MACRO(6);
170 MACRO(7);
171 MACRO(8);
172 }
173
174 #else
175
176 {
177
178 #define MACRO0(v) { \
179 real tmp; \
180 out2[9+(v)] = (tmp = sum0 + sum1) * w[27+(v)]; \
181 out2[8-(v)] = tmp * w[26-(v)]; } \
182 sum0 -= sum1; \
183 ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \
184 ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)];
185 #define MACRO1(v) { \
186 real sum0,sum1; \
187 sum0 = tmp1a + tmp2a; \
188 sum1 = (tmp1b + tmp2b) * tfcos36[(v)]; \
189 MACRO0(v); }
190 #define MACRO2(v) { \
191 real sum0,sum1; \
192 sum0 = tmp2a - tmp1a; \
193 sum1 = (tmp2b - tmp1b) * tfcos36[(v)]; \
194 MACRO0(v); }
195
196 register const real *c = nCOS9;
197 register real *out2 = o2;
198 register real *w = wintab;
199 register real *out1 = o1;
200 register real *ts = tsbuf;
201
202 real ta33,ta66,tb33,tb66;
203
204 ta33 = in[2*3+0] * c[3];
205 ta66 = in[2*6+0] * c[6];
206 tb33 = in[2*3+1] * c[3];
207 tb66 = in[2*6+1] * c[6];
208
209 {
210 real tmp1a,tmp2a,tmp1b,tmp2b;
211 tmp1a = in[2*1+0] * c[1] + ta33 + in[2*5+0] * c[5] + in[2*7+0] * c[7];
212 tmp1b = in[2*1+1] * c[1] + tb33 + in[2*5+1] * c[5] + in[2*7+1] * c[7];
213 tmp2a = in[2*0+0] + in[2*2+0] * c[2] + in[2*4+0] * c[4] + ta66 + in[2*8+0] * c[8];
214 tmp2b = in[2*0+1] + in[2*2+1] * c[2] + in[2*4+1] * c[4] + tb66 + in[2*8+1] * c[8];
215
216 MACRO1(0);
217 MACRO2(8);
218 }
219
220 {
221 real tmp1a,tmp2a,tmp1b,tmp2b;
222 tmp1a = ( in[2*1+0] - in[2*5+0] - in[2*7+0] ) * c[3];
223 tmp1b = ( in[2*1+1] - in[2*5+1] - in[2*7+1] ) * c[3];
224 tmp2a = ( in[2*2+0] - in[2*4+0] - in[2*8+0] ) * c[6] - in[2*6+0] + in[2*0+0];
225 tmp2b = ( in[2*2+1] - in[2*4+1] - in[2*8+1] ) * c[6] - in[2*6+1] + in[2*0+1];
226
227 MACRO1(1);
228 MACRO2(7);
229 }
230
231 {
232 real tmp1a,tmp2a,tmp1b,tmp2b;
233 tmp1a = in[2*1+0] * c[5] - ta33 - in[2*5+0] * c[7] + in[2*7+0] * c[1];
234 tmp1b = in[2*1+1] * c[5] - tb33 - in[2*5+1] * c[7] + in[2*7+1] * c[1];
235 tmp2a = in[2*0+0] - in[2*2+0] * c[8] - in[2*4+0] * c[2] + ta66 + in[2*8+0] * c[4];
236 tmp2b = in[2*0+1] - in[2*2+1] * c[8] - in[2*4+1] * c[2] + tb66 + in[2*8+1] * c[4];
237
238 MACRO1(2);
239 MACRO2(6);
240 }
241
242 {
243 real tmp1a,tmp2a,tmp1b,tmp2b;
244 tmp1a = in[2*1+0] * c[7] - ta33 + in[2*5+0] * c[1] - in[2*7+0] * c[5];
245 tmp1b = in[2*1+1] * c[7] - tb33 + in[2*5+1] * c[1] - in[2*7+1] * c[5];
246 tmp2a = in[2*0+0] - in[2*2+0] * c[4] + in[2*4+0] * c[8] + ta66 - in[2*8+0] * c[2];
247 tmp2b = in[2*0+1] - in[2*2+1] * c[4] + in[2*4+1] * c[8] + tb66 - in[2*8+1] * c[2];
248
249 MACRO1(3);
250 MACRO2(5);
251 }
252
253 {
254 real sum0,sum1;
255 sum0 = in[2*0+0] - in[2*2+0] + in[2*4+0] - in[2*6+0] + in[2*8+0];
256 sum1 = (in[2*0+1] - in[2*2+1] + in[2*4+1] - in[2*6+1] + in[2*8+1] ) * tfcos36[4];
257 MACRO0(4);
258 }
259 }
260 #endif
261
262 }
263 }
264